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ABSTRACT

Currently, methodologies for the identification and apportionment of air pollution sources 

are not widely applied due to their high cost. We present a new approach, combining 

mobile measurements from multiple sensors collected from the daily walks of citizen 

scientists, in a high population density area of Birmingham, UK.  The methodology 

successfully pinpoints the different sources affecting the local air quality in the area using 

only a handful of measurements. It was found that regional sources of pollution were 

mostly responsible for the PM2.5 and PM1 concentrations. In contrast, PM10 was mostly 

associated with local sources. The total particle number and the lung deposited surface area 

of PM were almost solely associated with traffic, while black carbon was associated with 

both the sources from the urban background and local traffic. Our analysis showed that 

while the effect of the hyperlocal sources, such as emissions from construction works or 

traffic, do not exceed the distance of a couple of hundred meters, they can influence the 

health of thousands of people in densely populated areas. Thus, using this novel approach 

we illustrate the limitations of the present measurement network paradigm and offer an 

alternative and versatile approach to understanding the hyperlocal factors that affect urban 

air quality. Mobile monitoring by citizen scientists is shown to have huge potential to 
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enhance spatiotemporal resolution of air quality data without the need of extensive and 

expensive campaigns.  

1. INTRODUCTION

Air pollution is a major health issue which impacts public health and the economy (Birnbaum 

et al., 2020; Liu et al., 2019; Rivas et al., 2021).  Globally, exposure to air pollution is considered 

a leading risk life expectancy reduction (Forouzanfar et al., 2015), and is the leading 

environmental risk factor. It is estimated that approximately 9 million premature deaths per 

year are caused by poor air quality(Fuller et al., 2022). The dominant air pollutant with respect 

to human health is particulate matter (PM). Thus, actions to improve air quality, and in 

particular PM levels, are required. The most recent PM guidelines set by the World Health 

Organization (WHO) highlight that exposure to even relatively minor PM concentrations can 

impact upon health (World Health Organisation, 2021). 

To build successful strategies for air pollution control, not only do air pollutant concentrations 

need to be measured, an understanding of where the air pollution comes from is also 

required, i.e. the sources of air pollution need to be identified and apportioned. Hence, source 

apportionment studies are crucially important, as these provide the link between activities 

and the air pollution that they create (Belis et al., n.d.; Coelho et al., 2023). To date, there 

have been many source apportionment studies in the scientific literature (Beddows et al., 

2015; Cesari et al., 2016; Rivas et al., 2020). However, the routine application of sophisticated 

source apportionment techniques outside of academia is limited in many jurisdictions, 

leading to the use of less sophisticated methodologies for air pollution assessment. Typically, 

the equipment needed for source apportionment measurements are expensive and the 

methodologies used for their analysis are complex. As a result, source apportionment is often 

not part of the regulatory toolkit, even though it provides key information for air pollution 

management (Hopke et al., 2020; Karagulian et al., 2015). 

Low-cost sensors (LCS) have caused a paradigm shift in the monitoring of air pollution allowing 

for pollutant mapping at a much finer spatial scale. These sensors provide air quality 

information at a fraction of the cost compared to research grade instruments, having both a 



lower associated capital expenditure (CapEx) and operational expenditure (OpEx) (Peltier et 

al., 2021).  Low-cost sensors are typically outperformed by the more expensive regulatory 

instruments (Alfano et al., 2020; Kang et al., 2022; Karagulian et al., 2019), with low-cost 

sensors usually lacking the accuracy, precision and sensitivity of their research grade 

counterparts (Austin et al., 2015; Sousan et al., 2016). The performance of sensors may 

degrade over time (Anastasiou et al., 2022), and need special care and calibration to provide 

meaningful results (Giordano et al., 2021; Hagan and Kroll, 2020; Lung, 2022; P. Wang et al., 

2021). Nevertheless, their significantly lower cost and greater portability provide 

measurement opportunities that were not previously possible. Many studies have been 

conducted in which low-cost sensors have proved their potential in the field, for both outdoor 

and indoor applications (Ilyinskaya et al., 2017; Raysoni et al., 2023). With proper quality 

assurance and the correct methodologies, these sensors can provide a similar potential for a 

paradigm shift in source apportionment, by greatly reducing the financial burden associated 

with source apportionment studies. Thus, for the last 8 years, several research groups have 

explored the use of low-cost sensors for air pollution source apportionment (Bousiotis et al., 

2023b, 2022; Westervelt et al., 2023). 

Air pollution sources vary spatially and temporally, especially within urban environments 

(Alexeeff et al., 2018; Boogaard et al., 2011). Hence, to understand air pollution exposure, 

data is required at high spatial and temporal resolution. An obvious solution to this data 

requirement is to collect data using mobile platforms, and the use of mobile platforms for air 

quality measurements is not new (Seakins et al., 2002). Numerous mobile campaigns using 

cars, bicycles and pedestrians have been widely performed (Apparicio et al., 2021; Samad and 

Vogt, 2020; Singh et al., 2021; Solomon et al., 2020). The use of low-cost sensors breathe new 

life into such studies as they can be more versatile and widely applied (Chatzidiakou et al., 

2019; deSouza et al., 2020; Macnaughton et al., 2014; S. Wang et al., 2021). Specifically, laser 

scattering PM sensors are considered suitable for mobile monitoring as they can record the 

fast temporal changes in PM concentrations (Buehler et al., 2021; Bulot et al., 2020). As a 

result, studies with mobile measurements can provide more detailed and spatially denser 

measurements, allowing for the identification of hyperlocal sources of pollution in a manner 

that is not possible with the existing static measurement networks (Frederickson et al., 2023; 

Hassani et al., 2023), even within dense network of low-cost sensors (Kumar et al., 2015). 



However, to date we believe this mobile measurement approach has not been used in 

conjunction with source apportionment.

In the present study, mobile measurements from low-cost portable sensors were made by 

citizen science volunteers while on their daily walking commutes in a heavily populated 

residential area. The data of PM1, PM2.5 and PM10 from an Optical Particle Counter (OPC), 

equivalent black carbon (eBC) by a filter absorption photometer and total particle number 

(PN) along with the lung deposited surface area (LDSA) by an aerosol electrometer, all having 

a significantly lower cost compared to their scientific grade counterparts, were collected from 

walks within the study area. The PM data were analysed using Positive Matrix Factorisation 

(PMF), a source apportionment methodology successfully applied in previous work on 

datasets from both research grade instruments (Beddows et al., 2015; Harrison et al., 2011; 

Hopke, 2016) and low-cost sensors (Bousiotis et al., 2023b, 2022; Mills et al., 2023). While in 

previous studies the aim was to assess the sources of pollution affecting a greater area, in this 

study we present a methodology that identifies and quantifies the effect of not only the 

regional sources of pollution affecting the study area, but also pinpoints local point and line 

pollution sources within the study area. A similar task was also attempted by (Lin et al., 2023) 

using measurements collected by a car and ML methods, which resulted in the identification 

of pollution sources, rather than source apportionment which was achieved in the present 

study.

2. METHODS

2.1 Study area and material.

The area studied is a portion of the residential area of Selly Oak of about 1 km2 (52o 26’ N, 1o 

55’ W), 3 km SW of the city centre of Birmingham and directly south of the University of 

Birmingham (Figure 1). As this area is next to the University of Birmingham, it is very densely 

populated (about 10,000 residents in peak period) mainly with students at the University. 

Apart from being a residential area, in the northern and southern ends of the block are two 

busy roads (Bristol Road and Raddlebarn Road), as well as lots of markets and restaurants, 

whereas on the west side of the block lies the Selly Oak train station. The measurement period 



was between the 16th and 25th of June 2023, in which ten walks with the sensor payload were 

made, in accordance with the ethical standards set by the University of Birmingham. Each of 

these walks included all the roads both in the perimeter and the inner part of the block. Four 

of these walks occurred in the morning (9AM to 12PM), 3 in the afternoon (12PM to 5PM) 

and 3 in the evening (5PM to 9PM). The sensors used for this campaign are all considered as 

low-cost, ranging up to a few thousands USD. The setup comprised of: 

• The Alphasense OPC-N3, which is a laser scattering optical particle counter measuring 

in the size range between 0.35 and 40 μm, providing particle counts in 24 size bins as 

well as the mass concentrations for PM1, PM2.5 and PM10 (Alphasense, 2019a) in a 10 

s resolution. A more detailed presentation of the sensor can be found in(Bousiotis et 

al., 2021).

• The testo DISCmini, which is a hand-held ultrafine particle counter measuring the 

number and average diameter of nanoparticles (10 to 700 nm) based on the electrical 

charge of aerosols. For the present study, the number of particles provided by this 

sensor will be considered as the total particle number (PN). Using the data of the 

particles’ diameter, the DISCmini can also provide the Lung Deposited Surface Area 

(LDSA), a metric of the surface area concentration of the particles that deposit in the 

alveolar region of the human lungs. The LDSA is a very important metric as it is found 

to have a stronger correlation with reduced lung function and mortality than the PM2.5 

and the PM10  (Hennig et al., 2018; Patel et al., 2018) and can be used to provide further 

information about the particles’ characteristics and composition (Haugen et al., 2022). 

The time resolution of the measurements from the DISCmini is 1 s.

• Aethlabs microAeth AE51, which is a real-time BC monitor in the range between 0 – 1 

mg BC/m3, with a measurement precision of 0.1 μg BC/m3. This is done by measuring 

the rate of change in absorption of transmitted light (wavelength at 880 nm) due to 

continuous collection of aerosol deposit on the filter within the device. Measurements 

can be collected in different time resolutions starting from 1 s. Following the settings 

suggested by the manufacturer for the specific environment and conditions, a 1-

minute resolution was chosen.

These sensors were fit within a backpack (total weight is less than 3 kg), and they were 

connected to silicone tubes (about 20 cm long) facing the right side of the backpack (figure 



S1. Additionally, a Bosch BME-280 sensor was fit next to the OPC-N3 inlet for continuous 

monitoring of the temperature and RH, as well as a GSM module for real time monitoring and 

reporting of the measurements to the cloud. All measurements in the present study were 

averaged to a 1-minute resolution for consistency. The backpack was designed so the 

volunteer citizen scientists could conduct their day as normal with plenty of space left for the 

bag to be used to carry their belongings. 

2.2 Calibration

All sensors were collocated with the research grade instruments at the Birmingham Air 

Quality Supersite (BAQS) at the University of Birmingham (Bousiotis et al., 2021) and about 1 

km north of the study area. Two collocation periods, before and after the campaign, of a total 

of about 4 days were done, in which the inlets of the sensors were placed next to the inlets 

of the research grade instruments at BAQS for simultaneous measurements. For the OPC-N3, 

after removing the outliers, an exponential relationship was considered between the ratio of 

the measurements of the sensor and the research grade instrument and the relative humidity 

(RH) in the atmosphere. The precision of the low-cost sensors, and especially those that 

measure particle concentrations, is known to be greatly affected by atmospheric conditions 

and especially RH. As a result, an overestimation of the PM2.5 and the PM10 concentrations 

from the sensor is observed with higher RH due to PM hygroscopicity effects (Crilley et al., 

2020, 2018; Khreis et al., 2022). While this is a common feature of the meteorological 

conditions in the United Kingdom, the RH during the campaign was rather low reducing the 

discrepancy found between the measurements of the sensors and the actual atmospheric 

conditions. Nevertheless, the calibration greatly improved the precision of the measurements 

especially for the larger PM2.5 and PM10 (Pearson correlation r PM1 = 0.81 to 0.84, PM2.5 = 0.63 

to 0.75, PM10 = 0.32 to 0.57). 

The measurements of the microAeth AE51 were calibrated against those from the MAGEE 

Scientific aethalometer AE33 located at the BAQS. As the BC sensor was not significantly 

affected by the meteorological conditions during the campaign, a linear relationship was 

found between the measurements of the sensor and the scientific instrument (r = 0.65). The 

low-cost sensor on average overestimated the BC concentrations by a factor of 1.75. This 



discrepancy was corrected after the calibration also leading to a slight improvement of the 

correlation between the two datasets (r = 0.66).

The DISCmini was calibrated against the TSi CPC 3775 located at the BAQS. The CPC 3775 is a 

research grade instrument which measures particles in the size range 4 nm up to 3 μm. As the 

DISCmini measures the total particle number in a fraction of this size range, its collocation 

measurements were calibrated against the adjusted total particle number from the CPC 3775, 

considering only the size range that is common between the two instruments.

Finally, the measurements of the meteorological sensor were also calibrated against those 

from the Elms Road meteorological station at the University of Birmingham. As the sensor is 

located inside the container of the OPC, its values are different from the atmospheric ones, 

with the RH being underestimated and the temperature overestimated. Regardless, the 

correlation between the sensor’s and atmospheric values was very high (r > 0.95), thus a 

simple linear regression was sufficient for the calibration of the measurements. Finally, the 

traffic data for Bristol Road were provided by the Birmingham City Council.

2.3 Positive Matrix Factorisation and estimated PM contribution calculation

The Positive Matrix Factorisation is a multivariate data analysis method developed by 

(Paatero and Tapper, 1994, 1993), which has been successfully applied numerous times for 

receptor modelling studies for source apportionment with atmospheric data (Beddows et al., 

2015; Cesari et al., 2016; Rivas et al., 2020). It considers the measured data of different 

variables for each timestep and their experimental uncertainties as an input. The 

uncertainties for the equipment used in the present study range between 15-25% according 

to manufacturers’ specifications and previous studies (Alas et al., 2020; Alphasense, 2019b; 

Bau et al., 2015). These were used in the present study ensuring that the Q to Qtheoretical ratio 

is as close to 1 as possible. The outputs are a matrix of factors (F), which represent the average 

values associated with the different factors, a matrix of their contributions (G) for each 

timestep of the dataset provided, and a matrix of residuals (E) (the non-explained by the 

method part of the variation of the variables) using a least-squares technique (Reff et al., 

2007). The matrices F and G are determined so that the Euclidean norm of the matrix of 

residuals divided by the experimental uncertainties is minimised. The PMF is a descriptive 



model, thus has no objective criterion for the optimal number of factors (Paatero et al., 2002). 

Thus, the optimal solution is chosen by the user depending on:

• The ability to understand what each factor represents

• The uniqueness of the factors generated (having low correlations between ther 

variation)

• The significance of the factors (factors with near zero contribution to all the 

atmospheric variables were not considered)

• The reduction (as much as possible) of the unexplained variance.

The estimated PM concentrations reported are calculated using the F and G values provided 

by the model. As F(i) represents the average contribution of each variable for each factor and 

G(i) represents the contribution of each factor at a given timestep (normalised to one), the 

estimated PM concentrations are calculated as:

PMest(i) = FPM(i) X G(i)

This calculation also considers the non-explained variance from the factors in the analysis, as 

this is also included in the outputs of the model. While this method does not provide an 

accurate value for each variable at each timestep, as it considers the average contribution of 

all variables in a factor to vary as one (according to the single G contribution for each factor), 

it has been proven successful in providing a sensible portray of the effect of the different 

factors on the air quality conditions and provide a reliable estimation for the PM 

concentrations of the different factors (Bousiotis et al., 2023a).

For the PMF analysis, the second iteration of PMF software was used, developed by (Paatero, 

2004). Further analysis of the results was done using the Openair package for R developed by 

(Carslaw and Ropkins, 2012).

3. RESULTS

3.1 General conditions

The campaign took place during the period between the 15/6/2023 to 26/6/2023 within the 

Selly Oak area in the city of Birmingham, UK. Selly Oak is predominantly populated by students 

within higher education and is located directly south of the University of Birmingham. This 

campaign coincided with the end of the term at the University of Birmingham, and while many 



students still live in the area, the landlords take advantage of the relatively quiet period to 

conduct construction and renovation works upon the houses for the next academic year. 

Locations of construction work were pinpointed during the walks and are highlighted within 

Figure 1. During the measurement campaign period relatively high temperatures for the 

location and season occurred (18.93.7C), the average relative humidity was 66.929.9% 

and there were no rainy days. Moderate winds (2.21.9 m s-1) were experienced during the 

campaign period, with wind direction predominantly from the ENE and SW directions. 

The average pollutant concentrations of PM1, PM2.5, PM10 and black carbon (BC), and their 

relationship with wind direction and time of the day, measured at the nearby Birmingham Air 

Quality Supersite (BAQS), are shown in Figure 2. The wind conditions clearly affect the 

pollutant concentrations, as more polluted conditions occur from the NE which corresponds 

to air from the direction of the city centre. The time of the day also affects pollutant 

concentrations, with BC particularly affected by morning and evening rush hours. 

The average pollutant and wind conditions for each of the citizen science walks are given in 

Table 1. Walks during the days with easterly winds have the highest PM concentrations. 

Furthermore, morning walks presented the higher average concentrations of the pollutants 

compared to other time periods.

3.2 Source apportionment

Source apportionment using the PMF algorithm was performed on the collected air pollution 

dataset.  Particle counts per size bin and the PM mass concentrations were obtained from 

OPC-N3 optical particle counters, the eBC data from microaethalometers and the PN and 

LDSA from the DISCmini devices. Solutions with different numbers of factors were attempted 

and a 5-factor solution was considered optimal to describe the different sources of air 

pollution in the area, ensuring the unique nature of the factors formed (Figure S2). The 

particle number size distribution (PNSD) profiles for the different factors are found in Figure 

S3. The average contribution of each factor on the PM, BC, PN and LDSA is presented in the 

Table 2 and the contribution of each factor for different wind conditions is shown in Figure 3. 

Furthermore, Figure 4 shows the average contribution of each factor for each block in a 12x12 



grid (representing 0.001’x0.001’ longitude x latitude). In this case, the grid presentation was 

chosen as these are not measured values but the output of the model, representing the 

average conditions in each block.

The first factor presents a strong contribution to the PM1, PM2.5 and BC concentrations, while 

a less significant association with the LDSA was also observed. The lower PM10 concentration 

found for this factor indicates the lack of coarse particles associated with the source. This 

factor is largely invariant for most wind directions and speeds, however, a clear peak is 

observed with winds from the NE. Looking at the temporal variation of this factor (Table S1), 

higher contributions of this factor were observed during the morning walks, especially on the 

days with easterly winds, regardless of the weekday. This factor is assigned as an urban 

background factor, which includes the homogenized effect of the urban sources outside the 

study area, mainly from the direction of the city centre of Birmingham located about 3 km to 

the east of the study area, as well as from other urban areas surrounding the study site.

The second and fourth factors have similar characteristics, presenting a contribution from 

larger sized PM, especially in the PM10 fraction, while their association and effect on the BC 

and PM1 is negligible. The almost exclusive effect of these factors on the larger PM sizes 

explains the minimal effect these factors had on the total PN. Both factors present higher 

contributions from the highly residential parts of the study area, see Figure 4, and lower 

contributions on the perimeter of the Selly Oak area (Table S2), with few exceptions. These 

are mostly associated with possible emissions from the train station at the western side of 

the block as well as the grill restaurants located at the Raddlebarn Road on the southern side, 

which appear to affect both factors. Cooking emissions may also be included in this factor, 

especially close to restaurants. Though several solutions were tested, none of them 

introduced a clear cooking factor in the area. Increased contributions to the factors are 

observed at several specific points within the study area. Specifically, for the second factor, 

these often coincide with locations where construction activities were being undertaken. It is 

interesting to note, that while the correlation between Factor 2 and Factor 4 is relatively high 

(r = 0.66), they present different spatial hot-spots and behaviours. Factor 2, which is a more 

PM10 focused factor (PM2.5/PM10 = 0.06 and 0.19 for F2 and F4 respectively), has sharper 

peaks and faster decay times compared to the Factor 4, as well as time periods and areas with 



no presence at all. Factor 4 has a more constant presence with less intense peaks. This 

probably explains the greater and more focused peaks found on the map for Factor 2 and 

indicate its more hyperlocal nature compared to the Factor 4. This is consistent with 

(Frederickson et al., 2022) who discussed the correlation between the fluctuation of the 

presence and effect of a source and its regionality.

 

The third factor provides a contribution to all the PM sizes. Its effect seems to be more 

significant for PM2.5, for which it is the greatest contributor in the study area. Its variation 

with the wind is minimal, with the sole exception for SW winds for which its contribution is 

almost doubled. Looking at the PNSD profile for this factor, two peaks appear in the sizes 

around 750 nm and 2 μm. This particle profile is similar to the ones consistently found in 

previous source apportionment studies in the UK, presented similar characteristics and was 

associated with the dominant effect of marine sources, due to the ocean surrounding the 

British islands (Bousiotis et al., 2023b, 2022). As expected, this factor had higher average 

contribution for the days with strong SW winds, while smaller variations were found between 

day of the week or hour of the day. This factor is assigned as the marine factor.

The fifth factor is of great interest, as for the first time to the authors’ knowledge, a source 

apportionment study using LCS clearly identifies the effect of traffic. While the variation of 

the contribution of this factor with the wind seems to be minimal, a small increase is observed 

with northerly winds, emphasised by the great difference in its contribution between days 

with NE winds against those with SW (Table S1). This is expected, as the traffic flux is much 

greater for the two main roads (Bristol and Raddlebarn roads) and especially the Bristol Road 

located at the northern end of the study area (about 800 vehicles/hour during the measuring 

campaign hours). This factor has a rather small effect on all the PM size ranges, but a strong 

association was found with the BC concentrations, the PN and the LDSA. The combination of 

the strong effect on the PN but limited on the PM1 further establishes its traffic nature, as the 

vehicle emissions from the tailpipe are mostly below the measuring capabilities of the OPC 

(Beddows et al., 2023; Kittelson et al., 2003). It is also notable that the association of this 

factor with the LDSA and the PN is better established compared to that with the BC. This is in 

agreement with the findings of Chang et al., (2022), who reported that the relationship of 

these two variables with the traffic flux is greater than that of the BC. In our study, BC was 



almost equally attributed to the urban background and the traffic factors, while only a small 

portion was associated with other sources. The relationship of this factor with traffic is also 

visible in figure 4, in which we can see the high contributions at the Bristol Road (a very busy 

road on the northern part of the study area) as well as to a lesser extent at the Raddlebarn 

Road (the horizontal road on the southern end of the study area). This factor is assigned as 

the local traffic factor.

3.3 Spatial source separation

The separation of the sources that contribute to local air quality can provide focus to the 

actions required to control them. In the previous section, five distinct sources of pollution 

have been identified. Factors 1 and 3 represent regional sources that are clearly associated 

with specific wind directions and are less affected by diurnal variations. Factors 2, 4 and 5 

were found to have more local characteristics.  Factor 5 is easily assigned as a local traffic 

source. Factors 2 and 4 appear to be associated with sources specifically within the study 

area. Assigning the factors identified to the local (F2, F4 and F5) and regional sources (F1 and 

F3) allows for the assessment of air quality actions required (Table 3). Starting with PM1, only 

a small fraction of the total concentrations is associated with local sources (6.6%), showing 

their largely regional character.  However, PM1 is very different to the total PN, as they were 

mostly assigned to the traffic factor (F5 = 82%). This is in agreement with Rivas et al., (2020)68 

who found similar traffic contributions to the ultrafine particles in London’s urban 

environment. Similar are the results for the association of the sources with the LDSA, with the 

local sources having the greatest contribution, largely due to traffic factor (F5), which 

according to our analysis was responsible for about 67% of the total LDSA contributions.

It is highlighted, this study has insufficient data to provide an assessment of the air quality 

within the study area either at the annual or daily timescales.  The walk data are not 

continuous and hence cannot be used for daily averages and miss the night-time completely. 

The total campaign was significantly less than a year and hence cannot be used for annual 

averages. Thus, the comparisons presented hereafter are not to be used for general air quality 

assessment, but rather to provide a scale to understand the effect of different factors. 



With respect to PM2.5, the regional sources of PM2.5 alone are greater than the annual WHO 

recommendations5 during the measurement hours, though significantly lower than the daily 

limits (the annual and daily PM2.5 recommendation by WHO are 5 and 15 μg m-3 respectively). 

The contribution of the regional sources was more than 80% of the total PM2.5 concentrations 

explained by the model, making them the most important contributor for the PM2.5 pollution.

The results are different for the PM10 though. While the average PM10 concentrations are 

greater than the annual WHO guideline as well, these values are largely driven by the local 

sources of particles rather than the regional, with a contribution of more than 60%. Finally, 

BC is associated with both the urban background and traffic results with an almost equal 

contribution of local and regional sources to the total BC concentrations.

It is noted that about 20% of the PM10 concentrations and 30% of the BC concentrations were 

not explained by the model. This means that these percentages of the PM10 and BC were not 

assigned to any of the factors and thus their sources cannot be pinpointed. This along with 

the very low contribution of the Urban Background (F1) on the coarse particle (PM2.5-10) 

concentrations may be the reason of the regional (as well as that of the F1) PM10 contribution 

erroneously appearing lower than that of the PM2.5 on the present analysis. Solutions with a 

greater number of factors were attempted but did not improve the performance of the model 

for these two variables. As the PMF does not comprehend the inherent relations between the 

variables inputted, such discrepancies may occur. Furthermore, the possibility that the high 

uncertainties due to the nature of the low-cost sensors may also be responsible for these 

discrepancies cannot be ruled out. These points should be considered for future studies.

Looking at the effect of the regional factors compared to the local ones, we see the effect of 

the urban background to be greater in the perimeter of the Selly Oak residential area (Table 

S2). Almost all roads in the perimeter present average contributions of the first factor that 

are greater than 1, which means that the effect of that factor is greater than average for these 

roads. On average, the effect of the urban background is about 20% greater at the perimeter 

of the block compared to the inner parts of the block. This is probably the result of the lower 

density urban landscape surrounding the Selly Oak residential area, compared to the densely 

built space within it, which may reduce the relative effect of the more regional sources. The 

only exception to this is the Raddlebarn Road for which, while the effect is greater than most 



of the inner roads, is smaller than the average. A possible explanation for this is the Selly Park, 

located south of that road, which may have a reducing effect of the incoming urban 

background emissions due to the presence of trees. In contrast, the local factors present 

greater contributions within the block compared to the perimeter. By averaging the 

contribution of the factors per grid point included on each road in the study area, we were 

able to compare the effect of the local sources between them. The more PM10-focused F2 and 

F4 were found to be about 12-14% greater on the roads within the block compared to those 

at the perimeter. Finally, the effect of the traffic factor is about 60% greater for the perimeter 

of the block compared to the inner part (Table S2). As explained earlier, while the inner roads 

have some traffic activity, this is a lot less than that of the outer roads and especially Bristol 

Road, which presents the greatest contribution for this factor. Additionally, looking at the 

standard deviation of the different factors among the roads, we can see that the variation is 

a lot greater for the local factors compared to the regional ones. This is an expected result as 

the variability of the regional sources is a lot lower and its effect is expected to be more 

balanced throughout the block due to their nature.

3.4 Mapping an area

Mobile campaigns can be very useful for air quality studies as they provide data at a 

hyperlocal resolution. We now show that source apportionment methodologies can be used 

to generate hyperlocal source apportionment. Maps of the average concentrations for the 

different spots within the study area during our campaign are found in Figure 5. 

From Figure 5, great variability in the different pollutants can be observed. For the regulatory 

important PM2.5 and PM10, higher mass concentrations are found mostly within the Selly Oak 

block. According to the analysis presented in the previous section, the sources associated with 

such emissions have a more local character and appear to have a greater effect especially on 

the PM10 within the block compared to the perimeter areas. This though provides only a 

limited image of the health risk that exists for the different areas of the block. The LDSA, a 

metric that provides valuable information for health effect studies but is not regulated, shows 

the greater risk found on the perimeter of the block and mainly the northern side where the 

Bristol Road is, as well as on the busy junctions at the NW and SE of the study area. As 



highlighted earlier in the source apportionment analysis, the emissions in that road are mainly 

of traffic nature which, due to their size and chemical composition, may be associated with 

the most adverse health effects. 

Furthermore, the combination of the mobile measurements and the source apportionment 

analysis can provide information about the evolution of the different sources, and the range 

of their effect. An example of such an analysis is found in Figure 6, in which the 10 points 

traversing Dawlish Road, the North - South of the block, can be assessed both for the average 

concentrations of the PM2.5, PM10 and LDSA, as well as the partial effect of each factor on 

them. For the PM2.5 we can see that the most important sources are the regional ones, with 

an (as expected) almost equal effect across the whole road. This changes for the PM10, for 

which local sources appear to be more influential in its variation, with the highest contribution 

being that of F4. It is notable that two of the peaks of the contribution of F4 on that road 

appear close to the points where construction work is undertaken and the PM10 

concentrations are expected to be increased(Hong et al., 2020; Sekhavati and Yengejeh, 

2023). Finally, for the LDSA, the profile is completely different. While there is almost a 

consistent value within the block, we can see an increase on the edges, where the road meets 

the two main traffic roads in the block. For this edge effect, it is the variation of the traffic 

factor (F5) that contributes the most significantly.

A similar analysis was done for the Bristol Road, which is the main traffic road within the study 

area. The profile of the PM2.5, PM10 and LDSA are found in Figure 7. The most interesting 

variation for this road is within the LDSA, which is directly associated to traffic emissions. The 

LDSA average values are almost double to those observed at Dawlish Road (Figure 6).  The 

peaks found coincide either with the traffic lights in the area, or near the junction at the 

western end of the road which has no traffic light there. For these specific points, the LDSA 

values associated with the traffic factor are almost 150% greater than those for the whole 

Bristol Road and more than 200% greater than the peak points found in Dawlish Road.

The same analysis was done for the rest of the roads as well, mapping the different sources 

and their effect within the study area. The results of this analysis are presented in the SI 

figures S4a, b. Looking at the detailed analysis of each one of the roads, the effect of several 

point or area sources, such as the train station at Heeley Road (H3 to H6), the restaurants at 



Raddlebarn Road (R3), the junctions at both ends of Bournbrook Road (O1 and O10), or the 

local PM10 hotspots, mainly attributed to variations of F2 and F4 and once again coinciding in 

some cases at points where construction activities were undertaken (e.g. around T8 in 

Tiverton Road or S4 and S6 in Harrow Road). 

The results from the source apportionment analysis of mobile monitoring data show the great 

potential of the methodology in providing not only a detailed map of pollution hotspots, but 

also the attribution of different sources to the hot spots.

4. DISCUSSION

In this paper, we show that LCS mobile monitoring and source apportionment can be used to 

generate a wealth of air quality data that can pinpoint air pollution sources without the need 

of extensive or expensive campaigns. This level of detail is not possible with static networks.  

Hence, mobile LCS provide the opportunity to dramatically extend the existing regulatory 

network due to their low cost and portability. Through a relatively small number of citizen 

science enabled mobile monitoring walks we have been able to map and highlight air 

pollution hotspots and sources relevant to thousands of people living within a highly 

urbanized area. 

Previous studies using static monitoring locations have successfully identified the importance 

of regional sources of PM pollution. This study highlights that mobile measurements can 

identify hyperlocal pollution hot spots in addition to regional sources with a significantly 

reduced cost. Hyperlocal sources such as construction sites or road junctions typically only 

influence local air quality over a short range, but their impact can be significant since the study 

area is densely populated.

The mobile source apportionment approach allows for the relative importance of the 

different sources on the local environment to be assessed. Through this information, better 

urban planning and governance is possible, as the method provides the information needed 

to assess the relative importance of different sources. It is noted that some sources identified 

are not important from a regulatory PM perspective which currently only considers PM2.5 and 



PM10 mass concentrations. However, PM1, PN and LDSA have consistently been shown to be 

important for public health. For example, the traffic factor (Factor 5) from our analysis is not 

“visible” if one just looks at PM2.5 and PM10 mass concentrations, but it is significant from a 

PN and LDSA perspective which are indicative of smaller particles that contribute little to 

PM2.5 and PM10 mass concentrations. The traffic factor which appears to have hot spots within 

the study area, even though it is present almost throughout the study area, plays a decisive 

role on the variation of the pollutants associated with smaller particles. The negative effect 

of smaller particles upon public health are well documented (Chang et al., 2022; Schmid and 

Stoeger, 2016). Several studies have suggested that in many cases the mass concentration of 

particles can be of lesser importance in comparison to the number of particles or their surface 

area(Schmid and Stoeger, 2016). 

Our study shows that mobile LCS monitoring with citizen scientists provides an affordable and 

versatile approach to providing air pollution information services. Going forward, the mobile 

monitoring can be combined with readily available public information on socio-economic data 

(population density, traffic flow, etc.) and meteorological variables to generate a digital twin 

of the causes and effects of local air pollution.  This will provide information at a local scale 

that can influence both governance and public understanding of air pollution and provide 

information on how to reduce and avoid air pollution exposure.

The method presented comes with certain limitations. The citizen science walks provide only 

a snapshot of the pollution profile at the given times and locations of each walk. In many 

cases, significant sources of pollution were not identified in walks made at different times of 

the day. For example, the effect of construction works is greatly reduced when presenting the 

average of all the walks, as construction typically only occurs during the working day. A 

solution to this would be to engage more citizen scientists to take more walks at different 

times of the day, but this would have implications upon OpEx costs. 

In our study, we achieved the mapping of sources and their relative importance with only 10 

citizen science walks. The approach can be translated and expanded to other locations. Future 

studies should be tailored according to the specific needs in each case. For example, our 

analysis does not cover possible sources during night hours since no walks were taken during 



this period. The approach could be used to provide addition information to regulatory 

networks. Crowd collected measurements reduce OpEx costs, and LCS reduce CapEx costs. 

The Internet of Things (IoT) methodologies needed for such work are already available(Kortoçi 

et al., 2022; Robinson et al., 2018). The outputs from fast and flexible campaigns, combined 

with the results from the existing network can greatly improve and extend the capabilities for 

pollution monitoring and control and increase our understanding of local air pollution, 

actively engaging the public and help in the improvement of the air quality for everyone.

5. CONCLUSIONS

In the present study, a novel methodology is presented using only a handful of mobile 

measurements collected by low-cost sensors, measuring PM, BC, total particle number and 

LDSA, to identify and quantify the effect of the sources influencing these in a residential 

area of Selly Oak, Birmingham, UK. The methodology successfully identified the mix of 

regional and local sources affecting the air quality in the area with multiple proportions 

depending on the area, time of the day, weekday and synoptic conditions. In most cases, the 

PM concentrations found were higher than the hourly averages suggested by the WHO, 

though significantly lower than the annual suggested averages. For these averages it should 

be considered that all measurements were done during daytime, which points that the daily 

averages are expected to be significantly lower. Five distinct sources of pollution were 

identified using the PMF, three of which had a more local character while the other two 

were associated with sources further outside from the block. Regional sources had a greater 

effect on the smaller PM1 and PM2.5 concentrations, while PM10 concentrations were mainly 

driven by local sources (more than 60%). Among the sources found the traffic factor was 

identified for the first time in a study using low-cost sensors. Its effect was not significant on 

the PM, but greatly increased the total particle number as well as the LDSA, a metric that 

measures the effect of small particles on the respiratory system and is barely captured by 

the currently regulated metrics. Due to this discrepancy, the shortcomings of using just the 

PM2.5 and PM10 concentrations for regulatory studies especially in urban areas is illustrated. 

Our study showed that some parts of the study area did not have significant concentrations 

of the regulated PM, but were directly affected by the traffic emissions, and could falsely be 

considered as within safe limits. In a similar manner, our study pointed the limitations that 



come with the existing measuring network to capture the significant variations of the larger 

particles from hyperlocal sources that extend only to a limited area. Even though the 

concentrations of PM2.5 and PM10 are considered to barely vary in such small areas, our 

results showed that the effect of these hyperlocal sources only extend to a couple of 

hundred meters, still affecting the air quality for hundreds of people in such a densely 

populated area. While studies like this can provide crucial information in dealing with 

hyperlocal air quality problems, extra care should be taken on their design to provide a 

realistic and non-biased result. Thus, more similar studies in different scenarios should be 

done to improve their capabilities and extend their usage.
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TABLE LEGENDS:

Table 1: Average conditions on each walk (row colour indicates the time of the day with 
Blue being morning, Black being afternoon and Brown being evening) measured 
by the LCS.

Table 2: Average PM1, PM2.5, PM10, BC, PN and LDSA of the five factors.

Table 3: Average contribution of local and regional sources on the PM (μg m-3), BC (ng m-3), PN 
(N cm-3) and LDSA (μm2 cm-3) concentrations.

FIGURE LEGENDS

Figure 1: Map of the study area (map ©Google). The construction signs refer to the 
construction sites in the area at the time of the campaign.

Figure 2: PolarAnnuli plots for the average concentrations PM1, PM2.5, PM10 and BC (a, b, 
c, d respectively) during the campaign measurement period, measured at the 
BAQS. The concentrations are calculated using the mean concentration of the 
observations for the different wind conditions and time of the day. Thus, the 
number of observations for each segment may differ.

Figure 3: Polar plots of the contribution of the factors. The position of each spot in the plot 
resembles the wind direction and speed (the further from the centre, the greater 
the wind speed) for which the measurements are averaged. The concentrations 
are calculated using the mean concentration of the observations for the different 
wind conditions and time of the day. Thus, the number of observations for each 
segment may differ.

Figure 4: Average G contribution (normalized to 1) per block for each factor (factor 1 to 5 
is shown in figures (a) to (e) respectively) (each block is 0.001 x 0.001 longitude x 
latitude points, about 111m x 111m = 12321 m2). 

Figure 5: Average (a) PM2.5 and (b) PM10 mass concentrations (in μg m-3), (c) LDSA (in μm2 
cm-3) and (d) Black carbon (in ng m-3) concentrations during the walks of the 
campaign. The position of the points is the average position of the measurements 
per each block

Figure 6: Map of the road (a) and variation of the sources of PM2.5 (b), PM10 (c) and LDSA 
(d) for a transect down Dawlish Road. The location of construction sites are 
highlighted on the PM10 figure.

Figure 7: Map of the road (a) and variation of the sources of PM2.5 (b), PM10 (c) and LDSA 
(d) for a transect across Bristol Road. Major (on a junction) and minor (no junction) 
traffic light points are marked by symbols on the LDSA figure.



Day PM1

(μg m-3)

PM2.5

(μg m-3)

PM10

(μg m-3)

BC

(ng m-3)

PN

(N cm-3)

LDSA

(μm2 cm-3)

WD

(deg)

WS

(m s-1)

Thursday 15/6 3.07 7.07 29.5 2733 15812 25.4 NE 1.68

Friday 16/6 2.50 5.59 26.3 2424 18592 26.4 E 1.72

Sunday 18/6 6.68 9.87 22.6 2450 14935 24.3 E 1.56

Monday 19/6 3.91 8.77 20.0 1938 15346 13.8 SW 2.46

Monday 19/6 2.60 6.42 20.7 1615 16877 18.6 SW 1.89

Tuesday 20/6 2.23 4.55 15.1 1953 16513 18.7 SW 0.92

Thursday 22/6 4.49 8.05 22.6 2688 22195 27.4 Mixed 1.04

Sunday 25/6 3.17 5.88 21.8 2173 13211 24.2 SW 2.76

Sunday 25/6 1.75 5.03 20.3 1047 10108 13.3 SW 1.53

Monday 26/6 1.28 3.97 16.6 1309 16143 11.7 SW 1.91

Table 1: Average conditions on each walk (row colour indicates the time of the day with Blue 

being morning, Black being afternoon and Brown being evening) measured by the LCS.

PM1

(μg m-3)

PM2.5

(μg m-3)

PM10

(μg m-3)

BC

(ng m-3)

PN

(N cm-3)

LDSA

(μm2 cm-3)
F1 (Urban background) 1.58 2.21 1.24 614 Negligible 3.29
F2 (Local) 0.02 0.13 2.32 Negligible Negligible 0.10
F3 (Marine) 0.79 3.22 3.90 Negligible 2460 Negligible
F4 (Local) 0.08 1.01 5.36 20 Negligible 0.80
F5 (Traffic) 0.07 0.17 0.76 676 11388 13.5
Unexplained 0.16 0.43 3.36 696 2124 2.34

Table 2: Average PM1, PM2.5, PM10, BC, PN and LDSA of the five factors



Local sources 

contribution

Regional sources 

contribution

Local  

sources %

Regional  

sources %

PM1 0.2 2.4 6.6 93.4

PM2.5 1.3 5.4 19.4 80.6

PM10 8.4 5.2 62.2 37.8

BC 696 614 53.1 46.9

PN 11388 2460 82.2 17.8

LDSA 14.4 3.3 81.4 18.6

Table 3: Average contribution of local and regional sources on the PM (μg m-3), BC (ng m-3), 

PN (N cm-3) and LDSA (μm2 cm-3) concentrations



             
Figure 1: Map of the study area (map ©Google). The construction signs refer to the 

construction sites in the area at the time of the campaign.



(a) (b)

(c) (d)

Figure 2: PolarAnnuli plots for the average concentrations PM1, PM2.5, PM10 and BC (a, b, c, d 

respectively) during the campaign measurement period, measured at the BAQS. The 

concentrations are calculated using the mean concentration of the observations for the 

different wind conditions and time of the day. Thus, the number of observations for each 

segment may differ.



Figure 3: Polar plots of the contribution of the factors. The position of each spot in the plot 

resembles the wind direction and speed (the further from the centre, the greater the wind 

speed) for which the measurements are averaged. The concentrations are calculated using the 

mean concentration of the observations for the different wind conditions and time of the day. 

Thus, the number of observations for each segment may differ.



(a) (b) (c)

 (d) (e)

Figure 4: Average G contribution (normalized to 1) per block for each factor (factor 1 to 5 is 

shown in figures (a) to (e) respectively) (each block is 0.001 x 0.001 longitude x latitude points, 

about 111m x 111m = 12321 m2 ). 



(a) (b)

(c) (d)

Figure 5: Average (a) PM2.5 and (b) PM10 mass concentrations (in μg m-3), (c) LDSA (in μm2 cm-

3) and (d) Black carbon (in ng m-3) concentrations during the walks of the campaign. The 

position of the points is the average position of the measurements per each block.



(b)

(c)

(a)

(d)

Figure 6: Map of the road (a) and variation of the sources of PM2.5 (b), PM10 (c) and LDSA (d) 

for a transect down Dawlish Road. The location of construction sites are highlighted on the 

PM10 figure.



(b)

(c)

(a)

(d)

Figure 7. Map of the road (a) and variation of the sources of PM2.5 (b), PM10 (c) and LDSA (d) 

for a transect across Bristol Road. Major (on a junction) and minor (no junction) traffic light 

points are marked by symbols on the LDSA figure.
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