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In this work, we have applied the Kernel Ridge Regression (KRR)
method using a Least Square Support Vector Regression (LSSVR)
approach for the prediction of the NMR isotropic magnetic
shielding (σiso) of active nuclei (17O, 23Na, 25Mg, and 29Si) in a
series of (Mg, Na)–silicate glasses. The Machine Learning (ML)
algorithm has been trained by mapping the local environment
of each atom described by the Smooth Overlap of Atomic
Position (SOAP) descriptor with isotropic chemical shielding
values computed with DFT using the Gauge-Included-Projector-
Augmented-Wave (GIPAW) approach. The influence of different
training datasets generated through molecular dynamics simu-
lations at various temperatures and with different inter-atomic

potentials has been tested and we demonstrate the importance
of a wide exploration of the configurational space to enhance
the transferability of the ML-regressor. Finally, the trained ML-
regressor has been used to simulate the 29Si MAS NMR spectra
of systems containing up to 20000 atoms by averaging
hundreds of configurations extracted from classical MD simu-
lations to account for thermal vibrations. This ML approach is a
powerful tool for the interpretation of NMR spectra using
relatively large systems at a fraction of the computational time
required by quantum mechanical calculations which are of high
computational cost.

1. Introduction

Solid-state NMR spectroscopy has now established itself as
among one of the most powerful experimental techniques for
glass structure investigation.[1–11] The NMR fingerprint of an
active nucleus strongly depends on its local environment and
can therefore give fundamental information on the short and
medium-range order in glass structures, like the coordination
numbers (CN), network connectivity (Qn: Q stands for quater-
nary species whereas n is the number of bridging oxygens
linked to it), oxygen speciations (bridging and non-bridging
among network former cations), and cations intermixing.

However, the amorphous nature of glasses makes the
interpretation and deconvolution of NMR spectra a challenging
task, possible only for systems with a simple composition since
the observed NMR spectrum results from the topological and
chemical distributions of the glass constituents. This induces a
spectral broadening that leads to a strong overlapping of the
contributions stemming from the different environments of the
probed nucleus. As a mean to overcome these limitations,

Molecular Dynamics (MD) simulations coupled with NMR DFT
calculations have become a very important tool for interpreting
NMR spectra.[12]

The approach consists of generating glass structures using
classical MD simulations, optimizing the structures at the DFT
level, and computing the NMR parameters using the gauge-
including projector augmented wave (GIPAW)[13–19] method.
Unfortunately, the high computational cost of the DFT-NMR
calculations limits the application of this so-called MD-GIPAW
approach to small system sizes (max ~1000 atoms),[12,20] in
addition to the fact that it does not account for dynamical
effects due to atomic vibrations at room temperature.[21]

Nowadays, Machine Learning (ML) for the prediction of
NMR parameters has emerged as a promising way to overcome
these limitations (and more generally those of DFT
calculations).[22,23] ML techniques offer the opportunity to
predict various properties with near DFT accuracy but saving
orders of magnitude of computational time.[24] They were
applied to organic molecular solids by Paruzzo et al[25] to predict
NMR chemical shift and to determine the structure of molecules
by comparing simulated and experimental spectra. The earlier
applications of ML to predict chemical shifts in silicate glasses
were provided by Cuny et al.[26] who trained a neural network to
predict the 29Si isotropic chemical shift in silica glass and by
Chaker et al.[27] who performed a detailed analysis of different
atomic descriptors and ML methods for sodium silicate and
sodium aluminosilicate glasses. Furthermore, Gaumard et al.[28]

studied the performances of different ML algorithms for the
reproduction of isotropic shielding values in zeolites, and
Ohkubo et al.[29] developed a method to investigate the position
of 133Cs in clay’s layers predicting its NMR chemical shift using
ML.
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In this work, we develop and apply a Least-Square Support
Vector Regression (LSSVR)[30–32] model (a sparse variant of Kernel
Ridge Regression, KRR) to predict 29Si, 17O, 23Na, and 25Mg NMR
isotropic magnetic shieldings for a series of (Mg, Na)-silicate
glasses. Using a Nyström approximation[33,34] of the Kernel
matrix, LSSVR offers a significant dimensional reduction in data
space, thus a thorough optimization of the hyperparameters
(Kernel and descriptors parameters) is possible, as illustrated in
this work.

Magnesium-containing silicates are very important compo-
nents of geological melts[35,36] and find application in many
fields,[37] from medicine[38–41] to technological systems.[42–46] The
structural impact of magnesium in silicate glasses and its
interaction with other elements are not yet fully understood as
they can vary greatly with the chemical composition of the
glass[44,47–49] leading to significant variation of properties such as
viscosity, glass transition temperature, elastic properties, crystal-
lization behavior, and chemical durability.

Therefore, the availability of fast and reliable ML models to
predict NMR parameters of spin active nuclei in Mg-containing
oxide glasses would allow to 1) compare spectra simulated
using large structural models of statistical relevance with the
experimental counterparts and 2) exploit data-driven reverse
MD or Monte Carlo approaches to refine glass structures from
experimental spectra.[50,51] The latter application will be explored
in detail in future works.

In this work, five sodium-magnesium silicate glasses, whose
composition is reported in Table 1, were studied and used to
build a robust NMR database for machine learning training. The
compositions were chosen based on the availability in
literature[8,52] of experimental 29Si and/or 17O NMR spectra.
However, since we have not yet trained an ML model to predict
Electric Field Gradient (EFG) tensors of quadrupolar nuclei (here
23Na, 17O, and 25Mg) only the spectra of 29Si nuclei will be
reported in this work, while the performance on the σiso

prediction for 23Na, 25Mg, and 17O are detailed in the ESI. The
glasses are labeled as NMSX where N=Na, M=Mg, S=Si and X
represents the MgO/Na2O ratio.

We investigated the impact of the training database
composition on the reliability and transferability of the model
including data from MD simulations using i) different interatom-
ic potentials; ii) configurations extracted at various temper-
atures; and iii) including DFT-optimized structures, and training
sub-models using data obtained from specific parts of the
database and testing it on the complementary part. Finally, the
ML model trained (and tested) on about 950 structures

containing 400 atoms was applied to simulate NMR spectra of
configurations containing up to 20000 atoms.

Computational Approach and ML Procedure
The machine learning procedure followed to predict NMR isotropic
magnetic shieldings of spin-active nuclei in oxide glasses consists
of several steps that are detailed in this section.

Construction of the Database

The database of NMR/DFT calculations was built as follows. Ten
independent melt-quench[53] classical MD simulations (the quench
was performed by decreasing the temperature in steps of 100 K
from 3000 K to 300 K, as detailed in Section S4 of the ESI), were
performed for each glass composition given in Table 1. Configu-
rations were then extracted from NVE (PMMCS and BMP potentials)
or NVT (CS potential) trajectories, following the procedure reported
in Sections S3 and S4 of the ESI, at 1000 K, 300 K, and 0 K (the latter
is equivalent to an optimized structure with the MD potential).
Because of the high computational cost of DFT-GIPAW calculations,
most of the simulation boxes were limited in size to 400 atoms, but
few larger 800 atoms models were generated to check the
transferability of the LSSVR regressions. For assessing the direct
application of the trained ML models to MD trajectories (for finite
temperature simulations), we also generated larger MD models of
4000 and 20000 atoms (see Tables S1, S2, S3, and S4 of the ESI).

The MD simulations were carried out using DL_POLY_4 v5.0.0
package[54] using three different potentials: the PMMCS,[55] the BMP-
shrm[56,57] (here referred to as BMP), and the CS.[58,59] The first two
potentials are based on a rigid ionic model and the main difference
between them is the presence, in the BMP, of a Si� O� Si three-body
term and a Si� Si repulsive interaction, whereas the CS includes the
oxygen polarizability through the shell-model.[60,61] A description of
the three potentials is reported in Section S3 of the ESI.

Selected structures obtained at 1000 K, 300 K, and 0 K (of the 400
and 800 simulation boxes) were also relaxed at 0 K at the DFT level
using CP2 K[62] (details are given in Section S5 of the ESI), first to
observe the structural differences with the MD structures and,
second, to enlarge the database for NMR predictions.

For simulations of larger systems containing 800, 4000, and 20000
atoms, only the BMP potential was used as the aim was to observe
the applicability of the model trained on small systems to larger
ones and to understand the effect of the system size on the
simulated NMR spectra.

The calculations of the NMR parameters were carried out employ-
ing the PBE-GGA DFT functional,[63] using the VASP[62] code (version
5.3) which makes use of plane-wave pseudopotentials[64] and the
Gauge Including Projector Augmented Wave (GIPAW)
formalism.[13,18] The pseudopotentials parameters used are reported
in Table S5 of the ESI (these pseudopotentials are the standard
PAW potentials provided with the VASP package). Outputs of the
DFT-GIPAW calculations were processed with the fpNMR package
developed by T. Charpentier.[65] This code also performs statistical
analysis of NMR data and their correlation with local structural
properties.

To fix the 29Si δiso scale when comparing predicted σiso with
experimental data, the GIPAW data are transformed as[66]

diso ¼ -0:853*ðs-315:9Þ (1)

Table 1. Composition of the glasses studied in this work.[8,52]

%mol. MgO %mol. Na2O %mol. SiO2 MgO/Na2O

NMS0.11 3.3 30 66.7 0.11

NMS0.33 8.3 25 66.7 0.33

NMS1 16.7 16.7 66.7 1

NMS1.25 25 20 55 1.25

NMS2 30 15 55 2
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All NMR GIPAW calculations were performed at the Γ point with a
kinetic energy cutoff of 550.0 eV. Here, a small Gaussian smearing
value of 0.01 eV was used; this was found particularly necessary for
the high-temperature structures where spurious partial occupation
of the Fermi level was observed for some models. This could be
removed either with a smaller smearing value or, alternatively and
equivalently, by usage of a denser k-grid.

The dataset comprising all the structures is denoted DS_tot.
Different sub-datasets were generated to better understand the
influence of including different geometric and structural spaces on
the accuracy and transferability of the machine learning prediction.
These sub-datasets were created as follows:

– Temperature: one dataset for each temperature (0 K, 300 K,
and 1000 K) including data from all the potentials (DS_MD-
0 K, DS_MD-300 K, DS_MD-1000 K)

– Potential: one dataset for each potential including data at all
temperatures (DS_MD-BMP, DS_MD-PMMCS, DS_MD-CS)

– DFT optimization: one dataset formed only by DFT optimized
structures and one only with simple MD data (DS_DFT, DS_
MD)

– Leave one composition out: datasets formed by all the
compositions excluding one (DS-NMS0.11, DS-NMS0.33, DS-
NMS1, DS-NMS1.25, and DS-NMS2).

The numbers of structures and atoms in each of these dataset (DS)
are reported in Table 2.

Each sub-dataset was used to train an ML model that was then
tested on the complementary part of the total database. For
example, the model trained on DS_MD-1000 K was tested on 0 K
and 300 K data, the model from DS_MD-PMMCS was tested on BMP
and CS data, and so on.

Local Environment Featurization: SOAP Descriptor Using
Spherical Bessel Functions

Atom-centered descriptors (ACD) are the key parameters that
control the performance of many ML schemes and form the inputs
of the algorithm.[67,68] ACD is a vector encoding the local environ-
ment of each atom, constructed from the Cartesian coordinates of
the central atom and its nearest neighbors within a user-defined
cutoff radius (typically 5 Å).

A large number of different atomic descriptors have been
developed in the last years[27,67–72] and this is still a subject of
intensive research, see for example the recent works of Langer
et al.[73] and Deringer et al.[74]

In order to guarantee a faithful representation of the structure, ACD
must fulfill mathematical and physical constraints.[70] For the
prediction of an isotropic quantity such as the total energy or, as in
this work, the isotropic magnetic shielding (or equivalently the
isotropic chemical shift obtained from Equation (1)): (i) they must
be invariant with respect to rotations, translations, reflections and
permutations of the neighboring atoms; (ii) they must vary
continuously with the atomic environment, must be differentiable
and unique (no identical descriptors for different input samples).

In this work, we used the Smooth Overlap of Atomic Positions
(SOAP)[67] descriptors which are among the most popular and best-
performing for NMR predictions.[27,75–78] The choice of this descriptor
was based on a previous investigation by one of us.[27] where also
the Behler-Parrinello Symmetry Functions and the Angular Radial
Distribution Functions were tested for the prediction of the σiso of
sodium silicate and aluminosilicate glasses, but lead to worse
results.

SOAP descriptors are based on a smooth representation of the
atomic density 1i rð Þ around a central atom i within a cutoff radius rc

1i rð Þ ¼
X

j2Nj

f c rij
� �

g r � rij
� �

(2)

where f c rð Þ is a smooth cutoff function that brings the density to
zero outside the cutoff radius and (equivalently) the summation
can therefore be limited to the neighboring atoms of the central
atom. Here, the cutoff function as proposed by Behler and
Parrinello[68] was used: f c rð Þ ¼ 1

2 cos p
r
rc

� �
when r4rc and 0

otherwise. distance between the two atoms is denoted as rij and
g rð Þ is a 3D Gaussian function (note that bold notation is used for
vectors):

1i rð Þ ¼
X

j2Nj

e
� r� rijð Þ

2

2s2 f c rij
� �

(3)

Table 2. Sub-dataset description: MD temperature or glass composition, number of structures and atoms.

N° Structures Si Mg Na O

DS_tot 900 78480 21420 53640 205200

DS_MD-T

0 K 150 13080 3570 8940 34200

300 K 150 13080 3570 8940 34200

1000 K 150 13080 3570 8940 34200

DS_MD-FF

BMP 150 13080 3570 8940 34200

PMMCS 150 13080 3570 8940 34200

CS 150 13080 3570 8940 34200

DS-DFT/MD
DFT 450 39240 10710 26820 102600

MD 450 39240 10710 26820 102600

DS-NMSX

NMS0.11 760 62460 20700 39240 165240

NMS0.33 760 62100 19440 41400 164340

NMS1 760 61380 17100 45000 162360

NMS1.25 760 64080 14940 43200 164700

NMS2 760 63900 13500 45720 164160
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For each kind of atomic neighbor, here denoted m, the atomic
density is expanded on radial basis functions cnl rð Þ and spherical
Harmonics Ylm brð Þ ¼ Ylm q;ϕð Þ as follows:

1i rð Þ ¼
X

1m rð Þ ¼
X

mnlm

cm

nlmcnl rð ÞYlm brð Þ (4)

where 04n4max and04l4Lmax.

In this work, the spherical Bessel functions cnl ¼ jl qnlrð Þ were used
because of their mutual orthogonality and non-discontinuity at the
origin.[24,76] The cm

nlm values were computed using an in-house code
(developed by T. Charpentier) using a real representation of the
spherical harmonics (RSH) and taking as an input a structure file
(atomic coordinates of all atoms and lattice parameters). Outputs
are the descriptors of all atoms calculated with the chosen hyper-
parameters, here represented by the quadruplet rc; nrad; Lmax; sSOAPð Þ

where sSOAP is the width of the Gaussian function g rð Þ.

The descriptors[67] pmn

nn0 lare then obtained from the rotational
invariant given by the so-called powerspectrum:

pmn

nn0 l ¼
X

m

cm

nlmc
n
n0 lm (5)

Least Square Support Vector Regression – Kernel Ridge
Regression (LSSVR-KRR)

Similar to Kernel Ridge Regression (KRR), support vector machines
(SVM) are a family of techniques that are able to model nonlinear
relationships and to deal with high dimensional input
vectors.[30–32,79] They were initially developed by Vapnik[80] as a binary
classification tool and were subsequently extended to regression
tasks and subsequently sped up via a least-squares approach.[30–32]

In this family of kernelized methods, a kernel function replaces the
Euclidean scalar product (used in linear ridge regression) for
comparing two vectors of descriptors (and thus the similarity
between two environments). Let y � x be the scalar product, the
kernelized scalar product is then defined as K x; yð Þ ¼ ϕ yð Þ � ϕ xð Þ
where the existence of the non-linear map x! ϕ xð Þ is mathemati-
cally guaranteed by the Mercer Theorem for positive definite Kernel
(such as the Gaussian Kernel).[81] The kernel therefore implicitly
maps the input data x into a space of higher dimension
represented by ϕ xð Þ (possibly of infinite dimension in the case of
the Gaussian kernel) where a simple linear regression can then be
applied.[82] As during the procedure only scalar products are
needed, the non-linear featurization is done implicitly, i. e. without
the need to know explicitly ϕ xð Þ. This is known as the “kernel
trick”[83] and thus many linear algorithms can be kernelized.[84]

In this work, the standard Gaussian kernel was used:

K x; yð Þ ¼ exp �
kx � yk2

2s2

� �

(6)

Denoting siso cð Þ the isotropic magnetic shielding of the local
environment c represented by the SOAP vector p, the KRR aims at
predicting siso cð Þ from the (training) database values

siso cj

� �
; p cj

� �� �
j¼1;Nwith the linear regression:

siso cð Þ ¼
X

K p cð Þ; p cj

� �� �
aj (7)

where the regression parameters ajare calculated by solving the
linear system generated from the Equation (7) applied to the
training set. In matrix form, the solution is given by:

a ¼ K þ lIð Þ� 1s iso (8)

The idea underlying the LSSVR is to resolve Equation (8) using a
(much) smaller set of data (referred to as landmark or inducing
points, denoted here x) using the Nyström[33,34] approximation of
the Kernel matrix Kcc � CcxW

� 1
xx
Ct

xc
where Wxxis the (small) kernel

matrix spanned by the landmark points (K p xið Þ; p xj

� �� �
) and Ccxis

the projection kernel matrix between the landmark/inducing points
and the training data (K p cið Þ; p xj

� �� �
). The diagonalization of

Wxxthen allows the system Equation (8) to be solved much more
efficiently, see refs [33,34,84] for a detailed description of the
algorithm we implemented. The landmark points were obtained
from an Incomplete Cholesky Decomposition[33,85,86] (ICD) of the full
kernel matrix K, using the LAPACK library.[87] These points can be
seen as being the most representative (and less redundant) in the
database for providing an informative sparse representation of the
kernel matrix K. We found that alternative approaches such as
Kmeans+ + [88] or entropy maximization[89] for choosing xdid not
perform better than ICD, with a much higher computational cost.

The applied ML algorithm will be referred to as LSSVR-KRR (from
Least Square Support Vector Regression–Kernel Ridge Regression)
hereafter. Albeit other regression methodologies such as Neural
Networks[90] exists, these are more time consuming and thus were
avoided in this work. Moreover, the advantage of dimensional
reduction of the LSSVR method will allow the extension of the
model to tensorial quantities such as the computation of electric
fields gradients that require tensorial descriptors (λ-SOAP)[24] and
thus the handling of large block-matrix Kernels. This will be the
focus of future works.

Optimization of the Hyperparameters, Training, and
Validation of the LSSVR-KRR

The LSSVR-KRR model was trained and optimized using a 5-fold
Cross-Validation (CV) technique which proceeds as follows. The
data are first randomly shuffled and divided into five parts. Three
parts are used for solving Equation (8) (the training set), one for
optimization of the hyperparameters (the validation set), and the
last for assessing the transferability to unseen data (the testing set)
and computation of the error. This procedure was repeated so that
each point of the database set is in the testing set at least once (or
more time by repeating the initial random shuffling). To speed up
the optimization of the hyperparameters, the whole procedure
(hereafter referred to as training) was performed on the DS_MD� T
(T=0, 300, 1000 K) databases independently. Each led to very close
optimal hyperparameters.

The number of radial basis functions (nrad), the cut-off radius (rcut),
and the σ value of Equation (3) (σSOAP) are the SOAP’s parameters
that need to be optimized. Lmax was chosen according to the
previous work of Chaker et al.[27] and set to Lmax=4 (Lmax=3 led to
worse results and no improvement was yielded by Lmax=5). As for
the LSSVR-KRR, the σ of the Gaussian Kernel in Equation (6) (σKernel
from hereafter) and the ridge parameter λ in Equation (8) (λridge
from hereafter) were optimized, as well as the number of landmark
points (Nyström size, rsize).

During the 5-fold CV described above, taking into consideration the
mean absolute error (MAE) or the root mean square error (RMSE)
calculated on σiso, values of the validation set did not led to change
the results for the different nuclei studied (17O, 23Na, 25 Mg, and 29Si)
so selecting these yields robust regressors.
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A systematic grid-search approach was applied, following the
scheme reported in Figure 1, to obtain the best parameters.
Specifically, a first grid was obtained varying λridge so that log10(λridge)
ranges from � 12 to � 1 with steps of 1, while, for σKernel,
log2(σKernel)=0.25, 0.5, 1, 2, 4, 6, 8, 10. The optimal region was
found, for all the nuclei, to log2(σKernel) from 2 to 8 and log10(λridge)
from � 10 to � 8 and in this region, the chosen values were
log2(σKernel)=5, and log10(λridge)= � 8 (See Figure S1 of the ESI).

Once the best KRR hyperparameters were found, a second grid
search was performed (in an outer loop) to optimize the SOAP
parameters and the number of landmark points forming the
support vectors of the LSSVR. In particular, the σSOAP parameter
which controls the broadening of the Gaussian smoothing function,
was varied at 3 levels with values of 0.5, 1, and 2. As for the other
parameters, the tested values are rcut=3, 4, 5, and 6 Å, nrad=4, 6, 8,
10, and 12 radial basis functions, and rsize=100, 200, 400, 800, 1200,
1600, and 2000 landmark points. Figure 2 reports the MAE of the

Figure 1. Pseudocode representation of the optimization process via a systematic grid (or loop) search of the hyperparameters.

Figure 2. Variation of the MAE for the prediction of the 29Si NMR σiso in the MD-300 K set with respect to the Nyström size (LSSVR), number of radial basis
functions (nrad) and for various values of the SOAP cutoff radius vales. LMAX=4 for all points. The error bars describe the uncertainty of the MAE (standard
deviation values) derived from the different validation sets of the 5-fold CV.
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predicted 29Si NMR shielding of structures at 300 K (the same was
done for the other temperatures and nuclei and results are
reported in Figures S2 to S6 of the ESI) varying rsize, at different nrad

and rcut. For the sake of simplicity, this figure refers to data obtained
using the level of σSOAP=0.5 (which gives the best results) but
analogous plots were obtained for all three σSOAP values tested,
giving the same optimal parameters. The optimal parameters
obtained from the described procedure are rcut=5 Å for all the
nuclei except 17O, for which 6 Å gives better results, nrad=8, and
rsize=800 for all the studied nuclei, except 25Mg, for which the
optimal rsize is 600.

It is evident that a cut-off radius lower than 4 Å and a number of
landmark points lower than 400 lead to a poor description of the
silicon environment. At the same time, the use of more than 800
landmark points and 8 radial basis functions increases the computa-
tional cost but does not improve the accuracy significantly.

Figure 3 reports the predicted σiso against DFT values on the test
set of the DS_tot database made with the model trained at the
optimized conditions for the studied nuclei.

The obtained MAE and RMSE confirm the good reproduction of the
DFT data with the trained LSSVR-KRR model. The percentage of
error with respect to the range of σiso values observed for each
element was also calculated to give an idea of the impact of the
estimation error on the prediction of the spectra. The resulting %
MAE are 1.9, 1.8, 3.3, and 2.0% for 17O, 23Na, 25Mg, and 29Si,
respectively, while the %RMSE are 2.5, 2.3, 4.2, and 2.6%. These

values show that, even if 17O seems not to be estimated as
accurately as 29Si and 23Na at first glance (from MAE and RMSE), this
is mainly due to a larger domain of σiso as the percentage error is
similar to that of 29Si and 23Na (also consistent with the need of a
large cutoff radius values). For 25Mg, the %errors are slightly larger,
but still acceptable considering the poor resolution of experimental
25Mg NMR MAS spectra.[1]

2. Results and Discussion

2.1. Transferability to Larger Structures

The regressors, trained using dataset generated with structures
containing 400 atoms, were used to simulate the 29Si MAS
NMR spectrum of the NMS1.25 and NMS2 glasses containing
800 atoms obtained with the BMP potential and relaxed to the
DFT level and compared with experiments in Figure 4. The DFT
data of 800 atom systems were not included into the training
database but only used for validation. Since the DFT NMR
calculations on such a large system are quite expensive only
one simulation for each glass was performed.

Figure 3. Scatter plot reporting the LSSVR-KRR predicted versus DFT σiso of the studied nuclei (DS_tot dataset).
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The spectra predicted with the LSSVR-KRR model nearly
perfectly match the one obtained using the GIPAW calculations,
and only small discrepancies are observed. The cosine similarity
parameter between the GIPAW and LSSVR-KRR spectra, defined
as ðA � BÞ= kAk � kBkð Þ where A and B represent vectors of the
GIPAW and LSSVR-KRR spectral values at the same shifts, have
been calculated and resulted 0.996 and 0.994 for NMS1.25 and
NMS2, respectively. This proves that the model can be trustfully
used to simulate spectra of larger structures with GIPAW
accuracy. This also validates the choice of optimal small models
(400 atoms) for building the database.

2.2. Impact of the Interatomic Potentials

To understand the impact of the potentials, we trained one
LSSVR-KRR model on one dataset (DS_MD-BMP, DS_MD-

PMMCS, or DS_MD-CS) and tested it on the (two) other ones. A
more complete discussion of the structural properties predicted
with the three potentials can be found in Section S7 of the ESI.

The scatter plots (sDFT
ISO vs sML

ISO) of these sub-models are
reported in Figure 5.

It is evident that a model trained on a single potential does
not reliably reproduce data for structures obtained with
another. This is clearly due to the differences in Si� O distances
and Si� O� Si bond angles (and other structural features) and σiso

distributions between the MD structures, as reported in Figure 6
(using NMS0.33 as a representative example). This shows the
limitations in the transferability from one potential to another
of LSSVR-KRR (and in general of ML) regressors even if it must
be admitted that results are still qualitatively acceptable (for a
coarse approach).

This is particularly true for CS potential, for which the
prediction of CS test data gives a very narrow scatter plot with
the lowest MAE (1.08 ppm) and RMSE (1.39 ppm) values but the
prediction of BMP (MAE=2.94, RMSE=12.42 ppm) and PMMCS
(MAE=2.19, RMSE=8.42 ppm) ones is very poor.

The models trained on PMMCS and BMP datasets (DS_MD-
PMMCS and DS_MD-BMP) give slightly worse predictions on
their own test sets with respect to CS (DS_MD-CS), but they
show better, even if still poor, transferability to other potentials.
This is probably due to the broader Si� O� Si BAD and Si[Qn]
distribution obtained with the PMMCS and Si� O RDF obtained
with the BMP potentials (see Figures S7 and S8 of the ESI),
which leads to a better sampling of the feature space of the
other potentials.

Figure 6 shows the distribution of the Si� O� Si angle with
respect to the Si� O distance (panel a) and 29Si isotropic
magnetic shielding (panel b).

From Figure 6, it is evident that none of the potentials
completely encompasses all the structural feature’s distributions
of the other ones, so they can only be used to predict data
originated with the same potential, as confirmed, in Figure 7, by
the 29Si MAS NMR spectra of NMS0.33 glass obtained with the
three potentials from DFT calculations.

Each spectrum has a region not covered by the others,
making the prediction with models trained on different
potentials not reliable, as part of the input is out of the training
domain.

Training a model with the data from all the potentials (only
MD structures not DFT relaxed) leads to an MAE of 1.4 ppm and
RMSE of 1.9 ppm which is, except for BMP, worse than the
model trained and tested on data from the same potential but
always better than the case of models tested on different ones.

In general, it is evident that the inclusion in the database of
different kinds of structures that allow the exploration of larger
configurational space gives higher transferability of the LSSVR-
KRR model. This comes at the price of lower accuracy for
specific structures, for which the best model is the one trained
only on data consistent with them.

Figure 4. Comparison of experimental 29Si MAS NMR spectra of NMS1.25 and
NMS2 glasses with DFT GIPAW calculations and LSSVR-KRR prediction on 800
atoms structures relaxed at the DFT-0 K level.
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2.3. Effect of the Temperature

Following the approach used for the interatomic potentials,
models trained at each temperature were tested on their own
test sets and on the other temperatures (gathering all FF data
at a single temperature)

Figure 8 shows that models trained with low-temperature
structures can only be used to predict low-temperature data as
the error at high temperatures is very large (MAE=3.5 ppm,

RMSE=20.18 ppm for T=1000 K). Increasing the temperature
leads, obviously, to the exploration of larger feature spaces that
are not included in the low-temperature data. Instead, the
models trained at high-T predict the shieldings of the structures
extracted at low temperature with the same accuracy as the
ones at high-T (MAE=1.39 and RMSE=3.12 ppm when testing
on 0 K dataset and training with 1000 K dataset whereas MAE=

2.33 ppm and RMSE=3.00 ppm when testing on 1000 K dataset
and training on the 1000 K dataset).

Figure 5. Scatter plots showing LSSVR-KRR predicted versus DFT 29Si σiso of sub-models trained and tested on data from different potentials.

Figure 6. Contour plot showing the distribution of the Si� O� Si angle with respect to the Si� O distance (a) and isotropic magnetic shielding (b) obtained with
the studied potentials.
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This seems to demonstrate that training a model only on
high T data can be enough to predict low T ones because the
structural feature distributions explored at high temperatures
encompass completely the low temperatures ones. This is
indeed shown in Figure 9 that reports the Si� O� Si angle

distribution with respect to the Si� O distance and 29Si isotropic
magnetic shielding obtained at different temperatures. A
detailed analysis of the Si[Qn], Si� O� Si bond angle distribution,
and Si� O partial radial distribution function is reported in
Figures S9 and S10 of the ESI.

It can be noted that, while the angle vs distance distribu-
tions (panel a) obtained at high temperatures completely
include the ones obtained at lower temperatures, the same
cannot be stated for angle vs σiso where a small region of low-
temperature data is not included in the high temperature one.
It is possible that other parameters not represented here affect
the σiso value explaining the non-overlapping region.

Figure 8 shows that even if the prediction of 29Si σiso at 0 K
with a model trained at 1000 K is of good quality, it provides
MAE and RMSE values higher than the ones obtained with the
0 K model. The high RMSE indicates that higher temperature
yields to a model more prone to generate outliers. This less
accurate prediction is probably due to the fact that the low-
energy structures are less sampled at high-T and thus less
populated in the 1000 K dataset with respect to the 0 K dataset
since the number of points in the different datasets are the
same.

In conclusion, the inclusion of high-temperature data in the
database seems important to access a broader configurational

Figure 7. 29Si MAS NMR spectra of NMS0.33 glass at 300 K obtained with the
three considered potentials.

Figure 8. Scatter plots showing LSSVR-KRR predicted versus DFT 29Si σiso of sub-models trained and tested on data from different temperatures.

Wiley VCH Mittwoch, 18.09.2024

2499 / 370336 [S. 9/14] 1

ChemPhysChem 2024, e202300782 (9 of 13) © 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH

ChemPhysChem
Research Article
doi.org/10.1002/cphc.202300782

 14397641, 0, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/cphc.202300782 by U
niversity M

odena, W
iley O

nline L
ibrary on [14/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



space but probably more low-energy structures should be
included if the target is to predict shielding at low temperature.

2.4. Other Sub-Dataset Models

To investigate the transferability of a model to composition not
included of the training set and the effect of DFT relaxation,
LSSVR-KRR models were trained on the DS-MD/DFT and DS-
NMSX subdatasets and applied to the complementary part of
the total database, adopting the same approach used for
interatomic potentials and temperature.

A good predictive power is found for all excluded
compositions (MAE=1.25–1.34 ppm, RMSE=2.83–3.19 ppm)
when training on the DS-NMSX sub-datasets.

The DS-DFT database explores a narrower configurational
space and a model trained on it shows very accurate prediction
(MAE=0.93 ppm, RMSE=1.19 ppm) for its own test set but fails
when applied to MD structures (MAE=3.76 ppm, RMSE=

28.14 ppm). In contrast, training on DS-MD ensures good
predictions for both the DFT and MD datasets.

A detailed analysis is reported in Section S8 of the ESI.

2.5. Prediction of NMR Shifts for Large Models

The LSSVR-KRR model trained on the DS-tot dataset was used
to compute the 29Si σiso of glass structural models with up to
20000 atoms and to generate the corresponding NMR spectra
(Equation (1)).

Figure 10 reports the 29Si MAS NMR spectra of NMS1.25
and NMS2 glasses obtained from the LSSVR-KRR prediction on
structures containing 400, 800, 4000, and 20000 atoms,
obtained with the BMP potential, compared with
experiments.[8,52] The prediction was based on the 300 K MD
simulation, averaging over 300 structures (corresponding to

150 ps) extracted from the trajectory. This allowed us to average
possible thermal fluctuations[21] that could be present at 300 K
and to investigate the evolution of the 29Si σiso of the atoms
during the trajectory as reported in Figure 11.

The quality of the simulated spectra, in terms of both peak
position and shape, improves when the number of atoms
increases in the simulation boxes and seems to converge for
more than 4000 atoms, in particular for NMS2 glass. Since the
GIPAW-DFT approach provides errors on the isotropic chemical
shifts of 29Si in silicate crystals[refs] and the ML model
reproduce the DFT shieldings with errors of the same
magnitude we think that the discrepancies between the
simulated and experimental spectra are probably due to the
classical interatomic potential and the fast quench-rate used in
MD simulations. Usually, to limit this discrepancy, a DFT 0 K
optimization is applied to the structures used for NMR
simulation which strongly improves the position of the spectra
(see also Figure 4) maintaining the connectivity originated from
the MD but optimizing the bond distances and angles at the
DFT level. This was not applicable to this case because the
number of atoms used are out of the DFT possibilities.

Using the LSSVR-KRR regressor, and in the perspective of
studying thermal fluctuations, the time-evolution of the silicon-
29 were calculated at 300 K as shown in Figure 11. The σiso

value calculated for each silicon atom fluctuates in a range of
almost 10 ppm during the trajectory. None of the atoms gives
outliers or a systematic drift of the σiso value during the
simulation allowing to trustfully improve the prediction by
averaging the signals given by atoms during the MD evolution.

It is interesting to remark the computational efficiency of
the LSSVR-KRR method with respect to the GIPAW-DFT
calculations. In fact, the computation of the NMR data with DFT
for one structure comprising 400 and 800 atoms required 1 and
4 hours using 48 CPUs, respectively. The computation of the
isotropic chemical shifts of a trajectory including 300 structures
for the 400 atoms systems with the trained ML model took

Figure 9. Contour plot showing the distribution of the Si� O� Si angle with respect to the Si� O distance (a) and isotropic magnetic shielding (b) obtained at
the considered temperatures.
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10 minutes (0.2 s per structure) on 1 CPU. For the 800, 4000 and
20000 atoms systems the computational time were 9, 14 and
27 seconds per structure, respectively.

The LSSVR-KRR model can predict NMR parameters from
simulation boxes that contain a number of atoms out of reach
for DFT calculations with very low computational cost and high
accuracy. This allows limiting the expensive DFT-GIPAW calcu-
lations to simulation boxes containing few atoms and to extend
the NMR simulations to larger systems using ML models.
Furthermore, the LSSVR-KRR prediction can be highly paral-
lelized in a very efficient way as each calculation is independ-
ent, giving excellent scalability.

3. Conclusions

A machine learning model based on Least-Square Support
Vector Regression–Kernel Ridge Regression (LSSVR-KRR), was
trained on NMR isotropic magnetic shielding (17O, 23Na, 25 Mg,
and 29Si) for a series of (Na, Mg)-silicate glasses simulated with
Molecular Dynamics (MD) with different potentials and at
various temperatures. The NMR data were calculated by
applying the DFT-GIPAW approach using simulation boxes
containing 400 atoms. An incomplete Cholesky decomposition
(ICD) was found to perform very well and efficiently to reduce
the training set to a small number of representative data (the
landmark points) used for the Nyström approximation of the
kernel matrix, underlying the LSSVR technique.

The Smooth Overlap of Atomic Positions (SOAP) descriptor,
using Bessel spherical functions of the first kind as radial basis
functions, was used. The LSSVR-KRR and SOAP parameters were
systematically optimized using a 5-fold cross-validation ap-
proach.

The trained ML model shows an excellent predicting power,
with a Mean Absolute Error (MAE) of 1.30. 2.4, 2.0, and 2.4 ppm
for 29Si, 17O, 23Na, and 25 Mg, respectively and a Root Mean
Square Error (RMSE) of 1.7, 3.1, 2.5, and 3.1 ppm, in the same
order.

A detailed study of the database composition was
performed, showing an overview of the relevant structural data
predicted in different conditions. This was done by training
LSSVR-KRR models with sub-datasets comprising data obtained
at each temperature, with each potential, before or after 0 K
DFT relaxation, and leaving out one composition at a time. All
these partial models were then used to predict the NMR
parameters on the remaining structures.

Figure 10. Comparison between experimental8,52 29Si MAS NMR spectra of
NMS1.25 and NMS2 glasses and the ones obtained using LSSVR-KRR model
on structures containing number of atoms from 400 to 20000.

Figure 11. Evolution of the σiso value of five representative silicon atoms in
the 300 K trajectory of NMS1.25 glass (800 atoms).
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We showed that models trained on data from a single
potential give good predictions on test sets from the same
potential but transfer poorly to geometries obtained with other
ones. This is due to the different structural features sampled by
each potential. In fact, none of the considered potentials predict
distributions of structural data (Bond angle distribution, Partial
Si� O radial distribution functions, Si[Qn] speciation …) that
completely overlap and include the ones predicted with the
others, and this results in different domains of σiso. By contrast,
a model trained on data from all the potentials gives slightly
lower accuracy with respect to models trained on specific data
but exhibits good transferability.

We found it important to include high-temperature data in
the training dataset to improve the model as the configura-
tional space explored is expanded. Also in this case, training a
model only on low-temperature data gives very good results on
the same temperature predictions, but it fails at higher temper-
atures.

We find that leaving one glass composition out of the
training model does not significantly affect the quality of the
prediction on the glass itself proving the good transferability of
the LSSVR-KRR model to compositions that are out (but close)
of the training domain.

The model trained on the total dataset (all potentials, all
temperatures) was applied to larger structures (800, 4000, and
20000 atoms) than the ones used for training (400 atoms). To
validate the approach, a comparison was made between 29Si
MAS NMR spectra of an 800-atom structure obtained with DFT-
GIPAW calculations and predicted with LSSVR-KRR showing
excellent agreement.

The application to large models with small computational
costs allows the simulation of NMR spectra for several geo-
metries from a dynamic’s trajectory, averaging thermal fluctua-
tions. The quality of the spectra improves by increasing the size
of the simulation boxes, even if a convergence is observed
when going to very large dimensions.

Supporting Information Summary

The ESI contains data figures and tables not reported in the
main text, the description of the force-fields used, more
computational details and the description of the LSSVR-KRR
algorithm used.
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A Kernel Ridge Regression (KRR)
model using a Least Square Support
Vector Regression (LSSVR) approach is
used for the accurate prediction of
NMR isotropic magnetic shielding

(σiso) of active nuclei (17O, 23Na, 25Mg,
and 29Si) in a series of (Mg, Na)–silicate
glasses. The trained model is able of
fast prediction for structures contain-
ing up to 20000 atoms.

M. Bertani, A. Pedone, F. Faglioni, T.
Charpentier*

1 – 14

Accelerating NMR Shielding Calcula-
tions Through Machine Learning
Methods: Application to Magnesium
Sodium Silicate Glasses

Wiley VCH Mittwoch, 18.09.2024

2499 / 370336 [S. 14/14] 1

 14397641, 0, D
ow

nloaded from
 https://chem

istry-europe.onlinelibrary.w
iley.com

/doi/10.1002/cphc.202300782 by U
niversity M

odena, W
iley O

nline L
ibrary on [14/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Accelerating NMR Shielding Calculations Through Machine Learning Methods꞉ Application to Magnesium Sodium Silicate Glasses
	1. Introduction
	Computational Approach and ML Procedure
	Construction of the Database
	Local Environment Featurization꞉ SOAP Descriptor Using Spherical Bessel Functions
	Least Square Support Vector Regression – Kernel Ridge Regression (LSSVR-KRR)
	Optimization of the Hyperparameters, Training, and Validation of the LSSVR-KRR

	2. Results and Discussion
	2.1. Transferability to Larger Structures
	2.2. Impact of the Interatomic Potentials
	2.3. Effect of the Temperature
	2.4. Other Sub-Dataset Models
	2.5. Prediction of NMR Shifts for Large Models

	3. Conclusions
	Supporting Information Summary
	Acknowledgements
	Conflict of Interests
	Data Availability Statement


