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We address metrological problems where the parameter of interest is encoded in the internal degree of freedom
of a discrete-time quantum walker, and provide evidence that coin dimensionality is a potential resource to
enhance precision. In particular, we consider estimation problems where the coin parameter governs rotations
around a given axis and show that the corresponding quantum Fisher information (QFI) may increase with the
dimension of the coin. We determine the optimal initial state of the walker to maximize the QFI and discuss
whether, and to which extent, precision enhancement may be achieved by measuring only the position of the
walker. Finally, we consider Grover-like encoding of the parameter and compare results with those obtained
from rotation encoding.

I. INTRODUCTION

Discrete-time quantum walks (DTQWs) are quantum gen-
eralizations of classical random walks describing the discrete
time propagation of a quantum particle over a discrete space
[1–3]. In a DTQW the motion of the walker is determined
at each time step by the state of its internal degree of free-
dom, the so-called coin. Entanglement thus arises between
the spatial degree of freedom of the particle and its ”spin”
(or polarization). DTQW models have found applications in
quantum search algorithms [4] and provide a mean for uni-
versal quantum computation [5–7] and simulation of quantum
phenomena [8]. More recently, DTQWs has been also sug-
gested for image and data encryption [9, 10], and for link pre-
diction [11]. DTQWs have been implemented in a wide range
of physical systems including optical-quantum systems [12–
15], wave-guide lattices [16, 17], silicon based systems [18],
spin systems [19], spin orbit photonics [20], and Bose Ein-
stein condensate [21] or lattices [22], as well as in quantum
computers [23].

The dynamics of DTQWs is described by a unitary operator
which governs the evolution of the whole system, particle plus
coin, in a single time step. It consists of a unitary operation ap-
plied on the coin state, followed by a unitary conditional shift
operator which makes the walker change position depending
on the coin state. In the prototypical DTQW, a walker prop-
agating on a line, it may only hop to the left or to the right
depending on the state of its two-dimensional, D = 2, inter-
nal degree of freedom. This basic principle can be extended
to generate a rich variety of DTQW, with methods that range
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from changing the coin operator at each time step [24–26] to
applying multiple coin operators at the same time step, and
by generalizing DTQWs to generic graphs and higher dimen-
sional coin spaces [6, 27–29], e.g, by coupling the walker to
more than one coin [30–32] or to a single coin of higher di-
mension, D > 2 [33–35].

In this work, we focus on the latter approach, and refer to
a DTQW with a D-dimensional coin as a D-state walk. For
even D = 2k, with k ∈ N, at each time step the walker is
allowed to hop up to its kth nearest neighbouring site, but is
not allowed to stay on its current position [36], a possibility
granted only for odd D = 2k + 1 [37]. Increasing D > 2
paves the way to explore dynamics that are not possible in a
usual two-state walk. In the simplest examples, i.e., passing
from D = 2 to D = 3 the walker is also allowed to stay at its
current position [37], while for D = 4 it is allowed to reach
the next-nearest neighbours, but not to stay on the current site
[36, 38].

The metrological interest of DTQWs lies in the entangle-
ment that is established between the two degrees of freedom
(walker’s position and coin), making the overall system more
sensitive to tiny variations of the parameter, or making one
of them available to probe the other. In particular, we focus
on metrological problems where the parameter of interest is
encoded in the internal degree of freedom of the walker [39],
and provide evidence that coin dimensionality is a potential
resource to enhance precision. We determine the optimal ini-
tial state of the walker to maximize the quantum Fisher in-
formation, and discuss whether and to which extent, precision
enhancement may be achieved by measuring only the position
of the walker [40]. Indeed, coin dimension plays a fundamen-
tal role in the time evolution of the DTQW, also in the position
space and, in turn, in controlling and engineering the system.
Our results may thus find applications in the characterization
of DTQW-based quantum computing [41–43], as well as in
estimation of node proximity [44] and in specific scattering
problems [45]. The relation between metrology and coin di-
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mensionality can be exploited for the study of polarized pho-
tons or particles with spin, where the coin plays the role of the
internal degree of freedom (i.e. the polarization or the spin) of
the system [19, 36, 46].

The paper is organized as follows: in Section II we intro-
duce the DTQW model and the different encodings—single-
parameter coin operators—we will consider for the estimation
problem. In Section III we briefly review the concepts of clas-
sical and quantum Fisher information and we state the metro-
logical problem considered in the present work. In Sections
IV–VI we present analytical and numerical results of the esti-
mation problem for different encoding of the coin parameter
and dimension of the coin. Section VII is devoted to the con-
clusions and perspectives. Further details and proofs can be
found in the Appendices.

II. DISCRETE TIME QUANTUM WALKS

One-dimensional DTQW models describe the time evolu-
tion of a quantum particle (walker) with an internal degree
of freedom (coin), say spin in the following, over an infi-
nite, discrete line. The Hilbert space of this bipartite system
walker+coin is H = Hp ⊗ Hc, with Hp = span{|x⟩p |x ∈
Z} the position space, and Hc = span{|m⟩c |m ∈ I

(s)
c } the

coin space, where dimHc = D = 2s + 1 for a spin-s par-
ticle. Note that (half-)integer s corresponds to (even) odd D.
For later convenience, we have introduced the set of integer
indices

I(s)c =

{
{−s, . . . ,−1, 0, 1, . . . , s} (integer s),
{−s− 1

2 , . . . ,−1, 1, . . . , s+ 1
2} (half-integer s),

(1)
sorted in ascending order and relating, in a one-to-one corre-
spondence, the quantum number −s ≤ ms ≤ s associated to
the z-axis component of the spin s, which can be half-integer,
to the shift in position space of the walker, which is an integer,
via

ms ∈ { −s, −s+ 1, . . . , s− 1, s }
↕
m ∈ { i1, i2, . . . , iD−1, iD }.

(2)

The indices ik ∈ I
(s)
c satisfy the relation ik+1 = ik + 1, with

the only exception of the index ik = 0 which is not included
in the set associated to half-integer s.

The evolution of the DTQW for one time step is defined by
the unitary operator

U = S (1p ⊗ C) , (3)

with 1p the identity in the position space Hp. At a given time
step, the coin state is changed by applying the coin operator
C, leaving the walker’s position state unaltered, and this oper-
ation is followed by a conditional shift operator,

S =
∑
x∈Z

∑
m∈I

(s)
c

|x+m⟩pp⟨x| ⊗ |m⟩cc⟨m| (4)

with I(s)c defined in Eq. (1), which makes the walker evolve in
position space according to the coin state |m⟩c. Both the op-
erators C and S must be unitary for U to be unitary. Assuming
a single, constant and uniform coin operator,[47] the state of
the system at time t ∈ N is thus

|ψ(t)⟩ = U|ψ (t− 1)⟩ = U t|ψ(0)⟩, (5)

with |ψ(0)⟩ the initial state of the system.
Our aim is to investigate estimation problems where the pa-

rameter θ to be estimated is encoded in the coin operator and
to determine the optimal probe for this purpose, assuming an
initially localized walker. In the following Sections, we intro-
duce the single-parameter coin operators and the probe con-
sidered in the present work.

A. Coin operators

We describe now three different ways of encoding the pa-
rameter of interest in the DTQW dynamics, i.e., the three
types of single-parameter coin operators C investigated in the
present work. As a first coin model, we consider the operator
(we set ℏ = 1)

R
(D)
n̂ (θ) = e−iθn̂·T (D)

n̂ , (6)

which rotates the spin s of an angle θ about the axis n̂ =

x̂, ŷ, ẑ (unit vector). The generators T (D)
n̂ of the (D = 2s+1)-

dimensional rotation (see Appendix A for their matrix repre-
sentation) satisfy the relation[

T (D)
a , T (D)

b

]
= iϵabcT (D)

c (7)

where ϵabc is the Levi-Civita symbol.
As a second coin model, we embed the most general form

of the coin operator in D = 2 (obtained through the Euler
angles parametrization [48] and neglecting an overall phase
factor), i.e., an element of U(2),

C(D=2)
ξ,θ,ζ =

(
e−i ξ+ζ

2 cos θ
2 −ei

ξ−ζ
2 sin θ

2

e−i ξ−ζ
2 sin θ

2 ei
ξ+ζ
2 cos θ

2

)
(8)

where ξ ∈ [0, 4π], θ ∈ [0, π], ζ ∈ [0, 2π], into a higher dimen-
sional space as

C(E,D>2)
ξ,θ,ζ =


e−i ξ+ζ

2 cos θ
2 0 . . . 0 −ei

ξ−ζ
2 sin θ

2
0 1 0 . . . 0
...

. . . . . . . . .
...

0 0
. . . 1 0

e−i ξ−ζ
2 sin θ

2 0 . . . 0 ei
ξ+ζ
2 cos θ

2

 .

(9)
The effective two-dimensional coin operator acts on the coin

states with the lowest and highest index, while leaving the
others unaffected (identity). In dimension D there are D(D−
1)/2 independent embeddings, but we focus on this one due
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to its relation to Euler angles passing from D = 2 to D = 3
[49].

As a third coin model, we consider the so-called general-
ized Grover coin, that for D = 2, 3, is defined as

C(2)
G (θ) =

(
θ

√
1− θ2√

1− θ2 −θ

)
, (10)

C(3)
G (θ) =

 −θ2 θ
√
2− 2θ2 1− θ2

θ
√
2− 2θ2 2θ2 − 1 θ

√
2− 2θ2

1− θ2 θ
√
2− 2θ2 −θ2

 , (11)

with the coin parameter 0 ≤ θ ≤ 1. Note that C(2)
G (θ =

1/
√
2) is the Hadamard coin (D = 2) [11, 50] and C(3)

G (θ =

1/
√
3) is the Grover coin in D = 3 [37, 51]. The Grover coin

was named after showing that a DTQW can be used to im-
plement Grover’s search algorithm using Grover’s diffusion
operator on the coin space [4, 52, 53]. Then, attempts have
been made to generalize it by considering parametric coin op-
erators which recover the Grover coin for some specific values
of the parameters [37, 54–56]. Accordingly, DTQWs with a
generalized Grover coin are generally referred to as general-
ized Grover walks.

B. The initial state

As a probe, we consider pure separable initial states

|ψ(0)⟩ = |0⟩p ⊗ |ϕ(D)⟩c, (12)

where we assume that the walker is initially localized at the
origin of the line, x = 0,[57] i.e., an eigenstate of the position
operator, X|x⟩p = x|x⟩p. Our purpose is to determine the
optimal preparation of theD-dimensional coin state |ϕ(D)⟩c ∈
Hc for estimating the parameter encoded in the coin operator.

A coin pure state |ϕ(D)⟩c ∈ Hc, with dimHc = D, is
in principle identified by D complex coefficients {χm}m and
can be written as

|ϕ(D)⟩c =
∑

m∈I
(s)
c

χm|m⟩c. (13)

The actual number of independent real parameters is reduced
to 2(D−1) parameters by the normalization condition and be-
cause of the overall arbitrary phase, which is physically mean-
ingless [58]. Here we parameterize the coin state using D− 1
angles αi, as a portion of a D-dimensional surface of an hy-
persphere embedded in a (D + 1)-dimensional space. The
configurational space is obtained through the rotation of this
portion of hypersuface by D− 1 phases γi. These parameters
can take values

{
0 ≤ αi ≤ π,

0 ≤ γi ≤ 2π,
(14)

with i = 1, . . . , D − 1. This parametrization generalizes the
Bloch sphere (recovered in dimension D = 2) to higher di-
mension D > 2. Accordingly, a generic state is parametrized
as

|ϕ(D)⟩c = cos
(α1

2

)
|i1⟩c + eiγ1

D−1∏
j=1

sin
(αj

2

)
|i2⟩c

+

D−1∑
k=2

eiγk

D−k∏
j=1

sin
(αj

2

) cos
(αD+1−k

2

)
|i1+k⟩c,

(15)

where ik ∈ I
(s)
c in Eq. (1).

In this work we focus on coins of dimension D = 2, 3, 4,
so the generic state |ϕ(D)⟩c can be explicitly written as

|ϕ(2)⟩c = cos
(α1

2

)
| − 1⟩c + eiγ1 sin

(α1

2

)
|+ 1⟩c, (16)

|ϕ(3)⟩c = cos
(α1

2

)
| − 1⟩c + eiγ1 sin

(α1

2

)
sin
(α2

2

)
|0⟩c

+ eiγ2 sin
(α1

2

)
cos
(α2

2

)
|+ 1⟩c, (17)

|ϕ(4)⟩c = cos
(α1

2

)
| − 2⟩c

+ eiγ1 sin
(α1

2

)
sin
(α2

2

)
sin
(α3

2

)
| − 1⟩c

+ eiγ2 sin
(α1

2

)
sin
(α2

2

)
cos
(α3

2

)
|+ 1⟩c

+ eiγ3 sin
(α1

2

)
cos
(α2

2

)
|+ 2⟩c. (18)

The coin, being a D-level system, can be thought of as a qu-
dit. We chose the above parametrization of the coin state for
consistency with such an interpretation, qubit state (16), qutrit
state (17) [59], up to D = 4 in Eq. (18).

III. QUANTUM METROLOGY IN DTQWS

In our framework, the coin operator C depends on a single
unknown parameter θ. The DTQW, intended as the time evo-
lution of the system, strongly depends on such parameter. Our
purpose is to investigate the estimation problem for such pa-
rameter with emphasis on the effects of coin dimensionality.

A. Classical and quantum Fisher information

Given an observable X with outcomes {x} characterized
by the conditional probability p(x|θ) of obtaining the value x
when the parameter takes the value θ, the Fisher information
(FI)

FX(θ) =

∫
dx

[∂θp(x|θ)]2

p (x|θ)
, (19)

provides a measure of the amount of information that the ob-
servable X carries about the parameter θ.
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In fact, for unbiased estimators, upon performing M mea-
surements of the observable X , the variance of the parameter
θ to be estimated satisfies the Cramér-Rao inequality

Var (θ) ≥ 1

MFX (θ)
. (20)

In our case, the relevant observable is the position of the
walker, which has a discrete spectrum, outcomes x ∈ Z, hence
the FI is

FX(θ) =
∑
x∈Z

[∂θp(x|θ)]2

p (x|θ)
. (21)

In particular, our quantum system is bipartite (walker’s posi-
tion + coin), but we would perform a projective measurement
on a part of it (walker’s position). Therefore, if we denote by
ρθ the density matrix of the bipartite system parametrized by
θ, the conditional probability distribution we need to assess
the FI is

p (x|θ) = ⟨x|Trc [ρθ] |x⟩, (22)

i.e., it follows from projecting the reduced density matrix of
the walker (obtained from a partial trace of the total density
matrix over the coin space) onto the position state |x⟩.

Moving to the quantum realm, the parameter is encoded in
the state of the quantum system, ρθ, and the figure of merit to
consider is the quantum Fisher information (QFI) [60]

H(θ) = Tr
[
ρθL2

θ

]
≥ FX(θ) ∀X, (23)

that is independent of the selected measurement procedure,
and with L the symmetric logarithmic derivative defined by
the implicit relation

∂θρθ =
1

2
(Lθρθ + ρθLθ). (24)

The FI is always bounded from above by the QFI for any quan-
tum measurement, thus the quantum Cramér-Rao inequality

Var (θ) ≥ 1

MH(θ)
(25)

sets the ultimate lower (quantum) bound on the achievable
precision in estimating the parameter θ. As a final remark,
we point out that for pure states |ψθ⟩, as those of the overall
DTQW, the QFI reduces to [60]

H(θ) = 4
(
⟨∂θψθ|∂θψθ⟩ − |⟨∂θψθ|ψθ⟩|2

)
. (26)

B. The metrological problem

The metrological problem we address in this work con-
cerns the estimation of the parameter encoded in a given coin
operator when letting the probe state (12) evolve in time,
performing a DTQW. The coin operators considered are the
x, y, z-rotations and the generalized Grover coin in dimension

D = 2, 3, 4 (see Sec. II A). For the different coins, we discuss
the dependence of the QFI on time and on the dimension of
the coin, and determine the optimal preparation of the probe,
|Φ(D)⟩c, to maximize the QFI. In addition, we compare the
latter with the FI associated to a position measurement of the
walker, which is the natural measurement in a QW. We recall
that a measurement is said to be optimal if the correspond-
ing FI saturates the bound in Eq. (23), i.e., whenever the FI
equals the QFI. Unless otherwise specified, the optimal probes
have been either numerically determined or analytically in-
duced, following Appendix B, and numerically verified. In the
following sections we present results for rotations encodings
(Sec. IV–V) and for the generalized Grover coin encoding
(Sec. VI).

IV. METROLOGY WITH z-ROTATIONS ENCODING AND
DIFFERENT COIN DIMENSIONS

The z-rotation operator is diagonal in the chosen basis for
the coin space, because the coin basis states are eigenstates of
it. This allows us to analytically determine the evolution of
the DTQW, and so the FI and the QFI. We start by discussing
the results for any D (rotations and embedded rotations) and
then we refine the discussion for D = 2, 3, 4 as case studies.

A. Results for arbitrary dimension D

1. Actual rotation

The z-rotation in arbitrary D-dimensional coin space,

R(D)
z (θ) = diag

(
{eimsθ}−s≤ms≤s

)
, (27)

is a diagonal matrix where the index ms is the quantum num-
ber associated to the z-component of the spin s = (D− 1)/2.
The initial state of the system (see Eq.(12)), with initial coin
state as in Eq. (13), evolves according to

|ψ(t)⟩ = U t|ψ(0)⟩ =
∑

m∈I
(s)
c

e−iθmstχm|mt⟩p ⊗ |m⟩c, (28)

where the index of summation has a twofold role: it runs over
the quantum number −s ≤ ms ≤ s and, correspondingly,
over the associated integer shift m (see Eq. (1)). The corre-
sponding QFI (26) is

H(D)
z (t) = 4t2

[ ∑
m∈I

(s)
c

m2
s|χm|2 −

( ∑
m∈I

(s)
c

ms|χm|2
)2]

(29)
and depends neither on θ (the parameter to be estimated) nor
on the phases {γi}i of the probe state. It only depends on the
angles {αi}i of the latter via {|χm|2}m.

The QFI is minimum (null) when the probe state is a basis
state (eigenstate of the z-rotation operator), χm = δm,m′ . In
that case, the system evolves as |ψ(t)⟩ = e−iθm′

st|m′t⟩p ⊗
|m′⟩c, i.e., it gains an overall phase factor, the coin state is
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unchanged, and, at time t, the walker is localized at xt =
m′t. In particular, the walker remains at the origin if m′ = 0
and performs jumps of amplitude xt+1 − xt = m′ at each
time step. The global phase factor, which is the only term still
encoding θ, has no physical meaning and indeed it provides
null QFI.

Our purpose is to maximize the QFI with respect to the
initial coin state, i.e., to the coefficients {χm}m that satisfy∑

m∈I
(s)
c

|χm|2 = 1. Because of the normalization constraint,
we can maximize the QFI by weighting only the coefficients
χm with the largest m2

s, that is ms = ±s, thus assuming
χm = 0 if |ms| ̸= s. We denote by ±M the integer indices
m ∈ I

(s)
c respectively associated to ms = ±s, with

M =

{
s if s is integer (odd D),
s+ 1/2 if s is half-integer (even D),

(30)

from Eq. (1). Accordingly, the QFI simplifies to

H(D)
z (t) = 4t2s2

[
1− (|χM |2 − |χ−M |2)2

]
, (31)

which is maximum for |χM | = |χ−M |. Recalling that D =
2s+1, the maximum QFI achievable in dimension D or for a
spin-s particle is

max
|ϕ(D)⟩c

H(D)
z (t) = (D − 1)

2
t2 = 4s2t2. (32)

The QFI is quadratic in D, so, in this sense, a higher dimen-
sion of the coin is a metrological resource for estimating the
parameter θ encoded in the coin operator. The corresponding
optimal initial coin state is

|Φ(D)
z ⟩c =

1√
2

(
| −M⟩c + eiγ |M⟩c

)
. (33)

This expression follows from |χ−M | = |χ+M |, the normal-
ization condition, and the fact that we can neglect an overall
global phase factor. An alternative proof of the maximization
of the QFI and the optimal probe is offered in Appendix C.

We now focus on the FI of measuring the walker’s position.
After performing a partial trace over the coin’s degrees of free-
dom, the reduced density matrix resulting from the state (28)
is

ρp(t) =
∑

m∈I
(s)
c

|χm|2|mt⟩pp⟨mt|, (34)

diagonal in position space, with probabilities that are inde-
pendent of θ and t. Therefore, for the coin R(D)

z (θ) we have
FX(θ) ≡ 0 for any D, i.e., we cannot gain any information
on the parameter θ by measuring the walker’s position. Note
that, being ρp diagonal in the position space, the coherence of
the reduced density matrix is null. Analogously, the FI of a
momentum measurement is identically null, as the probability
distribution does not depend on θ in position space and thus
neither in momentum space after performing a Fourier trans-
form.

One may wonder whether entanglement between the walker
and the coin plays any role in the estimation problem. To

address this question, we consider the von Neumann entropy
E = −Tr(ρp log ρp), with ρp the reduced density matrix of
the walker’s position (equivalently with the coin’s reduced
density matrix). The bounds are 0 ≤ E ≤ logD, with D the
dimension of the lower-dimensional subsystem between the
two, here the coin. The general reduced density matrix (34)
is diagonal and its eigenvalues, |χm|2, do not depend on time.
Assuming the optimal probe (33) as the initial state and focus-
ing on t > 0 (the initial state is separable, so E(t = 0) = 0),
ρp admits only two nonzero eigenvalues, |χ±M |2 = 1/2, and
so E = log 2. This result reveals the following: (i) The degree
of entanglement E = log 2 is constant in time for t > 0, (ii) it
is independent of D, and (iii) it is maximum only in D = 2.
The optimal probe for the estimation problem generates en-
tanglement between walker’s position and coin, but it is not
maximum in D > 2. Therefore, in the following we will not
further investigate entanglement for other encodings, as this
example already shows that, at least for an initially localized
walker, in general we can not expect the optimal probe to gen-
erate maximal entanglement, i.e., we cannot expect to have a
direct implication between maximum QFI and maximum en-
tanglement.

2. Embedding in dimension D > 2

According to Eq. (9), the z-rotation in D = 2, when em-
bedded in a coin space of dimension D > 2, reads

R(E,D>2)
z (θ) = diag

(
{e−iθ/2, 1, . . . , 1, e+iθ/2}

)
. (35)

The initial state of the system (12), with initial coin state as in
Eq. (13), evolves according to

|ψ(t)⟩ =
∑
σ=±1

eiσtθ/2χσM |σtM⟩p ⊗ |σM⟩c

+
∑

−M<m<M

χm|mt⟩p ⊗ |m⟩c, (36)

with M in Eq. (30). The corresponding QFI (26),

H(E,D>2)
z (t) = t2

[
|χ−M |2 + |χ+M |2

−
(
|χ−M |2 − |χ+M |2

)2 ]
, (37)

is independent of θ and of the phases {γi}i of the probe state.
Again, the FI is identically null because the reduced density
matrix is independent of θ and so is the probability distribution
of walker’s position.

B. Explicit results for dimension D = 2

The spin-1/2 rotation (D = 2) around the z-axis has matrix
representation

R(2)
z (θ) =

(
e−iθ/2 0

0 eiθ/2

)
, (38)
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which leads to the QFI

H(2)
z (t) = t2 sin2 α1. (39)

It is minimum, H(2)
z = 0, for α1 = 0, π, i.e., when the probe

is a coin basis state, and it is maximum, H(2)
z = t2, for α1 =

π/2 regardless of the phase γ1, i.e., when the probe is optimal
|Φ(2)

z ⟩c =
(
| − 1⟩c + eiγ1 |+ 1⟩c

)
/
√
2

As already proved, the FI of a position measurement is
identically zero, independently of the initial state. From Eq.
(34), we observe that

ρp = cos2
(α1

2

)
|−t⟩pp⟨−t|+sin2

(α1

2

)
|+t⟩pp⟨+t|, (40)

which means that, at time t, the walker populates only the sites
x = ±t with non-zero probability and we have the certainty
of finding it in the site x = −t (x = +t) if α1 = 0 (α1 = π).

C. Explicit results for dimension D = 3

We compare the embedding of a two-dimensional z-
rotation in a higher dimensional space, D = 3, to the actual
three-dimensional z-rotation. We embed R(2)

z (θ) (38) into a
(D = 3)-dimensional space as

R(E,3)
z (θ) =

e−i θ
2 0 0

0 1 0

0 0 e+i θ
2

 , (41)

which leads to the QFI

H(E,3)
z (t) = t2

[
2 sin2

(α1

2

)
cos2

(α2

2

)
cos2

(α1

2

)
+ sin2

(α1

2

)
cos2

(α2

2

)
+ cos2

(α1

2

)
− sin4

(α1

2

)
cos4

(α2

2

)
− cos4

(α1

2

)]
. (42)

The maximum QFI

max
|ϕ(2)⟩c

H(2)
z (t) = max

|ϕ(3)⟩c
H(E,3)

z (t) = t2 (43)

is achieved for the optimal probe with α1 = π/2 and α2 = 0,
|Φ(E,3)

z ⟩c = (| − 1⟩c + eiγ2 |+ 1⟩c)/
√
2. This result, together

with Eq. (37), reveals that embedding a R(2)
z (θ) coin rotation

in a higher dimensional space does not improve the maximum
achievable QFI. Even in this case, the FI for walker’s position
measurement is null. Therefore, a higher dimensional coin
is not a metrological resource when embedded coin operators
are considered.

On the other hand, a higher dimensional coin space is a
resource for simulating DTQWs generated by a lower dimen-
sional coin. E.g., the DTQW generated by the embedded coin
R

(E,3)
z (θ) (41) with initial coin state (17) with α2 = 0 is

equivalent to the DTQW generated by the coin R(2)
z (θ) (38)

with initial coin state (16). Accordingly, they also provide the
same QFI (see Eq. (42), with α2 = 0, and Eq. (39)).

The actual spin-1 rotation (D = 3) around the z-axis has
matrix representation

R(3)
z (θ) =

e−iθ 0 0
0 1 0
0 0 eiθ

 . (44)

It differs from the embedded rotation (41) only by a factor two
in the argument of the exponential. Therefore, the resulting
QFI is H(3)

z (t) = 4H
(E,3)
z (t), (see Eq. (42)), its maximum

value is maxH
(3)
z (t) = 4t2, (see Eq. (43) and Eq. (32)), and

the optimal probe is the same |Φ(3)
z ⟩c = |Φ(E,3)

z ⟩c.

D. Explicit results for dimension D = 4

We compare the embedding of a two-dimensional z-
rotation in a higher dimensional space, D = 4, to the actual
four-dimensional z-rotation. We embed R(2)

z (θ) (38) into a
(D = 4)-dimensional space as

R(E,4)
z (θ) =


e−i θ

2 0 0 0
0 1 0 0
0 0 1 0

0 0 0 ei
θ
2

 . (45)

The resulting QFI is H(E,4)
z (t) = H

(E,3)
z (t), (see Eq. (42)).

This equality follows from the parametrization of the coin
state in Eq. (15) and the embedding defined in Eq. (9) for
arbitrary D, as the result involves the same variables.

The actual spin-3/2 rotation around the z-axis has matrix
representation

R(4)
z (θ) =


e−i 3θ

2 0 0 0

0 e−i θ
2 0 0

0 0 ei
θ
2 0

0 0 0 ei
3θ
2

 , (46)

which leads to the QFI

H(4)
z (t) =t2

{
9
[
sin2

(α1

2

)
cos2

(α2

2

)
+ cos2

(α1

2

)]
−
[
3

(
sin
(α1

2

)2
cos
(α2

2

)2
− cos2

(α1

2

))
+sin2

(α1

2

)
sin2

(α2

2

)(
1− 2 sin2

(α3

2

))]2
+ sin2

(α1

2

)
sin2

(α2

2

)}
(47)

whose maximum, H(4)
z = 9t2, is achieved for α1 = π/2 and

α2 = 0, irrespective of α3 and of {γi}i, i.e., when the probe
is optimal |Φ(4)

z ⟩c =
(
| − 2⟩c + eiγ3 |+ 2⟩c

)
/
√
2.
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V. METROLOGY WITH x- AND y-ROTATIONS
ENCODING AND DIFFERENT COIN DIMENSIONS

The x- and y-rotation operators are not diagonal in the cho-
sen basis for the coin space. Therefore, we numerically study
the corresponding DTQW and the associated estimation prob-
lem. We will further inspect these results for the specific val-
ues of θ for which we can provide analytical results. As dis-
cussed in Sec. IV, the embedding of a two-dimensional z-
rotation in a higher dimensional space turns out not to be of
metrological interest, as it does not improve the QFI. There-
fore, in the following we focus exclusively on the actual x-
and y-rotations. Before discussing in detail our results for di-
mensions D = 2, 3, 4, we list here the features of the QFI that
we found to be common to R(D)

x and R(D)
y and that cut across

all the dimensions D = 2, 3, 4: (i) The QFI does depend on
θ, unlike for z-rotations; for small angles, θ → 0, (ii) the QFI
is linear in time, while for finite angles the leading term is
quadratic in time,

lim
θ→0

H(D)
x,y (θ) ∝ t, vs H(D)

x,y (θ >∼ 0) ∝ t2, (48)

and (iii) the FI approaches the QFI,

lim
θ→0

max
|ϕ(D)⟩c

F
(D)
X;x,y(θ) = lim

θ→0
max

|ϕ(D)⟩c
H(D)

x,y (θ), (49)

meaning that walker’s position measurement is nearly optimal
for estimating θ. As a downside, the latter result also means
that such a measurement can extract the maximum informa-
tion available on θ only when the QFI is low compared to that
for other values of θ. In addition, we have that

max
|ϕ(D)⟩c

H(D)
x (t, θ) = max

|ϕ(D)⟩c
H(D)

y (t, θ). (50)

In principle, the QFI for x-rotations and that for y-rotations
are maximized by different optimal probes. However, it is
possible to find states that are simultaneously optimal for both
the rotations.

A. Explicit results for dimension D = 2

The spin-1/2 rotation (D = 2) around the x- or y-axis has
matrix representation

R(2)
n (θ) = cos(θ/2)1 − i2 sin(θ/2)T (2)

n , (51)

where the generators T (2)
n , with n = x, y, are defined in Eq.

(A1)–(A2). In the following, first we consider the y-rotations,
then the x-rotations.

(i) y-rotations.—We can analytically inspect the QFI for
some peculiar angles to determine its exact expression. We
start by considering the limit for θ → 0, i.e., a small deviation
from the identity coin (see Eq. (51)). In this regime, the QFI
is linear in t,

lim
θ→0

H(2)
y (θ, t) = t− sin2 α1 sin

2 γ1, (52)

while, for large t, it recovers the quadratic behavior for θ >∼ 0
(see Fig. 1(a) for θ ≈ 0 and θ ≈ π). The optimal probe that
maximizes both the FI and the QFI is the state (16) with γ1 =
0, π or α1 = 0, π (see Eq. (52)). Similar results are found
for θ = 2π, as the rotation is R(2)

y (2π) = −R(2)
y (0) (see Eq.

(51)), so the difference with respect to θ = 0 is just a phase
(−1)t in the state, |ψθ=2π(t)⟩ = (−1)t|ψθ=0(t)⟩, and thus in
its derivative. Such phases compensate when computing the
QFI (26).

Another peculiar value is θ = π (or θ = 3π), for which the
rotation is R(2)

y (π) = −iσy , with σy the Pauli matrix. Ac-
cordingly, the system oscillates between two configurations:
localized in |0⟩p for even t, with corresponding QFI

H(2)
y (even t) =

t2

2

[
1− 1

2
sin2 γ1 sin

2 α1

]
, (53)

and delocalized in its two nearest neighbours | ± 1⟩p for odd
t, with corresponding QFI

H(2)
y (odd t) =

[
t2 + 1

2
− (t+ 1)2

4
sin2 γ1 sin

2 α1

]
. (54)

For θ = 3π, the rotation is R(2)
y (3π) = iσy , so the difference

with respect to θ = π is just a phase (−1)t in the state and its
derivative, which compensate when computing the QFI (26).

For R(2)
y (θ), any real state,

|Φ(2)
y ⟩c = cos

(α1

2

)
| − 1⟩c ± sin

(α1

2

)
|+ 1⟩c, (55)

is optimal and leads to the same maximum QFI. Being both
R

(2)
y (θ) and the probe real, the maximum QFI simplifies to

(see Appendix B 2)

H(2)
y (θ) = 4⟨∂θψθ|∂θψθ⟩. (56)

For y-rotation in D = 2, although the QFI depends on θ [see,
e.g., Fig. 1(a)], its maximization over the possible probes is
independent of θ and the maximum QFI is independent of the
initial state, provided it is real. So, as for R(2)

z (θ), there is a
family of optimal states for the QFI. However, if for z-rotation
the condition was to have the angle α1 fixed and the phase γ1
free, for y-rotation it is to have the phase γ1 fixed and the
angle α1 free.

(ii) x-rotations.—The exact QFI for the peculiar angles
θ = 0, 2π and θ = π, 3π can be derived from that obtained
for the y-rotation upon replacing sin2 γ1 → cos2 γ1, in Eq.
(52) and Eqs. (53)–(54), respectively. The optimal probes that
maximize the QFI are the states (16) with γ1 = π/2, 3π/2 or
α1 = 0, π, conditions that can be summarized by the state

|Φ(2)
x ⟩c = cos

(α1

2

)
| − 1⟩c ± i sin

(α1

2

)
|+ 1⟩c. (57)

We have therefore determined the probes that separately maxi-
mize all the three rotations R(2)

n (θ), with n = x, y, z. It is not
possible to simultaneously maximize the QFI of these three
rotations as they require incompatible conditions on the opti-
mal probe state: α1 = π/2 for the z-rotation, α1 = 0, π or
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Figure 1. Maximum QFI as a function of θ for rotations R(D)
x,y (θ), for

time steps t = 1, 2, . . . 6. (a) Results for D = 2 and optimal probe
|Φ(2)

x,y⟩c = | − 1⟩c (α1 = 0). For θ → 0 the QFI is H
(2)
x,y(0) = t

[Eq. (52)]. For θ = π the QFI takes its maximum value H
(2)
x,y(π) =

[t2 + mod(t, 2)]/2, that differs between odd times [orange line, Eq.
(54)] and even times [blue line, Eq. (53)]. (b) Same quantities for
D = 3 and optimal probe |Φ(3)

x,y⟩c = |0⟩c (α1 = α2 = π). The QFI
is H(3)

x,y(θ) = 4H
(2)
x,y(θ) for θ = 0, π. The QFI shows a period of 2π.

γ1 = 0 for the y-rotation, and α1 = 0, π or γ1 = π/2, 3π/2
for the x-rotation. However, it is possible to simultaneously
maximize the QFI for two rotations with the following probes

|Φ(2)
x,z⟩c =

1√
2
(| − 1⟩c ± i|+ 1⟩c) , (58)

|Φ(2)
x,y⟩c = | ± 1⟩c, (59)

|Φ(2)
y,z⟩c =

1√
2
(| − 1⟩c ± |+ 1⟩c) , (60)

where the subscripts denote the two rotations whose QFI is
maximized. As a final remark, we point out that the QFI for
R

(2)
x (θ) or R(2)

y (θ) is always lower than that for R(2)
z (θ), see,

e.g., Fig. 4. On the other hand, the FI for x- and y-rotations is
nonzero, thus higher than that for z-rotation (for which it van-
ishes, due to the structure of Eq. (34)). The FI of a z-rotation
is identically null because the probability distribution for each
initial state does not depend on θ and then, any position mea-
surement can not infer information about the coin parameter.
On the contrary, for x- and y-rotations, the interference phe-
nomena in position space results in a reduction in the overall
Quantum Fisher Information of the system. Despite this re-
duction, the probability distribution in the walker’s space is
then dependent on θ. Consequently, measuring the walker’s
position can indeed infer information about θ. Therefore, at
the cost of a diminished global QFI, there exists a non-zero
position FI.

Let us now focus on the FI for the optimal states maximiz-
ing the QFI. In the limit of θ → 0, the FI equals the QFI,
is linear in time [see, e.g., Fig. 1(a) and 2(a)], and thus the
optimal states for the QFI also maximize the FI. Unlike the
QFI, the FI does not show analogous regularities in the time
dependence and in the state maximizing the FI. As the time in-
creases, the maxima of the FI do not occur always at the same
value of θ and, at given θ, the FI is not necessarily increasing

in time, i.e., it is possible to have FX(θ∗, t) > FX(θ∗, t + 1)
[see Fig. 2(a,b)]. This behavior is in sharp contrast with that
of the QFI, whose maximum occurs at θ = π and, at given θ,
it is increasing in time [Fig. 1(a)]. In addition, the FI strongly
depends on the initial real state (57) considered [Fig. 2(c,d)],
while the value of the QFI is maximum and independent of it.

Figure 2. Classical FI of a position measurement for rotation R
(2)
y (θ)

for time steps t = 1, 2, . . . , 6. Panels (a,b): Results as a function of
θ for the initial state (16) with γ1 = 0 and (a) α1 = 0 and (b)
α1 = π/4 [both optimal states, Eq. (55)]. Panels (c,d): Results
for (c) θ = π/3 and (d) θ = π/2 as a function of the angle α1

parametrizing the optimal, real initial state (55) with the plus sign
[i.e., γ1 = 0 in Eq. (16)]. In all panels, F (2)

X;y(t = 1) ≡ 1.

B. Explicit results for dimension D = 3

The spin-1 rotation (D = 3) around the x- or y-axis has
matrix representation

R(3)
n (θ) = 1 − i sin(θ/2)T (3)

n + (cos(θ/2)− 1)T (3)
n

2
, (61)

where the generators T (3)
n , with n = x, y, are defined in

Eq. (A4)–(A5). Again, we can analytically study the QFI for
specific angles to inspect the metrological advantage—higher
QFI—with respect to the case D = 2. In particular, we ob-
serve that

lim
θ→0

[
max
|ϕ(3)⟩c

H(3)
x,y

]
= 4 lim

θ→0

[
max
|ϕ(2)⟩c

H(2)
x,y

]
= 4t, (62)

max
θ

[
max
|ϕ(3)⟩c

H(3)
x,y

]
= 4max

θ

[
max
|ϕ(2)⟩c

H(2)
x,y

]
= 2[t2 + mod(t, 2)]. (63)
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This means that the QFI corresponding to the optimal probe,
intended as the probe which provides the highest maxθH

(3)
x,y ,

is enhanced by a factor 4 compared to the case in D = 2, the
same improvement we had for the z-rotation when passing
from D = 2 to D = 3, (see Eq. (32)). However, for x- and y-
rotations this gain does not hold for all the values of θ, but for
θ → 0 and θ = π [compare Fig. 1(a,b)]. The optimal probe
is unique and simultaneously optimizes the QFI for both the
rotations

|Φ(3)
x,y⟩c = |0⟩c. (64)

Here is a major difference with respect to the case in D = 2:
The optimal probe (i) is unique and (ii) is simultaneously op-
timal only for x- and y-rotations. Such a probe does not opti-
mize the QFI for z-rotations because the optimal probe of the
latter is Eq. (33) with M = 1. It is worth noticing that in the y
case even if the coin matrix is real, not all real states maximize
the QFI. Even if the QFI reduces to Eq. (56), in D = 3 the
square modulus of the derivative of the wave function is not
constant for any real state. This means that the orthogonality
of a state and its derivative, ⟨∂θψθ|ψθ⟩ = 0, is not a sufficient
condition for the maximization of the QFI (see Eq. (26)).

The ratio R = FX/H between FI and QFI is indicative
of the optimality of a measurement X . Indeed, it is bounded
by 0 ≤ R ≤ 1, with R = 1 for optimal measurements (see
Eq. (23)). Focusing on the FI of a position measurement per-
formed on the optimal state (64) for the QFI, we observe in
Fig. 3 that the ratio strongly depends on the value of θ and
on the time step (except for θ = 0). Therefore, the amount
of information encoded on the outcomes of a position mea-
surement depends on θ and t. The suitability of a position
measurement to estimate the parameter of interest depends on
both θ and t and it is quantified by the values of R(θ, t): A
position measurement is nearly optimal (poor) for the value
of θ and t for which R ≈ 1 (R ≈ 0). Numerical analysis
suggests the existence of asymptotic value limt→∞R = Rθ

(achieved from below for even t and from above for odd t),
which however strongly depends on θ.

Figure 3. Ratio R between the FI and the QFI as a function of the
time step for the optimal probe |Φ(3)

x,y⟩c = |0⟩c (64) and different
values of θ.

C. Explicit results for dimension D = 4

For the spin-3/2 rotation (D = 4) around the x- or y-axis,
we observe that

lim
θ→0

[
max
|ϕ(4)⟩c

H(4)
x,y

]
= 7 lim

θ→0

[
max
|ϕ(2)⟩c

H(2)
x,y

]
= 7t, (65)

max
θ

[
max
|ϕ(4)⟩c

H(4)
x,y

]
= 7max

θ

[
max
|ϕ(2)⟩c

H(2)
x,y

]
=

7

2
[t2 + mod(t, 2)]. (66)

The highest maxθH
(3)
x,y is enhanced by a factor 7 compared to

the case in D = 2, unlike the improvement by a factor 9 we
had for the z-rotation when passing from D = 2 to D = 4,
(see Eq. (32)).

As in the case D = 2 we have more than one optimal state
for R(4)

y (θ) and R(4)
x (θ), that respectively read

|Φ(4)
y ⟩c = cos

(α3

2

)
| − 1⟩c ± sin

(α3

2

)
|+ 1⟩c, (67)

|Φ(4)
x ⟩c = cos

(α3

2

)
| − 1⟩c ± i sin

(α3

2

)
|+ 1⟩c. (68)

Again, by optimal probe we mean the probe which provides
the highest maxθH

(4)
x,y . The optimal probes resemble the op-

timal ones we determined for R(2)
y (θ) and R(2)

x (θ), Eq. (55)
and (57), respectively. Analogously to the case D = 3, it
is not possible to simultaneously maximize the QFI for both
x(y)- and z-rotations, but the state

|Φ(4)
x,y⟩c = | ± 1⟩c (69)

maximizes both the x- and y- rotation, similarly to the case
D = 2 (see Eq. (59)). As for the R(2)

x,y(θ) when we have a
family of states that maximize H(D)

x,y (θ) we cannot find opti-
mal state(s) for FX valid for each time step t or for each value
of θ.

Figure 4. Asymptotic behavior of the QFI maximized over the initial
states (12) and values of θ for rotations R

(D)
n (θ), with n = x, y, z

and D = 2, 3, 4. For large enough time, the maximum QFI is ∼
O(t2).

To conclude the discussion on the estimation problem for
rotation encodings, we compare the asymptotic behavior of
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the maximum QFI, optimized over the probe states and θ, for
the rotations R(D)

n (θ)

lim
t→∞

max
|ϕ(D)⟩c

H
(D)
n

t2
=


(D − 1)2 for n = z,
1/2 for n = x, y and D = 2,
2 for n = x, y and D = 3,
7/2 for n = x, y and D = 4.

(70)
This result reveals that, at least in D = 2, 3, 4, the QFI for
z-rotations is always larger than that for x, y-rotations. This
long-time limit regime is achieved after a few time steps (Fig.
4).

VI. METROLOGY WITH GENERALIZED GROVER
WALK ENCODING AND DIFFERENT COIN DIMENSIONS

In this section we discuss the estimation problem of the sin-
gle parameter of the generalized Grover coin for D = 2, 3,
defined in Sec. II A. The Grover coin in D = 2 turns out to
be of interest also because it can be read as the composition
of two rotations previously considered.

(i) Dimension D = 2.— The QFI associated to the general-
ized Grover walk with coin (10) depends on the parameter θ
as

H
(2)
G (θ, t) =

f(θ, t)

1− θ2
, (71)

which diverges for θ → 1, where f(θ, t) is polynomial in θ
and t [Fig. 5(a)]. The probe (16) is optimal for γ2 = 0, π or
α1 = 0, π (see Appendix B 2), so it reads

|Φ(2)
G ⟩c = cos

(α1

2

)
| − 1⟩c ± sin

(α1

2

)
|+ 1⟩c, (72)

neglecting an overall phase factor. These optimal states pro-
vide the same QFI, are optimal for any value of θ, and are
the same optimal states for y-rotation in D = 2. In this
regard, we recall that the Grover coin is the product of a y-
rotation and a constant z-rotation. This can be easily verified
by reparametrizing the coin (10) according to θ ∈ [0, 1] 7→
cos (θ̃/2) ∈ [0, 1] as follows

C(2)
G (θ̃) =

(
cos
(
θ̃/2
)

sin
(
θ̃/2
)

sin
(
θ̃/2
)

− cos
(
θ̃/2
))

=

(
cos
(
θ̃/2
)

− sin
(
θ̃/2
)

sin
(
θ̃/2
)

cos
(
θ̃/2
) )(1 0

0 −1

)
= iR(2)

y (θ̃)R(2)
z (π), (73)

where 0 ≤ θ̃ ≤ π to ensure that both sine and cosine are pos-
itive [see also Eqs. (38) and (51)]. Estimating the parameter
0 ≤ θ ≤ 1 of the Grover coin amounts to estimating the value
of 0 ≤ cos (θ̃/2) ≤ 1 in Eq. (73).

(ii) Dimension D = 3.— The optimal probe

|Φ(3)
G ⟩c = |0⟩c (74)

is unique and it also maximizes the QFI for x- and y-rotation
in D = 3, Eq. (64). The QFI shows an analogous dependence
on θ as inD = 2, Eq. (71), showing the same divergence [Fig.
5(b)].

Results suggest that the QFI is basically independent of θ
when the latter is small and that it is of order O(t2) for large
enough time. For a given value of θ, the maximum value the
QFI can reach is higher inD = 3 than in theD = 2 case [Fig.
5(a,b)]. Panel (c) shows in detail this comparison for θ = 1/2,
together with QFI for the Hadamard (D = 2, θ = 1/

√
2) and

Grover walk (D = 3, θ = 1/
√
3).

Figure 5. Maximum QFI in a generalized Grover walk for D = 2, 3.
(a) QFI in D = 2 as a function of θ for t = 1, . . . , 6 (blue lines).
The curve 2/(1 − θ2) (red dashed line) is reported as a reference.
(b) QFI in D = 3 as a function of θ for t = 1, . . . , 6 (orange lines).
(c) QFI for the Hadamard walk (D = 2, θ = 1/

√
2), Grover walk

(D = 3, θ = 1/
√
3), and comparison of the QFI for D = 2, 3 at

fixed θ = 1/2. The asymptotic behavior of the QFI is O(t2). Results
obtained for the optimal probes |Φ(2)

G ⟩c = |−1⟩c and |Φ(3)
G ⟩c = |0⟩c.

Furthermore, it is worth noticing that, in principle, different
states of the bipartite system (walker’s position + coin) might
result in the same probability distribution p(x, θ) of finding
the walker in position x when the parameter takes the value
θ. Accordingly, for a given probability distribution p(x, θ) we
may expect different values of the QFI, because the latter, by
definition in Eq. (26), depends on the quantum state and the
derivative of the latter, not on p(x, θ). Then, the probabil-
ity distribution, or any physical quantity derived from p(x|θ),
is not reliable to investigate the QFI when comparing differ-
ent coins. As an example, if we take the D = 2 generalized
Grover coin (10) and perform the substitution

θ = cos
θ̃

2
, i.e., θ̃ = 2arccos(θ), (75)
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then the probability distribution p(x|θ) is the same as in the
two cases, and even the wave function is the same. Neverthe-
less the QFI is extremely different, since in one case there is
a divergence and in the other there is not. The origin of such
behavior is the Jacobian, J , of coordinate change

∂

∂θ
=J ∂

∂θ̃
=
∂θ̃

∂θ

∂

∂θ̃
=

−2√
1− θ2

∂

∂θ̃
. (76)

Due to the expression of the QFI for pure states, Eq. (26), the
Jacobian appears as a square modulus as

H
(D)
G (θ, t) = |J |2H(D)

G (θ̃, t) =
4H

(D)
G (θ̃, t)

1− θ2
. (77)

The classical FI for pure states shows the same characteris-
tic. The Jacobian appears as a square modulus in Eq. (21) and
so

F
(D)
X;G(θ, t) = |J |2F (D)

X;G(θ̃, t) =
4F

(D)
X;G(θ̃, t)

1− θ2
. (78)

while the ratio between FI and QFI is not affected by the
change of coordinates and is constant

F
(D)
X;G(θ, t)

H
(D)
G (θ, t)

= R(θ, t) =
F

(D)
X;G(θ̃, t)

H
(D)
G (θ̃, t)

= R(θ̃, t). (79)

We stress that the latter result, Eq. (79), is general and it holds
true for any coordinate change, for any dimensionality, and
for any coin. Moreover all the considerations made for the
rotations, about the FI still hold true for this coin. When we
have a family of states that maximize H(D)

G (θ) the optimal
state for FX depends both on θ and t.

VII. SUMMARY AND CONCLUSIONS

We have addressed metrological problems where the pa-
rameter of interest, θ, is encoded in the internal degree of free-
dom of a discrete-time quantum walker, initially localized in
position space, and analyzed the precision achievable by dif-
ferent encodings of such parameter. We have shown that coin
dimensionality is a potential resource to enhance precision.

When the parameter is encoded in a coin rotation Rz , the
exact expression of the quantum Fisher information (QFI) has
been analytically obtained at any time step t. We have de-
termined the initial preparation of the coin state which maxi-
mizes the QFI. This optimal state turns out to be independent
of the value of the unknown parameter θ. Moreover, the max-
imum value achievable by the QFI increases with the square
of the coin’s dimension, according to Eq. (32). This precision
may be achieved by a joint measurement on the two degrees
of freedom of the system (walker’s position and coin), since
in this case the FI associated to a position measurement van-
ishes.

We have then studied the case where the encoding of the pa-
rameter happens through x- and y-rotations, finding the fam-
ily of initial states that maximize the QFI (also in this they are

independent of the value of θ) and showing that the maximal
achievable QFI increases with the dimension of the coin. For
D = 2 we have proved the existence of states that are jointly
optimal for the two rotation encodings, Rx/y , and that it is
also possible to find states that maximize the QFI for any pair
of two-dimensional rotations. For D = 3, there is an optimal
initial state for the two encodings Rx and Ry , which is differ-
ent from that obtained for Rz . At variance with the D = 2
case, it is not possible to jointly maximize the QFI of Rz and
one of the Rx/y rotations.

Finally, we have addressed encoding via generalized
Grover coin, and have found that the optimal states are the
same as those optimizing the estimation for y-rotation encod-
ings, at least for the dimensions we analyzed (D = 2, 3).

Overall, we have provided evidence that coin dimensional-
ity is a resource to enhance precision in metrological problems
involving DTQWs. Our results provide solid tools to address
optimization of probe states in several situations of interest,
i.e., sensing in magnetic systems, where the coin’s degree of
freedom is the spin of the particle, or waveguides, where the
coin’s degree of freedom is the polarization of the photon.
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Appendix A: Spin Rotation Generators

The generators T (D)
n of the rotations about the axes n =

x, y, z in dimension D are the representation of the spin op-
erators S(D)

n [61]. Here below we report their explicit matrix
form.

1. Dimension D = 2

In dimension D = 2 the generators of the rotations are
proportional to the Pauli matrices {σn}n=x,y,z—generators of
SU(2)—and read

T (2)
x =

σx
2

=
1

2

(
0 1
1 0

)
, (A1)

T (2)
y =

σy
2

=
1

2

(
0 −i
i 0

)
, (A2)

T (2)
z =

σz
2

=
1

2

(
1 0
0 −1

)
. (A3)
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2. Dimension D = 3

In dimension D = 3 the generators of the rotations are

T (3)
x =

1√
2

0 1 0
1 0 1
0 1 0

 , (A4)

T (3)
y =

1√
2

0 −i 0
i 0 −i
0 i 0

 , (A5)

T (3)
z =

1 0 0
0 0 0
0 0 −1

 . (A6)

3. Dimension D = 4

In dimension D = 4 the generators of the rotations are

T (4)
x =

1

2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

 , (A7)

T (4)
y =

1

2


0 −i

√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0 i
√
3 0

 , (A8)

T (4)
z =

1

2

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (A9)

Appendix B: Details of some results mentioned in the text

1. Derivative of the evolution operator

To assess the QFI as function of time, we need the wave
function and its derivative at each time step, i.e., we need
their time evolution. While computing |ψθ(t)⟩ = U t|ψ(0)⟩
is straightforward in principle, this might not be the case for
|∂θψθ(t)⟩ ≡ ∂θ|ψθ(t)⟩ = (∂θU t)|ψ(0)⟩. To compute the lat-
ter we have to compute ∂θU t, as the unknown parameter is
encoded in U , not in the initial state, and this operator is the
sum of t terms

∂θU t =

t−1∑
m=0

Um (∂θU)U t−m−1. (B1)

On the other hand, this expression can be manipulated to iter-
atively compute such operator as the sum of only two terms at
each time step,

∂θU t =
(
∂θU t−1

)
U + U t−1∂θU ∀t > 0. (B2)

2. Orthogonality between a state and its derivative

The inner product ⟨ψθ|∂θψθ⟩ = i Im{⟨ψθ|∂θψθ⟩} is pure
imaginary, as ∂θ⟨ψθ|ψθ⟩ = 0 = 2Re{⟨ψθ|∂θψθ⟩} from the
normalization condition, ⟨ψθ|ψθ⟩ = 1. Then, if the inner
product is real, then it is necessarily null, and so the state |ψθ⟩
is orthogonal to its derivative |∂θψθ⟩. This is condition is nat-
urally verified if both the state and its derivative are real.

We want to apply the above result to our estimation prob-
lem based on DTQWs. The reason is that the QFI may be
maximized by making −|⟨ψθ|∂θψθ⟩|2 ≤ 0 in Eq. (26) null.
We stress that this argument does not necessarily lead to the
true maximum QFI. Nevertheless, it can still be of help in de-
termining the optimal probe. The condition of orthogonality
between the wave function |ψθ(t)⟩ and its derivative |∂θψθ(t)⟩
at time t is

⟨ψθ(t)|∂θψθ(t)⟩ = ⟨ψ(0)|(U t)†(∂θU t)|ψ(0)⟩

=
t−1∑
m=0

⟨ψθ(m)|U†(∂θU)|ψθ(m)⟩

=

t−1∑
m=0

⟨ψθ(m)|(1 ⊗ C†∂θC)|ψθ(m)⟩ = 0, (B3)

where the second line follows from Eq. (B1) and the third line
from S†S = 1 (unitary). We want this condition to hold true
at any time t > 0, so it must be satisfied also at t = 1. Given
the initial state (12), the latter condition reads

⟨ψθ(1)|∂θψθ(1)⟩ = ⟨ψ(0)|(1 ⊗ C†∂θC)|ψ(0)⟩
= c⟨ϕ(D)|C†∂θC|ϕ(D)⟩c = 0. (B4)

The coin is a unitary operator, thus ∂θ(C†C) = ∂θ1 = 0 which
implies

(C†∂θC)† = −C†∂θC, (B5)

i.e., the operator C†∂θC is anti-Hermitian, so its diagonal ele-
ments are pure imaginary. If the condition in Eq. (B4) holds
true for all |ϕ(D)⟩c, then the operator C†∂θC is null, which
implies that both C† and ∂θC are singular, unless one of them
is null. This cannot be the case as in contradiction with our
assumptions: C does depend on the parameter to be estimated
and must be unitary (thus, also non-singular) for U to be uni-
tary, as required by the DTQW. Therefore, we cannot have a
condition holding true for any probe, but in principle we can
determine some conditions (sufficient, but not necessary) un-
der which Eq. (B4) is satisfied.

The following argument relies on two points: (i) the opera-
tor 1⊗C†∂θC is anti-Hermitian, because C†∂θC is, and (ii) the
expectation value of an anti-symmetric operator on a real state
is null. If the coin operator C is real, then C†∂θC and 1⊗C†∂θC
are real, thus anti-symmetric. As a result, for any real state
|ϕ(D)⟩c we have c⟨ϕ(D)|C†∂θC|ϕ(D)⟩c = 0. The unitary op-
erator U in Eq. (3) is real, being C real by assumption and S
real by definition, Eq. (4). If |ϕ(D)⟩c is real, then the initial
state (12) is real and accordingly |ψθ(t)⟩ = U t|ψ(0)⟩ is real
for any t ≥ 0. In conclusion, a sufficient condition to have
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⟨ψθ(t)|∂θψθ(t)⟩ = 0 for all t > 0 is that the coin operator and
the initial coin state are real.

As an example, we discuss the rotations inD = 2. First, we
observe that, for a given the rotation Rn = exp(−iθTn)—we
omit the argument θ and the superscript (D) for shortness—
around the axis n = x, y, z, its derivative is ∂θRn = −iTnRn.
Clearly [Rn, Tn] = 0 and R†

nRn = 1, thus for the rota-
tions we simply have C†∂θC = −iTn. From the latter result
with the generators in Eqs. (A1)–(A3) and by direct inspec-
tion of R(2)

n (θ), we see that only the y-rotation it real. The
orthogonality condition (B4) on the generic initial state (16)
for R(2)

y leads to − i
2 sinα1 sin γ1 = 0, which is satisfied for

γ1 = 0, π or α1 = 0, π. We numerically verified that the
resulting probes, i.e

|Φ(2)
y ⟩c = cos

(α1

2

)
| − 1⟩c ± sin

(α1

2

)
|+ 1⟩c, (B6)

are indeed optimal, as they maximize the QFI. On the other
hand, the above argument does not apply to R

(2)
x (θ) and

R
(2)
z (θ) due to the presence of complex matrices.

Appendix C: Alternative proof of the optimal QFI for
z-rotations in arbitrary dimension

When there is only one parameter θ to be estimated and the
state is pure, the QFI can be alternatively expressed as

H(θ) = lim
δθ→0

8 (1− |⟨ψθ|ψθ+δθ⟩|)
δθ2

. (C1)

In our case, the states |ψθ⟩ to be considered are reported in
Eq. (28) and we can easily prove that

|⟨ψθ(t)|ψθ+δθ(t)⟩| = |⟨ϕc|eiδθT
(D)
z t|ϕc⟩|, (C2)

where T (D)
z is the generator of z-rotations in dimension D

and |ϕc⟩ is the initial coin state. Maximizing the QFI (C1)
is equivalent to minimizing Eq. (C2). We define the unitary

operator W ≡ exp{itT (D)
z δθ} =

∑D
j=1 e

iλjPj whose dis-
tinct eigenvalues {eiλj}, with λj = mjtδθ, are associated to
the corresponding eigenprojectors {Pj}. A Lemma by K. R.
Parthasarathy [62] states that, if |⟨ϕc|W |ψc⟩| > 0 for every
normalized state |ϕc⟩, then

min
∥ϕc∥=1

|⟨ϕc|W |ϕc⟩|2 = min
j ̸=k

cos2
(
λj − λk

2

)
= cos2

(
λj∗ − λk∗

2

)
= |⟨ϕ∗c |W |ϕ∗c⟩|2, (C3)

where the eigenvalues λj∗ and λk∗ are those minimizing the
right-hand side of the first line, and

|ϕ∗c⟩ =
1√
2
(|λj∗⟩+ |λk∗⟩), (C4)

where |λj∗⟩ and |λk∗⟩ are arbitrary normalized states in the
range of Pj∗ and Pk∗ , respectively.

According to this lemma, we can prove the maximum QFI
(32) and the optimal initial coin state (33). Since the QFI is
defined in the limit for δθ → 0, we can compute the square
root of Eq. (C3) as√

min
j ̸=k

cos2
(
λj − λk

2

)
≈

√
1− t2δθ2

4
max
j ̸=k

(mj −mk)2

=
√
1− t2s2δθ2 ≈ 1− t2s2

2
δθ2, (C5)

because −s ≤ mj ≤ s. This, together with Eq. (C1), leads
to Eq. (32). Now, we focus on the optimal probe state. In
our case, all the D eigenvalues of T (D)

z , and so of W , are
distinct. Hence, an operator Pj is a projector onto the one-
dimensional space spanned by the j-th eigenstate of T (D)

z . As
shown above, the two eigenstates we need to define the state
in Eq. (C4) correspond to the lowest and highest eigenval-
ues of T (D)

z , i.e., we need | ± s⟩. Each eigenspace is one-
dimensional, thus the only arbitrariness left is in the choice of
the phase factor. However, when taking the superposition of
two states, only the relative phase matters. This, together with
Eq. (C4), leads to the optimal initial coin state in Eq. (33).
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