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ABSTRACT

In sickle cell disease cardiomyopathy, 3D transthoracic Echocardiography (3D Echo) is an essential diagnostic tool 
for accurate diagnosis and further understanding of its pathophysiology. To this end, we performed a retrospective 
observational study in a cohort of 46 pediatric patients with homozygous or heterozygous sickle cell disease. In 
particular, we assessed that an increased right ventricular end-diastolic volume is the earliest sign of this disease 
progression, promoted by a high pulmonary artery systolic pressure and followed by uncoupling with the pulmonary 
artery. Over time, the dysfunction of the right ventricle also affects the left ventricle, leading to global heart failure, 
which can be considered "right ventricle-driven". In addition, 3D echocardiography is an essential tool in the follow-
up of this disease and together with the reduced incidence of acute chest syndrome or peripheral vaso-occlusive 
events to choose the optimal medical treatment. 
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INTRODUCTION

Sickle Cell Disease (SCD), as a multisystemic genetic disorder in 
both its dominant and recessive forms, has a profound effect on 
the cardiovascular system, greatly influencing the prognosis of 
each individual case [1]. The cardiovascular aspect of this disease is 
particularly relevant in today's era of sophisticated imaging tools that 
allow to define pathophysiological correlations, otherwise unclear [2]. 
Our observational retrospective study addressed this issue by reviewing 
3D Echo images. 

MATERIALS AND METHODS

Our research included a group of 46 black children, immigrated to Italy 
from Sub-Saharan countries and observed from 2019 to the present, 
24 males, aged between 3 and 12 years, with an average age of 7 years. 
32 children were homozygous (HbSS), of which 5 were HbSB0, while 
the other 12 were heterozygous (HbSC). According to our protocol, 
they underwent an annual check-up for the most important laboratory 
tests and a 3D Echo every 6 months, performed with an angle-
independent, less load-dependent and highly reproducible machine. 
In particular, we formally considered relevant to study the left atrium, 
Left Ventricular (LV) End-Diastolic Volume (LVEDV), its Ejection 

Fraction (LVEF) and Global Longitudinal Strain (LVGLS), measuring 
the corresponding parameters. In addition, we carefully assessed the 
Right Ventricle (RV) Ejection Fraction (RVEF), End Systolic Volume 
(RVESV), End Diastolic Volume (RVEDV) and Free Wall Longitudinal 
Strain (RVFWLS), combining three- and four-chamber projections, 
potential recognition in the 3D Echo technology. 22 children (47%) 
had undergone medical treatment with hydroxyurea, which, regardless 
of genotype, reduced the total incidence of acute chest crises to 2 per 
year in 8 patients and to 1 per year in 14 others. The 3D Echo results 
were matched with the body surface area and mass index to confirm 
their real impact [3]. The Ethics Committee of our institution, the 
University of Modena and Reggio Emilia, confirmed that this study 
did not require ethical approval, for its retrospective nature, nor 
parenteral consent, giving that the procedures performed were part of 
the routine care.

RESULTS

All children, if examined in a stable condition, showed normal 
metabolic parameters with the exception of a slight increase in Lactate 
Dehydrogenase (LDH) and unconjugated bilirubin. Anemia, a leading 
sign of SCD, varied between 8.25 g/dl and 13.87 g/dl, with a mean 
value of 10.37+1.44, a corresponding increase in reticulocytes, but 
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flow velocity and shear stress on capillary walls increase, followed by 
abnormal release of von Willebrand or other coagulation factors [5-
7]. In addition, the augmented intravascular lysis of SCD erythrocytes 
and activation of leukocytes and platelets stimulates release of 
interleukins and generation of cell-derived particles [8]. All these 
factors, combined with a reduced bioavailability of nitric oxide and 
greater production of nitrogen dioxide and endothelin-1 factor, favor 
diffuse microthromboses [9,10]. This pathology electively affects the 
pulmonary microvasculature, firstly by promoting arterioles contraction 
and consequently their wall hypertrophy through proliferation of 
medial smooth muscle cells, a key component of irreversibly increased 
PASP. Another ubiquitous element is increased tissue deposition of 
bioactive iron, including myocardial tissue [11]. 

Cardiac pathology 

In addition to this complex chain of microvascular events, cardiac 
function is impaired by other correlated mechanisms, namely 
tachycardia and hyper-dynamic circulation. They cause a proportional 
lengthening of the RV myocardial fibers, useful within the limits of 
the Frank-Starling law. However, beyond a physiological threshold, 
this process becomes detrimental and leads to a progressive spherical 
remodeling of the RV and a parietal concentric hypertrophy, which 
increases the RVEDV and shifts its contraction towards a horizontal 
or semi-horizontal plane, at the expense of the more physiological 
contraction along the longitudinal axis [12-14]. In addition, within 
the pericardium, the augmented RVEDV and consequently internal 
tension, typical in the late diastolic phase, opposes the LV diastolic 
compliance. This effect, proportional to the increased circulating blood 
volume, simulates a restrictive cardiomyopathy with paradoxically 
preserved ejection fraction (Figure 1) [15,16]. On 3D Echo imaging it 
correlates with a D-shaped Interventricular Septum (IVS) protruding 
into LV and a right atrioventricular plane pushed up towards the 
right atrium, causing an abnormal systolic excursion of the tricuspid 
annulus, in turn predisposing to a tricuspid valve insufficiency. A 
further aggravation consists in a progressive RV-pulmonary artery 
uncoupling [17,18]. As a countermeasure, this negative hemodynamics, 
electively damaging the RV, activates a support from the LV, through 
interdependent anatomical structures. These consist of myocardial 
fibers extending from the inner walls of the RV through the IVS to 
the LV sub-epicardium [19-25]. Embryologically, this correlates with 
the common origin of both the ventricles from a single primordial 
structure [26,27]. In absence of arrhythmias, this cardiovascular system 
can be compared to an electric circuit with two secondary branches 
derived in "parallel", to which, according to Newton's second law and 
Ohm's principle, energy is supplied proportionally to their capacity and 
need. However, despite all these protective mechanisms and possible 
benefits of medical treatment, a progressively augmented PASP can 
increase RV afterload and RVEDV (Figure 2). Consequently, in the 
long term, the LV, already damaged by chronic anemia, abnormal tissue 
deposition of bioactive iron, persistently elevated inotropic state and 
possible endothelial dysfunction of its coronary microvasculature, may 
become progressively insufficient and through an early augmented left 
atrium inner tension, increase pulmonary microvascular resistance. 
This condition may lead to a global heart failure [28-30]. It can be 
considered "RV-driven", given the frank predominance of the RV 
pathology (Figure 3). It can be hypothesized that an increased diastolic 
pulmonary artery pressure, which cannot be assessed in 3D Echo 
explorations, may correspond to an increased RV inner tension and 
RVEDV [31-37].

normal polymorphonuclear and platelet counts. The standard 3D 
Echo LV indexed parameters were within the normal range (Table 1). 
On the contrary, the only pathological parameters concerned RV, in 
particular an early increased Pulmonary Artery Systolic Pressure (PASP)
s, more frequent in homozygous than in heterozygous children (55% 
versus 33%). Its average progression was proportional to age, varying 
from 10% to 30% in 5 years and associated with a corresponding 
increase in RVEDV and a decrease in RVFWLS, observed in cases 
with a >20% increase in PASP. This adverse clinical course mainly 
affected children with extra-cardiac SCD complications, homozygous 
state, lower efficacy of or adhesion to pharmacological treatment and 
correspondingly higher incidence of episodes of acute chest crisis and 
vaso-occlusive events. 

Table 1: Indexed 3D-echocardiographic results.

Characteristic Mean ± SD Range

LVEF % 57.41 ± 3.24 52.00 to 65.00

LVESV ml 38.9 ± 9.54 21.20 to 59.75

LVEDV ml 88.9 ± 20.76 54.55 to 140.89

LVGLS % -19.94 ± 3.00 -25.00 to -13.50

RVEF % 55.70 ± 2.28 51.60 to 60.70

RVESV ml 60.74 ± 37.69 28.30 to 132.90

RVEDV ml 127.27 ± 92.88 28.60 to 306.20

RVFWLS % -24.56 ± 6.23 -32.60 to -6.50

Note: SD: Standard Deviation

DISCUSSION

Given the small number of patients studied, their wide age range 
and variable impact of possible balancing factors, we considered 
it inappropriate to statistically re-estimate our results. Similarly, 
microvascular factors, the common background of SCD, are difficult to 
assess quantitatively. On the contrary, cardiac 3D Echo morphological 
features are directly suitable to be deepened from a pathophysiological 
point of view. In any case, the primary role of a high PASP in promoting 
RV damage and consequent chain of adverse cardiac events is directly 
evident. Similarly, the possible interference of other, as yet unknown, 
humoral factors may be considered as a link between a microvascular 
pathology and negative cardiac events [4]. 

Microvascular pathology 

At a microvascular level, chronic anemia causes peripheral vasodilation 
and increases circulating blood volume through the secondary 
activation of the renin-angiotensin-aldosterone system. As a result, 
blood viscosity and peripheral resistances decrease, while blood 



3

Coppi F, et al. OPEN ACCESS Freely available online

Clin Pediatr, Vol.9 Iss.5 No:1000278

Figure 1: 3D Echocardiographic scan of the volume as a function of time in a severely dilated right ventricle in both end diastolic and end systolic 
phases, with a corresponding reduced ejection fraction. The interventricular septum protrudes into the left ventricle, which shows a reduced end-
diastolic volume, although with a paradoxically preserved ejection fraction, mimicking a restrictive cardiomyopathy.

Figure 2: Global cardiac failure in the right ventricle sickle cell disease.

Figure 3: 3D Echocardiographic scan in a case of left ventricle advanced dilatation, decreased global longitudinal strain, and D-shaped interventricular 
septum, suggesting an impending global heart failure "right ventricle-driven".
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CONCLUSION

The current 3D Echo technology has a primary role in diagnosis, 
follow-up and deepening pathophysiological characteristics of SCD 
cardiomyopathy, in particular of the RV. Corresponding results can be 
obtained by Magnetic Resonance Imaging (MRI) contrast enhanced, 
mainly if 4D formatted, however technologically more demanding. 
Equally, multi-center clinical studies may be proposed, possibly 
performed with artificial intelligence methods, in order to collect 
and examine a greater number of clinical data. Practically, detection 
of RV overload or PASP progressive increase, alert to an early cardiac 
insufficiency and a more appropriate medical treatment. 
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