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Abstract: This paper discusses the seismic behavior of reinforced concrete (RC) bridge structures,
focusing on the shear–flexure interaction phenomena. The assessment of reinforced concrete bridges
under seismic action needs the ability to model the effective non-linear response in order to identify
the relevant failure modes of the structure. Existing RC bridges have been conceived according to
old engineering practices and codes, lacking the implementation of capacity design principles, and
therefore can exhibit premature shear failures with a reduction of available strength and ductility.
In particular, recent studies have shown that the shear strength can decrease with the increase of
flexural damage after the development of plastic hinges and, in some cases, this can cause unexpected
shear failures in the plastic branch with a consequent reduction of ductility. The aim of the research is
to implement those phenomena in a finite-element analysis. The proposed model consists of a flexure
fiber element coupled with a shear and a rotational slip spring. The model has been implemented
in the OpenSEES framework and calibrated against experimental data, showing a good ability to
capture the overall response.

Keywords: seismic assessment; reinforced concrete; bridge structures; flexure-shear failure; finite
element analysis; collapse modes

1. Introduction

Damage due to earthquakes can have a significant impact on transportation networks, in particular
on bridges that represent the weakest component of those networks. Structural and non-structural
damage in bridges can, indeed, produce significant losses both in terms of a prolonged traffic disruption
and in terms of the repairs required for assure again the viability of the damaged bridges [1,2]. In order
to prevent those nefarious outcomes, in recent decades, great effort has been made for the assessment
of the seismic vulnerability of bridges, specifically on reinforced concrete (RC) bridges constructed
before the adoption modern seismic codes.

Modern bridge structures are able to resist the seismic action with a response that assures high levels
of dissipation of energy thanks to an inelastic behavior characterized by large ductile deformation cycles.
To achieve this performance objective, modern design codes have implemented in their provisions
plastic design principles aimed at preventing the activation of brittle damage mechanisms.
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On the other hand, existing bridge structures have been designed when many sites were not
classified as seismically prone and adopting older construction standards, relying on the admissible
stress method, with levels of seismic demand (if any) much lower than the ones currently adopted.
Therefore, the resulting structures where conceived to respond in the elastic range, leaving a false sense
of security that the actual resistances (well beyond the nominal ones considered in the design process)
would be assured by the adopted safety coefficients and by the inelastic behavior of materials and
structures. On the contrary, the lack of a hierarchy of strengths that would be lately assured by the
implementation, in modern codes, of capacity design principles, would not prevent the occurrence of
non-ductile failure modes reducing the extent of the inelastic response [3–6].

A typical characteristic of existing bridge piers is the presence of a low percentage of transversal
reinforcement, usually represented by poorly detailed and highly spaced stirrups, that would be
considered substandard according the construction practice adopted today [7].

According to the experimental evidence, structures with such a characteristic can show a premature
shear failure, limiting the capacity to undergo inelastic deformation and therefore dissipate energy.
In fact, several researches and studies on shear strength have evidenced that, even in the case those
piers have been initially designed with nominal shear capacity exceeding the shear in equilibrium with
flexural yielding, those piers could still fail early in shear due to the detrimental action of inelastic
flexural deformations on the shear strength [8,9].

Indeed, the widening of flexural–shear cracks due to cyclic inelastic deformations, especially in
the plastic-hinge region, reduce the ability of concrete to transfer the shear action through mechanisms
relying on aggregate interlock. As a consequence, there is a sectional shear capacity reduction, showing
that under cyclic loading the shear strength of columns can be heavily dependent on the inelastic
deformations and that shear strength degrades with ductility more quickly than flexural strength. Thus,
it is important, when assessing the seismic response of existing structures to take into consideration
in the numerical model the insurgence of those complex interaction phenomena affecting the overall
response of the bridge structures.

In past decades different attempts have been made to propose computational models able to
couple flexural and shear effects. Those models offer a huge variety of solutions depending on the
complexity and the sophistication of the numerical procedure adopted to represent the physical
problem, from a relatively simple approach in which a translational spring, representing the shear
behavior, is added [10–12] to frame models where sophisticated, multi-dimensional, constitutive laws
are employed [13–17].

2. Objectives and Methods

The present study aims at contributing to the modelling capability of RC bridge elements under
seismic loading. To pursue this objective, a simple phenomenological model has been presented,
considering the most relevant damage modes of existing RC bridge elements. Particular emphasis
in the development of the model has been given to the study of the shear-flexure interaction, that is
deemed a pivotal issue for the assessment of existing RC piers. The available formulations, contained
either in recent codes of practice or in research documents, have been discussed. Those models are
generally calibrated on empirical tests. A database of experimental tests on specimens characterized
by mechanical and reinforcing properties typical of substandard bridge element has been retrieved in
order to test the validity of the proposed model.

3. Numerical Model

3.1. Model Outline

In this research the seismic response of a RC bridge pier is studied through a numerical model
based on a three-component approach, in which the following coexisting behavioral mechanisms
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are accounted for: flexure, shear and bonding. As schematically depicted in Figure 1, the lateral
displacement of a cantilever bridge pier can, indeed, be idealized as the sum of those three components.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 16 

displacement of a cantilever bridge pier can, indeed, be idealized as the sum of those three 
components. 

 
Figure 1. Idealized components of horizontal displacement: (a) Original undeformed configuration 
as a cantilever column; (b) bending deformation; (c) shear deformation and (d) bonding deformation. 

Flexure is by far the most relevant aspect in determining the seismic response of a bridge pier 
and it is also the most investigated. 

The bonding is essentially responsible for the additional displacement due to the slippage of the 
longitudinal reinforcing bars in the anchoring concrete. In most cases this phenomenon can be 
represented as a fixed-end rotation of the pier due to the strain penetration carried by the steel bars 
anchoring into the foundation concrete. This additional displacement can also account for the 
possible extra effects due to reinforcement interruption (due to limitations in steel bar lengths or to 
concrete casting performed in stages) and consequent need to splicing the reinforcement by 
overlapping the bars. 

Finally, regarding shear deformation, in general it is admitted that in slender columns the 
contribution of the shear flexibility on the total displacement can be neglected: it starts to have a 
significant effect only on squat elements with a low height-to-depth ratio. However, it becomes 
relevant in any case, if the element is expected to be damaged in shear. 

The proposed computational model has been developed using the finite element method within 
the OpenSEES framework for seismic analysis [18]. Specifically, a two dimensional (2D) nonlinear 
finite element model has been employed, by means of a three-component model, in which the three 
aforementioned deformability contributions (flexure, shear, and slip) are separately considered and 
modelled. 

As illustrated in Figure 2, a fiber-based, nonlinear beam-column element has been connected at 
each end of the column together with a zero-length rotational spring to account for the bond-slip 
behavior and a zero-length translational spring to account for the shear behavior. Since the element 
is loaded only at the ends (no distributed loads are applied along the element length and no 
competent mass is assigned to the element during a dynamic analysis) the shear internal force is 
constant, so that just one translational spring is sufficient for the shear behavior. In the case of a 
typical bridge pier cantilever schematization, the rotational and translational springs should be 
added just to the fixed end. 

(a) (b) (c) (d)

Figure 1. Idealized components of horizontal displacement: (a) Original undeformed configuration as
a cantilever column; (b) bending deformation; (c) shear deformation and (d) bonding deformation.

Flexure is by far the most relevant aspect in determining the seismic response of a bridge pier and
it is also the most investigated.

The bonding is essentially responsible for the additional displacement due to the slippage of
the longitudinal reinforcing bars in the anchoring concrete. In most cases this phenomenon can be
represented as a fixed-end rotation of the pier due to the strain penetration carried by the steel bars
anchoring into the foundation concrete. This additional displacement can also account for the possible
extra effects due to reinforcement interruption (due to limitations in steel bar lengths or to concrete
casting performed in stages) and consequent need to splicing the reinforcement by overlapping the bars.

Finally, regarding shear deformation, in general it is admitted that in slender columns the
contribution of the shear flexibility on the total displacement can be neglected: it starts to have a
significant effect only on squat elements with a low height-to-depth ratio. However, it becomes relevant
in any case, if the element is expected to be damaged in shear.

The proposed computational model has been developed using the finite element method within
the OpenSEES framework for seismic analysis [18]. Specifically, a two dimensional (2D) nonlinear
finite element model has been employed, by means of a three-component model, in which the
three aforementioned deformability contributions (flexure, shear, and slip) are separately considered
and modelled.

As illustrated in Figure 2, a fiber-based, nonlinear beam-column element has been connected
at each end of the column together with a zero-length rotational spring to account for the bond-slip
behavior and a zero-length translational spring to account for the shear behavior. Since the element is
loaded only at the ends (no distributed loads are applied along the element length and no competent
mass is assigned to the element during a dynamic analysis) the shear internal force is constant, so
that just one translational spring is sufficient for the shear behavior. In the case of a typical bridge
pier cantilever schematization, the rotational and translational springs should be added just to the
fixed end.
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3.2. Flexural Behavior

The flexural behavior has been modelled with a distributed plasticity approach using a nonlinear
force-based beam-column element, with a fiber discretization of the section.

The peculiarity of a finite element with a force formulation is that it employs force shape functions
(derived by equilibrium considerations) to obtain the internal forces (at section level) once the external
forces acting at the nodes of the element are known.

The vantage of that approach is that, provided no loads are applied along the element length, just
one element can be sufficient to capture the bending behavior of the whole cantilevered pier, despite
the fact that the formation of plastic hinges at the fixed end of the element will produce a concentration
of non-linear curvatures.

The overall response of the element is obtained through the integration of the non-linear responses
obtained over the different sections of the element. In practice, the integral is substituted by a weighted
summation adopting some numerical integration scheme over a certain number of monitored sections.
In our case, a Gauss–Lobatto 5 node scheme was adopted.

In order to analyze the non-linear response of the element cross-sections, those have been
discretized in fibers, as depicted in Figure 3a. Since a reinforced concrete element is essentially
composed by two different materials, namely casted in place concrete and steel reinforcing bar, two
different kinds of constitutive relationship are used to describe the mechanical behavior of those
materials, and assigned to relevant fibers within the element sections.

The longitudinal steel reinforcement has been modelled by the Menegotto and Pinto [19]
constitutive law (Steel02 uniaxial material in OpenSEES). With reference to Figure 3b fy and εy

are, respectively, the yield strength and strain of the reinforcement whilst E0 is the elastic modulus and
bo an adimensional parameter accounting for post-yield stiffening.

The concrete has been modelled in OpenSEES using the Concrete04 uniaxial material which is
based on the Popovics law [20]. The concrete on the section cover has been considered unconfined,
whilst the concrete in the section core has been considered as confined, using the Mander et al.
model [21]. With reference to Figure 3c, fco and fcc are, respectively, the strength of unconfined and
confined concrete, whilst εco and εcc are the corresponding strains.
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3.3. Slipage Behavior

The slippage of the reinforcing bars will cause rigid-body rotation of the column, that produces
an additional source of the deformation, that can be significant.

Several bond slip models are available in literature for deformed bars [22–25].
In order to account for the slippage in the numerical model, a rotational slip springs at the bottom

of the element with linear constitutive relationship was used and its stiffness is given by [26]:

Kslip =
8uEIe f f

fyφlong
(1)

where φlong is the diameter of longitudinal rebar, fy is the yield strength of longitudinal rebar, u is the
average tension on the surface between the longitudinal reinforcement and the concrete that can be
calculated as 0.5

√
f ′c where f’c is the concrete compressive strength and EIeff is the effective stiffness

that can be evaluated by [27]:
EIe f f = 0.2EI i f 0.2 ≥ P

Ag f ′c

EIe f f = EI
(

5
3

P
Ag f ′c
−

40
30

)
i f 0.2 ≤ P

Ag f ′c
≤ 0.5

EIe f f = 0.7EI i f 0.5 ≤ P
Ag f ′c

(2)

where P is axial load, Ag is gross area of section, E is the Young’s module of the concrete and I is the
section inertia moment (bh3/12).

3.4. Shear Behavior

In the past, different shear-capacity models have been proposed to account for the flexure-shear
coupling, leading to the strength degradation of columns with deformation.

The first one was the formulation codified in the ATC seismic design guidelines, where a
shear-capacity curve degrading with displacement ductility was proposed (Figure 4).

In this study the phenomenological model illustrated in Figure 5 has been adopted for modelling
the shear spring, accounting for both strength and deformation components due to shear action.

As shown in Figure 5, the first two branches represent the backbone behavior of the shear
component of the element before the intersection with the shear strength domain (marked with a red
circle) and the start of the degrading branch.
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The pre-cracking shear stiffness KS,uncracked can be calculated through the elasticity theory:

KS,uncraked =
GAv

H
(3)

G =
Ec

2(1 + ν)
≈ 0.4Ec (4)

where H is the column height, G, Ec, and ν are respectively the shear, Young’s, and Poisson’s moduli of
concrete, and Av is the shear effective area of the column.

In general, this stiffness is contributing to a minor displacement increase, since even in squat
elements the flexural stiffness is significantly smaller, but it can be useful to modify the fiber element
formulated within OpenSEES as an Euler-Bernoulli beam-column to a full Timoshenko element.

The post-cracking shear stiffness KS,cracked can be calculated considering the deformation of
transversal steel through the diagonal cracks. Park and Paulay [27] proposed an equivalent strut-model:

KS,craked =
ρwsin4(θ)cot2(θ)

sin4(θ) + 10ρw
EsAv (5)
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where ρw is the transversal steel reinforcement ratio, θ is the angle between the diagonal cracks and
the member axis and Es is the Young’s modulus of steel.

In Figure 5 the shear-strength domain represents the maximum shear that the column can sustain.
As it is evident, that limit state curve is not constant, as in the usual formulation contained in most
design codes (like Eurocode 2 or ACI-318), but is dependent with the displacement and the element
once reached the maximum strength, will follow the degrading branch.

In the literature, there are several shear-capacity models that have been proposed to account for
the shear-strength degradation of columns under seismic loading [9,28–30]. It is worth noting that all
the aforementioned formulations are defined in terms of total displacement (i.e., the sum of single
displacement components) so that the shear-strength domain has been placed in Figure 5 (where the
displacement is defined just in terms of shear deformations) only for illustration purposes.

As shown in Figure 3, the failure is activated when the shear capacity curve (bold black dash line)
intercept the shear demand curve (black line) which represent the global behavior of the column gives
by the summation of the flexure, slippage and shear behaviors.

In the Sezen and Moehle [9] model, the nominal shear strength is given as the summation of the
contribution from concrete Vc and the transverse reinforcement Vs:

Vn = Vc + Vs (6)

where the concrete contribution can be calculated by:

Vc = k

0.5
√

f ′c
a
d

√
1 +

P

0.5
√

f ′c Ag

0.8Ag (MPa) (7)

while the steel contribution can be calculated by:

Vs = k
Aw fyd

s
(8)

where f′c is the compressive strength of concrete, Ag is gross area of section, P is the axial load, a is
the shear span (distance between the maximum moment section to point of inflection), d is effective
depth of the section, Aw is the transversal reinforcement area, fy is the yield strength of the transversal
reinforcement. The factor k is the parameter which considers the variation of shear strength with the
increase of displacement ductility and is defined to be equal to 1.0 for displacement ductility less than
2, to be equal to 0.7 for displacement ductility µ∆ exceeding 6, and to vary linearly for intermediate
displacement ductility, as shown in Figure 6.
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In the Biskinis et al. model [28] the nominal shear strength is calculated as the summation of three
contribution from concrete Vc, transversal reinforcement Vs and axial load VP:

Vn = Vc + Vs + VP (9)

where the concrete contribution is given by:

Vc = k
[
0.16max(0.5; 100ρtot)

(
1− 0.16min

(
5;

a
h

))√
f ′c Ag

]
(10)

the transversal reinforcement contribution is given by Equation (8), as in the previous model, and the
contribution of axial load is given by:

VP =
h− c

2a
min

(
P; 0.55Ag f ′c

)
(11)

where ρtot is the total longitudinal reinforcement ratio, h is the depth of the section, and c is the neutral
axis deepth.

The factor k is only function of the plastic part of the displacement ductility and is given by:

k = 1− 0.05·min
(
5;µpl

∆

)
(12)

where:

µ
pl
∆ =

∆ − ∆y

∆y
=
θ− θy

θy
(13)

where ∆ and θ are respectively the displacement and rotation at the point considered while ∆y and θy

are respectively the yielding displacement and yielding rotation.
Similar to this model is the Kowalsky and Priestley model [30]. In fact, the nominal shear strength

can be evaluated by the Equation (9) where the concrete contribution can be calculated by:

Vc = αβγ
√

f ′c
(
0.8Ag

)
(14)

where the α factor is function of the ratio a/d, the β factor is function of the longitudinal steel ratio ρl,
and the γ factor is function of the ductility curvature µχ, as shown in Figures 7–9.

The transversal contribution is given by:

Vs =
Aw fy(d− c− δ)

s
· cotθ (15)

where δ is the concrete cover and s is the transverse reinforcement spacing. The axial load contribution
is given by:

VP =

{
P h−c

2 a i f P > 0
0 i f P ≤ 0

(16)

Finally, the model by Elwood and Moehle [29] introduce a drift capacity model based on
observations from the experimental database, it is different than previous model because it allows to
evaluate the drift ratio at shear failure rather than the shear strength. The empirical equation is:

∆s

L
=

3
100

+ 4ρw −
1

40
ν√
fc
−

1
40

P
Ag fc

≥
1

100
(MPa) (17)

where ∆s/L is the drift ratio at shear failure, ∆s is the displacement where the shear degradation begin,
L is the height of the column, ρw is the transverse reinforcement ratio and ν is the nominal shear stress
(Vmax/Ag).
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3.5. Interaction Model

In order to ensure that correct coupling is established between flexural, slip and shear behavior, a
control is performed at element level through equilibrium and compatibility conditions.

In particular, thanks to the series arrangement of the three model components (the two zero length
springs and the force-based beam column element) representing the pier under lateral load, the shear
force acting in each element will be the same, but the deformation development of each element will
be different for different cases.

In particular is discussed here the interaction between the flexural and shear behavior, as
schematized in Figure 10a. In the proposed model all the shear deformation is concentrated in the
translational shear spring whilst the flexural deformation is modelled by the beam-column element.
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OpenSEES introduced, as an interaction model, the LimitStateMaterial command, based on
Elwood works (2004), used to construct a uniaxial hysteretic material object with, among others,
damage and post-damage unloading stiffness based on ductility.

This command overcomes the pitfall of a simplistic shear-flexure interaction model represented
by having a shear spring in series with a beam column element. In a very simple serial model, indeed,
if the shear strength (the maximum of the shear spring response) is less than the bending yield strength
(the shear corresponding to the development of the plastic hinges), the total response is correctly
dominated by a brittle failure occurring in the elastic branch. If, on the other hand, the shear strength
is higher than the bending yield strength, then the model is not able to capture any shear degradation,
in contrast with theoretical and experimental evidence. Actually, in the latter case, when the initial
shear strength is higher than yielding strength, but close enough to it, when degrading with the increase
of inelastic deformation could be lower. In this case the activation of shear damage in the plastic branch
is expected, as shown in Figure 4 (case B), this leads the structural response of the column to follow the
degrading branch of the shear-strength-domain of Figure 5. In order to improve the series model, the
LimitStateMaterial associated with LimitCurve command can be used to define a limit shear surface
defined by the drift capacity model proposed by Elwood, with the use of the shear-failure domain
given by Equation (17).

The behavior of the shear spring and bending beam-column element are illustrated schematically
in Figure 10.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 16 
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If the shear capacity Vn of the pier is lower than its flexural strength Vf, the pier will have a
response controlled by the shear behavior as shown schematically in Figure 10b. Before reaching the
shear capacity Vn, shear response and flexural response will develop simultaneously in accordance
with the solid line in the figure and once the shear demand reaches the shear strength, Vn, a shear failure
occurs and the shear response enters into descending range where significant deterioration behavior
occurs, conditioning the overall response, that cannot develop forces higher than the shear strength.
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If the shear capacity Vn of the column is higher than flexural strength Vf, the pier will have a
response controlled by the flexural behavior as shown schematically in Figure 10c. Before reaching the
flexural capacity Vf, shear response and flexural response will develop simultaneously in accordance
with the solid line in the figure and once the shear demand reaches the flexural strength Vf, a flexural
failure occurs and the flexural response enters into descending range, conditioning the overall response,
that cannot develop forces higher than the shear strength.

Adopting the proposed model, prior to the activation of the degrading branch, the response will
follow the behavior given by the summation of flexure and shear (as in the simple serial spring model).
After each step, the limit curve model checks if the force and deformation have exceeded the limit
surface. If the limit curve has not been exceeded, the analysis continues at the next step without any
change to the response. If the limit curve has been exceeded, then the behavior is redefined according
to the degrading slope Kdeg, and the residual strength Fres both indicated in Figure 11.
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4. Numerical Validation

Using the model illustrated in the previous chapter, the experimental behavior of a series of
reinforced concrete elements was simulated analytically by the proposed model. The details of the
specimens failing in shear are summarized in Table 1.

In Figures 12a and 13a the experimental behavior of specimen 2CLH18 and 3CLH18 are shown.
Both the columns had a double cantilever configuration, a square cross-section of 457 × 457 mm. The
longitudinal steel reinforcement was placed uniformly around the perimeter of the cross-section and
they were 25 mm (#8) and 32 mm (#10) as nominal diameter for the specimen 2CLH18 and 3CLH18,
respectively. The transversal reinforcements were hoop with 9.5 mm (#3) and 457 mm respectively
as nominal diameter and spacing (ρw = 0.0007) for both specimens. The axial force was equal to
P = 503 kN (ν = P/(Ag·f’c) = 0.09). The concrete compressive strength was equal to f’c = 26 MPa, whilst
the longitudinal steel yielding strength was equal to fyl = 335 MPa and the transversal steel yielding
strength was equal to fyw = 400 MPa.

The two specimens have the same shear strength due to the identical transversal reinforcements
while the higher longitudinal reinforcement of the specimen 3CLH18 leads a higher yielding force
than the specimens 2CLH18. As a consequence the experimental response of the two specimens
experience two different collapse modes: the first one (2CLH18) has a typical response dominated by
flexure up to collapse due to the reaching of the available ductility whilst the second one shows clearly
a strength degradation in the plastic branch due to shear failure immediately after the onset of the
flexural yielding. The two specimens exemplify well the two cases reported in Figure 10.
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Table 1. Database of examined reinforced concrete elements.

Rectangular Section

Reference Specimen b
(mm)

h
(mm)

s
(mm)

a/d
(—)

ρl
(—)

ρw
(—)

f’c
(MPa)

fyl
(MPa)

fyw
(MPa)

ν

(—)
Test
Type

Lynn A.C.
[31]

2CLH18 457.2 457.2 457.2 3.74 0.02 0.0007 26.8 330.7 399.6 0.09 DC

3CLH18 457.2 457.2 457.2 3.74 0.03 0.0007 26.8 330.7 399.6 0.09 DC
3SLH18 457.2 457.2 457.2 3.74 0.03 0.0007 26.8 330.7 399.6 0.09 DC
2SLH18 457.2 457.2 457.2 3.71 0.02 0.0007 27.5 330.7 399.6 0.07 DC

3CMH18 457.2 457.2 457.2 3.74 0.03 0.0007 25.4 330.7 399.6 0.28 DC
3CMD12 457.2 457.2 457.2 3.74 0.03 0.0017 25.4 330.7 399.6 0.28 DC

Saatcioglu
Ozcebe [32]

U1 350.0 350.0 150.0 3.28 0.03 0.0085 43.6 430.0 470.0 0.00 SC
U2 350.0 350.0 150.0 3.28 0.03 0.0085 30.2 453.0 470.0 0.16 SC
U3 350.0 350.0 75.0 3.28 0.03 0.0169 34.8 430.0 470.0 0.16 SC

Hollow Rectangular Section

Reference Specimen b
(mm)

h
(mm)

s
(mm)

a/d
(—)

ρl
(—)

ρw
(—)

f’c
(MPa)

fyl
(MPa)

fyw
(MPa)

ν

(—)
Test
Type

Calvi et al.
[33]

T250 450.0 450.0 75.0 3.00 0.0177 0.0025 30.3 550.0 550.0 0.07 SC
T500A 450.0 450.0 75.0 3.00 0.0177 0.0025 29.7 550.0 550.0 0.15 SC
T500B 450.0 450.0 75.0 3.00 0.0177 0.0025 32.7 550.0 550.0 0.15 SC
T750 450.0 450.0 75.0 3.00 0.0177 0.0025 30.8 550.0 550.0 0.21 SC

b: column section width; h: column section height; s: stirrup spacing; a/d: aspect ratio (shear span/section depth);
ρl: longitudinal reinforcement ratio; ρw: transverse reinforcement ratio; f’c: compressive strength of concrete; fyl:
yield strength of longitudinal steel; fyw: yield strength of transverse steel; ν: axial load ratio; Test type: SC (single
cantilever), DC (double cantilever).
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In Figures 12b and 13b the numerical analysis has been compared with the experimental one.
In the numerical model the cracked stiffness of the shear spring, KS,cracked has been set equal to the one
of the uncracked one, KS,uncracked, following. Therefore, the black dash line of Figure 4, as given by
Equation (3).

It is clear from the experimental curve that the shear degradation starts at a drift value of about
(∆s/L)exp = 0.01 and displacement of about ∆s,expt = 30.4 mm (square mark in Figure 13a).

Using Equation (17) is possible to calculate the drift ratio and displacement at shear degradation
that are (∆s/L)calc = 0.024 and ∆s,calc = 71.4 mm, respectively (circle mark in Figure 13a).

From the comparison between the experimental and calculate results (Figure 13b) is clear that the
drift capacity model of espressed by Equation (17), in this case, gives a value much higher in term of
drift ratio and displacement at shear failure than the one experienced experimentally.

Since the Limit Curve model is based on this empirical equation to define the shear limit surface
theoretically it could not work correctly. Therefore, we decided to evaluate from the experimentation
the values that should be used in the numerical analysis, in order to better approximate with OpenSEES
the experimental curve. The values of the specimens failing in shear are reported in Table 2.

Table 2. Experimental values needed for the calibration of the shear spring (Figure 4).

Rectangular Section

Reference Specimen ∆s/L
(—)

Ks,deg
(kN/mm)

Vs
(kN)

Vres
(kN)

Lynn A.C.
(2001) [31]

3CLH18 0.0100 −7.5 277.0 50.0
3SLH18 0.0077 −4.4 270.0 48.7
2SLH18 0.0088 −6.2 231.6 −

3CMH18 0.0100 −12.4 324.4 94.3
3CMD12 0.0085 −4.1 355.8 −

Saatcioglu,
Ozcebe [32]

U1 0.044 −2.8 273.0 70.0
U2 0.021 −6.0 280.0 90.0
U3 0.044 −3.7 255.0 −

Hollow Rectangular Section

Reference Specimen ∆s/L
(—)

Kt
deg

(kN/mm)
Vs

(kN)
Vres
(kN)

Calvi et al. [33]

T250 0.022 −8.9 217.2 47.9
T500A 0.010 −6.3 209.0 −

T500B 0.022 −7.8 228.0 −

T750 0.020 − 257.9 −

5. Conclusions

This paper presents a finite element model for assessing the nonlinear behavior of RC bridge
piers under combined axial, shear, and bending moment. The model explicitly takes into account the
response caused by the shear capacity deterioration due to the interaction with flexural deformation.
This important effect has been introduced through the incorporation of a zero-length shear spring in
series with a flexural column element and a rotational slip spring.

A phenomenological curve for the shear response has been proposed and calibrated, realistically
capturing the monotonic and cyclic response of columns, including the pinching, the stiffness softening,
and the strength deterioration due to deformations and cyclic load reversals. A good agreement
between the numerical prediction and experimental data can be observed.
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