Observation of the decay $B_{s}^{0} \rightarrow \bar{D}^{0} \phi^{\text {st }}$

CrossMark

LHCb Collaboration

ARTICLE INFO

Article history:

Received 23 August 2013
Received in revised form 10 October 2013
Accepted 25 October 2013
Available online 31 October 2013
Editor: L. Rolandi

ABSTRACT

First observation of the decay $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ is reported using $p p$ collision data, corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected by the LHCb experiment at a centre-of-mass energy of 7 TeV . The significance of the signal is 6.5 standard deviations. The branching fraction is measured relative to that of the decay $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ to be
$\frac{\mathcal{B}\left(B_{S}^{0} \rightarrow \bar{D}^{0} \phi\right)}{\mathcal{B}\left(B_{S}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}\right)}=0.069 \pm 0.013$ (stat) ± 0.007 (syst).
The first measurement of the ratio of branching fractions for the decays $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ and $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ is found to be
$\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}\right)}{\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{* 0}\right)}=7.8 \pm 0.7($ stat $) \pm 0.3($ syst $) \pm 0.6\left(f_{s} / f_{d}\right)$,
where the last uncertainty is due to the ratio of the B_{s}^{0} and B^{0} fragmentation fractions.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Measurements of the decay ${ }^{1} B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ are of particular interest because they provide information that can be used to determine the CKM angles $\gamma \equiv \arg \left[-V_{u d} V_{u b}^{*} /\left(V_{c d} V_{c b}^{*}\right)\right]$ and $\beta_{s} \equiv$ $\arg \left[-V_{t s} V_{t b}^{*} /\left(V_{c s} V_{c b}^{*}\right)\right]$ without theoretical uncertainties [1]. Knowledge of these $C P$-violating phases is crucial to search for new sources of $C P$ violation and unravel subtle effects of physics beyond the Standard Model, which may appear in flavour-changing interactions. Their precise measurements are among the most important goals of flavour physics experiments.

To date, the angle γ is the least well-determined angle of the Unitarity Triangle with an uncertainty of about 10° [2-4]. The current precision is dominated by measurements of time-integrated $B^{+} \rightarrow D K^{+}$decay rates, where D indicates a superposition of D^{0} and \bar{D}^{0} decays to a common final state. In these decays, sensitivity to γ arises from direct $C P$ violation in the interference between the $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ tree-level amplitudes. As there are no loop contributions to the decay amplitudes, no theoretical uncertainties arise. The main limitation is due to the size of the data samples collected by the experiments. To improve on the precision, it is important to perform additional measurements from other channels with small theoretical uncertainties.

[^0]The large production cross-section of B_{s}^{0} mesons in $p p$ collisions at the LHC opens new possibilities for measuring both γ and β_{s}. For example, the decay $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ is sensitive to $\gamma+2 \beta_{s}$ through measurements of time-dependent decay rates [5,6]; although the determination of γ from this mode requires an independent measurement of the mixing phase β_{s}.

The decay $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$, first proposed in 1991 by Gronau and London for measuring γ [7], can also probe β_{s} via measurements of time-dependent decay rates. Nandi and London have shown [1] that both γ and β_{s} can be determined without theoretical uncertainties and ambiguities, using the known sign of $\Delta \Gamma_{s}$, the decaywidth difference between the two B_{s}^{0} mass eigenstates [8].

An alternative method to measure γ using $B_{s}^{0} \rightarrow D \phi$ decays was proposed in Refs. [9,10], where it was shown that γ can be determined from time-integrated decay rates, in a similar way as from $B^{+} \rightarrow D K^{+}$decays, even if $B_{s}^{0} \rightarrow D \phi$ is not a self-tagged decay mode. The only requirement for the determination is that a sufficient number of different D final states are included in the measurement. The time-integrated method does not require flavour-tagging, and hence makes optimal use of the statistical power of the large $b \bar{b}$ production at LHC. An estimation of the sensitivity with this method shows that the mode $B_{s}^{0} \rightarrow D \phi$ has the potential to make a significant impact on the determination of γ at LHCb [11].

The observation of the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ decay and the measurement of its branching fraction, described in this Letter, are the first steps towards a programme of $C P$ violation studies with this channel. The branching fraction is measured relative to the

Fig. 1. Feynman diagrams for the following decays: (a) $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$; (b) $B_{s}^{0} \rightarrow D^{0} \phi$; (c) $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$; and (d) $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$. The $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ and $B_{s}^{0} \rightarrow D^{0} \phi$ decay amplitudes interfere when \bar{D}^{0} and D^{0} decay to the same final state.
topologically similar decay $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$, that was previously observed by LHCb [12]. In addition, the first measurement of the branching fraction of the $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ decay relative to the $B^{0} \rightarrow$ $\bar{D}^{0} K^{* 0}$ decay is reported and used to improve on the knowledge of the branching fraction of the $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ decay. The Feynman diagrams corresponding to the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ and $B_{s}^{0} \rightarrow D^{0} \phi$ decay amplitudes are shown in Fig. 1. The Feynman diagrams for the leading $b \rightarrow c$ amplitudes in $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ and $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ decays are also shown in Fig. 1. Since only $D^{0} \rightarrow K^{-} \pi^{+}$decays are considered in this study, all of the measured quantities for the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi, B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$, and $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ channels include contributions from the $B_{s}^{0} \rightarrow D^{0} \phi, B_{s}^{0} \rightarrow D^{0} \bar{K}^{* 0}$, and $B^{0} \rightarrow D^{0} K^{* 0}$ modes, respectively, through the doubly-Cabibbo-suppressed decay $D^{0} \rightarrow K^{+} \pi^{-}$.

2. Event selection

The study reported here is based on $p p$ collision data, corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected by the LHCb experiment at a centre-of-mass energy of 7 TeV . The LHCb detector [13] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the $p p$ interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm , and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system provides a momentum (p) measurement with relative uncertainty that varies from 0.4% at $5 \mathrm{GeV} / c$ to 0.6% at $100 \mathrm{GeV} / c$, and impact parameter (IP) resolution of $20 \mu \mathrm{~m}$ for tracks with large transverse momentum (p_{T}). Charged hadrons are identified using two ring-imaging Cherenkov detectors [14]. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [15]. The trigger [16] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Simulated signal samples and data control channels are used to optimise the selection criteria. In the simulation, $p p$ collisions are generated using Pythia 6.4 [17] with a specific LHCb configuration [18]. Decays of hadrons are described by EvtGen [19], in which final state radiation is generated using Рнотоs [20]. The interaction of the generated particles with the detector and its response are implemented using the Geant4 toolkit [21] as described in Ref. [22].

Selected events fulfill one of two hardware trigger requirements: either a particle from the signal decay deposits enough
energy in the calorimeter system, or one of the particles in the event, not originating from the signal decay, fulfils any of the trigger requirements (e.g., events triggered by one or more particles coming from the decay of the other B meson in the $p p \rightarrow b \bar{b} X$ event). The software trigger requires a two-, three- or four-track secondary vertex with a large scalar sum of the tracks p_{T} and significant displacement from the associated primary $p p$ interaction vertex (PV). At least one track should have $p_{\mathrm{T}}>1.7 \mathrm{GeV} / \mathrm{c}$ and a value of $\chi_{\mathrm{IP}}^{2}>16$, where χ_{IP}^{2} is defined as the difference between the χ^{2} of the PV reconstructed with and without the considered particle. A multivariate algorithm identifies secondary vertices consistent with the decay of a b hadron.

Reconstructed tracks are selected with criteria on their p, p_{T}, track χ^{2} per degree of freedom, χ_{IP}^{2} and particle identification (PID). Tracks identified as muons are discarded.

The D^{0} mesons are reconstructed in the decay mode $D^{0} \rightarrow$ $K^{-} \pi^{+}$. Particle identification criteria used to select the daughters require the difference between the log-likelihoods of the kaon and pion hypotheses ($\Delta L L_{K \pi}$) to be larger than 0 for the kaon and smaller than 4 for the pion. The D^{0} meson χ_{IP}^{2} is required to be larger than 2 to separate mesons originating from a B decay and those produced at the PV. In addition, for the $\bar{D}^{0} K^{* 0}\left(\bar{D}^{0} \bar{K}^{* 0}\right)$ final states, the charm meson flight distance with respect to the $B_{(s)}^{0}$ vertex is required to be larger than 0 with a significance of at least 2 standard deviations in order to suppress background from $B_{(s)}^{0}$ decays without an intermediate charm meson, such as the mode $B^{0} \rightarrow K^{-} \pi^{+} K^{* 0}$. There is no corresponding requirement in the $\bar{D}^{0} \phi$ final state, since the charmless background is negligible. The D^{0} candidates with invariant mass within $\pm 20 \mathrm{MeV} / \mathrm{c}^{2}$ of the known mass [23] are retained.

The ϕ mesons are reconstructed in the mode $\phi \rightarrow K^{+} K^{-}$. The p_{T} of the kaon daughters is required to be larger than $350 \mathrm{MeV} / \mathrm{c}$ and the $\Delta L L_{K \pi}$ of both daughters to be larger than 3 . Candidates are retained if their invariant mass is within $\pm 10 \mathrm{MeV} / \mathrm{c}^{2}$ of the known ϕ mass [23].

The $K^{* 0}$ mesons are reconstructed in the mode $K^{* 0} \rightarrow K^{+} \pi^{-}$. The p_{T} of the kaon (pion) is required to be larger than 350 (250) $\mathrm{MeV} / \mathrm{c}$. In addition, to reduce the cross-feed from $B^{0} \rightarrow \bar{D}^{0} \rho^{0}$ and $B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}$decays, the $\Delta L L_{K \pi}$ of the kaon must be larger than 3 and that of the pion smaller than 3 . Possible background from protons in the kaon sample, for example from the decay $\Lambda_{b}^{0} \rightarrow D^{0} p \pi^{-}$, is suppressed by selecting kaon candidates with a difference between the log-likelihoods of proton and kaon hypotheses, $\Delta L L_{p K}$, smaller than 10 . Candidate $K^{* 0}$ mesons with invariant mass within $\pm 50 \mathrm{MeV} / \mathrm{c}^{2}$ of the known mass [23] are kept.

Neutral B meson candidates are formed from \bar{D}^{0} and ϕ (or $K^{* 0}$) candidates, which are fitted to a common vertex with the \bar{D}^{0} constrained to its known mass. In order to reduce contributions from non-resonant decays, $B_{(s)}^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}, B_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$, and

Fig. 2. Invariant mass distributions for (a) $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$, and (b) $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ or $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ decays. Data points are shown in black, the total fitted PDF as solid black line, and the components as detailed in the legends.
$B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}[24,25]$, the absolute value of the cosine of the vector-daughter helicity angle $\left(\cos \theta_{h}\right)$ is required to be larger than 0.4 . This angle is defined between the momentum direction of the K^{+}daughter in the $\phi\left(K^{* 0}\right)$ frame, and the vector meson direction in the B rest frame. Backgrounds from $B_{(s)}^{0} \rightarrow D_{(s)}^{\mp} h^{ \pm}(h=$ $\pi, K)$ decays, are rejected by vetoing candidates with $K^{+} K^{-} \pi^{+}$ ($K^{-} \pi^{+} \pi^{+}$and $K^{+} K^{-} \pi^{+}$) invariant mass within $\pm 15 \mathrm{MeV} / c^{2}$ of the $D_{s}^{+}\left(D^{+}\right)$meson known mass [23].

A boosted decision tree (BDT) [26] suppresses the residual background. Nine variables are input to the BDT: the decay vertex χ^{2} of the reconstructed $B_{(s)}^{0}$ and D^{0} mesons; the χ_{IP}^{2} of the $B_{(s)}^{0}, D^{0}$, $\phi\left(K^{* 0}\right)$ mesons, and of both the D^{0} daughters; and the p_{T} of the D^{0} and $\phi\left(K^{* 0}\right)$ mesons. The BDT is optimised and tested using simulated signal events and events outside of the D^{0} mass signal region for background. Events with BDT response larger than 0.2 are retained, resulting in a rejection of 74% of the background, while retaining 84% of the signal. The working point maximises $N_{s} / \sqrt{N_{s}+N_{b}}$. Here, N_{s} is the expected $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ signal yield, computed using simulated events and assuming that the branching fraction is equal to that of the $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ decay (as expected under $S U(3)$ flavour symmetry), and N_{b} is the background yield estimated using data events in the sidebands outside the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ signal region ($\pm 50 \mathrm{MeV} / c^{2}$ around the B_{s}^{0} known mass [23]). No multiple candidates are found for the $\bar{D}^{0} \phi$ final state. The fraction of events with more than one candidate is 0.6% in the $\bar{D}^{0} \bar{K}^{* 0}$ or $\bar{D}^{0} K^{* 0}$ invariant mass range of $5150-5600 \mathrm{MeV} / \mathrm{c}^{2}$, and the candidate retained is chosen randomly.

3. Signal yield

Signal yields are determined with an unbinned maximum likelihood fit to the $\bar{D}^{0} \phi$ and the sum of the $\bar{D}^{0} K^{* 0}$ and $\bar{D}^{0} \bar{K}^{* 0}$ invariant mass (M) distributions in the range $5150<M<5600 \mathrm{MeV} / c^{2}$. The two samples are fitted simultaneously with a sum of probability density functions (PDFs) modelling signal and background contributions.

The B_{s}^{0} and B^{0} signals are described by a modified Gaussian distribution of the form
$f\left(M ; \mu, \sigma, \alpha_{L}, \alpha_{R}\right) \propto \exp \left(\frac{-(M-\mu)^{2}}{2 \sigma^{2}+\alpha_{L, R}(M-\mu)^{2}}\right)$,
where μ is the peak position, σ the width, and $\alpha_{L}(M<\mu)$ and $\alpha_{R}(M>\mu)$ parameterise the tails. The width and the tail parameters depend on the final state, but are common to the B_{s}^{0} and B^{0} decays. The B^{0} peak position and width are left free to vary in the fit with the difference between B_{s}^{0} and B^{0} peak positions fixed to the current world-average value [23]. The tail parameters are fixed to values determined from simulated events and
are considered among the sources of systematic uncertainty. The recently observed decay $B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}$[24] is expected to contribute to the $\bar{D}^{0} \phi$ distribution and is modelled with the same modified Gaussian distribution, but with different peak position, as that used to describe the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ decay.

Background from the $B^{0} \xrightarrow{D^{0}} \rho^{0}$ decay in the $\bar{D}^{0} K^{* 0}$ (or $\bar{D}^{0} \bar{K}^{* 0}$) final state can arise from misidentification of one of the pions from the $\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay as a kaon. The shape of this cross-feed contribution is modelled with a Crystal Ball function [27] determined from simulated events. This background component is absent in the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ mode, since the probability that both pions are misidentified as kaons and that their invariant mass is inside the narrow ϕ mass window is negligible. For similar reasons, the cross-feed between $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ and $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ decays is negligible.

The decay $B_{s}^{0} \rightarrow \bar{D}^{* 0} \bar{K}^{* 0}$, where a π^{0} or photon from the $\bar{D}^{* 0}$ decay is not reconstructed, constitutes the main background contribution to the $\bar{D}^{0} \bar{K}^{* 0}$ final state below the B^{0} mass. Similarly, the decay $B_{s}^{0} \rightarrow \bar{D}^{* 0} \phi$ is expected to contribute to the low-mass background in the $\bar{D}^{0} \phi$ final state. These decays of a pseudoscalar to two vector mesons are modelled by a non-parametric PDF [28] determined from simulation. The mass shape depends on the unknown fraction of longitudinal polarisation, which is assumed to be identical for the two modes and is treated as an additional free parameter in the fit.

The remaining combinatorial background is described by a linear function, with a common slope for the two considered final states, left free to vary in the fit.

Signal yield ratios are directly determined in the fit to take into account statistical correlations in the measurement of ratios of branching fractions. In total, there are 13 free parameters in the fit, including the background yields of the different components and the overall normalisation. The invariant mass distributions with the resulting fits are shown in Fig. 2.

The helicity angle distribution of the ϕ candidates for the B_{s}^{0} and B^{0} signal is investigated. The sPlot [29] technique is adopted to assign a weight to the events and determine the signal components, using the $\bar{D}^{0} \phi$ invariant mass as the discriminating variable. For this purpose, the requirement on $\cos \theta_{h}>0.4$ has been lifted prior to the computation of the signal weights. The data distributions of $\cos \theta_{h}$, shown in Fig. 3, are compared to the expected distribution of $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ decays from simulation. The distribution observed for the $B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}$decay candidates is consistent with the expectation that this decay is not dominated by a pseudoscalar-vector quasi-two-body final state.

The signal yield ratios are corrected for two residual backgrounds that peak at the mass of the B_{s}^{0} or B^{0} meson and are distributed as the signal. The first of the two backgrounds is the

Fig. 3. Distribution of the cosine of the helicity angle of the ϕ candidates.

Table 1
Uncorrected signal yields and the peaking (charmless, S-wave) background yields.

Channel	Signal	Charmless background	S-wave background
$B_{s}^{0} \rightarrow \bar{D}^{0} \phi$	43 ± 8	0 ± 2	2 ± 3
$B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$	535 ± 30	4 ± 3	24 ± 7
$B^{0} \rightarrow \bar{D}^{0} K^{* 0}$	260 ± 24	4 ± 3	13 ± 6

charmless background due to the decays $B_{s}^{0} \rightarrow K^{+} \pi^{-} \bar{K}^{* 0}$ and $B^{0} \rightarrow K^{+} \pi^{-} K^{* 0}$ proceeding without the presence of an intermediate \bar{D}^{0} meson. There is no evidence of such background in the $B_{S} \rightarrow \bar{D}^{0} \phi$ channel. A large fraction of the charmless background in the $\bar{D}^{0} K^{* 0}$ final state is rejected with the requirement of a minimal D^{0} flight distance introduced in Section 2. The remaining charmless background is evaluated using candidates from the D^{0} sidebands. The B yields in the D^{0} sidebands above a linear background are extrapolated to the D^{0} signal region and used to correct the signal. The uncorrected signal yields and the background contributions are given in Table 1. The other source of peaking background is due to higher mass resonances and nonresonant $B_{s}^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}, B_{s}^{0} \rightarrow \bar{D}^{0} K^{-} \pi^{+}$, and $B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}$ decays that fall in the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi, B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$, and $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ signal regions, respectively. This contribution is evaluated with fits to the ϕ and $K^{* 0}$ background-subtracted mass distributions in a wider range than the signal window. The background subtraction is performed using the sPlot technique, with the $\bar{D}^{0} \phi$ and $\bar{D}^{0} \bar{K}^{* 0}$ (or $\bar{D}^{0} K^{* 0}$) mass as discriminating variables. A linear PDF describes the S-wave background in the $\bar{D}^{0} \phi$ final state. A spinone Breit-Wigner distribution convolved with a Gaussian resolution function describes the signal, and an S-wave PDF the nonresonant background. The S-wave component in the $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ and $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ channels takes into account non-resonant and $K^{* 0}(1430)$ resonance contributions and uses experimental input from the LASS experiment [30]. It is approximately linear in the region of interest, $\pm 200 \mathrm{MeV} / \mathrm{c}^{2}$ around the $K^{* 0}$ nominal mass. Potential interference effects between the S-wave and the P-wave components are covered by the assigned systematic uncertainty. The ϕ and $\bar{K}^{* 0}$ mass distributions are shown in Fig. 4. The background yields, after extrapolation to the $K^{* 0}$ and ϕ signal mass windows, are listed in Table 1.

A likelihood ratio test is employed to assess the statistical significance of the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ signal, which is given by $\sqrt{2 \ln \left(\mathcal{L}_{s+b} / \mathcal{L}_{b}\right)}$ and found to be 7.1 standard deviations. Here \mathcal{L}_{s+b} and \mathcal{L}_{b} are the maximum values of the likelihoods for the signal-plus-background and background-only hypotheses, respectively.

The ratios of branching fractions are evaluated from the uncorrected signal yields, N, and the sum of the charmless and nonresonant background yields, $N^{\text {bkg }}$, as

$$
\begin{align*}
\mathcal{R}_{\phi} \equiv & \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \phi\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}\right)} \\
= & \frac{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \phi}}{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}} \cdot \frac{\left(1-\frac{N_{B_{s} \rightarrow \bar{D}^{0} \phi}^{\mathrm{bkg}}}{N_{B_{s}^{0} \rightarrow \bar{D}_{\phi} 0}}\right)}{\left(1-\frac{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}^{\mathrm{bkg}}}{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}}\right)} \cdot \frac{\epsilon_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}}{\epsilon_{B_{s}^{0} \rightarrow \bar{D}^{0} \phi}} \\
& \cdot \frac{\mathcal{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)}{\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)}, \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{R}_{K^{* 0}} \equiv & \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}\right)}{\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{* 0}\right)} \\
= & \frac{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}}{N_{B^{0} \rightarrow \bar{D}^{0} K^{* 0}}} \cdot \frac{\left(1-\frac{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}^{\mathrm{bkg}}}{N_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}}\right)}{\left(1-\frac{N_{B^{0} \rightarrow \bar{D}^{0} K^{* 0}}^{\mathrm{bkg}}}{N_{B^{0} \rightarrow \bar{D}^{0} K^{* 0}}}\right)} \\
& \cdot \frac{\epsilon_{B^{0} \rightarrow \bar{D}^{0} K^{* 0}}}{\epsilon_{B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}}} \cdot\left(\frac{f_{s}}{f_{d}}\right)^{-1}, \tag{3}
\end{align*}
$$

where the ratio of the B_{s}^{0} and B^{0} fragmentation fractions is $f_{s} / f_{d}=0.256 \pm 0.020$ [31], the value of the $\phi \rightarrow K^{+} K^{-}$branching fraction is 0.489 ± 0.005 [23], and $\mathcal{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)=2 / 3$. The total efficiencies, ϵ, account for the geometrical acceptance of the detector, the reconstruction, the event selection, the PID, and the trigger efficiencies. All efficiencies are computed from simulated events, except for the PID and hardware trigger efficiencies, which are obtained from data, using a high-purity calibration sample of $D^{*+} \rightarrow D^{0}\left(\rightarrow K^{-} \pi^{+}\right) \pi^{+}$decays. The resulting ratios of branching fractions are $\mathcal{R}_{\phi}=0.069 \pm 0.013$ and $\mathcal{R}_{K^{* 0}}=7.8 \pm 0.7$, where the uncertainties are statistical only.

4. Systematic uncertainties

Several sources of systematic uncertainties are considered. Those associated to the trigger and PID selection affect only \mathcal{R}_{ϕ} and are mainly due to systematic uncertainties in the calibration procedure. The ratios of the efficiencies of the decays $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ and $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ for the trigger and PID are found to be 0.97 ± 0.05 and 1.08 ± 0.03, respectively, where the errors are propagated as systematic uncertainties to \mathcal{R}_{ϕ}.

Similarly, the uncertainty on the efficiencies of the charm meson flight distance selection affects only \mathcal{R}_{ϕ}, where different criteria are chosen for the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ and $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ modes. The ratio of the corresponding efficiencies is found to be 1.27 ± 0.03, where the uncertainty includes a contribution from the difference between data and simulation. In order to estimate the efficiency in data, the fit to the invariant mass of the B candidates is performed to data samples selected with all criteria except that on the flight distance. For this sample, the charmless background contribution is estimated using events in the upper D mass sideband and subtracted from the signal yields.

The ratio of the efficiencies for the decays $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ and $B_{s}^{0} \rightarrow$ $\bar{D}^{0} \bar{K}^{* 0}$ of the remaining selection criteria is found to be $1.21 \pm$ 0.03 , where the deviation from unity is mainly due to the different widths and mass windows for the ϕ and $K^{* 0}$ resonances. The ratio of the efficiencies for the decays $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ and $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ is found from simulation to be 1.04 ± 0.01. The uncertainties on these efficiencies are propagated as systematic uncertainties due to the selection.

The fit procedure is validated using simulated pseudo-experiments. The fit bias, relative to the fitted ratio, is evaluated to be

Fig. 4. Background-subtracted distributions of the reconstructed (left) ϕ mass from the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ decay and (right) $\bar{K}^{* 0}$ mass from the $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ decay. The dashed red line represents the S-wave component, the solid blue line the total fit result.

Table 2
Absolute systematic uncertainties of the measured ratio of branching fractions. The total is obtained as sum in quadrature of the different contributions.

Source	\mathcal{R}_{ϕ}	$\mathcal{R}_{K^{* 0}}$
Trigger	0.003	-
PID	0.002	-
Flight distance	0.002	-
Selection	0.002	-
Simulation statistics	0.001	0.10
Fit bias	0.001	0.03
Signal model	0.001	0.04
Background model	0.001	0.01
Charmless correction	0.003	0.10
Non-resonant correction	0.004	0.22
ϕ branching fraction	0.001	-
Total	0.007	0.26

1.4% for \mathcal{R}_{ϕ} and 0.2% for $\mathcal{R}_{K^{* 0}}$ and is assigned as systematic uncertainty. The signal model uncertainty is evaluated by varying the fixed signal parameters by 10%, which is about three times the difference between data and simulation, as determined by a fit where those parameters are free to vary. The background shape uncertainty is determined from the bias in the results obtained by fitting samples generated with an alternative (exponential) combinatorial background model.

The uncertainties on the charmless background yields given in Table 1 are assumed to be uncorrelated and are propagated to assign the associated systematic uncertainty. Similarly, the statistical uncertainties on the S-wave background yields are propagated to \mathcal{R}_{ϕ} and $\mathcal{R}_{K^{* 0}}$ to assign respective systematic uncertainties due to the non-resonant correction.

A summary of the systematic uncertainties is given in Table 2. The uncertainty on the fragmentation fraction f_{s} / f_{d}, which is the dominant systematic uncertainty for $\mathcal{R}_{K^{* 0}}$, is not included, and is listed separately.

5. Results and conclusions

The significance of the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ signal, including systematic uncertainties, is obtained by scaling the statistical significance with the ratio of the statistical to the total (statistical and systematic) uncertainty on the signal yield. It is found to be 6.5 standard deviations. This decay is therefore observed for the first time.

The ratios of branching fractions are found to be
$\mathcal{R}_{\phi}=0.069 \pm 0.013$ (stat) ± 0.007 (syst),
$\mathcal{R}_{K^{* 0}}=7.8 \pm 0.7$ (stat) ± 0.3 (syst) $\pm 0.6\left(f_{s} / f_{d}\right)$.

From $\mathcal{R}_{K^{* 0}}$ and the value of the $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ branching fraction from Ref. [23], the $B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}$ branching fraction is calculated to be

$$
\begin{aligned}
\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}\right)= & {\left[3.3 \pm 0.3(\text { stat }) \pm 0.1(\text { syst }) \pm 0.3\left(f_{s} / f_{d}\right)\right.} \\
& \left. \pm 0.5\left(\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{* 0}\right)\right)\right] \times 10^{-4} .
\end{aligned}
$$

This result is consistent with and improves on the previous determination by LHCb [12], which is based on an independent data sample. Using the above results for $\mathcal{R}_{\phi}, \mathcal{R}_{K^{* 0}}$ and the $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ branching fraction, the branching fraction for $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ is calculated to be

$$
\begin{aligned}
\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \phi\right)= & {\left[2.3 \pm 0.4(\text { stat }) \pm 0.2(\text { syst }) \pm 0.2\left(f_{s} / f_{d}\right)\right.} \\
& \left. \pm 0.3\left(\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{* 0}\right)\right)\right] \times 10^{-5},
\end{aligned}
$$

which takes into account the correlation in the statistical uncertainties between \mathcal{R}_{ϕ} and $\mathcal{R}_{K^{* 0}}$ of -13.6%. The correlation between the corresponding systematic uncertainties is negligible. The central value is about a factor two smaller than the branching fraction for the $B^{0} \rightarrow \bar{D}^{0} K^{* 0}$ decay and supports the observation of $\mathrm{SU}(3)$ breaking effects in other colour suppressed $B_{(s)}^{0} \rightarrow \bar{D}^{0} V$ decays [12], where V is a vector meson. With larger data samples, the $B_{s}^{0} \rightarrow \bar{D}^{0} \phi$ decay will contribute to the measurements of the $C P$ violating phases γ and β_{s}.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR and NRC "Kurchatov Institute" (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] S. Nandi, D. London, $B_{S}^{0}\left(\bar{B}_{s}^{0}\right) \rightarrow D_{C P}^{0} K \bar{K}$: Detecting and discriminating new physics in $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing, Phys. Rev. D 85 (2012) 114015, arXiv:1108.5769 [hep-ph].
[2] BaBar Collaboration, J. Lees, et al., Observation of direct CP violation in the measurement of the Cabibbo-Kobayashi-Maskawa angle γ with $B^{ \pm} \rightarrow$ $D^{(*)} K^{(*) \pm}$ decays, Phys. Rev. D 87 (2013) 052015, arXiv:1301.1029.
[3] Belle Collaboration, K. Trabelsi, Study of direct CP in charmed B decays and measurement of the CKM angle γ at Belle, arXiv:1301.2033.
[4] LHCb Collaboration, R. Aaij, et al., Measurement of the CKM angle γ from a combination of $B \rightarrow$ Dh analyses, Phys. Lett. B 726 (2013) 151, arXiv: 1305.2050.
[5] R. Aleksan, I. Dunietz, B. Kayser, Determining the CP violating phase γ, Z. Phys. C 54 (1992) 653.
[6] R. Fleischer, New strategies to obtain insights into CP violation through $B_{s}^{0} \rightarrow$ $D_{s}^{ \pm} K^{\mp}, D_{s}^{* \pm} K^{\mp}$, and $B_{d}^{0} \rightarrow D^{ \pm} \pi^{\mp}, D^{* \pm} \pi^{\mp}$ decays, Nucl. Phys. B 671 (2003) 459, arXiv:hep-ph/0304027.
[7] M. Gronau, D. London, How to determine all the angles of the unitarity triangle from $B^{0} \rightarrow D K_{S}$ and $B_{s}^{0} \rightarrow D \phi$, Phys. Lett. B 253 (1991) 483.
[8] LHCb Collaboration, R. Aaij, et al., Determination of the sign of the decay width difference in the B_{s} system, Phys. Rev. Lett. 108 (2012) 241801, arXiv: 1202.4717.
[9] M. Gronau, et al., Using untagged $B^{0} \rightarrow D K_{S}^{0}$ to determine γ, Phys. Rev. D 69 (2004) 113003, arXiv:hep-ph/0402055.
[10] M. Gronau, Y. Grossman, Z. Surujon, J. Zupan, Enhanced effects on extracting γ from untagged B^{0} and B_{s}^{0} decays, Phys. Lett. B 649 (2007) 61, arXiv:hep-ph/ 0702011.
[11] S. Ricciardi, Measuring the CKM angle γ at LHCb using untagged $B_{s}^{0} \rightarrow D \phi$ decays, CERN-LHCb-PUB-2010-005.
[12] LHCb Collaboration, R. Aaij, et al., First observation of the decay $\bar{B}_{s}^{0} \rightarrow D^{0} K^{* 0}$ and a measurement of the ratio of branching fractions $\frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D^{0} K^{* 0}\right)}{\mathcal{B}\left(\tilde{B}^{0} \rightarrow D^{0} \rho^{0}\right)}$, Phys. Lett. B 706 (2011) 32, arXiv: 1110.3676.
[13] LHCb Collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, J. Instrum. 3 (2008) S08005.
[14] M. Adinolfi, et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431, arXiv:1211.6759.
[15] A.A. Alves Jr., et al., Performance of the LHCb muon system, J. Instrum. 8 (2010) P02022, arXiv:1211.1346.
[16] R. Aaij, et al., The LHCb trigger and its performance in 2011, J. Instrum. 8 (2013) P04022, arXiv:1211.3055.
[17] T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 0605 (2006) 026, arXiv:hep-ph/0603175.
[18] I. Belyaev, et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, Nucl. Sci. Symposium Conf. Record (NSS/MIC) IEEE (2010) 1155.
[19] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods A 462 (2001) 152.
[20] P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97, arXiv:hep-ph/0506026.
[21] Geant4 Collaboration, J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270;
Geant4 Collaboration, S. Agostinelli, et al., Geant4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.
[22] M. Clemencic, et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
[23] Particle Data Group, J. Beringer, et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001, and 2013 partial update for the 2014 edition.
[24] LHCb Collaboration, R. Aaij, et al., Observation of the decay $B^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}$ and evidence of $B_{s}^{0} \rightarrow \bar{D}^{0} K^{+} K^{-}$, Phys. Rev. Lett. 109 (2012) 131801, arXiv: 1207.5991.
[25] LHCb Collaboration, R. Aaij, et al., Measurement of the branching fractions of the decays $B_{s}^{0} \rightarrow \overline{D^{0}} K^{-} \pi^{+}$and $B^{0} \rightarrow \overline{D^{0}} K^{+} \pi^{-}$, Phys. Rev. D 87 (2013) 112009, arXiv:1304.6317.
[26] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression trees, Wadsworth International Group, Belmont, California, USA, 1984.
[27] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilonprime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
[28] K.S. Cranmer, Kernel estimation in high-energy physics, Comput. Phys. Commun. 136 (2001) 198, arXiv:hep-ex/0011057.
[29] M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Methods A 555 (2005) 356, arXiv:physics/0402083.
[30] D. Aston, et al., A study of $K^{-} \pi^{+}$scattering in the reaction $K^{-} p \rightarrow K^{-} \pi^{+} n$ at $11 \mathrm{GeV} / c$, Nucl. Phys. B 296 (1988) 493;
BaBar Collaboration, B. Aubert, et al., Time-dependent and time-integrated angular analysis of $B \rightarrow \phi K_{S}^{0} \pi^{0}$ and $\phi K^{ \pm} \pi^{\mp}$, Phys. Rev. D 78 (2008) 092008, arXiv:0808.3586.
[31] LHCb Collaboration, R. Aaij, et al., Measurement of the fragmentation fraction ratio f_{s} / f_{d} and its dependence on B meson kinematics, J. High Energy Phys. 1304 (2013) 001, arXiv:1301.5286.

LHCb Collaboration

B. Couturier ${ }^{37}$, G.A. Cowan ${ }^{49}$, D.C. Craik ${ }^{47}$, S. Cunliffe ${ }^{52}$, R. Currie ${ }^{49}$, C. D'Ambrosio ${ }^{37}$, P. David ${ }^{8}$, P.N.Y. David ${ }^{40}$, A. Davis ${ }^{56}$, I. De Bonis ${ }^{4}$, K. De Bruyn ${ }^{40}$, S. De Capua ${ }^{53}$, M. De Cian ${ }^{11}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, W. De Silva ${ }^{56}$, P. De Simone ${ }^{18}$, D. Decamp ${ }^{4}$, M. Deckenhoff ${ }^{9}$, L. Del Buono ${ }^{8}$, N. Déléage ${ }^{4}$, D. Derkach ${ }^{54}$, O. Deschamps ${ }^{5}$, F. Dettori ${ }^{41}$, A. Di Canto ${ }^{11}$, H. Dijkstra ${ }^{37}$, M. Dogaru ${ }^{28}$, S. Donleavy ${ }^{51}$, F. Dordei ${ }^{11}$, A. Dosil Suárez ${ }^{36}$, D. Dossett ${ }^{47}$, A. Dovbnya ${ }^{42}$, F. Dupertuis ${ }^{38}$, P. Durante ${ }^{37}$, R. Dzhelyadin ${ }^{34}$, A. Dziurda ${ }^{25}$, A. Dzyuba ${ }^{29}$, S. Easo ${ }^{48}$, U. Egede ${ }^{52}$, V. Egorychev ${ }^{30}$, S. Eidelman ${ }^{33}$, D. van Eijk ${ }^{40}$, S. Eisenhardt ${ }^{49}$, U. Eitschberger ${ }^{9}$, R. Ekelhof ${ }^{9}$, L. Eklund ${ }^{50,37}$, I. El Rifai ${ }^{5}$, Ch. Elsasser ${ }^{39}$, A. Falabella ${ }^{14, e}$, C. Färber ${ }^{11}$, G. Fardell ${ }^{49}$, C. Farinelli ${ }^{40}$, S. Farry ${ }^{51}$, D. Ferguson ${ }^{49}$, V. Fernandez Albor ${ }^{36}$, F. Ferreira Rodrigues ${ }^{1}$, M. Ferro-Luzzi ${ }^{37}$, S. Filippov ${ }^{32}$, M. Fiore ${ }^{16}$, C. Fitzpatrick ${ }^{37}$, M. Fontana ${ }^{10}$, F. Fontanelli ${ }^{19, i}$, R. Forty ${ }^{37}$, O. Francisco ${ }^{2}$, M. Frank ${ }^{37}$, C. Frei ${ }^{37}$, M. Frosini ${ }^{17, f}$, S. Furcas ${ }^{20}$, E. Furfaro ${ }^{23, k}$, A. Gallas Torreira ${ }^{36}$, D. Galli ${ }^{14, c}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{58}$, Y. Gao ${ }^{3}$, J. Garofoli ${ }^{58}$, P. Garosi ${ }^{53}$, J. Garra Tico ${ }^{46}$, L. Garrido ${ }^{35}$, C. Gaspar ${ }^{37}$, R. Gauld ${ }^{54}$, E. Gersabeck ${ }^{11}$, M. Gersabeck ${ }^{53}$, T. Gershon ${ }^{47,37}$, Ph. Ghez ${ }^{4}$, V. Gibson ${ }^{46}$, L. Giubega ${ }^{28}$, V.V. Gligorov ${ }^{37}$, C. Göbel ${ }^{59, t}$, D. Golubkov ${ }^{30}$, A. Golutvin ${ }^{52,30,37}$, A. Gomes ${ }^{2}$, P. Gorbounov ${ }^{30,37}$, H. Gordon ${ }^{37}$, C. Gotti ${ }^{20}$, M. Grabalosa Gándara ${ }^{5}$, R. Graciani Diaz ${ }^{35}$, L.A. Granado Cardoso ${ }^{37}$, E. Graugés ${ }^{35}$, G. Graziani ${ }^{17}$, A. Grecu ${ }^{28}$, E. Greening ${ }^{54}$, S. Gregson ${ }^{46}$, P. Griffith ${ }^{44}$, O. Grünberg ${ }^{60, u}$, B. Gui ${ }^{58}$, E. Gushchin ${ }^{32}$, Yu. Guz ${ }^{34,37}$, T. Gys ${ }^{37}$, C. Hadjivasiliou ${ }^{58}$, G. Haefeli ${ }^{38}$, C. Haen ${ }^{37}$, S.C. Haines ${ }^{46}$, S. Hall ${ }^{52}$, B. Hamilton ${ }^{57}$, T. Hampson ${ }^{45}$, S. Hansmann-Menzemer ${ }^{11}$, N. Harnew ${ }^{54}$, S.T. Harnew ${ }^{45}$, J. Harrison ${ }^{53}$, T. Hartmann ${ }^{60, u}$, J. He ${ }^{37}$, T. Head ${ }^{37}$, V. Heijne ${ }^{40}$, K. Hennessy ${ }^{51}$, P. Henrard ${ }^{5}$, J.A. Hernando Morata ${ }^{36}$, E. van Herwijnen ${ }^{37}$, M. Hess ${ }^{60, u}$, A. Hicheur ${ }^{1}$, E. Hicks ${ }^{51}$, D. Hill ${ }^{54}$, M. Hoballah ${ }^{5}$, C. Hombach ${ }^{53}$, P. Hopchev ${ }^{4}$, W. Hulsbergen ${ }^{40}$, P. Hunt ${ }^{54}$, T. Huse ${ }^{51}$, N. Hussain ${ }^{54}$, D. Hutchcroft ${ }^{51}$, D. Hynds ${ }^{50}$, V. Iakovenko ${ }^{43}$, M. Idzik ${ }^{26}$, P. Ilten ${ }^{12}$, R. Jacobsson ${ }^{37}$, A. Jaeger ${ }^{11}$, E. Jans ${ }^{40}$, P. Jaton ${ }^{38}$, A. Jawahery ${ }^{57}$, F. Jing ${ }^{3}$, M. John ${ }^{54}$, D. Johnson ${ }^{54}$, C.R. Jones ${ }^{46}$, C. Joram ${ }^{37}$, B. Jost ${ }^{37}$, M. Kaballo ${ }^{9}$, S. Kandybei ${ }^{42}$, W. Kanso ${ }^{6}$, M. Karacson ${ }^{37}$, T.M. Karbach ${ }^{37}$, I.R. Kenyon ${ }^{44}$, T. Ketel ${ }^{41}$, A. Keune ${ }^{38}$, B. Khanji ${ }^{20}$, O. Kochebina ${ }^{7}$, I. Komarov ${ }^{38}$, R.F. Koopman ${ }^{41}$, P. Koppenburg ${ }^{40}$, M. Korolev ${ }^{31}$, A. Kozlinskiy ${ }^{40}$, L. Kravchuk ${ }^{32}$, K. Kreplin ${ }^{11}$, M. Kreps ${ }^{47}$, G. Krocker ${ }^{11}$, P. Krokovny ${ }^{33}$, F. Kruse ${ }^{9}$, M. Kucharczyk ${ }^{20,25, j}$, V. Kudryavtsev ${ }^{33}$, T. Kvaratskheliya ${ }^{30,37}$, V.N. La Thi ${ }^{38}$, D. Lacarrere ${ }^{37}$, G. Lafferty ${ }^{53}$, A. Lai ${ }^{15}$, D. Lambert ${ }^{49}$, R.W. Lambert ${ }^{41}$, E. Lanciotti ${ }^{37}$, G. Lanfranchi ${ }^{18}$, C. Langenbruch ${ }^{37}$, T. Latham ${ }^{47}$, C. Lazzeroni ${ }^{44}$, R. Le Gac ${ }^{6}$, J. van Leerdam ${ }^{40}$, J.-P. Lees ${ }^{4}$, R. Lefèvre ${ }^{5}$, A. Leflat ${ }^{31}$, J. Lefrançois ${ }^{7}$, S. Leo ${ }^{22}$, O. Leroy ${ }^{6}$, T. Lesiak ${ }^{25}$, B. Leverington ${ }^{11}$, Y. Li ${ }^{3}$, L. Li Gioi ${ }^{5}$, M. Liles ${ }^{51}$, R. Lindner ${ }^{37}$, C. Linn ${ }^{11}$, B. Liu ${ }^{3}$, G. Liu ${ }^{37}$, S. Lohn ${ }^{37}$, I. Longstaff ${ }^{50}$, J.H. Lopes ${ }^{2}$, N. Lopez-March ${ }^{38}$, H. Lu ${ }^{3}$, D. Lucchesi ${ }^{21, q}$, J. Luisier ${ }^{38}$, H. Luo ${ }^{49}$, F. Machefert ${ }^{7}$, I.V. Machikhiliyan ${ }^{4,30}$, F. Maciuc ${ }^{28}$, O. Maev ${ }^{29,37}$, S. Malde ${ }^{54}$, G. Manca ${ }^{15, d}$, G. Mancinelli ${ }^{6}$, J. Maratas ${ }^{5}$, U. Marconi ${ }^{14}$, P. Marino ${ }^{22, s}$, R. Märki ${ }^{38}$, J. Marks ${ }^{11}$, G. Martellotti ${ }^{24}$, A. Martens ${ }^{8}$, A. Martín Sánchez ${ }^{7}$, M. Martinelli ${ }^{40}$, D. Martinez Santos ${ }^{41}$, D. Martins Tostes ${ }^{2}$, A. Martynov ${ }^{31}$, A. Massafferri ${ }^{1}$, R. Matev ${ }^{37}$, Z. Mathe ${ }^{37}$, C. Matteuzzi ${ }^{20}$, E. Maurice ${ }^{6}$, A. Mazurov ${ }^{16,32,37, e}$, J. McCarthy ${ }^{44}$, A. McNab ${ }^{53}$, R. McNulty ${ }^{12}$, B. McSkelly ${ }^{51}$, B. Meadows ${ }^{56,54}$, F. Meier ${ }^{9}$, M. Meissner ${ }^{11}$, M. Merk ${ }^{40}$, D.A. Milanes ${ }^{8}$, M.-N. Minard ${ }^{4}$, J. Molina Rodriguez ${ }^{59, t}$, S. Monteil ${ }^{5}$, D. Moran ${ }^{53}$, P. Morawski ${ }^{25}$, A. Mordà ${ }^{6}$, M.J. Morello ${ }^{22, s}$, R. Mountain ${ }^{58}$, I. Mous ${ }^{40}$, F. Muheim ${ }^{49}$, K. Müller ${ }^{39}$, R. Muresan ${ }^{28}$, B. Muryn ${ }^{26}$, B. Muster ${ }^{38}$, P. Naik ${ }^{45}$, T. Nakada ${ }^{38}$, R. Nandakumar ${ }^{48}$, I. Nasteva ${ }^{1}$, M. Needham ${ }^{49}$, S. Neubert ${ }^{37}$, N. Neufeld ${ }^{37}$, A.D. Nguyen ${ }^{38}$, T.D. Nguyen ${ }^{38}$, C. Nguyen-Mau ${ }^{38,0}$, M. Nicol ${ }^{7}$, V. Niess ${ }^{5}$, R. Niet 9, N. Nikitin ${ }^{31}$, T. Nikodem ${ }^{11}$, A. Nomerotski ${ }^{54}$, A. Novoselov ${ }^{34}$, A. Oblakowska-Mucha ${ }^{26}$, V. Obraztsov ${ }^{34}$, S. Oggero ${ }^{40}$, S. Ogilvy ${ }^{50}$, O. Okhrimenko ${ }^{43}$, R. Oldeman ${ }^{15, d}$, M. Orlandea ${ }^{28}$, J.M. Otalora Goicochea ${ }^{2}$, P. Owen ${ }^{52}$, A. Oyanguren ${ }^{35}$, B.K. Pal ${ }^{58}$, A. Palano ${ }^{13, b}$, T. Palczewski ${ }^{27}$, M. Palutan ${ }^{18}$, J. Panman ${ }^{37}$, A. Papanestis ${ }^{48}$, M. Pappagallo ${ }^{50}$, C. Parkes ${ }^{53}$, C.J. Parkinson ${ }^{52}$, G. Passaleva ${ }^{17}$, G.D. Patel ${ }^{51}$, M. Patel ${ }^{52}$, G.N. Patrick ${ }^{48}$, C. Patrignani ${ }^{19, i}$, C. Pavel-Nicorescu ${ }^{28}$, A. Pazos Alvarez ${ }^{36}$, A. Pellegrino ${ }^{40}$, G. Penso ${ }^{24, l}$, M. Pepe Altarelli ${ }^{37}$, S. Perazzini ${ }^{14, c}$, E. Perez Trigo ${ }^{36}$, A. Pérez-Calero Yzquierdo ${ }^{35}$, P. Perret ${ }^{5}$, M. Perrin-Terrin ${ }^{6}$, L. Pescatore ${ }^{44}$, E. Pesen ${ }^{61, v}$, K. Petridis ${ }^{52}$, A. Petrolini ${ }^{19, i}$, A. Phan ${ }^{58}$, E. Picatoste Olloqui ${ }^{35}$, B. Pietrzyk ${ }^{4}$, T. Pilař ${ }^{47}$, D. Pinci ${ }^{24}$, S. Playfer ${ }^{49}$, M. Plo Casasus ${ }^{36}$, F. Polci ${ }^{8}$, G. Polok ${ }^{25}$, A. Poluektov ${ }^{47,33}$, E. Polycarpo ${ }^{2}$, A. Popov ${ }^{34}$, D. Popov ${ }^{10}$, B. Popovici ${ }^{28}$, C. Potterat ${ }^{35}$, A. Powell ${ }^{54}$, J. Prisciandaro ${ }^{38}$, A. Pritchard ${ }^{51}$, C. Prouve ${ }^{7}$, V. Pugatch ${ }^{43}$, A. Puig Navarro ${ }^{38}$, G. Punzi ${ }^{22, r}$, W. Qian ${ }^{4}$, J.H. Rademacker ${ }^{45}$, B. Rakotomiaramanana ${ }^{38}$, M.S. Rangel ${ }^{2}$, I. Raniuk ${ }^{42}$, N. Rauschmayr ${ }^{37}$, G. Raven ${ }^{41}$, S. Redford ${ }^{54}$,
M.M. Reid ${ }^{47}$, A.C. dos Reis ${ }^{1}$, S. Ricciardi ${ }^{48, *}$, A. Richards ${ }^{52}$, K. Rinnert ${ }^{51}$, V. Rives Molina ${ }^{35}$, D.A. Roa Romero ${ }^{5}$, P. Robbe ${ }^{7}$, D.A. Roberts ${ }^{57}$, E. Rodrigues ${ }^{53}$, P. Rodriguez Perez ${ }^{36}$, S. Roiser ${ }^{37}$, V. Romanovsky ${ }^{34}$, A. Romero Vidal ${ }^{36}$, J. Rouvinet ${ }^{38}$, T. Ruf ${ }^{37}$, F. Ruffini ${ }^{22}$, H. Ruiz ${ }^{35}$, P. Ruiz Valls ${ }^{35}$, G. Sabatino ${ }^{24, k}$, J.J. Saborido Silva ${ }^{36}$, N. Sagidova ${ }^{29}$, P. Sail ${ }^{50}$, B. Saitta ${ }^{15, d}$, V. Salustino Guimaraes ${ }^{2}$,
B. Sanmartin Sedes ${ }^{36}$, M. Sannino ${ }^{19, i}$, R. Santacesaria ${ }^{24}$, C. Santamarina Rios ${ }^{36}$, E. Santovetti ${ }^{23, k}$, M. Sapunov ${ }^{6}$, A. Sarti ${ }^{18, l}$, C. Satriano ${ }^{24, m}$, A. Satta ${ }^{23}$, M. Savrie ${ }^{16, e}$, D. Savrina ${ }^{30,31}$, P. Schaack ${ }^{52}$, M. Schiller ${ }^{41}$, H. Schindler ${ }^{37}$, M. Schlupp ${ }^{9}$, M. Schmelling ${ }^{10}$, B. Schmidt ${ }^{37}$, O. Schneider ${ }^{38}$, A. Schopper ${ }^{37}$, M.-H. Schune ${ }^{7}$, R. Schwemmer ${ }^{37}$, B. Sciascia ${ }^{18}$, A. Sciubba ${ }^{24}$, M. Seco ${ }^{36}$, A. Semennikov ${ }^{30}$, K. Senderowska ${ }^{26}$, I. Sepp ${ }^{52}$, N. Serra ${ }^{39}$, J. Serrano ${ }^{6}$, P. Seyfert ${ }^{11}$, M. Shapkin ${ }^{34}$, I. Shapoval ${ }^{16,42}$, P. Shatalov ${ }^{30}$, Y. Shcheglov ${ }^{29}$, T. Shears ${ }^{51,37}$, L. Shekhtman ${ }^{33}$, O. Shevchenko ${ }^{42}$, V. Shevchenko ${ }^{30}$, A. Shires ${ }^{9}$, R. Silva Coutinho ${ }^{47}$, M. Sirendi ${ }^{46}$, N. Skidmore ${ }^{45}$, T. Skwarnicki ${ }^{58}$, N.A. Smith ${ }^{51}$, E. Smith ${ }^{54,48}$, J. Smith ${ }^{46}$, M. Smith ${ }^{53}$, M.D. Sokoloff ${ }^{56}$, F.J.P. Soler ${ }^{50}$, F. Soomro ${ }^{18}$, D. Souza ${ }^{45}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{9}$, A. Sparkes ${ }^{49}$, P. Spradlin ${ }^{50}$, F. Stagni ${ }^{37}$, S. Stahl ${ }^{11}$, O. Steinkamp ${ }^{39}$, S. Stevenson ${ }^{54}$, S. Stoica ${ }^{28}$, S. Stone ${ }^{58}$, B. Storaci ${ }^{39}$, M. Straticiuc ${ }^{28}$, U. Straumann ${ }^{39}$, V.K. Subbiah ${ }^{37}$, L. Sun ${ }^{56}$, S. Swientek ${ }^{9}$, V. Syropoulos ${ }^{41}$, M. Szczekowski ${ }^{27}$, P. Szczypka ${ }^{38,37}$, T. Szumlak ${ }^{26}$, S. TJJampens ${ }^{4}$, M. Teklishyn ${ }^{7}$, E. Teodorescu ${ }^{28}$, F. Teubert ${ }^{37}$, C. Thomas ${ }^{54}$, E. Thomas ${ }^{37}$, J. van Tilburg ${ }^{11}$, V. Tisserand ${ }^{4}$, M. Tobin ${ }^{38}$, S. Tolk ${ }^{41}$, D. Tonelli ${ }^{37}$, S. Topp-Joergensen ${ }^{54}$, N. Torr ${ }^{54}$, E. Tournefier ${ }^{4,52}$, S. Tourneur ${ }^{38}$, M.T. Tran ${ }^{38}$, M. Tresch ${ }^{39}$, A. Tsaregorodtsev ${ }^{6}$, P. Tsopelas ${ }^{40}$, N. Tuning ${ }^{40}$, M. Ubeda Garcia ${ }^{37}$, A. Ukleja ${ }^{27}$, D. Urner ${ }^{53}$, A. Ustyuzhanin ${ }^{52, p}$, U. Uwer ${ }^{11}$, V. Vagnoni ${ }^{14}$, G. Valenti ${ }^{14}$, A. Vallier ${ }^{7}$, M. Van Dijk ${ }^{45}$, R. Vazquez Gomez ${ }^{18}$, P. Vazquez Regueiro ${ }^{36}$, C. Vázquez Sierra ${ }^{36}$, S. Vecchi ${ }^{16}$, J.J. Velthuis ${ }^{45}$, M. Veltri ${ }^{17, g}$, G. Veneziano ${ }^{38}$, M. Vesterinen ${ }^{37}$, B. Viaud ${ }^{7}$, D. Vieira ${ }^{2}$, X. Vilasis-Cardona ${ }^{35, n}$, A. Vollhardt ${ }^{39}$, D. Volyanskyy ${ }^{10}$, D. Voong ${ }^{45}$, A. Vorobyev ${ }^{29}$, V. Vorobyev ${ }^{33}$, C. Voß ${ }^{60, u}$, H. Voss ${ }^{10}$, R. Waldi ${ }^{60, u}$, C. Wallace ${ }^{47}$, R. Wallace ${ }^{12}$, S. Wandernoth ${ }^{11}$, J. Wang ${ }^{58}$, D.R. Ward ${ }^{46}$, N.K. Watson ${ }^{44}$, A.D. Webber ${ }^{53}$, D. Websdale ${ }^{52}$, M. Whitehead ${ }^{47}$, J. Wicht ${ }^{37}$, J. Wiechczynski ${ }^{25}$, D. Wiedner ${ }^{11}$, L. Wiggers ${ }^{40}$, G. Wilkinson ${ }^{54}$, M.P. Williams ${ }^{47,48}$, M. Williams ${ }^{55}$, F.F. Wilson ${ }^{48}$, J. Wimberley ${ }^{57}$, J. Wishahi ${ }^{9}$, W. Wislicki ${ }^{27}$, M. Witek ${ }^{25}$, S.A. Wotton ${ }^{46}$, S. Wright ${ }^{46}$, S. Wu ${ }^{3}$, K. Wyllie ${ }^{37}$, Y. Xie ${ }^{49,37}$, Z. Xing ${ }^{58}$, Z. Yang ${ }^{3}$, R. Young ${ }^{49}$, X. Yuan ${ }^{3}$, O. Yushchenko ${ }^{34}$, M. Zangoli ${ }^{14}$, M. Zavertyaev ${ }^{10, a}$, F. Zhang ${ }^{3}$, L. Zhang ${ }^{58}$, W.C. Zhang ${ }^{12}$, Y. Zhang ${ }^{3}$, A. Zhelezov ${ }^{11}$, A. Zhokhov ${ }^{30}$, L. Zhong ${ }^{3}$, A. Zvyagin ${ }^{37}$

[^1]${ }^{35}$ Universitat de Barcelona, Barcelona, Spain
${ }^{36}$ Universidad de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{37}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{38}$ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
${ }^{39}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
${ }^{40}$ Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
${ }^{41}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
42 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
${ }^{43}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
44 University of Birmingham, Birmingham, United Kingdom
${ }^{45}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{46}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{47}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{48}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{49}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{50}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{51}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{52}$ Imperial College London, London, United Kingdom
53 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }_{55}^{54}$ Department of Physics, University of Oxford, Oxford, United Kingdom
55 Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{56}$ University of Cincinnati, Cincinnati, OH, United States
57 University of Maryland, College Park, MD, United States
58 Syracuse University, Syracuse, NY, United States
${ }^{59}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil ${ }^{t}$
${ }^{60}$ Institut für Physik, Universität Rostock, Rostock, Germany ${ }^{u}$
${ }^{61}$ Celal Bayar University, Manisa, Turkey ${ }^{v}$

* Corresponding author.
${ }^{a}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
${ }^{b}$ Università di Bari, Bari, Italy.
c Università di Bologna, Bologna, Italy.
${ }^{d}$ Università di Cagliari, Cagliari, Italy.
e Università di Ferrara, Ferrara, Italy.
f Università di Firenze, Firenze, Italy.
g Università di Urbino, Urbino, Italy.
${ }^{h}$ Università di Modena e Reggio Emilia, Modena, Italy.
${ }^{i}$ Università di Genova, Genova, Italy.
j Università di Milano Bicocca, Milano, Italy.
${ }^{k}$ Università di Roma Tor Vergata, Roma, Italy.
l Università di Roma La Sapienza, Roma, Italy.
m Università della Basilicata, Potenza, Italy.
${ }^{n}$ LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
${ }^{o}$ Hanoi University of Science, Hanoi, Viet Nam.
p Institute of Physics and Technology, Moscow, Russia.
q Università di Padova, Padova, Italy.
r Università di Pisa, Pisa, Italy.
s Scuola Normale Superiore, Pisa, Italy.
t Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
u Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
${ }^{v}$ Associated to European Organization for Nuclear Research (CERN), Geneva, Switzerland.

[^0]: (4) © CERN for the benefit of the LHCb Collaboration.
 ${ }^{1}$ The inclusion of charge conjugate processes is implied, unless otherwise stated.

[^1]: ${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
 ${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
 ${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
 ${ }^{4}$ LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
 ${ }^{5}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
 ${ }^{6}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
 ${ }^{7}$ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
 ${ }^{8}$ LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
 ${ }^{9}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
 ${ }^{10}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
 ${ }^{11}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{12}$ School of Physics, University College Dublin, Dublin, Ireland
 ${ }^{13}$ Sezione INFN di Bari, Bari, Italy
 ${ }^{14}$ Sezione INFN di Bologna, Bologna, Italy
 ${ }^{15}$ Sezione INFN di Cagliari, Cagliari, Italy
 ${ }^{16}$ Sezione INFN di Ferrara, Ferrara, Italy
 ${ }^{17}$ Sezione INFN di Firenze, Firenze, Italy
 ${ }^{18}$ Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
 ${ }^{19}$ Sezione INFN di Genova, Genova, Italy
 ${ }^{20}$ Sezione INFN di Milano Bicocca, Milano, Italy
 ${ }^{21}$ Sezione INFN di Padova, Padova, Italy
 22 Sezione INFN di Pisa, Pisa, Italy
 ${ }^{23}$ Sezione INFN di Roma Tor Vergata, Roma, Italy
 ${ }^{24}$ Sezione INFN di Roma La Sapienza, Roma, Italy
 ${ }^{25}$ Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
 ${ }^{26}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
 ${ }^{27}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
 ${ }^{28}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
 ${ }^{29}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
 ${ }^{30}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
 ${ }^{31}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
 ${ }^{32}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
 ${ }^{33}$ Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
 ${ }^{34}$ Institute for High Energy Physics (IHEP), Protvino, Russia

