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Abstract: Plant diseases are responsible for substantial crop losses each year and affect food security
and agricultural sustainability. The improvement of crop resistance to pathogens through breeding
represents an environmentally sound method for managing disease and minimizing these losses.
The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches,
from markers to recent genomic and ‘post-genomic era’ technologies, will be reviewed in order to
contribute to a better understanding of the complexity of host–pathogen interactions and genes,
including those with small phenotypic effects and mechanisms that underlie resistance. An efficient
combination of these approaches is herein proposed as the basis to develop a successful breeding
strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.

Keywords: crop; disease resistance; genes; marker-assisted selection; meta-analysis; genomic selection;
effectoromics; new breeding technologies

1. Introduction

Pathogens, represented by fungi, oomycetes, bacteria, and viruses, are some of the
main limiting factors in agricultural quality and production [1]. The development of highly
resistant varieties carrying long-lasting and broad-spectrum disease resistance is an eco-
nomical and ecofriendly alternative to expensive and environmentally harmful chemical
controls [2,3]. Niks et al. [4] distinguished different types of host resistance, depending on
whether it refers to its effect on the phenotype or mode of inheritance. For the mode of
inheritance, genetic resistance based on monogenic inheritance, often referred to as quali-
tative resistance, follows the gene-for-gene interaction model, provides a near-complete
defense, but only against avirulent pathogen genotypes. Qualitative resistance, determined
by major genes, is more suitable for manipulation in plant breeding, even if it has a limited
duration because pathogens frequently adapt to and overcome genetic resistance. In con-
trast, quantitative genetic resistance controlled by several genes/QTL (Quantitative Trait
Loci), shows complex multigenic inheritance, making breeding efforts challenging [5,6].
Traditional breeding programs have produced many significantly improved varieties over
the past 100 years. However, progress was slow, in part due to lengthy of breeding cycles
and the long time from cross to cultivar release [7]. Genes that contribute to pathogen
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tolerance/resistance can be obtained from local germplasm resources, or through exotic
lines, wild species or genera, or lines from other breeding programs [8]. The development
of molecular markers has created a powerful and practicable tool to perform gene selection
in plant breeding. Today, in the post-genomic era, the availability of genomic tools and
genetic resources is leading to development of new generation methods in plant breeding,
which facilitate the study of the genotype and its relationship with the phenotype, in
particular for complex traits.

This review reports a deep overview, the most comprehensive as possible, of the
molecular approaches to find molecular markers, both genome-wide and closely linked
to resistant genes, for genotypic characterization in crop breeding. Traditional and most
recent strategies are herein described from Marker-Assisted Selection (MAS), Genomic
Selection and Machine Learning to genetic engineering, as represented with a temporal
and historical scale of their development in Figure 1. The practical applications of these
approaches are discussed in light of their possible combination in breeding programs for
improving plant disease resistance in crops.
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resistance in crops, reviewed in this report (NBT: New Breeding Technologies; QTL: Quantitative
Trait Locus; BSA: Bulk Segregant Analysis; Mut: Mutant; Ren: R gene enrichment; R: Resistance).

2. Toward the Identification of Resistance Genes/Loci

To date, traditional mapping approaches have made possible the identification of
genes/loci for disease resistance in many crops, useful for genetic improvement programs.
Advanced genomic tools allowed us to accelerate gene identification—thanks to the grow-
ing availability of genome sequence data—and to determine a more precise location of the
causal gene. Here, we reviewed mapping approaches from traditional to NGS-based ones,
and meta-QTL analysis as tools to compare results from independent experiments and find
consensus QTLs.

2.1. Traditional and NGS-Enabled Mapping Approaches

In crop plants, linkage analysis and genome-wide association studies (GWAS) have
been extensively used to identify genomic loci responsible of resistance phenotypes [9]. A
typical quantitative resistance locus (QRL) identified through linkage analysis encompasses
hundreds of genes, and many credible candidate genes may exist among them, making it
very difficult to identify the true causal gene. The identification of QTLs associated with
agronomic traits in crops, and disease resistance above all, have been recently accelerated
thanks to NGS-based technologies. Indeed, sequencing of crop genomes and transcrip-
tomes have provided huge and comprehensive sequence data necessary to develop high
density SNP arrays. Today, high-capacity SNP arrays are available for a broad range of plant



Int. J. Mol. Sci. 2021, 22, 5423 3 of 27

species and are becoming widely used in the breeding of major crops like maize (50–600 k
SNPs) [10,11], rice (51.5 k SNPs) [12,13], wheat (9 k, 35 k, 90 k, 660 K,420 K, 820 K) [14–17],
potato (8.3 k SNPs) [18], barley (9 k SNPs) [19], soya bean (50 k SNPs) [20], rapeseed (60 k
SNPs), [21] or sorghum (3 k and 90 k SNPs) [22,23]. At present, the Infinium platform from
Illumina Inc. (San Diego, CA, USA) and the Axiom technology from Affymetrix Inc. (Santa
Clara, CA, USA) are the most widely used platforms for large-scale SNP genotyping in
crop plants [24]. As an alternative, genotyping based on sequencing (GBS) has been served
as an application of NGS protocols for discovering and genotyping SNPs in crop genomes
and populations, upon constructing reduced representation libraries of the target genomes
as in GBS [25], specific locus amplified fragment sequencing (SLAF-seq) [26], or restriction
site-associated sequencing (RADseq) [27]. GBS can be an effective option for orphan crops,
while fixed genotyping chips are often preferred to GBS technologies for scenarios aiming
to generate structured data sets of common sequence variants at low cost, with minimal
bioinformatic input, for example within an ongoing breeding program [28]. On the other
hand, to be effective, a fixed SNP genotyping platform must be applicable to a wide range
of different genotypes; hence, the alleles of the chosen SNPs must be representative even
for diverse germplasm, otherwise this could cause an ascertainment bias [29]. GBS-based
genotyping methods can be more suitable for identifying true, causal genetic variants for
phenotypes with a complex genetic architecture because these are typically influenced in
crop species by rare alleles that may not be adequately represented on an SNP array [30].
Nevertheless, given the relatively high extent of linkage disequilibrium (LD) throughout
the genomes of most crops, SNP markers on a fixed, high-density array are still likely to
exhibit genetic associations with phenotypic variation through LD to the causal genes [31].
Moreover, for some species, different arrays have been designated to specifically address
breeding or diverse germplasm, as in the case of wheat for which users can choose among
the Axiom® 35K Breeder Array and the Axiom® Wheat Relatives Array.

In respect to linkage mapping, widely used from 30 years, genome-wide association
mapping studies, firstly applied in human genetics, provide much higher resolution map-
ping and facilitate the identification of candidate genes for validation by transformation
and/or mutagenesis [32,33]. Indeed, in many species/germplasm collections where LD
decay is fast or genome size is limited, the resolution provided by GWAS supported by
high SNP density is enough to decrease the number of candidates to few genes. For in-
stance, a collection of Ethiopian sorghum of around 600 accessions genotyped by more
than 200 thousand SNPs enabled the detection of a low frequency locus of about 78-kb
region which includes three clustered R genes [34]. In other crop species, LD may often
range over several hundred kilobases, especially in self-pollinating crops such as rice,
soybean and wheat [35]. This results in the inclusion of many candidate genes in a single
LD block exhibiting a significant signal, thus entailing the need for additional experiments
to conclusively identify the causal genes. An efficient way to overcome this limitation is
to construct haplotypes based on LD and then to perform haplotype-based association
analysis. A SNP haplotype refers to a distinct combination of SNPs within LD blocks
which tend to be inherited as an entire unit from a parent to its progeny. SNPs that can
differentiate haplotypes are ‘haplotype tags’ and can be used as important genetic markers
for MAS and genetic mapping. It is intuitively plausible that the information provided by
SNPs is most useful when several closely spaced SNPs completely defining haplotypes in
the target region are examined, particularly when the causal locus is unknown because
they can provide greater QTL detection power and mapping accuracy than single markers.
Indeed, examples have been reported about significant associations between haplotypes
and phenotypes that were not detectable by a single SNP analysis as well as increase of
phenotypic variation explained [33,36]. However, these advantages depend on models
relating genotype to phenotype, that is the genetic architecture of the target traits, and
demographic scenarios, and thus that power of QTL mapping with haplotypes must be
evaluated on a case-by-case basis [37]. About disease resistance, haplotype-based associa-
tion analysis has been deployed above all to characterize the diversity at single target locus
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in diverse germplasm [38], to accelerate the fine mapping of genomic regions containing
known resistance loci [39], to validate target known loci in different genetic populations to
develop robust and breeder-friendly markers [40,41], to characterize the track of allelic se-
lection across the crop history in order to choose what type of alleles should be introduced
into current cultivars [42,43]. In plant genomics, only few methods for haplotype-based
GWAS have so far been proposed [44]. They require haplotype information a priori and
therefore are difficult to establish at a genome-wide level. In perspective, this limitation
can be overcome by means of the continue advancement of high-throughput sequencing
technologies, which may enable the rapid and accurate resequencing of many genomes
and therefore the definition of comprehensive haplotype maps. This progress is expected
to revolutionize GWAS because haplotype maps will be a valuable tool for imputing geno-
types and transferring sequence-level variation data across multiple gene mapping projects,
thereby increasing the power and precision of trait mapping in GWAS and helping to
understand better the basis of phenotypic traits [34,45].

2.2. NGS-Enabled Fine-Mapping/Cloning Approaches

A plethora of NGS-based mapping approaches have been developed so far and applied
in the last decade to the mapping/fine mapping toward cloning disease resistance loci, as
well as development of diagnostic markers for use in breeding. Some of them are suited
for biparental segregating populations and integrated traditional bulk segregant analysis
(BSA) with sequencing methods to map major resistance loci. They are named as QTL-Seq,
Seq-BSA, or Indel-Seq when mainly focused on variations identified in insertions and
deletions [46]. By allowing placement of QTL within a smaller genomic segment, QTL-seq
facilitates both detection of QTL and its fine mapping at a stretch, thus allowing the rapid
discovery of candidate genes for the trait of interest. Successfully deployed for the first time
for faster identification of QTLs for blast resistance in rice (Oryza sativa) [47], QTL-seq has
been exploited in many different species. Examples are reported in pigeonpea for Fusarium
wilt and sterility mosaic disease resistance [48], in groundnut for bacterial wilt [49] and late
leaf spot [48–51], in pepper for Cucumber mosaic virus [52], in tomato for leaf mold [53],
and in watermelon for Fusarium wilt disease [54]. When QTL-seq is applied to several
mapping populations derived from crosses with at least one common parent, it is named
multiple QTL-seq (mQTL-seq) [55]. The utilization of multiple mapping populations
representing a broader genetic diversity was beneficial for the validation of QTLs, along
with narrowing down the detected QTLs to shorter segments for several agronomic trait.
For example, mQTL-seq was applied on two sets of extreme Ascochyta blight (AB) phenotype
bulks derived from Cicer intraspecific and interspecific crosses, allowing the physical
mapping of three associated regions and identifying the AB responsive gene CaAHL18
(AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED) as a candidate for one of
them [56]. In all these approaches, NGS is used to sequence bulks of contrasting phenotypes
and to provide the assembly of the parent genome. For some crop species which have
a large and complex genome, such an approach is cost ineffective and needs custom
bioinformatic pipelines for genome assembly. A kind of genome reduction is therefore
necessary to manage with these big genome crop species. Bulked segregant RNA Seq (BSR-
Seq), which is based on whole transcriptome sequencing of contrasting bulks, represents
an effective option [57]. Indeed, BSR-Seq approach is thus being widely adopted for rapid
discovery of genes and markers highly linked with the target genes [58–61]. For instance,
through BSR-Seq, the Yr15 gene, which imparts resistance to yellow rust in wheat, has
been fine mapped to a 0.77 cM region allowing the development of effective markers for
MAS [62]. Specific-Locus Amplified Fragment (SLAF)-Seq is another approach to perform
whole genome resequencing by simplifying genomes, but its successful application relies
on a known reference genome and bioinformatics foundation [63]. Genes responsible for
aphid resistance in soybeans have been identified using this approach [64]. It was also
used to construct a high-density map with 2634 SNPs in watermelon with a considerably
decreased distance between linked markers [65]. The combination between SLAF-seq
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and other genome-based sequencing methods can also lead to precise linkage mapping;
for instance, SLAFseq and BSA-seq have been used to characterize the genes related to
Phytophthora root rot in pepper [66,67].

When applied to genetic materials supporting high resolution mapping, NGS technolo-
gies have also accelerated the identification of the gene responsible for the target phenotype
by forward genetic approaches. This is the case of NGS applied to mutant collections which
generated a massive number of methods known as MutMap, MutMap Gap, MutMap+,
modified MutMap, SHOREmap. The MutMap approach was proposed by Abe et al. [68] in
rice to identify genomic regions governing important agronomic traits. In brief, this tech-
nique involves the generation of a mutant population using chemical mutagen followed
by the selection of lines with desirable phenotype in M2 or subsequent generations. Then,
similar to QTL-seq, whole genome sequencing is applied to contrasting phenotype bulks
of F2 individuals generated by crossing of the selected mutant with the corresponding
wild-type parent, grouped based on the target mutant phenotype. Modified versions of
MutMap have been developed, as the MutMap-Gap, which facilitates identification of
causal SNPs in genomic regions that are missing from the reference genome sequence [69].
Despite the number of methods, only few examples are available for disease resistance. For
instance, MutMap was used in rice to clone the causative gene of a lesion mimic mutant,
named lmm24, which exhibited enhanced resistance to blast fungus Magnaporthe oryzae
and up-regulation of defense response genes [70], while the application of MutMap-Gap
on the rice variety Hitomebore revealed the existence of the blast-resistance Pii gene, which
was absent from the Nipponbare reference sequence [69].

More numerous applications have been reported for the MutChromSeq, which inte-
grates chromosome sorting of selected mutants as strategy for genome complexity reduc-
tion before sequencing. Comparison of sequences from wild-type parental chromosomes
with chromosomes from multiple independently derived mutants identifies causative
mutations in a single candidate gene or a noncoding sequence. The power of this method
depends on being a cloning by sequencing approach that is not relying on recombination-
based genetic mapping and does not exclude any DNA sequence from being targeted.
Because many R genes are present in gene families, with members in close physical proxim-
ity, the dissection of such loci by recombination is not practical and also further confounded
by the extreme sequence diversity and R gene copy number variation often present between
different haplotypes [71]. This approach was firstly applied to clone by sequencing the
wheat dominant powdery mildew resistance gene 2 (Pm2) [71] and more recently in barley
to clone the leaf rust resistance gene Rph1 [72]. The disadvantage of MutChromSeq is that
its application is limited to previously mapped loci. Similar to MutChromSeq, the TArgeted
Chromosome-based Cloning via long-range Assembly (TACCA) approach combines loss-
less genome-complexity reduction via chromosome flow sorting with Chicago long-range
linkage to assemble single chromosomes of complex genomes. Prior information about
the mapped gene (flanking markers of a QTL) and its chromosomal location are used for
chromosome sorting and sequencing. Thind et al. [73] cloned the leaf rust resistance gene
Lr22a in wheat using this technique. After mapping the Lr22a in a 0.48 cM interval on
chromosome 2D by two flanking SSR markers, the chromosome 2D was sorted and its
de novo sequencing and assembly allowed the identification of the causative gene within
four months.

NGS-based cloning approaches also aimed to harness the diversity of resistance genes
within germplasm collections by deploying specific features of R genes. Indeed, most R
genes encode proteins with nucleotide binding and leucine-rich repeats (NLRs), and plant
genomes contain hundreds of NLR-encoding genes. Annotation of NLR-encoding genes
in reference genomes has allowed the designing of probes to capture R gene fragments
from a genomic library followed by sequencing. This method, called RenSeq, is therefore a
cost-effective gene enrichment strategy which allows both the identification and the cloning
of new R genes. As a proof-of-concept study, Jupe et al. [74] demonstrated its utility in
potato and tomato. In this study, the target enrichment library was prepared using 523 NB-
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LRR-like sequences from potato genome, 57 tomato NB-NRC domains, and 9 characterized
NB-LRR types from tomato, tobacco and pepper. Enriched samples from genomic DNA of
the S. tuberosum Phureja clone were sequenced, and annotation was carried out resulting
in a successful enrichment of NB-LRRs from 438 to 755. In a modified version called
MutRenSeq, the comparison of the R gene complement of loss-of-resistance mutants with
wild-type progenitors enabled the cloning of the wheat stem rust resistance genes Sr22 and
Sr45 in two years only and without any positional fine mapping [75]. In a further option
known as AgRenSeq [76], association analysis was combined with RenSeq to develop a
method to identify R genes associated with resistance phenotypes of crop wild relatives,
more in detail on the wheat relative Aegilops for stem rust resistance. The technique
includes screening of wild plants for a variety of diseases, targeted resequencing of the
wild plants to look for resistance genes, and association analysis of R gene variants with
the phenotype scoring. Another RenSeq variant is represented by SMRT-RenSeq (single-
molecule real-time RenSeq), employed by Witek et al. [77] to clone a gene responsible for
resistance to Phytophthora infestans (Rpiamr3i) causing late blight disease in potato. This
technology combines resistance (R) gene sequence capture (RenSeq) with single-molecule
real-time (SMRT) sequencing. This approach should enable de novo assembly of complete
nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements
and complex multi-NLR loci from uncharacterized germplasm [77].

Despite the number of NGS-based approaches developed so far, their application to
disease resistance gene identification in crops is still too limited so far; therefore, further
researches are needed in order to find new R genes/loci that can be then used in MAS or
genome editing to improve cultivars.

2.3. Meta-QTL Analysis for Disease Resistance in Crops

Several requirements are needed to make MAS more efficient than phenotypic se-
lection, including QTLs explaining a sufficient portion of the phenotypic variation, and
precisely positioned onto the genome. A comparative analysis of the genomic regions
responsible for the trait of interest across studies, genetic backgrounds and different envi-
ronments could help to better understand the genetics of the trait, through the projection of
QTLs on a consensus genetic map, or to the genome when available, and the identification
of consensus QTL (meta-QTL) with a refined confidence interval (CI). When available,
MQTLs can be anchored to a reference genome, and relevant candidate genes could be
proposed. A number of studies since 2009 are reported in crops for meta-QTL analysis
of resistance against fungi and viruses, in order to propose valuable QTL to perform
MAS, in particular in Theobroma cacao [78], barley [79], tetraploid cotton [80,81], pea [82],
wheat [83,84], maize [85], peanut [86], grapevine [87], and soybean [88]. A study carried
out in maize on the response to stem borers and storage pests feeding on leaves, stems, and
kernels, from geographically diverse environments, pointed out the presence of a total of
104 resistance meta-QTLs from 382 individual QTLs, many of which were involved in sev-
eral insect species, therefore generating a significant interest for multiple-insect resistance
breeding [89]. A deep analysis of the QTLome of Fusarium head blight (FHB) resistance,
one of the most destructive diseases in wheat has been carried out by Venske et al. [90].
Their meta-analysis generated 65 meta-QTL from a total of 556 individual QTL found
in the literature, distributed on all subgenomes and chromosomes of wheat. Candidate
gene mining within the most refined meta-QTL on chromosome 3B, using the reference
genome annotation, harvested 324 genes among which 10 were cross validated by pub-
licly available transcriptional data as responsive to FHB. Two of these genes encode a
Glycosiltransferase and a Cytochrome P450, previously verified as being responsible for
FHB resistance and promising loci for breeding. The meta-QTL on 3B was centered with
the Fhb1 locus, known to have a large and stable effect on type II FHB resistance [91]. The
same result has been reported in another study that summarized QTLs for FHB resistance,
from five RIL populations, identifying six MQTLs with narrowed CIs compared to those of
the original maps, as in the case of the 3DL MQTL from two original QTL with CI of 6.5
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and 7.6 cM, respectively, that narrowed the CI to 1.6 cM [92]. KASP markers able to screen
association mapping panels of elite lines and cultivars have been released, useful to transfer
the linked MQTLs. Finally, partial resistance to white mold, a major disease that limits
common bean production and quality worldwide, was investigated by meta-analysis [93].
Nine MQTLs have been identified from the 37 single QTLs for white mold resistance and
anchored to the reference genome sequence, and candidate genes shown to express under
S. sclerotiorum infection in other studies, including cell wall receptor kinase, ethylene re-
sponsive transcription factor, peroxidase, and MYB transcription factors, have been found
within the confidence interval of five MQTLs. The recent availability of the sequence of
complex genomes, as in the case of durum wheat, opened a new perspective in MQTL
analysis through the projection of previously published QTLs directly onto the genome
and the description of QTLomes for different traits, including resistance to diseases [94].
In conclusion, meta-QTL are generally mapped in smaller genomic intervals rather than
original QTL, allowing identification of markers strictly associated and thus facilitating the
search for genes underpinning the disease resistance.

3. Marker-Assisted Selection

Breeding activities are based on the collection and evaluation of genetic variation
within a crop species, identification of superior alleles with a beneficial effect on the trait,
promoting sexual recombination with elite genotypes, and selecting the individuals with
the best phenotypic performance. In the last decades, selection assisted by molecular mark-
ers has moved selection from phenotype to DNA, with great advantages, depending on the
trait, in terms of costs, time saving, and efficacy of selection [95]. Moreover, molecular selec-
tion can be done on seedling-stage materials, and it permits the enrichment of populations
with heterozygous individuals by using codominant markers [96]. To some extent, QTLs,
cloned genes, closely related markers, and donor lines have become available for different
crops in the last decades, and they are actively transferred to elite lines through MAS. Many
examples are available for improvement of resistance to rice blast, Magnaporthe oryzae,
and bacterial blight, Xanthomonas oryzae, in rice, and many genes can be pyramided into
the same genotype. Five resistance genes to bacterial blight (Xa4, xa7, Xa21, xa13 and Xa5)
contributed by IRBB66, and selected at the same time, allowed us to recover nine lines of
Tainung82, one of the most popular japonica varieties, with a very high resistance level
and good agronomic performance [97]. Other examples have been recently summarized
for rice [98,99], chili [100], brassica [101] and wheat [102,103].

When the donor line is a wild relative of the crop, and this is often the case for
disease resistance genes, linkage drag is a very common problem which can strongly
limit the use of a particular gene in breeding. The size of the introgressed region—and
therefore the probability that unfavorable alleles at physically linked loci can be transferred
together with the gene of interest—can be reduced by background selection, made with
a suitable number of markers to monitor the percentage of the recurrent parent genome.
As an example, Baliyan et al. [104] introgressed Xa21, xa13 and Xa5 for resistance to
rice bacterial blight from IRBB-60 to the widespread basmati cultivar CSR-30, through
foreground selection for the three genes, associated with background selection to reduce
as much as possible the percentage of the donor parent and to reduce the linkage drag.
Nevertheless, when recombination is strongly suppressed in the cross between the elite
cultivar and the wild relative, background selection is not enough in controlling this
aspect. Due to linkage drag, the gene for resistance to fusarium head blight identified in an
accession of Thinopyrum ponticum, Fhb7, has been transferred to common wheat, but not
used in breeding. Crossing the donor line KS24-2 with the ph1 mutant of Chinese Spring, a
mutant in which homoeologous pairing and recombination are not suppressed, lines in
which the size of the introgressed region was reduced to 16–17% of the original one were
obtained [105].

One of the advantages offered by MAS compared to the phenotypic selection is the
shorter time requested to obtain improved lines, thanks to the rapidity of the molecular
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assays and to the possibility of testing lines in their juvenile growth stages. In this regard,
the length of the growth cycle of the crops still represents the limiting step in the process, in
particular for tree species, and it is therefore an aspect that can be technically improved to
make the whole process much faster. A method called “speed breeding” has been recently
developed, which can be used to achieve up to five generations per year for spring wheat,
durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea
(Pisum sativum), and four generations for canola (Brassica napus), instead of two under
normal glasshouse conditions. This result is achieved through the modulation of growing
conditions in glasshouses and with the use of supplemental LED (light-emitting Diode)
lighting [106]. Speed breeding can accelerate the breeding process, not only increasing
the number of generations per year but also accelerating plant development for research
purposes, including phenotypic evaluation of traits expressed in adult plants, mutant
studies and genetic transformation. The length of the vegetative phase is an important
factor limiting breeding in tree species. A method called high-speed breeding or fast-track
breeding has been employed to reduce the duration of the juvenile phase prior to flowering
and fructification in trees. This method combines genetic transformation and MAS in
the same breeding program. Flachowsky et al. [107] obtained BC1 apple lines in which
genes for resistance to apple scab and powdery mildew were pyramided through an MAS
scheme in which one of the parents was a transgenic early flowering plant overexpressing a
FRUITFULL homolog (BpMADS4), then eliminated by segregation. A similar approach has
been developed using the integration of precocious transgenic trifoliate orange with the
overexpression of CiFT (Citrus FLOWERING LOCUS T), applied to incorporate resistance
to citrus tristeza virus of trifoliate orange into citrus germplasm [108]. Using fast-track
breeding system, one generation of backcrossed breeding that would normally take at least
five years was achieved in a single year.

Numerous studies pointed at comparing MAS with other selection criteria. Different
results came out, but in general the choice of the best selection method depends on several
factors, above all the nature and genetic basis of the trait for which the selection is applied.
Castro et al. [109] recommended the use of MAS for four QTLs for resistance to ascochyta
blight in chickpea because the use of markers reduced the time taken to select resistant
lines even if it was more expensive than phenotypic selection. In another study, genomic
selection resulted in higher selection efficiency than MAS for six traits related to reaction
to fusarium head blight in common winter wheat, probably due to the complex quanti-
tative genetic basis of resistance to fusarium head blight in this species [110]. Therefore,
as indicated by the recent scientific literature, MAS can provide the best results when
combined with other approaches in breeding programs, depending on the genetic control
of the target trait. As an example, it has been applied to hybrids production in rice, in
which selection for resistance genes is integrated with selection for hybrid genes related to
male sterility [111–113]. In particular, Kim et al. [114] described a large breeding program
in which hybrid rice lines highly resistant to diseases were selected based on three major
hybrid genes, six genes for resistance to bacterial blight, four genes for resistance to blast,
and other two genes for resistance to brown planthopper and tungrovirus.

4. Genomic Selection and Machine Learning

Plant breeding programs are typically time- and cost-intensive and, depending on
the crop, it can take many years until a new variety is released. This reflects the fact that
breeders, after creating new variability through the crossing and obtaining genetically
stable lines, have to test variety candidates in multilocation trials in order to select superior
genotypes with a high agronomic performance across a range of different environment
conditions at the highest possible precision. In the pre-genomic era, common breeding
strategies involved the use of classical quantitative genetic approaches, including pedigree
information to estimates Best Linear Unbiased Predictors (BLUPs) [115]. Since the 1990s,
advances in molecular genetics techniques has led to development of different molecular
marker systems which drastically increased the total number of polymorphic markers
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available to plant breeders, revealing widespread genetic variation in genomes. More than
10,000 QTLs using different marker systems have been reported in more than 120 studies
covering 12 plant species that aimed to improve quantitative traits of economic impor-
tance [116]. In the last two to three decades, molecular markers have been integrated in
the conventional breeding by applying MAS for single trait provides selecting individuals
with QTL-associated markers that have major effects. However, agronomically important
quantitative traits are often controlled by many small-effect genes, which have been diffi-
cult to take advantage of in practical breeding [117]. Indeed, small-effect loci are difficult
to map, and, whenever mapping is successful, often multiple QTLs are present, which
are difficult to use simultaneously in breeding. Consequently, MAS had limited success
in improving quantitative traits. Moreover, attempts to improve complex quantitative
traits by using MAS have been unsuccessful due to the instability of QTL across multiple
environments, due to QTL x environment interactions [118]. More recently, the possibility
of using high-density SNP arrays allowed the development of statistical models to predict
marker trait associations accurately, depending on the genetic architecture of the predicted
trait. One of the most widely used strategies involves using the additive relationship
matrix estimated from markers instead of the additive relationship matrix estimated from
pedigree with BLUP models. This was the beginning of the genomic (or genome-wide)
selection (GS) era, and the new BLUP model was called a G-BLUP model [119,120]. The
GS is a method that has promised to overcome the limitations of MAS for quantitative
traits [121], with the objective to determine the genetic potential of an individual instead of
identifying the specific QTL. Over the past two decades, several different statistical models
have been proposed for GS, including methods which assume the following: (i) a normal
distribution of SNP effects (e.g., Genomic BLUP—GBLUP, Ridge Regression best linear
unbiased prediction—RR-BLUP); (ii) a prior distribution of effects with a higher probabil-
ity of moderate to large effects (BayesA, weighted Bayesian shrinkage regression wBSR);
(iii) some SNP effects are zero (BayesB, BayesCπ); (iv) nonparametric methods (random
forest, reproducing kernel Hilbert space (RKHS) or neural network approaches) [122]. To
implement GS, a training population and a test population are first established, which
consist of individuals included in the reference population, with phenotypes for the target
trait(s) and genome-wide DNA marker genotypic data [119]. The genotype and phenotype
information from the training set is used to derive an equation that predicts the effect of
each marker on the trait, with all marker effects fitted simultaneously. If the markers are in
LD with the causal mutations affecting the trait, they will capture a large proportion of their
genetic variance. Marker effects are estimated using individuals of the training population
with both genotypic and phenotypic information. These effects are combined with marker
information of an individual to calculate the genomic estimated breeding value (GEBV).
To optimize the model, its predictive ability is calculated based on a cross-validation (CV)
system using the training and the test population. Subsequently, GEBVs are estimated
for the test population, and the predictive ability of the model is then calculated as the
correlation between GEBV and phenotypes of the test population. For all major crop
species, numerous studies have reported the successful selection decisions based on GS
to improve accuracy of selection and speed of genetic improvement [123]. From these, at
least three key learnings of practical importance from implementing GS in crop breeding
programs can be derived. The first two concern the training population that must be
very large and should include individuals (lines/varieties) closely related to the selection
candidates [124]. Estimates of the number of loci affecting quantitative traits likely range
from 2000 to 4000 [125]. Setting-up of the first training data is often a large investment,
and breeders should consider that an increase in prediction accuracy is observed with
increasing training population size, as reported for wheat for which a plateau at ~700 lines
consisting of full-sib, half-sib, and less related wheat lines from three consecutive breeding
cycles have been considered [126]. The third teaching concerns the reference population,
which includes training and test populations, that must be frequently updated with new
genotyped and phenotyped individuals to ensure the accuracy of the GEBV is maintained
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over time [127]. When quantitative resistance is based on many minor genes, GS should be
preferred to MAS. Over the past several years, a number of studies demonstrated the effec-
tiveness of the current GS models to capture and predict the genetic variation for disease
resistance, particularly quantitative disease resistance, for example wheat rusts [128–131],
Fusarium Head Blight in wheat [110,132], and Leaf Blight in maize [133]. Moreover, MAS
could also be used together with GS in a breeding program to fix major QTLs in the F2
and F3 generations, followed by GS for resistance traits with a more complex genetic basis,
in order to avoid useless evaluation of lines that do not carry essential QTL alleles [134]
(Figure 2).
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With advances in GS, volumes of data have dramatically increased, and consequen-
tially also research efforts aimed at integrating and unifying several fields of research
have increased, such as computer science or machine learning (ML). ML is a subfield of
artificial intelligence (AI) that enables machines to improve at a given task with experience.
There are three main branches of ML: supervised (models are trained using dataset with
known features, learning to predict features for new and unseen elements of dataset),
unsupervised (models are trained using nonlabeled data, they attempt to discover hidden
patterns on their own and draw conclusions), and reinforcement learning (models learn
over time by interacting with their environment, gaining rewards for successful actions and
trying to maximize cumulative reward). The major difference between ML and statistics
is their purpose. Statistical models are designed for inference about the relationships
between variables, which is achieved through the creation and fitting of a project-specific
probability model. ML models are designed to make the most accurate predictions possible,
by using general-purpose learning algorithms, automatically tuning their parameters in
the training phase to find the optimal patterns in often rich and unwieldy data. In other
words, while statistical models try to find correlations in a dataset in order to relate data
to output results and possibly predict future values, the goal of ML is to have predictions
as correct as possible, not to find correlations; obviously it will start from a mathematical
basis (statistical learning), evaluating all the possible functions that describe those data
and choosing the one that provides the “minimum expected risk”. For example, in the
analysis of genotypes, classical statistics analyses each pair of markers in association with
the phenotypes independently of the other markers, to understand which ones are involved
in the expression of a certain trait. By changing the focus from searching for associations
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to predicting, through ML the multivariate relationship between markers is validated by
the prediction success on the dataset test: ML methods can identify complex interactions
between attributes without making assumptions about the data to be analyzed, or at least
make much more generalized assumptions, and thus simplifying the methods. As shown
by Grinberg et al. [135] on three experiments under different conditions and on different
datasets (yeast, rice and wheat), using and comparing the results of different statistical and
ML models, ML models were better able to interpret the system of genotype/phenotype
interactions. ML methods that currently prove to be most successful, which fall within
the supervised learning, are SVM (support vector machine) and random forest, as also
observed by Gonzalez-Camacho et al. [136] in the analysis of rust resistance in wheat.

A special case of ML is represented by artificial neural networks (ANN), which are
computational models built on the brain functioning of vertebrates and most invertebrate
animals. In particular, the behavior of biological neurons is replicated with mathematical
functions; these neurons are linked together in a network by connections called synapses.
The brain is not static but modifies itself, at different levels, based on incoming stimuli,
physiological alterations, experience, learning, etc. Changes in synaptic forces (synap-
tic efficacy), the number and structure of the synapses themselves, define the synaptic
plasticity [137,138] that is believed to contribute to learning and memory. In the simplest
architecture of an ANN, one hidden layer, containing neurons, is present between the input
and output. When many hidden layers are considered, we talk about deep learning (DL).
To clarify the concept, we report a concrete example. Let us take many pictures of different
leaves attacked by two distinct diseases that we would like our network to recognize.
We supply the images as input and we read the output value, comparing it with the real
value we expect (in this case we are talking about supervised learning because in the
learning phase, we communicate the correct values to the network). If the output value is
wrong, the learning algorithm will modify the weight values of the mathematical functions
(neurons), trying to minimize a specific error function. By repeating this process several
times, the network can come to recognize the incoming sample with higher probability. The
effectiveness of this learning lies in the ability of the neural network, once properly trained,
to generalize; that is, it will be able to classify the two types of diseases, even providing, as
input, images that it has never processed. Simplifying, we can think that each hidden layer
learns a certain characteristic of the input data. It will do everything by itself in the learning
phase. After the learning phase the network is ready to predict new and never seen data;
in fact, providing an input, the network will recognize some specific characteristics present
in it, selecting them among the many it has learned, thus allowing the classification. The
big advantage of such a model is that we don’t have to know a priori which characteristics
the net will learn, and which will be useful for the classification. We will have a kind of
black box able to classify data autonomously (Figure 2). It should also be emphasized that
everything will be independent of the type of data provided. The network will learn to
recognize the key characteristics for classification, based on the examples provided only.
A binary classifier, like the example, is just one of the possible applications obtainable
with DL. With different types of layers and architectures, other DL networks can perform
various and more difficult tasks. Examples of practical applications of DL retrieved in
literature include understanding the correlation between genotype and phenotype [139],
or prediction of molecular phenotypes ab initio from a DNA sequence allowing to discover
causal variants for genetic diseases [140]. In this case, the big advantage of DL networks,
analyzing the genetic variants in the population, is just that only few variants will be
used in the training phase, but predictions will be valid for all other variants [141]. Deep
learning approaches were applied also in the phenotypic data analysis. Indeed, tradi-
tional methods of phenotyping have not kept pace with the available high-throughput
genotyping tools, and researchers and engineers had to adapt newer technologies in field
phenotyping to overcome this bottleneck. Singh et al. [142] reviewed examples of DL in
plant biotic stress image-based phenotyping in different crops (e.g., in apple for Alternaria
leaf spot and mosaic rust; in Cassava for brown streak disease; in tomato for yellow leaf
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curl virus; in grape for leaf blight; in wheat for powdery mildew). A study aiming at
the identification of the Northern corn leaf blight in maize reported DL successfully used
together with images from UAV (unmanned aerial vehicle) reconnaissance for the iden-
tification of the disease [143]. The advances in high-throughput phenotyping data allow
to reinforce the concept of “envirotyping” that involves collecting environmental factors
through multi-environment trials, geographic and soil information systems and empiri-
cal evaluations and has various applications, including environmental characterization,
genotype x environment interaction analysis and phenotypic prediction [144].

5. Effectoromics

Among “omics” technologies that have provided new insights into the understanding
and managing of pathogenesis, effectoromics is a novel approach that allows the identifi-
cation of candidate pathogen effectors (Avr) and their use as functional markers to define
corresponding host resistance (R) and susceptibility (S) genes. A review has been recently
released on the evolution of methods used in effector discovery, from physical isolation
and in silico predictions to functional characterization of the effectors of plant pathogens
and identification of their host targets [145]. Few examples are so far reported in the liter-
ature on crops. For instance, for the tomato late blight, caused by Phytophthora infestans,
three genes for field partial resistance (Rpi-blb1, Rpi-blb2 and Rpi-vnt1.1), as well as the
corresponding avirulence genes (Avrblb1, Avrblb2 and Avrvnt1, respectively), have been
discovered [146–151]. More recently, a new family of Phytophthora small extracellular
cysteine-rich proteins (PcF/SCR) has been reported as recognized by solanaceous plants
that, combined with the well-known NLR genes, might provide a tool to target a wide
spectrum of the P. infestans population and contribute to potato breeding [152]. Several
candidate effectors from wheat pathogens have also been identified, and some were func-
tionally validated [153,154] and cloned [155]. In particular, susceptibility to tan spot caused
by the necrotrophic pathogen Pyrenophora tritici-repentis is strongly correlated with plant
sensitivity to the effector ToxA which triggers strong necrosis in wheat genotypes that carry
the susceptible allele at the Tsn1 resistance locus. A high-throughput screening procedure
for evaluating wheat genotypes through the infiltration of ToxA into wheat leaves has been
developed to identify commercial cultivars carrying the susceptible allele at the Tsn1 lo-
cus [156]. Nevertheless, in the case of diseases such as FHB or Blumeria graminis f. sp. hordei,
the quantitative resistance is determined by a high number of effectors involved, and more
efforts must be done to discover F. graminearum effector reservoir [157,158]. In particular,
nearly 7% of the genome of the barley powdery mildew fungus encodes secreted effector
proteins [158]. The development of genomics pipelines to populate sequence database of
pathogens with repertoire of effectors, and corresponding expression data following plant
pathogen interaction, would provide the necessary knowledge for the full deployment of
this alternative approach for plant screening. For example, the Pathogen–Host Interactions
database (PHI-base, www.phi-base.org, accessed on September 2019) is a manually curated
database comprising over 6780 genes from 268 pathogens of over 210 hosts (September
2019), of which 60% are plants [159]. Thereafter, full deployment will be possible by com-
bining effectoromics with targeted genome engineering approaches (genetic transformation,
genome editing) of host plants.

Because poor information related to the study of effectors is available in crops to date,
to the best of our knowledge, this highlights the need for further researches. We suppose
that the availability of databases of effectors and the knowledge of crop and pathogen
genome sequences could make modern approaches as machine/deep learning possible to
predict genes that interact with them to confer resistance or susceptibility.

6. New Breeding Technologies (NBTs)

Good opportunities in improving pathogen resistance are offered by genetic engineer-
ing. Initially, most attempts had involved a transgenic approach in many crops [103,160–167]
and some genetically engineered food crops have been approved for commercial produc-

www.phi-base.org


Int. J. Mol. Sci. 2021, 22, 5423 13 of 27

tion. This strategy followed by cross and MAS has also been applied to accumulate more
genes/alleles in transgenic plants for reaching a durable resistance in crops, but it has
many legislative and sustainability problems. More recently, the direct modification of the
plant genome is possible through the insertion of the native resistant allele using genetic
transformation, or via gene modification/editing approaches by using ecofriendly new
breeding technologies (NBTs). The greater knowledge of the gene sequence and its precise
position on the chromosome provided by advances of genomic and molecular techniques,
as discussed in this review, and by the tools of bioinformatics contributed to this out-
come. Among these, cisgenesis and intragenesis, and genome editing (GE) techniques have
had the widest application. Some applications of RNA interference and transgrafting to
improve disease resistance in woody fruit species have also been reported [168].

6.1. Cisgenesis/Intragenesis

The exploitation of the genetic pool of a species or of a closely related species, which
is similar to that available for traditional breeding, can be applied to genetic modifications
of crop plants by using cisgenesis or intragenesis [169–171]. The result is either the transfer
of resistance genes from related species, or overexpression of those already present within
the crop itself, with significant time savings and avoiding linkage drag in respect to
traditional gene transfer obtained by crossing. Assumption of this approach is isolation of
complete functional genes, together with their associated promoter/terminator (regulatory
sequences), which is facilitated by the advancement of sequencing technologies and the
availability of wide genome information. Unfortunately, this approach is limited to few
crop species. In cereal crops, the use of cisgenesis in improving the pathogen resistance is
currently limited to wheat [172], whereas horticultural, fruits and ornamental crops, many
of which are heterozygous and vegetatively propagated, were successfully improved for
disease resistance through cis/intragenesis approaches [173].

In potato, a Durable Resistance against Phytophthora (DuRPh) program was devel-
oped with the aim of introducing, by a cisgenic approach, several (RERR)-genes from wild
potatoes, with their native regulatory sequences, or a stack of multiple R-genes to ensure
a stable and widely efficient resistance, into cultivated susceptible cultivars and to verify
their performance by field trials [171,174,175]. Moreover, by a marker-free Agrobacterium-
mediated transformation, cisgenic potato plants by stacking blight resistance R-genes from
Solanum stoloniferum (Rpi-sto1) and S. venturi (Rpi-vnt1.1) were also obtained, which showed
broad-spectrum resistance to late blight without affecting the characteristics of the original
variety [176]. Other examples of efficient application of these approaches are cisgenic melon
plants developed by transferring the genes At1 and At2 from wild melon (Cucumis melo) to
a susceptible variety that showed enhanced activity of glyoxylate aminotransferase and
increased resistance against powdery mildew [177], and intragenic strawberry plants with
overexpression of endogenous PG1P-RRRP under the control of the strawberry promoter
from the fruit specific expansin gene (Exp2), very active in red, ripe fruits, which showed
resistance to gray mold [178]. Cis/intragenesis has been effectively used for different
woody fruit species including apples, utilizing resistance genes from wild Malus acces-
sions to confer resistance against the fire blight and scab disease [179–186]. In grapes, the
most important table variety in the world “Thompson Seedless” was engineered with a
VVTL-1RRRP (vvtl-1) cisgene to constitutively express VVTL-1 (Vitis vinifera thaumatin-
like protein), resulting in two lines with foliar delay in powdery mildew development
and decreased severity of black rot, and berries with significantly lower sour-bunch rot
incidence during field tests [187]. Finally, a “foreign DNA-free” intragenic vector has
been developed in Citrus spp. cultivar (Citrus paradisi) by using C. clementina-derived
T-DNA-like region [188].

Despite the greater safety of the genotypes obtained by cis/intragenesis, many mea-
sures must be adopted to improve the application of this approach, overcoming specific
problems, such as the variability of gene expression or the silencing of endogenous genes
depending on the position of insertion of the cis/intragene or the presence of extraneous
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sequences [171,176,185,189]. Neverthess, cisgenic lines could be a good starting point in
the choice of parents to be used in a breeding program for disease resistance (Figure 2).

6.2. Genome Editing (GE)

Genome editing (GE) refers to an advanced genetic modification tool in which the
genome sequences are edited with high efficiency and accuracy by using engineered nucle-
ases, such as zinc finger nucleases (ZFNs), transcription activators like effector nucleases
(TALENs), and, recently, clustered regularly interspaced short palindromic repeat (CRISPR)
systems with associated protein 9 (Cas9) (CRISPR/Cas9) [190–192]. The nucleases, intro-
ducing double-strand breaks (DSBs) into a definite region of the genome, can precisely
delete, replace, or insert specific sequences in a targeted site. The DNA repair machinery
makes the modifications useful for gene knockout/in and to create new better alleles for
a specific trait that can replace the unfavorable ones. The use of targeted nucleases to
change specific genes is dependent on knowledge of the genomic sequences, which are
now available for major crop plants.

Unlike ZFNs and TALENs, which use protein motifs for target identification, in the
CRISPR/Cas9 system the specificity of the cleavage is governed by base complementarity
between the CRISPR RNA and the target DNA or RNA molecules. It has many more
advantages than the former, due to its simplicity, high efficiency, high specificity, easiness
of use in laboratory, wide applicability, the possibility of multiplexing that simultaneously
causes targeted mutations in multiple genes [193,194]. It is also not so expensive, and
vector designing is relatively less complicated due to the availability and easy access to
the improved bioinformatics tools [195]. Furthermore, designing two or more targets for
one gene can improve the probability of obtaining homozygous mutations in the first
generation [196]. This is particularly important for woody plants which have long gen-
eration times. Generally, potentially useful CRISPR/Cas9 mutations are not restricted
to ORF regions because they can regard some cisregulatory elements, such as promot-
ers [197] (Table S1). The CRISPR/Cas9 system can achieve efficient and transgene-free
editing in plants through different ways, i.e., Agrobacterium tumefaciens transformation,
protoplast transformation or direct bombardment of guide RNA (gRNA) and Cas9 to
plant cells [198,199]. Most of the modifications aimed to increase pathogen resistance
were performed by using Agrobacterium-mediated transformation of leaves [200–207],
cut cotyledons [208,209], epicotyls [207,210–212], immature embryos [213], embryogenic
cells [214], floral explants [215], suspension cells [216], or protoplasts [217,218]. Moreover,
the identification of genotypes with good transformation/regeneration performance, the
standardization of transformation protocols and the increasing transformation efficiencies
may facilitate the broad application of GE strategies [219,220]. GE has been demonstrated
to confer resistance against major pathogens, including bacteria, fungi and DNA and RNA
viruses (review in Supplemental Table S1). Regarding bacterial pathogens, many examples
are available in which both S genes and negative regulators of plant defense response were
edited target sites for resistance to rice bacterial blight caused by Xanthomonas oryzaepv.
oryzae (Xoo). This is an important disease that depends on TALE-mediated induction of at
least one member of the SWEET family of sugar-transporter genes involved in the efflux
of sugar across the plasma membrane [221]. Some independent studies have applied
TALEN and CRISPR/Cas9 to target either the effector binding elements (EBEs) within the
promoter or the CDS region of some SWEET genes, also through a multiplex targeting
approach, thus inducing a significant resistance against Xoo [214,222–225]. In tomato, as
well as in citrus, increased broad-spectrum resistance against multiple plant pathogens
was reached with knockout mutants of DOWNY MILDEW RESISTANCE 6 (DMR6), a
gene encoding for a superfamily of 2-oxoglutarate (2OG) Fe(II)-dependent oxygenases
involved in hydroxylation or desaturation steps in plant hormone synthetic pathways,
specifically up-regulated during pathogen infection [209,226]. In both cases, an increase of
salicylic acid levels and no alteration of plant development and morphology were detected.
About the horticultural species, an improved resistance against tomato bacterial speck
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disease was also attained targeting mutation in SlJAZ2 gene [227]. Recent applications of
CRISPR/Cas9 in woody fruit species concerned the increase of resistance against Citrus
canker caused by Xanthomonas citri subsp. citri (Xcc) through knock out of the transcription
factor LATERAL ORGAN BOUNDARIES 1 (CsLOB1), that plays a critical role in promoting
pathogen growth and erumpent pustule formation [210,211], or the resistance to fire blight
disease caused by Erwinia amylovora in apple [218].

Regarding fungal pathogens (Table S1), the well-known example of mutation in
host S genes was represented by the Mildew resistance locus O (Mlo). Mlo encodes a
membrane-associated protein involved in negative regulation of vesicle-associated and
actin-dependent defense pathways at the site of pathogen penetration, and it is required
for PM fungal penetration of host epidermal cells. It has been mutated to confer resistance
to powdery mildew (PM) fungus Blumeria graminis f. sp. tritici in wheat [228,229]. In
particular, Wang et al. [229] used TALENs and CRISPR-Cas9 to introduce site-specific
mutations in a conserved region of the MLO exon 2 of all three homoeoalleles at the
mildew resistance locus O (MLO) of wheat embryos using particle bombardment, and small
deletions in the MLO locus were reported in all three genomes of primary transformants
(T0), conferring broad-spectrum resistance to PM in homozygous mlo plants. Mlo gene
was also edited in a transgene-free manner in tomato [230]. Among fruit species, in grapes,
Wang et al. [215] targeted the VvWRKY52 transcription factor which has been shown
to play roles in biotic stress responses, and homozygous mutants obtained in the first
generation showed increased resistance to Botrytis cinerea.

Genome editing has also been applied to improve resistance against oomycetes.
A study reported the editing of the effector gene Avr4/6 in Phytophthora sojae that pre-
vented its recognition by the corresponding soybean R proteins Rps4 and Rps6, demon-
strating its involvement in immunity activation [231]. Moreover, GE provides an efficient
tool against both DNA and RNA plant viruses (Table S1). Designing sgRNAs to tar-
get viral genetic elements, MP (Movement Protein), IR (Intergenic Region), CP (Coat
Protein), Rep (Replication association protein), LIR (Long Intergenic Region), prevents
replication of viral genes and allows us to the development of resistance against viral
pathogens by blocking its access to replication protein or causing error prone mutation of
viral genome [202–204,232–234]. Recently, an endogenous banana streak virus (eBSV), a
plant pathogenic double-stranded DNA virus, has been inactivated using multiplexing
CRISPR/Cas9 system, and asymptomatic banana plants were obtained [216]. Cas protein
variants from other bacterial strains, such as the Cas9 from Francisella novicida (FnCas9)
and the Cas13a from Leptotrichia shahii (LshCas13a) or Leptotrichia wadei (LwaCas13a), were
more effective against RNA viruses [206,235]. In particular, FnCas9 operated by RNA
binding and not for cleavage capacity while the cleavage sites of LshCas13 were essential
against different types of RNA viruses. For example, FnCas9 and its sgRNA were engi-
neered to target CMV (Cucumber Mosaic Virus) and TMV (Tobacco Mosaic Virus) [236], and
the LshCas13a system was successfully used to inhibit potyvirus infection in tobacco and
potato [206].

Another useful approach to limiting the spread of the viruses and the evolution of
the disease it is to identify host factors necessary to assist viruses in the various phases of
infection [208,213,237]. As an example, targeting eIF4E via CRISPR/Cas9 system enhances1
resistance against many RNA based viruses, including Ipomovirus and Potyviruses in
cucumber [208] and in rice [213].

There are some problems in the application of these strategies that must be taken
into account, such as the possibility of impairing the growth of the crops, the risk of off-
target effects or the evolution of mutations in targeted viruses, especially DNA viruses,
to escape from CRISPR/Cas9 cleavage [238], and more researches are needed to improve
these systems and avoid complications in addition to exploring all their potentialities. The
choice of genomic targets essential for the replication or movement of the viral pathogen,
multiplexing the guide RNAs to improve their robustness, or the use of Cas12a (also known
as Cpf1) may reduce the occurrence of escape viral variants because mutations caused
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by CRISPR-Cas12a are less likely to abolish the recognition of the target by the original
guide RNA minimizes viral evasions [204]. Edited plants in R genes obtained with the
approaches here described could be useful to be integrated in crosses within breeding
programs aiming to shorten the obtaining of lines with favorable allelic combinations and
improved resistance, as proposed in the Figure 2.

7. Conclusions and Prospects for New Breeding Scenarios

Severity and frequency of disease occurrence are rising in light of changes in global
climate, affecting crop production worldwide. With the need to accelerate the development
of improved varieties, genomics-assisted breeding is becoming an important tool in breed-
ing programs. An efficient combination of approaches based on DNA-markers, genomic
sequence information and high-throughput phenotyping can help in obtaining improved
cultivars that yield higher in an increasing disease scenario. A possible advanced breeding
scheme to obtain genotypes with enhanced resistance, almost for herbaceous plants, as
proposed in Figure 2, begins with selection of parental lines characterized by high level
of disease resistance, due to major known resistance loci, but also to minor undefined
alleles. Lines obtained from genome editing in R genes could be a good starting choice
in a pyramiding gene program. Possibly, potential candidate lines could be also derived
from screening for effector targets of resistance genes; those with a positive response to the
effector are useful for breeding superior varieties. Molecular markers associated to alleles
at major loci or perfect markers designed on the gene sequence in the case of a cloned R
gene can be used in MAS in order to fix them and obtain the desired allele combination at
the very first generations of the breeding scheme. Then, some genomic selection cycles can
be carried out to select for minor quantitative resistance genes which are responsible for
more durable resistance but are very difficult to identify and select for. Machine learning
for big data management can also be integrated in this proposed breeding scheme which
complements MAS and genomic selection, in particular supporting phenotypic data ac-
quisition and interpretation and breeding value prediction models. Such an integration of
different approaches can strongly contribute to shortening the duration of the breeding
process and reduce the cost of selection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22115423/s1, Table S1: Examples of use of genome editing technologies in resistance
breeding of crop plants.
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CP Coat Protein
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