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Dramatic progress in the outcome of allogeneic hematopoietic stem cell transplantation

(allo-HSCT) from alternative sources in pediatric patients has been registered over

the past decade, providing a chance to cure children and adolescents in need of

a transplant. Despite these advances, transplant-related mortality due to infectious

complications remains amajor problem, principally reflecting the inability of the depressed

host immune system to limit infection replication and dissemination. In addition,

development of multiple infections, a common occurrence after high-risk allo-HSCT, has

important implications for overall survival. Prophylactic and preemptive pharmacotherapy

is limited by toxicity and, to some extent, by lack of efficacy in breakthrough infections.

T-cell reconstitution is a key requirement for effective infection control after HSCT.

Consequently, T-cell immunotherapeutic strategies to boost pathogen-specific immunity

may complement or represent an alternative to drug treatments. Pioneering proof of

principle studies demonstrated that the administration of donor-derived T cells directed

to human herpesviruses, on the basis of viral DNA monitoring, could effectively restore

specific immunity and confer protection against viral infections. Since then, the field has

evolved with implementation of techniques able to hasten production, allow for selection

of specific cell subsets, and target multiple pathogens. This review provides a brief

overview of current cellular therapeutic strategies to prevent or treat pathogen-related

complications after HSCT, research carried out to increase efficacy and safety, including

T-cell production for treatment of infections in patients with virus-naïve donors, results

from clinical trials, and future developments to widen adoptive T-cell therapy access in

the HSCT setting.
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INTRODUCTION

Dramatic progress in the outcomes of allogeneic hematopoietic
stem cell transplantation (allo-HSCT) from alternative sources
in pediatric patients has been registered over the past decade,
providing a chance to cure the children and adolescents
in need of a transplant (1–4). Despite encouraging results,
infections are still important causes of morbidity and mortality
in immunosuppressed patients following HSCT (5). Viral
reactivations predominantly develop within the first 6 months
after HSCT. Double-stranded DNA viruses contribute to
substantial morbidity, with herpesviruses, adenovirus (AdV)
and polyomaviruses BK (BKPyV) and JC (JCPyV) as the
clinically most relevant infections (5–14). In addition, respiratory
viruses and fungal infections are also associated with dismal
outcome (15–18).

If the development of single opportunistic infections may
have severe consequences in transplant recipients, it has been
demonstrated that persistent detection of multiple DNA viruses
is frequent after allogeneic HSCT, and had a dose-dependent
association with increased mortality (19). Indeed, cumulative
viral load AUC in the first 100 days post-HSCT was consistently
and independently associated with increased risk for early
and late overall mortality and non-relapse mortality (NRM).
The effects on NRM do not appear to be direct, as only a
small portion of patients succumbed to viral disease. Rather,
viremia may cause indirect effects due to increased production
of proinflammatory and immunomodulatory cytokines that
contribute to the pathogenesis of HSCT complications (20, 21).

In recent years treatment of viral complications after HSCT
has improved in part because of the introduction of new
antivirals, and in part from the preemptive use of antiviral
agents at the onset of viremia. The latter is successful
thanks to the widespread use of surveillance by molecular
detection methods (22, 23). Likewise, the ability to recognize
invasive fungal disease while in the early stages, by means of
imaging and peripheral blood antigen measurement, coupled
with assessment of antifungal immune responses, allowed for
prompt treatment and amelioration of outcome (24). Despite
advances in prophylactic and preemptive pharmacotherapy, anti-
pathogen therapeutics are limited by toxicity, in particular
myelosuppression and renal injury, and to some extent by a lack
of efficacy in breakthrough infections (25).

The development of infections in the post-transplant period
principally reflects the inability of the absent/depressed host
immune system to limit pathogen replication and dissemination;
loss of T cell function is central to this effect (26–28). T-
cell reconstitution is a key requirement for effective infection
control following HSCT, and factors that influence the speed

Abbreviations: allo-HSCT, allogeneic hematopoietic stem cell transplantation;

AdV, adenovirus; BKPyV, polyomavirus BK; JCPyV, polyomavirus JC; CMV,

Cytomegalovirus; HHV6, human herpes virus 6; EBV, Epstein-Barr virus;

PTLD, Post-transplant lymphoproliferative disease; HC, hemorrhagic cystitis;

PML, progressive multifocal leukoencephalopathy; UD, unrelated donor; NRM,

non-relapse mortality; DLI, donor lymphocyte infusions; CTL, Cytotoxic T

lymphocytes; a/cGVHD, acute/chronic graft vs. host disease; VSTs, virus-specific

T cells; CI: calcineurin inhibitors.

of T-cell recovery also impact the risk of infection in this
period (27). A high degree of HLA mismatch between donor
and recipient reduces the efficacy of immune surveillance
due to poor epitope recognition, and increases the risk
of inducing alloimmune responses, thus requiring stronger
immunosuppression to prevent and treat graft-vs.-host disease.
Likewise, delayed immune recovery is associated with T-cell
depletion of the graft before transplantation.

Given the central role of pathogen-specific T cells in infection
surveillance, immunotherapeutic strategies to accelerate
reconstitution of pathogen-specific immunity and to hasten
T cell recovery after HSCT represent a compelling alternative
to drug treatments (14, 23, 27, 29–36). Moreover, preventive
strategies may be expanded toward the use of virus-specific T cell
assays to help identify patients at risk and to tailor therapeutic
intervention (23, 37–40).

Here, we discuss the clinical achievements of T-cell therapy
for infections, describe the impact of technical developments on
clinical applicability, and give indications on future directions to
broaden access.

CELL THERAPY FOR INFECTIONS AFTER
HSCT

Donor Lymphocyte Infusions
The use of donor lymphocyte infusions (DLI) derived from
seropositive stem cell donors is an effective salvage therapy for
viral infections in HSCT recipients prior to T-cell recovery,
but the risk of potentially severe acute or chronic graft-vs.-host
disease (GVHD) is a concern (41). In order to reduce the risks
derived from alloreactivity associated with DLI, non-specific T
cells transduced with a retroviral construct containing suicide
genes, to induce susceptibility to drug mediated lysis in case
of development of alloreactive response, have been employed
with success (42). The use of DLI modified with the iCasp9 cell-
suicide system in a small cohort of children transplanted for acute
leukemia demonstrated the potential advantages in terms of rapid
and consistent cell removal in case of GVHD development (43).

Pathogen-Specific T Cells: Production
Protocols
An alternate strategy consists in delivering infectious antigen-
specific T cells selected by cell culture or by sorting. A major
breakthrough was achieved by the adoptive transfer of virus-
specific cytotoxic T lymphocytes (CTL) reactivated from the
peripheral blood of HSCT donors as prophylaxis/treatment
against CMV disease or EBV-positive post-transplant
lymphoproliferative disease in patients given T-cell depleted,
HLA-disparate, unrelated HSCT (32, 33). This approach has been
successful in preventing and treating CMV and EBV infectious
complications after T-cell depleted haplo-HSCT, both in the
pediatric and adult setting, while limiting the risk of inducing
GVHD (27, 30).

Initially, protocols for production of virus-specific T cells
(VSTs) were all based on complex procedures of stimulation and
in vitro expansion, leading to a final product of polyclonal T cells
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with broad specificity. One of the main advantages of ex vivo
differentiation is the ability to overcome the hurdle of obtaining
substantial numbers of VSTs from donors with low-frequency
memory T cells for a given antigen, and the ability to reduce
alloreactivity by continuous stimulation with viral antigens. This
is counterbalanced by production times, that can be as long as
3–8 weeks, limiting its usefulness in patients with urgent clinical
need and running the risk of inducing cellular exhaustion. The
latter does not seem to be a major obstacle, however, as donor
gene-marked EBV-specific T cells cultured for 4–6 weeks were
able to reconstitute T cell memory in HSCT recipients, and were
detected as late as 9 years after administration in patients with
viral reactivation (44). The availability of synthetic peptide pools,
novel techniques, and progress in culture reagents and vessels
has allowed reduction in production time, bringing it to < 2
weeks (45–47).

A valid alternative to cell culture is direct selection of
pathogen-specific T cells by using viral peptide HLA class I
multimers conjugated to magnetic beads (48), or stimulation
with viral peptides followed by the IFN-gamma capture assay
with magnetic beads (34, 49, 50). The latter has an important
advantage over multimers, as it allows selection of CD4+ in
addition to CD8+ virus-specific T cells, guaranteeing sustained
long-term immune protection (51). Direct selection allows rapid
production of VSTs, but it is generally feasible only for pathogens
inducing an ample memory T cell pool, such as for CMV or EBV,
and requires a leukapheretic procedure to obtain starting cellular
material. In addition, it is not an option for virus-naïve subjects.

Pathogen-Specific T Cells: Clinical Results
for EBV, CMV, ADV, and Aspergillosis
Since the early clinical trials for EBV and CMV, the prophylactic,
preemptive and curative use of T cell therapy for infection
has expanded, due to the reported high rates of response
and low toxicity (Tables 1, 2). The efficacy of virus-specific
adoptive cellular therapy has been difficult to assess, due
to the difficulties of running large prospective multicenter
clinical trials, and heterogeneity of reported studies in study
design, cell product characteristics and treated cohorts. However,
prophylaxis/preemptive treatment of EBV PTLD after HSCT has
shown more than 95% response rate in the 107 patients treated
with cultured single VSTs (23, 33, 44, 52, 53, 85). Treatment of
overt disease was successful in over 80% of the patients treated
for PTLD (52, 54–56, 85) or CMV viremia or disease (32, 35, 58–
62), with little toxicity almost exclusively limited to a 1–10% rate
of GVHD. The rate of GVHD was generally lower in patients
treated for EBV infection/disease, probably due to a prevalence
of CD8+ T cells in the infused EBV-specific CTLs, compared
to a larger portion of CD4+ T cells present in CMV-specific
products. Directly selected cellular products employed in more
recent studies have proven equally effective in reconstituting
post-transplant immunity, but rates of clinical responses were
slightly lower, reportedly 60% in patients with PTLD (50, 57) and
70% in patients treated for CMV (48, 49, 63, 65, 73) or ADV
(34, 66–68, 86) viremia or disease. Moreover, the incidence of
new onset or exacerbation of GVHDwas higher at 15%, likely due

to residual, potentially alloreactive, T cells in the product. Clearly,
as head-to-head controlled studies with cell products obtained
by culture vs. direct selection have not yet been performed, the
reported efficacy and safety rates of the different strategies may
be confounded by the variety of protocols and clinical settings.

Attempts at reconstituting cellular immune responses to
fungal antigens, and controlling invasive aspergillosis (IA) in
HSCT recipients have been also successful. Pioneer work showed
the feasibility to expand T cell clones directed to aspergillus
conidia and devoid of alloreactivity, that were employed to
treat IA in 10 recipients of haplo-HSCT (35). Emergence of
circulating pathogen-specific T cells were associated with control
of Aspergillus antigenemia and infectious mortality.

Pathogen-Specific T Cells: Preliminary
Clinical Results for PyVs and HHV6
Cell therapy has been employed also for the treatment of other
infections, such as polyomaviruses and HHV6. Although very
preliminary, initial experiences with BKPyV-specific cells are
promising (36, 69), as 13 of 14 patients treated for BKV-
associated hemorrhagic cystitis within a clinical trial of third-
party banked multivirus-specific T cell therapy in allogeneic
HSCT experienced complete resolution of gross hematuria
within 1–2 months (36). Of the two patients treated for virus-
related nephropathy, one responded to treatment by ameliorating
renal function. In 50% of the treated patients, an increase in
BKPyV-specific immune response was observed. The main side
effects were recurrence or new onset of GVHD in 16% of the
whole study cohort and transient hydronephrosis and a decrease
in renal function in one patient who received VSTs as treatment
for BKPyV HC. The latter, associated with a concomitant
bacterial urinary tract infection, could have also been due to lysis
of infected cells in renal tubular cells.

Four patients, reported in two studies, were treated for JCPyV
PML (14, 74). One pediatric HSCT recipient received donor
JCPyV-specific T cells, that was associated with reconstitution
of specific viral immunity, clearance of viral DNA from
the cerebrospinal fluid (CSF) and disease control with
remarkable neurological improvement, in the absence of
immune reconstitution syndrome (14). Three patients were
treated with third-party allogeneic BKPyV-specific T cells, based
on reported observations of a certain degree of cross-reactivity
between PyV BK and JC due to high homology (74). The
CBT recipient fully recovered. In the other two patients, viral
load was cleared or reduced in CSF, with the patients showing
neurologic improvement with residual deficit in one case,
and disease progression in the other. Two of the patients had
immune reconstitution syndrome. Phase I or I/II trials are
currently underway.

Two patients with HHV6 infections were treated with T cells
specific for U11, U14, and U90 within a clinical trial of third-
party banked multivirus-specific T cell therapy in allogeneic
HSCT (36). One patient was treated for HHV6 encephalitis
and the other for HHV6 viremia with fevers and symptoms of
bone marrow suppression, including neutropenia. Both patients
showed decreased viral load and normalization of clinical disease.
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TABLE 1 | Published trials using single pathogen-specific T cells.

Virus Pt n. Antigen LTC stimulation Clinical effects GVHD References

HSCT donor-derived

EBV 113 LCLs in vitro culture 11/13 pts achieved CR, none PTLD 8/51 pts aGvHD;

13/108 cGvHD (11

limited, 2 extensive)

(33, 52)

EBV 6 LCLs in vitro culture 5 pts had EBV-DNA decreased, 1 pts died

of PTLD

None (53)

EBV 14 LCLs in vitro culture 10 pts achieved CR, 4 pts progressive

disease

None (54)

EBV 1 LCLs in vitro culture No response None (55)

EBV 4 LCLs in vitro culture 3 pts achieved CR, 1 pt had decreased

EBV-DNA level without PLTD

None (23)

EBV 15 LCLs DCs pulsed with LCL lysate;

in vitro culture

7/8 pts achieved CR 5 pts (33%) aGVHD (1

gr. I, 3 gr. II, 1 gr. III)

2 (13%)

limited cGVHD

(56)

EBV 6 Lytic and latent

EBV antigens

Peptide mix stimulation;

direct selection

3 pts had CR, 3 pts had no response None (57)

EBV 10 EBNA1 Recombinant protein or

peptides; direct selection

7/10 pts achieved CR 1 grade II aGVHD (50)

CMV 14 CMV virions Fibroblasts infected with

CMV strain; CD8T cell

cloning

All pts reconstituted CMV-specific immunity 3 grade I or II aGVHD (32)

CMV 8 CMV lysate PBMCs cultured in the

presence of virus lysate

6 pts cleared infection after 1 or 2 doses;

1 pt NR; 1 pt NE

None (58)

CMV 16 Inactivated CMV

virions

DCs pulsed with lyophilized

CMV antigen; in vitro culture

All pts reconstituted specific immunity;

8/16 pt did not require antivirals

1 grade I aGVHD (59)

CMV 25 CMV lysate PBMCs pulsed with CMV

lysate;

T cell colony expansion

7/25 pts developed CMV antigenemia;

5/25 pts developed CMV disease (3 CR,

2 NR)

1 grade I GVHD (35)

CMV 9 CMV pp65 peptide DCs pulsed with

pp65-derived peptide;

in vitro culture

6/9 pts developed CMV reactivation; no

CMV disease

3 grade III GVHD

(1 fatal)

(60)

CMV 7 CMV pp65 and

IE1 peptides

PBMCs pulsed with CMV

peptide mixes;

in vitro culture

5/7 had increased antiviral immunity in PB None (61)

CMV 16 CMV pp65

peptides

PBMCs pulsed with 15-mer

CMV peptide mixes; in vitro

culture

14/16 pts cleared viremia None (62)

CMV 9 CMV pp65 or IE1 Peptide-HLA tetramer

selection

8/9 cleared CMV infection 2 grade I or II aGVHD (48)

CMV 18 CMV pp65 protein PBMCs pulsed with protein;

direct selection

15/18 pts had reduction or clearance of

viremia

1 cGVHD (63)

CMV 18 CMV pp65 protein

or peptides

PBMCs pulsed with

protein/peptides; direct

selection

1/7 pts treated prophylactically reactivated

11/11 pts treated preemptively

cleared CMV

5 grade I, 3 grade II- III

aGVHD; 6 cGVHD

(49)

CMV 6 CMV pp65

peptides

PBMCs pulsed with

peptides; direct selection

6/6 pts cleared viremia None (64)

CMV 2 CMV pp65

peptides

PBMCs pulsed with

peptides; direct selection

2/2 pts attained CR None (65)

AdV 9 Type C AdV

antigen

PBMCs pulsed with antigen;

direct selection

5/6 evaluable pts attained viral clearance 1 aGVHD

exacerbation

(34)

AdV 30 AdV hexon protein PBMCs pulsed with antigen;

direct selection

21/30 pts had clinical/virological response 1 grade I GVHD (66)

AdV 8 AdV hexon

peptides

PBMCs pulsed with peptide

mix

8/8 pts cleared viremia; 1 pt subsequently

reactivated due to GVHD therapy

1 grade IV GVHD (67)

AdV 11 AdV hexon

peptides

PBMCs pulsed with peptide

mix; direct selection

10/11 pts cleared viremia and/or AdV

disease

1 grade I, 1 grade III

aGVHD; 1 ext. cGVHD

(68)

(Continued)
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TABLE 1 | Continued

Virus Pt n. Antigen LTC stimulation Clinical effects GVHD References

BKPyV 1 BKPyV VP1 and

LT

PBMCs pulsed with

Peptides; direct selection

1 pt cleared infection and had CR None (69)

JCPyV 1 JCPyV VP1 and LT PBMCs pulsed with

overlapping peptides;

in vitro culture

1 pt cleared infection and had CR None (14)

Aspergillus

f.

10 Fungal conidia PBMCs pulsed with conidia;

T cell colony expansion

9/10 pts attained CR None (35)

Third-party donor-derived

EBV 33 LCLs in vitro culture 14 pts attained EBV CR, 3 pts had PR, 16

pts no response at 6m

None (70)

EBV 5 LCLs in vitro culture 4 pts attained EBV CR, 1 pts progressive

disease

None (71)

EBV 33 LCLs in vitro culture CR or PR was achieved in 68% of HSCT

recipients. For patients who achieved

CR/PR or SD after cycle 1, 1 y OS was

88.9%

1 grade I skin aGvHD (72)

EBV 1 EBV peptides Peptide-HLA multimer

selection

CR after 9m, recurrence then response to

2nd infusion

None (73)

CMV 5 CMV pp65 Peptide-HLA multimers

selection

4/5 pts attained viremia clearance None (73)

JCPyV 3 BKPyV VP1, VP2,

VP3, ST and LT

peptides

PBMCs pulsed with

overlapping peptides;

in vitro culture

2/3 pts cleared infection and CR (1 with

sequelae)

1 IRIS (74)

Experience With Multivirus-Specific T Cells
Most of the cell therapy experience regards treatment of CMV
and EBV infections. However, patients with multiple infections
have a worse outcome (19), and in the pediatric population or
in recipients of haplo-HSCT, the impact of other viral infections,
such as adenovirus or HHV6, has important implications for
overall survival (8, 87). Thus, the possibility to produce in a single
process VSTs specific for multiple viruses is crucial for progress
in the field. Proof of principle studies have been conducted, that
demonstrated feasibility and preliminary efficacy of controlling
viral reactivation after allogeneic HSCT by multivirus-specific
VST of HSCT donor or third-party origin, obtained by ex-
vivo stimulation with virus-transduced EBV lymphoblastoid cell
lines (75–77, 82, 84), dendritic cells nucleofected with plasmids
encoding for viral proteins or pulsed with viral peptides (78, 79,
81), or directly with 15-mer peptide pools from immunogenic
viral proteins (36, 80) (Table 2).

Prophylactic or curative administration in a total of 82
patients treated with HSCT donor-derived cells and 96 third-
party donor cells showed responses in the range of 80–95
and 70–100%, respectively (Table 2). Clinical benefit could be
demonstrated also in patients treated for multiple coincident
infections (36). Although clinical responses have been registered
for all targeted viruses, evidence of T cell expansion in the
peripheral blood of treated patients is mainly seen for viruses
with large memory cell pools, such as CMV and EBV, while,
due to the small size of their memory compartment, immune
responses to AdV or HHV6 do not seem to be boosted
unless a reactivation is underway. Indeed, antigenic competition
that will ensue when engaging multiple target antigens within

the same culture, will determine a preferential expansion
of T cells recognizing the immunodominant specificities of
viruses with large memory cell pools. This will impact on
the composition of multivirus-specific T cell products, as T
lymphocytes directed to certain non-immunodominant targets,
as well as to viruses with low-frequency memory T cells,
will be underrepresented, and it may also ultimately impact
on efficacy.

CURRENT LIMITATIONS OF T CELL
THERAPY FOR INFECTIONS

There are several hurdles that concur in limiting the use and
the clinical efficacy of pathogen-targeted T cell therapy. First
of all, production of pathogen-targeted T cells have been so
far mostly confined to a relatively small numbers of academic
centers with required Good Manufacturing Practice (GMP)
expertise and facilities, that have limited ability to provide
widespread access to these therapies. Moreover, for some
patient categories, such as recipients of HSCT from pathogen-
naïve donors, expansion of dedicated T cell products may not
be feasible.

In addition, the appropriate timing and schedule for T
cell delivery, as well as T cell dose or optimal cell product
composition, have not been yet established, due to the
presence of many different confounding variables, such as
transplant ad infectious disease setting, use of in vitro or
in vivo T-cell depletion, and immunosuppressive regimens.
These issues will have to be addressed in future controlled
comparative trials.
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TABLE 2 | Published trials using multivirus-specific T cells.

Virus Pt n. Antigen LTC stimulation Clinical effects GVHD References

HSCT donor-derived

AdV, CMV and

EBV

26 AdV5; CMV pp65;

EBV-LCL

LCLs transduced with

Ad5f35-pp65

6/6 with EBV cleared infection;

5/6 with AdV cleared infection; 10/11 CMV

cleared infection and 1pt progressed

despite VSTs/pharmacotherapy

2 grade I GVHD (75, 76)

AdV and EBV 14 AdV5; EBV-LCL LCLs transduced with

Ad5f35 vector

11 pts treated as prophylaxis remain

negative;

2/3 pts with AdV cleared infection

3 grade I GVHD (77)

CMV and EBV 3 CMV pp65; EBV

IE1 and LMP2

DCs pulsed with peptides 2 pts cleared infection; 1 pt treated as

prophylaxis remains negative

1 grade I GVHD (78)

AdV, CMV and

EBV

10 AdV5 Hexon and

Penton;

CMV IE1 e pp65;

EBV LMP2

and BZLF1

DCs nucleofected with

plasmids encoding for viral

antigens

8/10 pt: complete virologic responses 1 skin rash due to

GVHD or BKPyV

infection

(79)

AdV, BKPyV,

CMV, EBV and

HHV6

11 AdV5 Hexon;

BKPyV LT + VP1;

CMV IE1 + pp65;

EBV LMP2 +

EBNA1 + BZLF1;

HHV6 U11 + U14

+ U90

Peptides pool from

immunodominant antigens

3 pts treated as prophylaxis remain

negative;

94% response rate (15 Cr and 2 PR) in 8

pts with 18 viral infections/reactivations

1 grade I GVHD (80)

AdV, CMV, EBV,

and VZV

10 AdV5; CMV pp65;

EBV EBNA1 and

LMP; VZV vaccine

Ad5f35-pp65,

Ad5f35-EBNA1/LMP,

commercial VZV vaccine

6 pts with CMV reactivation, only 1 receving

antiviral therapy;

no EBV, AdV or VZV reactivation

1 grade II GVHD

1 grade III GVHD

(81)

AdV, CMV and

EBV

3 AdV5; CMV pp65;

EBV-LCL

LCLs transduced with

AdV5-pp65 vector 1 pt cleared infection.

2 pts treated as prophylaxis

remains negative

None (82)

CMV, AdV and

EBV

7 Various source

antigens

T cell culture; in 1 case,

streptamer selection

2 pts with EBV attained CR;

5 pts with CMV:2 CR, 2 PR and 1 failure

1 grade I GVHD

1 grade II GVHD

(83)

Third-party donor-derived

AdV, CMV and

EBV

50 Ad5, CMV pp65,

EBV-LCL

LCLs transduced with

Ad5f35-pp65

6/9 pts with EBV attained CR or PR;

14/18 pts with AdV attained CR or PR;

17/23 pts with CMV attained CR or PR

6 grade I GVHD

2 grade II GVHD

(84)

AdV, CMV and

EBV

4 Various source

antigens

T cell culture 1/2 pts with EBV attained CR or PR;

1 pt with AdV cleared infection;

1 pt with CMV reactivation required

specific pharmacotherapy.

None (83)

AdV, BKPyV,

CMV, EBV and

HHV6

38 AdV5 Hexon;

BKPyV LT + VP1;

CMV IE1 + pp65;

EBV LMP2 +

EBNA1 + BZLF1;

HHV6 U11 + U14

+ U90

Peptide pools from

immunodominant antigens

3/3 pts with EBV attained CR;

8/10 pts with AdV attained CR or PR;

20/21 pts with CMV attained CR or PR;

19/21 pts with BKV attained CR or PR

3/3 pts with HHV6 attained CR or PR;

2 grade I GVHD de

novo;

4 grade I-III

recurrent GVHD

(36)

Finally, HSCT recipients treated with steroids or calcineurin
inhibitors (CI) for GVHD are among those at highest risk
of infectious complications. However, in these patients cell
therapy has the least chance of success, as steroids have a direct
cytopathic effect, and CI impair T cell expansion potential.
Recently, preclinical studies have demonstrated the feasibility
of producing pathogen-specific single or multivirus-specific T
cells resistant to steroids (88), or to CI (89, 90), by genetic
modification, and clinical studies are underway to assess safety
and preliminary efficacy.

IMPROVING ACCESS TO CELL THERAPY

Manufacturing VST From
Antigen-Seronegative Donors
Pediatric recipients who reactivate viral infections after HSCT
from virus-naïve stem cell donors are at high risk of developing
complications. It has been shown that it is possible to prime
tumor- or virus-specific responses by delivering viral antigens
presented by professional antigen-presenting cells in the presence
of activating/homeostatic cytokines (91, 92). Stimulation by
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dendritic cells pulsed with EBV LCL, or stimulation with EBV-
LCL, either with subsequent selection of CD25-positive T-
cells, or in the presence of cytokines, such as IL-7 and/or IL-
12, have all been described (92–94). The latter approach was
demonstrated effective when employed to expand EBV-CTL
that were successfully infused in vivo to treat a disseminated
PTLD, unresponsive to multiple courses of rituximab and
chemotherapy, in a pediatric recipient of unrelated HSCT from
a EBV-seronegative donor (95).

Multivirus (CMV, EBV, and adenovirus)-specific T-cells have
been activated and expanded from CB, by stimulation with DC
or LCL pulsed with a CMV-pp65 overlapping peptide library, in
the presence of IL-7, IL-12, and IL-15. The primed cells were only
able to recognize atypical pp65 epitopes, but when administered
to CBT recipients mediated CMV-directed activity in one patient
experiencing viral reactivation (82).

Third-Party Banked VST
Donor-derived VST infusions are not always feasible in clinical
practice, due to impossibility to obtain starting material from
the donor, as in UD or CB transplantation. Moreover, rapid
disease progressionmay not allow the time required for dedicated
production. A practical approach to overcome these issues is to
employ banked, HLA-typed VST obtained from healthy donors,
selected for a candidate recipients on the basis of the most closely
matched line with specific activity against a given pathogen
through one or more shared HLA epitopes.

Theoretically, third-party VST could have short persistence in
vivo, with limited clinical benefit, as the partial HLA disparity
may induce allorecognition by recipient T cells. Alloresponses
by infused third-party cells may, in turn, cause GVHD. So far,
results have been encouraging, with only one report of bystander-
induced liver GVHD (96). Seminal data were obtained in solid
organ-transplanted patients with EBV PTLD: the response rate
in the 33 patients enrolled in the first phase II trial, that included
6 HSCT recipients, was 52% at 6 months (70). Since then, third-
party VST have been effectively used also in the setting of HSCT
(36, 62, 71–73, 83, 84, 96), demonstrating that the approach
is feasible without inducing a higher rate of GVHD than
HSCT donor-derived VST, while producing significant clinical
responses. A recent study demonstrated safety and efficacy
of third-party rapidly-generated single-culture donor VST that
recognized 12 antigens from EBV, AdV, CMV, BKPyV, andHHV6
in 38 patients enrolled in a phase II trial. Importantly, clinical
benefit could be demonstrated also in seven patients treated for
multiple coincident infections (36). VST banks recently created
include products characterized for epitope specificity and HLA

restriction elements, to further refine selection of the best VST
for each patient.

CONCLUDING REMARKS

It is likely that VSTs will have an increasing role as therapeutics
in the prevention andmanagement of viral infections after HSCT,
due to high rate of response and limited toxicity profile observed
in reported studies. However, many issues are still open, and
will need to be addressed in future studies, such as the most
suitable predictive markers for response, the identification of
patients at risk of treatment failure, optimal treatment schedule
in different clinical settings, and choosing adequate end-point for
future clinical trials.

The majority of subjects treated to date with cell therapy
for infections have received dedicated donor T cells, but
this approach may not be best suited for widespread cost-
effective access, since these are personalized medicines that are
produced on-demand through a complex and costly supply
chain. The development of new methodologies to obtain rapid
manufacture of third-party T cells, refinement of strategies to
allow adequate selection of the “best VST” for each candidate
patient and the possibility to widen applicability to setting
beyond HSCT, has prompted considerable interest from the
industry to bring to the market third-party cellular therapies.
This process will allow to benefit patients through better T cell
therapy access.
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