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Introduction: Adolescent exposure to neurotoxic metals adversely impacts

cognitive, motor, and behavioral development. Few studies have addressed the

underlying brain mechanisms of these metal–associated developmental outcomes.

Furthermore, metal exposure occurs as a mixture, yet previous studies most often

consider impacts of each metal individually. In this cross–sectional study, we

investigated the relationship between exposure to neurotoxic metals and topological

brain metrics in adolescents.

Methods: In 193 participants (53% females, ages: 15–25 years) enrolled in the Public

Health Impact of Metals Exposure (PHIME) study, we measured concentrations

of four metals (manganese, lead, copper, and chromium) in multiple biological

media (blood, urine, hair, and saliva) and acquired resting–state functional magnetic

resonance imaging scans. Using graph theory metrics, we computed global and local

efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used

weighted quantile sum (WQS) regression models to examine association between

metal mixtures and each graph metric (GE or LE), adjusted for sex and age.

Results: We observed significant negative associations between the metal mixture

and GE and LE [βGE = −0.076, 95% CI (−0.122, −0.031); βLE= −0.051, 95% CI

(−0.095, −0.006)]. Lead and chromium measured in blood contributed most to this

association for GE, while chromium measured in hair contributed the most for LE.

Discussion: Our results suggest that exposure to this metal mixture during

adolescence reduces the efficiency of integrating information in brain networks at

both local and global levels, informing potential neural mechanisms underlying the
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developmental toxicity of metals. Results further suggest these associations are due

to combined joint effects to different metals, rather than to a single metal.

KEYWORDS

resting state–fMRI, graph theory, global and local efficiency, topological network properties,
exposure, neurotoxic metals

Introduction

Exposure to neurotoxic metals and their impact on the brain is
a growing worldwide health concern (Carmona et al., 2021). Metals
such as lead and manganese have been shown to readily pass the
blood-brain barrier and accumulate within various brain areas, where
they exert neurotoxic effects (Balali-Mood et al., 2021; Carmona
et al., 2021) and are associated with altered neurotransmission,
disrupted synaptic structure (Sadiq et al., 2012; Karri et al., 2016;
Carmona et al., 2021; Goel and Aschner, 2021) and accelerated
neurodegeneration (Caito and Aschner, 2015; Karri et al., 2016;
Lim et al., 2019; Twohig and Nielsen, 2019). These among others
key features of the above mentioned metals contributed to define
the brain as the target organ for exposure (Chandra et al., 1983;
Caito and Aschner, 2015; Gilani et al., 2015; Chen et al., 2022).
Growing research has identified adolescence as a critical window
(Schalbetter et al., 2022) that is vulnerable to environmental exposure
including metals (Rechtman et al., 2020). Few studies investigated the
neural mechanisms of metal neurotoxicity throughout this extended
window of vulnerability. Findings from these studies have linked
metal exposure with alterations in regional brain volume (Claus et al.,
2012, 2014; Horton et al., 2014, 2018; Levin-Schwartz et al., 2021;
Heng et al., 2022; Migneron-Foisy et al., 2022), and brain metabolite
concentrations (Trope et al., 2001; Meng et al., 2005; Thomason
et al., 2019, 2021; Cecil, 2022) during this period. This heightened
vulnerability may be due to rapid growth and differentiation of
the brain throughout childhood. Neurotoxic exposures during this
critical period can also disrupt behavioral, cognitive, and motor
development (Claus et al., 2012, 2014; Horton et al., 2018; Rechtman
et al., 2020; Levin-Schwartz et al., 2021; Heng et al., 2022). Despite the
breadth of research on the developmental effects of childhood metal
exposure, the underlying brain mechanisms behind these observed
metal-associated outcomes are still not clear.

Over the past decade, increasing use of functional magnetic
resonance imaging (fMRI) provides insight into the mechanisms
linking metal exposure and alterations in brain functions (Horton
et al., 2014). In particular, resting-state functional MRI - task-
independent assessment of spontaneous fluctuations in blood oxygen
level dependent (BOLD) signal from the brain at rest–has emerged
as a novel tool in pediatric populations to investigate the intrinsic
functional connectivity of the brain. Different from task-based fMRI
which requires participants to engage or respond to stimuli (Canario
et al., 2021), in rs-fMRI participants are instructed to simply lay
still in the scanner with their eyes closed, while allowing their
mind to roam freely (i.e., not focusing their thought on anything
in particular). This facilitates research in younger populations,
who may have difficulty completing complex tasks in the scanner
(Canario et al., 2021). Results from rs-fMRI studies have shown a
topological organization of the brain in a highly efficient manner

with a high level of local clustering, together with long-distance
connections (van den Heuvel et al., 2009). Graph theory analysis of
rs-fMRI data characterizes the topological organization of the brain
at rest (Wang et al., 2010) using metrics such as global and local
efficiency, which quantify how efficient the brain is at integrating
information at global and local levels, respectively (Wang et al.,
2010). Global efficiency (GE) provides an indication of how efficiently
the information is integrated and exchanged between the different
regions of the brain (Stanley et al., 2015; Rakesh et al., 2020). In
contrast, local efficiency (LE) measures the ability of the brain to
perform functionally specialized and segregated processing within a
network, requiring densely interconnected regions within modules
(Stanley et al., 2015; Rakesh et al., 2020). Previous results have
demonstrated the utility to characterize the topological network
organization of the brain by using graph metrics based on rs-fMRI
and link them with human behavior (Xu et al., 2015; Liu et al.,
2022), cognition (van den Heuvel et al., 2009; Uehara et al., 2013),
and diseases (Liu et al., 2008; Supekar et al., 2008). Recent studies
have used rs-fMRI to demonstrate intrinsic functional connectivity
patterns in a priori selected brain regions associated with early life
exposure to individual metals (i.e., lead, manganese) (de Water et al.,
2018, 2019; Thomason et al., 2019). Our data-driven graph theory
approach builds on this foundational research by informing potential
neural mechanisms underlying the developmental toxicity of metal
mixture exposure during adolescence.

To investigate the impact of metal exposure on the brain, it
is critical to consider not only single metal exposures but the
mixture of co-occurring neurotoxic metals (Bauer et al., 2020).
Historically, studies measure individual chemical concentrations
in individual biological media (i.e., blood, urine, etc.). These
exposure biomarkers are used as surrogates of total exposure
from the environment. However, metals distribute unevenly among
biological media that represent different aspects of each chemical’s
toxicokinetics. Therefore, each medium provides complementary
information on different biological processes. Recent studies have
started to combine information from multiple biomarkers using
statistical methods, like multi-media biomarker approaches, that
resulted in an improved measure of the total body burden and thus
improved exposure characterization (Levin-Schwartz et al., 2020,
2021; Bauer et al., 2021). Exposure, defined as metal mixtures, has
been observed to more negatively impact neurodevelopment than
exposure to a single metal component (Claus et al., 2012, 2014; Freire
et al., 2018; Horton et al., 2018). Therefore, examining the effects
of metal mixtures on brain function is crucial to better understand
the real-world impact of metal exposure on cognition and behavior.
In this study, we will use an integrated measure of metal mixtures
across multiple media, called multi-media biomarker (MMB) (Levin-
Schwartz et al., 2020), to analyze the impact on the brain of each metal
across multiple media.
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In this study, we investigate how metal exposure impacts brain
network properties in adolescents. We use graph theory metrics to
quantify how the brain integrates globally (GE) and locally segregates
(LE) information and assess associations between these metrics
with metal mixture exposure. To define our metal mixtures, we
measured concentrations of four metals [lead (Pb), manganese (Mn),
chromium (Cr), and copper (Cu)] in four biological media (blood,
urine, hair, and saliva) from 193 adolescent participants living nearby
ferro-manganese industry/alloy plant activity in northern Italy
enrolled in the Public Health Impact of Metals Exposure (PHIME)
study. Then, using weighted quantile sum (WQS) regression, a
statistical method commonly used to assess the impact of chemical
mixtures on various health outcomes (Tanner et al., 2019), we
examined associations between the metal mixture and each graph
metric (GE and LE), adjusting for sex and age. This paper contributes
to further understanding the impacts of environmental exposures
to a mixture of neurotoxic metals in developmental windows like
adolescence.

Materials and methods

Participants

The Public Health Impact of Metal Exposure (PHIME) cohort
investigates associations between metal exposure from anthropogenic
emissions and developmental health outcomes in adolescents and
young adults living nearby the ferro-manganese industry in northern
Italy. Details of the study have been described elsewhere (Lucchini
et al., 2012a; Lucas et al., 2015). Inclusion criteria were: birth in
the areas of interest; family residence in Brescia for at least two
generations; residence in the study areas since birth. The exclusion
criteria were: having a neurological, hepatic, metabolic, endocrine,
or psychiatric disorder; using medications (in particular with neuro-
psychological side effects); having clinically diagnosed motor deficits
or cognitive impairment and having visual deficits that are not
adequately corrected. Detailed description of this recruitment process
and study design can be found in previous publications (Lucchini
et al., 2012a,b). A convenience based sample of 202 participants
(53% female, ages 15–25 years) were selected to participate in a
multi-modal magnetic resonance imaging (MRI) study, PHIME-
MRI. They completed multimodal MRI scans, neuropsychological
tests, including measures of IQ [Kaufman Brief Intelligence Test,
Second Edition (KBIT-2)] (Kaufman and Kaufman, 2014; Reynolds
et al., 2014), memory and motor functions. All participants satisfied
eligibility criteria for MRI scanning [i.e., metal implants or shrapnel,
claustrophobia, no prior history of traumatic brain injury, body
mass index (BMI) ≤40]. Mn, Pb, Cr, and Cu were measured in
saliva, hair, blood and urine, for each PHIME-MRI participant.
Complete exposure data (i.e., all metals in all media for a total of
16 components), MRI and covariates data were available for 193
participants included in this analysis. A total of 193 participants were
included in this analysis, 9 were missing at least one biological marker
(Supplementary Figure 1).

Written informed consent was obtained from parents, while
participants provided written assent. Study procedures were
approved by the Institutional Review Board of the University of
California, Santa Cruz and the ethical committees of the University
of Brescia, and the Icahn School of Medicine at Mount Sinai.

Biomarker measures of exposure

Biological samples including venous whole blood, spot urine,
saliva and hair were collected from each subject upon enrollment, as
described in detail in previous studies (Smith et al., 2007; Eastman
et al., 2013; Lucas et al., 2015; Butler et al., 2019). Complete
overview of biomarkers can be found in Supplementary Figure 1 and
Table 1. Biological samples were processed and analyzed for metal
concentrations using magnetic sector inductively coupled plasma
mass spectroscopy (Thermo Element XR ICP-MS), as described
elsewhere (Smith et al., 2007; Eastman et al., 2013; Lucas et al., 2015;
Butler et al., 2019).

MRI and fMRI data acquisition

Magnetic resonance imaging (MRI) and functional MRI (fMRI)
data acquisition was performed on a high-resolution 3-Tesla
SIEMENS Skyra scanner using a 64-channel phased array head
and neck coil, at the Neuroimaging Division of ASST Spetali
Civili Hospital of Brescia. For each participant, a high-resolution
3D T1-weighted structural scan was acquired using a MPRAGE
sequence (TR = 2.4 ms, TE = 2.06 ms, TI = 230 ms, acquisition
matrix = 256 × 256 and 224 sagittal slices with final voxel
size = 0.9 mm3). Fifty contiguous oblique-axial sections were used
to cover the whole brain where the first four images were discarded
to allow the magnetization to reach equilibrium. For each subject, a
single 10-min continuous functional sequence using a T2∗weighted
echo-planar imaging (EPI) sequence (TR = 1.0 ms, TE = 27 ms,
70 axial slices, 2.1 mm thickness, matrix size 108 × 108, covering
the brain from vertex to cerebellum) was acquired. During resting-
state scans, lights of the MRI room were off and participants were
instructed to stay awake, relax and daydream (not think about
anything) with their eyes open. They were presented with an image
of a night skyline figure projected on a MRI compatible monitor.
Padding was used for comfort and reduction of head motion.
Earplugs were used to reduce noise. Data were read by a board-
certified radiologist to determine quality and possible incidental
findings–no findings were reported.

fMRI data analyses

Image pre-processing, global and local efficiency calculations,
and statistical analyses were performed using SPM12 (Wellcome
Department of Imaging Neuroscience, London, UK), Brain
Connectivity toolbox (Rubinov et al., 2009; Rubinov and Sporns,
2010) and customized scripts, implemented in MatLab 2016b (The
Mathworks Inc., Natick, MA, USA) and R (v3.4).

Image preprocessing
For each subject, the structural magnetic resonance image was

co-registered and normalized against the Montreal Neurological
Institute (MNI) template and segmented to obtain white matter
(WM), gray matter (GM) and cerebrospinal fluid (CSF) probability
maps in the MNI space. FMRI data were spatially realigned, co-
registered to the MNI-152 EPI template and subsequently normalized
utilizing the segmentation option for EPI images in SPM12. All
normalized data were denoised using ICA-AROMA (Pruim et al.,
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TABLE 1 Metal concentrations (Mn, Pb, Cr, and Cu) measured in blood, urine, hair, and saliva collected from 193 adolescents participants PHIME-MRI
included in the current study.

Medium* Metal % > LOD LOD mean ± SE GM GSD

Saliva

Lead 90.6 0.05 ± 0.003 0.19 3.07

Chromium 91.7 0.13 ± 0.003 0.50 3.69

Manganese 96.4 0.08 ± 0.001 3.13 2.97

Copper 97.4 0.35 ± 0.025 8.63 2.35

Blood

Lead 100 0.16 ± 0.003 8.84 1.56

Chromium 62.7 0.19 ± 0.008 0.34 4.54

Manganese 100 0.49 ± 0.018 8.45 1.49

Copper 100 1.09 ± 0.035 586.94 1.30

Hair

Lead 100 0.003 ± 0.0001 0.09 2.97

Chromium 100 0.004 ± 0.0001 0.04 2.57

Manganese 100 0.005 ± 0.0003 0.06 2.58

Copper 100 0.04 ± 0.002 9.96 1.62

Urine

Lead 98.4 0.06 ± 0.003 0.36 2.17

Chromium 96.9 0.09 ± 0.004 0.28 3.07

Manganese 80.3 0.11 ± 0.003 0.24 3.69

Copper 100 0.30 ± 0.009 6.01 1.85

GM, geometric mean; GSD, geometric standard deviation; LOD, limit of detection; SE, standard error of the mean. *Metrics used to measure metal concentrations within each medium were: blood
and saliva (ng/mL), hair (ug/g), urine (ug/mL).

2015). Additionally, spatial smoothing was applied (8 millimeters)
to the fMRI data. As further quality check of fMRI data, large head
motion in any direction or rotation (>3 mm or 3◦) was used as
exclusion criteria in our study–no participants were excluded in this
study. No global signal regression was applied.

Based on the Harvard-Oxford (Desikan et al., 2006) atlas, 111
regions of interest (ROI; 48 left and 48 right cortical areas; 7 left
and 7 right subcortical regions and 1 brainstem) were defined. In
this atlas, the brain areas were defined using T1-weighted images
of 21 healthy male and 16 healthy female subjects (ages 18–50).
The T1-weighted images were segmented and affine-registered to
MNI152 space using FLIRT (FSL), and the transforms then applied
to the individual brain areas’ label. Finally, these were combined
across subjects to form population probability maps for each ROI
(Desikan et al., 2006). For each ROI, a time-series was extracted
by averaging across voxels per time point. To facilitate statistical
inference, data were “pre-whitened” by removing the estimated
autocorrelation structure in a two-step generalized linear model
(GLM) procedure (Monti, 2011; Bright and Murphy, 2015). In
the first step, the raw data were filtered against the 6 motion
parameters (three translations and three rotations). Using the
resulting residuals, the autocorrelation structures present in the
data were estimated using an Auto-Regressive model of order
1 [AR (1)] and then removed from the raw data. Next, the
realignment parameters, white matter (WM) and cerebrospinal
fluid (CSF) signals were removed as confounders on the whitened
data.

Graph theory metrics/Network properties
Global and Local Efficiency (GE and LE) were computed using

the Brain Connectivity toolbox (Rubinov et al., 2009; Rubinov
and Sporns, 2010) on the defined ROI time course data per
subject. GE and LE build on the concept of efficient integration of

communication in a network at local (LE) and whole (GE) level.
Based on the average inverse shortest path length in the brain or
network, GE is defined as the inverse of the average characteristic
path length between all nodes in the networks (Latora and Marchiori,
2001; Bullmore and Sporns, 2012). For each individual node defined
as ROI, the shortest number of steps required to go from one node to
another was computed. Then, the average number of shortest steps to
all defined nodes was computed separately for each node. To correct
for the total number of connections between nodes, the inverse of
the average number of shortest steps for each node was summed
across all network nodes and normalized. LE is computed on the
neighborhood of each single ROI/node (Rubinov et al., 2009; Rubinov
and Sporns, 2010) and defined as the inverse of the shortest average
path length of all neighbors of nodes among themselves (Latora
and Marchiori, 2001). First we identified a set of nodes which are
directly connected with a given node, then we removed that node
from the identified subgraph and calculated the averaged shortest
path between all remaining nodes. GE and LE are scaled measures
ranging from 0 to 1, with a value of 1 indicating maximum GE/LE in
the brain.

Statistical analyses

Descriptive statistics
Visual inspection and descriptive statistics (geometric mean,

geometric standard deviation and Pearson’s correlation) were used
to characterize the metal concentrations in different media.
All descriptive statistical analyses were performed using R
version 4.2.1.

Multi-media biomarker (MMB) approach
To examine associations between our multi-media metal mixture

(four metals, four media) and graph theory outcomes (GE and LE),
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we used a WQS-based multi-media biomarker (MMB) approach (Lee
et al., 2019; Levin-Schwartz et al., 2021). Figure 1 shows the complete
flowchart of the analysis performed. Briefly, WQS is a data driven,
mixture-based ensemble modeling strategy that tests for associations
between the combined effect of multiple, correlated variables and
an outcome of interest. The WQS MMB approach builds on WQS,
by incorporating exposure information across different biological
media, providing an integrated estimate of total bodily exposure to
a given chemical as well as identifying the chemical-matrix specific
combination that contributes most to the overall association with the
graph theory based outcomes (GE and LE) (Levin-Schwartz et al.,
2021). The MMB WQS is hierarchical with two levels. The first level
estimates a weighted index across all biological media for a single
metal and the outcome (i.e., Pb MMB = blood Pb, urine Pb, saliva
Pb, hair Pb). Our model estimated across 50 bootstrap samples, and
100 repeated holdouts (Tanner et al., 2019) for each individual MMB.
By using the repeated holdouts WQS (Tanner et al., 2019), the data
are randomly partitioned 100 times to produce a distribution of
validated results where the mean is taken as the final estimate. The
directionality of the association of the WQS index was constrained
to be negative. Note that the WQS assumptions of linearity and
directional homogeneity were validated through visual inspection of
residuals (Levin-Schwartz et al., 2021). The second level estimates a
weighted index across the different metals (i.e., Pb MMB, Mn MMB,
Cr MMB, Cu MMB; (Levin-Schwartz et al., 2019, 2021)). First level
MMBs are included in the WQS regression model predicting the
association between the metal biomarker “mixture” and GE or LE.
A significance test for the WQS index provided an estimate of the
association with the metal mixture, while the weights associated with
each metal MMB provided an indicator of each individual metal
contribution to the overall effect. All weights are constrained to sum

to one, enabling sorting by relative importance. Metals that impact
the outcome have larger weights; factors with little or no impact on
the outcome have near-zero weights. These models were adjusted
for age and sex, and prior to model estimation, all exposures were
grouped into deciles.

Results

Demographic and exposure
characteristics

This study included 193 participants (53% female) living in
Northern Italy, with an average age of 19.2 years (range = 15–
25). Metal concentrations in the different media are reported in
Table 1 while Pearson’s correlations between them is reported in
Supplementary Figure 3.

First level MMBs and brain topological
properties

We first examined the association between each individual metal
in all media with GE and LE (Figure 2). For all metals, urinary metal
concentrations contributed most to the association between the first
level MMB (i.e., individual metal in each matrix) and GE. Urinary
Pb contributed 46% of the association between Pb exposure and GE.
Urinary Mn, Cr and Cu contributed 51, 34, and 68%, respectively
to the association with GE. For LE, the most heavily weighted
metal-matrix combination differed by metal; blood Pb concentration

FIGURE 1

Data analysis flowchart. (A) Resting-state fMRI data were preprocessed and the averaged time-series were extracted using the Harvard-Oxford atlas.
Then, global and local efficiency (GE and LE, respectively) metrics were computed for each participant using graph theory. Small solid gray circles
represent nodes of the graphs (brain regions), while gray connecting lines are the edges of the graph (functional connections). Larger dotted circles
represent segregated sub-graphs/networks (functional network characterized by highly connected brain areas), while dashed red lines are the
within-network connections at the whole brain level. Panel (B) shows the two hierarchical levels of analysis performed using the MMB WQS approach to
measure the effect of Pb, Mn, Cr, Cu on brain metrics (GE and LE). At the first level, WQS was performed to measure and derive the MMB metric for each
metal individually (Pb, Mn, Cr, Cu) on brain metrics (GE and LE). Then, the joint effect of Pb, Mn, Cr, Cu on brain metrics was assessed by applying WQS
to Pb, Mn, Cr, and Cu MMBs. All models were adjusted for sex and age. Figure adapted from Levin-Schwartz et al. (2019) and Rakesh et al. (2020).
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contributed most to the association with LE (34%). Hair Mn and
hair Cr contributed 31 and 43% to the association with LE. Urine Cu
contributed the most to the Cu-LE association. Beta coefficients and
95% confidence intervals obtained for each individual MMB WQS
model are reported in Figure 2 and Supplementary Figure 2.

Second level MMB and brain topological
properties

Results from second level repeated holdout WQS analyses
revealed associations between the overall metal mixture and GE
and LE (Figure 3A), and the contribution of each metal MMB
to these associations (Figure 3). We observed significant negative
associations between the combined metal mixture MMB and both
GE [βGE = −0.076, 95% CI (−0.122, −0.031); Figure 3A], and LE
[βLE = −0.048, 95% CI (−0.095, −0.006); Figure 3A]. We observed
that Cr and Pb contributed most to the association between the
combined metal mixture and GE (29%; Figure 3B), whereas Cr
contributed most to the association with LE (38%; Figure 3C).

Discussion

This is the first study to use rs-fMRI to investigate global
and local connectivity in adolescents exposed to a neurotoxic
metal mixture. Using graph-theory based network metrics and a
multimedia biomarker (MMB) approach, we observed a significant
negative association between exposure to a mixture of five neurotoxic
metals (lead, manganese, copper, chromium, and zinc) and global
efficiency (GE), with lead and chromium contributing most to
this association. Significant negative associations between the metal
mixture and both GE and LE were found [βGE = −0.076, 95% CI
(−0.122, −0.031); βLE = −0.048, 95% CI (−0.095, −0.006)]. We also
observed that urinary lead and chromium contributed most to the
association with GE (29 and 24%, respectively); while hair chromium
contributed most to the association with LE (38%). Overall, our
results substantiate previous findings of associations between metal
exposure and altered brain connectivity, and further suggest that
environmental exposure to a mixture of neurotoxic metals during
adolescence reduces the brain ability to efficiently integrate and
segregate information, highlighting the need to further study the
impacts of environmental exposures in developmental windows like
adolescence (Golub, 2000; Spear, 2007; Rechtman et al., 2020).
Furthermore, our results suggest these associations are due to the
combined joint effects of multiple metals, rather than to a single
metal, emphasizing the importance of analyzing metal mixtures to
better understand the real-world impact of metal exposure on brain
health.

Our findings show that urinary lead and chromium were the top
contributing metals in the association between the metal mixture
and GE, and hair chromium contributed most to the association
with LE, suggesting that urine and hair may be critical biomarkers
for estimating the effects of metal mixtures on brain connectivity
and further, these metals may exert a greater influence on global
and/or local functional connectivity across/within topological brain
networks. Lead exposure is known for causing the disruption of
neuronal activity, in particular to alter the release and storage
of neurotransmitters from the presynaptic nerve endings, that

may change the developmental processes of synapse formation in
children and young adults and results in altered brain functions
(Bressler and Goldstein, 1991). Previous human neuroimaging
studies have observed associations between lead exposure and
altered structural connectivity and functional activation patterns
in both children and adults (Thomason et al., 2019, 2021; Cecil,
2022). In particular, Thomason et al. (2019) found prenatal lead
(Pb) exposure was associated with altered age-related intrinsic
functional connectivity patterns in developing fetuses. Furthermore,
previous studies in animal models have found lead exposure to
disrupt multiple neurotransmitter systems (Goel and Aschner,
2021) (e.g., glutamatergic, dopaminergic, cholinergic), as well as
neurotransmitter and synaptic function in various areas of the brain,
including the hippocampus (Sadiq et al., 2012; Carmona et al., 2021),
and prefrontal cortex (Mansouri et al., 2013). Therefore, our finding
of lead being a top contributor to the negative association between
the metal mixture and global efficiency, could in part be explained by
its impact on structural connectivity (e.g., white matter integrity) and
synaptic function and neurotransmission within/across the brain.

The underlying mechanism for neurotoxicity of chromium is
still not fully understood (Xu et al., 2021). Increased oxidative
stress, chromosome disruptions and DNA-adduct formation are
some of the many cellular damages found to be caused by high
level exposure to Cr in the brain (Wise et al., 2022). While
there are no neuroimaging studies investigating the impact of
chromium exposure to date, previous studies in humans have
observed evidence linking chromium exposure to neurological
and psychiatric conditions, including olfactory dysfunction, autism
spectrum disorder, and acute schizophrenia (Watanabe and Fukuchi,
1981; Kitamura et al., 2003; Saghazadeh et al., 2020; Wise et al.,
2022). These findings suggest an impact of chromium exposure
on underlying neurobiological function. Furthermore, previous
studies across various animal models have observed brain-wide
neurodegeneration following chromium exposure, again suggesting
an impact of chromium exposure on neurobiological function via
its neurodegenerative effects (Soudani et al., 2012; Hao et al., 2017;
Wise et al., 2022). Therefore, our finding of chromium being a top
contributor to the negative association between the metal mixture
and both local and global efficiency is consistent with these prior
studies suggesting its widespread neurodegenerative effects, which
could potentially contribute to changes in functional connectivity
across brain networks.

Several studies have also detailed the potential synergistic
neurotoxic effects of certain metals upon co-exposure, based on their
unique chemical properties and similar neurobiological mechanisms
of action (de Andrade et al., 2021). Metals within our mixture that
have been shown to produce such synergistic neurotoxic effects
include lead and manganese (Tao et al., 1999; Chen et al., 2016;
Lu et al., 2018), whose co-exposure has been observed to increase
disruptions to neurodevelopment in both animal (Chandra et al.,
1981, 1983; Shukla and Chandra, 1987; Levin-Schwartz et al., 2021)
and human studies (Kim et al., 2009; Claus et al., 2012; Lin et al.,
2013; Levin-Schwartz et al., 2021). de Water et al. (2018) found that
early postnatal manganese (Mn) concentrations were associated with
altered intrinsic functional connectivity within cognitive control and
motor brain areas of adolescents. Additionally, in another study,
de Water et al. (2019) found prenatal Mn concentrations were
associated with reduced intrinsic functional connectivity of brain
areas involved in emotion processing and regulation in children.
Furthermore, co-exposures of certain metals have been reported
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FIGURE 2

First level MMB models. Results obtained from the MMB WQS association between each metal’s respective exposure biomarker (e.g., blood Pb) and GE
or LE was estimated among 193 adolescents included in the current study. Bar plots show estimated weights for each component of the mixture in the
WQS regressions. Red dotted lines represent the significant thresholds for each WQS model. 95% confidence intervals obtained for each individual MMB
WQS model are reported. All models were adjusted for sex and age. Components abbreviations: the first letter represents the medium (S, saliva; B, blood;
U, urine; H, hair) and the second and third letters represent the metals (Mn, manganese; Pb, lead; Cr, chromium; Cu, copper).

to potentially increase accumulation, retention and distribution of
individual metal components in animal models (Chen et al., 2016).
In particular, manganese has been shown to increase accumulation of
various metals in the brain, notably lead (Chandra et al., 1983; Chen

et al., 2016), and copper (Mercadante et al., 2016). Therefore, while
lead and chromium were found to contribute most to the association
between the metal mixture and GE, and chromium contributed most
to the association with LE, the higher influence of these metals may
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FIGURE 3

Second level MMBs approach. Beta coefficients (A) and weights (B,C) obtained from the WQS association between each MMB metal and GE or LE was
estimated among 193 adolescents included in the current study. Panel a reports the beta coefficients for GE (orange) and LE (blue), respectively. In
panels (B,C), data points indicate weights for each of the 100 holdouts; box plots show the 25, 50, and 75th percentiles while the whiskers show the 10
and 90th percentiles of weights for the 100 holdouts. Diamonds show the mean weights for the 100 holdouts. Dotted lines indicate the thresholds. Mn,
manganese; Pb, lead; Cr, chromium; Cu, copper.

be due to synergistic interactions with other metals in the mixture
(e.g., manganese). This possibility highlights the importance of
analyzing metal mixtures rather than single metals in environmental
epidemiological studies, as the influence of a single metal exposure
may be affected by other metals an individual is exposed to. Further,
our findings show that urine contributed most to the association
between both lead, chromium and GE, and hair contributed most
to the association between chromium and LE, suggesting that urine
and hair may be critical for estimating the effects of metal mixtures
on brain connectivity. Previous studies that analyzed one metal at
the time, have indicated blood as the most reliable biomarker to
assess lead exposure (Levin-Schwartz et al., 2021), and blood has
also been used previously as an exposure biomarker for other metals
such as chromium (Alexopoulos et al., 2008; Wise et al., 2022) and
manganese (Levin-Schwartz et al., 2021). By using novel techniques
like MMB WQS, we can increase the accuracy in measuring mixture
effects compared to individual biomarkers and provide a data-driven
biomarker selection (Levin-Schwartz et al., 2019, 2020). Finally, as
previous neuroimaging studies have mainly examined associations
between brain function and a single metal exposure, future studies
should aim to utilize metal mixtures to better account for these
potential synergistic effects due to metal co-exposure, which would
ultimately help better understand the real-world impact of metal
exposure on the brain.

Limitations

In this study, while we found robust associations between metals
and GE and LE metrics, our small sample size resulted in relatively
small effect sizes (Figure 3). While it would be beneficial to repeat
our analysis in a larger dataset, to our knowledge no such dataset with
multi-media biomarkers and fMRI data exists. Further, we assumed
that all metals have a linear association with both global and local
efficiency metrics. Our MMB WQS approach does not assume linear
associations between outcomes but only considers additive effects.
Future studies should investigate non-linear associations between
outcomes and possible multiplicative effects. Finally, MMB WQS
might suffer from overfitting issues, since two WQS models are

performed on the same set of data. To compensate for this, we
split our data into training and testing datasets in both MMB WQS
analysis levels.

Conclusion

Using a multimedia biomarker (MMB) approach, we were able
to estimate the associations between a complex metal mixture and
brain metrics. This method allows us to leverage the complementary
information provided by each medium on different biological
processes and therefore, to improve the exposure characterization.
Our findings that urine contributed most to the associations between
both lead and chromium and GE, and hair contributed most to
the associations between chromium and LE, suggests that urine
and hair may be critical overlooked biomarkers for estimating the
effects of metal mixtures on brain connectivity. Given our results, we
suggest that future neuroimaging studies on metal mixture exposure
aim to collect multiple media, including urine and hair specimens,
to explore the effects of metal mixtures on the brain. Altogether,
our research supports the notion of adolescence being a timepoint
of vulnerability to environmental exposures. More specifically, our
results suggest that the adolescent brain connectivity is vulnerable to
metal mixture exposures during this period. Given that adolescence
is a period of rapid brain development, our results suggest that
metal exposure may have the potential to alter neurodevelopment via
changes to global and local connectivity. These connectivity changes
may potentially lead to alterations in cognition and neurobehavior in
adolescence. Therefore, future environmental neuroimaging studies
should focus on adolescents to further characterize how metal
mixture exposure during this period can lead to potential alterations
in brain development (e.g., brain volume, functional connectivity),
and ultimately neurobehavior and cognition.
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