
Discrete Applied Mathematics 110 (2001) 25–40

E�cient algorithms and codes for k-cardinality assignment
problems

Mauro Dell’Amicoa, Andrea Lodib, Silvano Martellob; ∗
aDipartimento di Scienze e Metodi dell’Ingegneria, Universit�a di Modena e Reggio Emilia, Italy

bDipartimento di Elettronica, Informatica e Sistemistica, Universit�a di Bologna, Viale Risorgimento 2,
40136 Bologna, Italy

Abstract

Given a cost matrix W and a positive integer k, the k-cardinality assignment problem is to
assign k rows to k columns so that the sum of the corresponding costs is a minimum. This
generalization of the classical assignment problem is solvable in polynomial time, either by
transformation to min-cost -ow or through speci.c algorithms. We consider the algorithm re-
cently proposed by Dell’Amico and Martello for the case where W is dense, and derive, for the
case of sparse matrices, an e�cient algorithm which includes original heuristic preprocessing
techniques. The resulting code is experimentally compared with min-cost -ow codes from the
literature. Extensive computational tests show that the code is considerably faster, and e1ectively
solves very large sparse and dense instances. ? 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

A well-known problem in telecommunications is the satellite-switched time-division
multiple access (SS/TDMA) time slot assignment problem (see, e.g., [14,9]). We are
given m transmitting stations and n receiving stations, interconnected by a geostationary
satellite through an on-board k× k switch (k6min(m; n)), and an integer m× n tra)c
matrix W = [wij], where wij is the time needed for the transmission from station i to
station j. The problem is to determine a sequence of switching con.gurations which
allow all transmissions to be performed in minimum total time, under the constraint
that no preemption of a transmission occurs. A switching con+guration is an m×n 0–1
matrix X ‘ having exactly k ones, with no two in the same row or column. Matrix X ‘

is associated with a transmission time slot of duration t‘=maxij{X ‘ijwij}. The objective
is thus to determine an integer � and X ‘ (‘= 1; : : : ; �) so that

∑�
‘=1 t

‘ is a minimum.

∗ Corresponding author. Tel.: +39-051-644-3022; fax: +39-051-644-3073.
E-mail addresses: dellamico@unimo.it (M. Dell’Amico), alodi@deis.unibo.it (A. Lodi),

smartello@deis.unibo.it (S. Martello).

0166-218X/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00301 -2

26 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

The problem is known to be NP-hard. Several heuristic algorithms (see, e.g., [13,4])
determine, at each iteration, a switching con.guration which minimizes the sum of
the selected transmission times. In the following we consider e�cient algorithms for
exactly solving this local problem.
Given an integer m × n cost matrix W and an integer k (k6min(m; n)), the k-

Cardinality Assignment Problem (k-AP) is to select k rows and k columns of W and
to assign each selected row to a di1erent selected column, so that the sum of the costs
of the assignment is a minimum. Let xij (i=1; : : : ; m; j=1; : : : ; n) be a binary variable
taking the value 1 if and only if row i is assigned to column j. The problem can then
be formulated as the following integer linear program:

z =min
m∑

i=1

n∑

j=1

wijxij (1)

n∑

j=1

xij61 (i = 1; : : : ; m) (2)

m∑

i=1

xij61 (j = 1; : : : ; n) (3)

m∑

i=1

n∑

j=1

xij = k; (4)

xij ∈{0; 1} (i = 1; : : : ; m; j = 1; : : : ; n): (5)

In the special case where m = n = k; k-AP reduces to the well-known Assignment
Problem (AP). (In this case the ‘6’ sign in Eqs. (2) and (3) can be replaced by the
‘=’ sign, and Eq. (4) can be dropped.)
It has been shown by Dell’Amico and Martello [5] that the constraint matrix of k-AP

is totally unimodular, hence the polyhedron de.ned by the continuous relaxation of
(1)–(5) has integral vertices. Thus, the optimal solution to the problem can be obtained
in polynomial time through linear programming.
It is well known that AP is to .nd the minimum cost basis of the intersection of two

partition matroids, hence k-AP is the optimum basis of the intersection of two matroids
truncated to k. Since the two-matroid intersection algorithm runs in polynomial time,
we know that k-AP is polynomial even for real-valued cost matrices. This also gives
a possible dual algorithm for k-AP: start with an empty solution (no row assigned)
and apply for k times a shortest augmenting path technique (see, e.g., [11]) obtaining,
at each iteration, a solution in which one more row is assigned. Another possible
approach consists in solving a min-cost -ow problem on an appropriate network (see
Section 5).
In addition to the SS/TDMA context, k-AP has immediate applications in assigning

workers to machines when there are multiple alternatives and only a subset of workers
and machines has to be assigned. Although extensive literature exists on AP and related

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 27

problems (surveys can be found, e.g., in [12,1,6]), to our knowledge the only speci.c
result on k-AP has been presented by Dell’Amico and Martello [5].
The algorithm in [5] was developed for solving instances in which matrix W is

complete. In this paper, we consider the case where W is sparse, i.e., many entries are
empty, or, equivalently, they have in.nite cost. The sparse case is relevant for appli-
cations. Consider, e.g., the SS/TDMA time slot assignment previously discussed: it is
clear that, in general, a transmitting station will not send messages to all receiving
stations, so we can expect that real-world tra�c matrices are sparse.
In the sparse case, the problem is more conveniently formulated through the fol-

lowing graph theory model. Let G = (U ∪ V; A) be a bipartite digraph where U =
{1; : : : ; m} and V = {1; : : : ; n} are the two vertex sets and A⊆U × V is the arc set:
A= {(i; j): wij ¡+∞}. Let wij be the weight of an arc (i; j)∈A. We want to select
k arcs of A such that no two arcs share a common vertex and the sum of the costs of
the selected arcs is a minimum.
In the following we assume, without loss of generality, that wij¿0 ∀(i; j)∈A. Since
k-AP does not change if we swap sets U and V , we also assume, without loss of
generality, that m6n.
The problem in which the objective is to maximize the cost of the assignment, is

solved by k-AP if each cost whl ((h; l)∈A) is replaced by the nonnegative quantity
w̃hl =max(i; j)∈A{wij} − whl.

The aim of this article is to provide a specialized algorithm, and the corresponding
computer code, for the exact solution of k-AP.

2. Complete matrices

The main phases of the approach in [5] are a heuristic preprocessing and an exact
primal algorithm. Preprocessing .nds a partial optimal solution, determines sets of
rows and columns which must be assigned in an optimal solution and reduces the cost
matrix. The partial solution is then heuristically completed, and the primal algorithm
determines the optimum through a series of alternating paths.
The preprocessing phase can be summarized as follows.
Step 0: For each row i determine the .rst, second and third smallest cost in the row

(�i; �′i ; �
′′
i , respectively) and let c(i); c′(i); c′′(i) be the corresponding columns. For each

column j determine the .rst, second and third smallest cost in the column (�j; �′j; �
′′
j ,

respectively) and let r(j); r′(j); r′′(j) be the corresponding rows. Reorder the columns
of W by nondecreasing �j values, and the rows by nondecreasing �i values.

Step 1: Determine a value g16k, as high as possible, such that a partial optimal
solution in which g1 rows are assigned can be heuristically determined. This is obtained
through a heuristic algorithm which, for increasing values of j, assigns row r(j) to
column j if this row is currently unassigned; if instead row r(j) is already assigned,
under certain conditions the algorithm assigns column j + 1 instead of j (and then
proceeds to column j+2) or assigns the current column j to row r′(j) instead of r(j).

28 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

If g1 = k then terminate (the solution is optimal); otherwise, execute a greedy heuristic
to determine an approximate solution of cardinality k and let UB1 be the corresponding
value.
Step 2: Repeat Step 1 over the transposed cost matrix. Let g2 and UB2 be the values

obtained.
Step 3: UB:=min(UB1; UB2); g:=max(g1; g2).
Step 4: Starting from the partial optimal solution of cardinality g, determine a set R

of rows and a set C of columns that must be selected in an optimal solution to k-AP.
Compute a lower bound LB on the optimal solution value.
Step 5: If UB¿LB then reduce the instance by determining pairs (i; j) for which
xij must assume the value zero.
The overall time complexity of the above preprocessing phase is O(mn+ kn log n).
Once Step 5 has been executed, the primal phase starts with the k × k submatrix of

W induced by the sets of rows and columns selected in the heuristic solution of value
UB, and exactly solves an AP over this matrix. Then m+n−2k iterations are performed
by adding to the current submatrix one row or column of W at a time, and by
re-optimizing the current solution through alternating paths on a particular digraph
induced by the submatrix.

3. Sparse matrices

In this section we discuss the most relevant features of the algorithm for the sparse
case.

3.1. Data structures

Let " be the number of entries with .nite cost. We store matrix W through a forward
star (see Fig. 1(a)) consisting of an array, F first, of m+1 pointers, and two arrays,
F head and F cost, of " elements each. The entries of row i, and the corresponding
columns, are stored in F cost and F head, in locations F first(i); : : : ; F first(i+1)−1
(with F first(1) = 1 and F first(m+ 1) = " + 1). Since the algorithm needs to scan
W both by row and by column, we duplicate the information into a backward star,
similarly de.ned by arrays B first (of n + 1 pointers), B tail and B cost, storing
the entries of column j, and the corresponding rows, in locations B first(j); : : : ;
B first(j + 1)− 1.
In the primal phase a local matrix NW is initialized to the k × k submatrix of W

obtained from preprocessing, and iteratively enlarged by addition of a row or a column.
Let row(i) (resp. col(j)) denote the row (resp. column) of W corresponding to row
i (resp. column j) of NW . Matrix NW is stored through a modi.ed forward star. In this
case we have two arrays, NF head and NF cost, of length ", and two arrays, NF first
and NF last, of m pointers each. For each row i currently in NW : (a) the elements
of the current columns, and the corresponding current column indices, are stored in

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 29

Fig. 1. Data structures.

NF cost and NF head, in locations NF first(i); : : : ; NF last(i); (b) locations NF last(i) +
1; : : : ; NF first(i) + L − 1 (where L = F first(row(i) + 1) − F first(row(i)) denotes
the number of elements in row row(i) of W) are left empty for future insertions. The
backward star for NW is similarly de.ned by arrays NB tail; NB cost; NB first and NB last.
Fig. 1(b) shows the structures for a 2× 2 submatrix NW of W .

3.2. Approximate solution

All computations needed by the preprocessing of Section 2 were e�ciently imple-
mented through the data structures described in the previous section, but the greedy
solution of Step 1 (and 2) required a speci.c approach. Indeed, due to sparsity, in some
cases a solution of cardinality k does not exist at all. Even if k-cardinality assignments
exist, in many cases the procedure adopted for the complete case proved to be highly
ine�cient in .nding one. For the same reason, a second greedy approach was needed
at Step 3. These approaches are discussed in Section 3.3.
In certain cases, the execution of the greedy algorithms can be replaced by the

following transformation which provides a method to determine a k-cardinality assign-
ment, or to prove that no such assignment exists. Let us consider the bipartite digraph
G = (U ∪ V; A) introduced in Section 1, and de.ne a digraph G′ = ({s} ∪ { Ns} ∪ U ∪
V ∪ {t}; A′), where A′ = A ∪ {(s; Ns)} ∪ {(Ns; i): i∈U} ∪ {(j; t): j∈V}. Now assign unit
capacity to all arcs of A′ except (s; Ns), for which the capacity is set to k, and send the
maximum -ow # from s to t. It is clear that this will either provide a k-cardinality
assignment or prove that no such assignment is possible. If #¡k, we know that no

30 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

solution to k-AP exists. If # = k, the arcs of A carrying -ow provide a k-cardinality
assignment, which is suboptimal since the arc costs have been disregarded.
Computational experiments proved that the above approach is only e�cient when

the instance is very sparse, i.e., |A|60:01 mn, and k ¿ 0:9 m. For di1erent cases, much
better performance was obtained through the following greedy approaches.

3.3. Greedy approximate solutions

We recall that at steps 1 and 2 of the preprocessing phase described in Section 2 we
have partial optimal solutions of cardinality g1 and g2, respectively. Starting from one
of these solutions, the following algorithm tries to obtain an approximate solution of
cardinality k by using the information computed at Step 0 (the .rst, second and third
smallest cost in each row and column). In a .rst phase (steps (a) and (b) below) we
try to compute the solution using only .rst minima. If this fails, we try using second
and third minima (step (c)). Parameter gh can be either g1 or g2.

Algorithm GREEDY(gh):

(a) Ngh:=gh;
.nd the .rst unassigned row, i, such that column c(i) is unassigned and set
�̃:=�i (�̃:= +∞ if no such row);
.nd the .rst unassigned column, j, such that row r(j) is unassigned and set
�̃:=�j (�̃:= +∞ if no such column);

(b) while Ngh ¡k and (�̃ �= +∞ or �̃ �= +∞) do
Ngh:= Ngh + 1;
if �̃6�̃ then

assign row i to column c(i);
.nd the next unassigned row, i, such that column c(i) is unassigned
and set �̃:=�i (�̃:= +∞ if no such row)

else
assign column j to row r(j);
.nd the next unassigned column, j, such that row r(j) is unassigned
and set �̃:=�j (�̃:= +∞ if no such column)

endif
endwhile;

(c) if Ngh ¡k then
execute steps similar to (a) and (b) above, but looking, at each search,
for the .rst or next row i (resp. column j) such that column c′(i) or c′′(i)
(resp. row r′(j) or r′′(j)) is unassigned, and setting
�̃:=�′(i) if c′(i) is unassigned, or �̃:=�′′(i) otherwise
(resp. �̃:=�′(j) if r′(j) is unassigned, or �̃:=�′′(j) otherwise).

(d) if Ngh = k then UBh:= solution value else UBh:= +∞;
return Ngh and UBh.

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 31

Since it is possible that both Ng1 and Ng2 are less than k, Step 3 of Section 2 was
modi.ed so as to have in any case an approximate solution of cardinality k, either
through elements other than the .rst three minima, or, if this fails, through dummy
elements. The resulting Step 3 is as follows.

Step 3. UB:=min(UB1; UB2); g:=max(g1; g2); Ng:=max(Ng1; Ng2);

if Ng= k then go to Step 4;
for each unassigned column j do

if ∃ wij such that i is unassigned then
assign row i to column j, update UB and set Ng:= Ng+ 1;
if Ng= k then go to Step 4

endif;
while Ng¡k do

let i be the .rst unassigned row and j the .rst unassigned column;
add to W a dummy element wij =M (a very large value);
assign row i to column j, update UB and set Ng:= Ng+ 1

endwhile.

4. Implementation

The overall algorithm for sparse matrices was coded in FORTRAN 77. The approxi-
mate solution of Section 3.2 was obtained using the FORTRAN implementation of the
Dinic [7] algorithm proposed by Goldfarb and Grigoriadis [8].
The AP solution needed at the beginning of the primal phase was determined through

a modi.ed version of the Jonker and Volgenant [10] code SPJV for the sparse assign-
ment problem. The original Pascal code was translated into FORTRAN and modi.ed
so as to: (i) handle our data structure for the current matrix NW (see Section 3.1); (ii)
manage the particular case arising when the new Step 3 (see Section 3.3) adds dummy
elements to the cost matrix. These elements are not explicitly inserted in the data
structure but implicitly considered by associating a -ag to the rows having .ctitious
assignment.
The alternating paths needed, at each iteration of the primal phase, to re-optimize

the current solution have been determined through the classical Dijkstra algorithm,
implemented with a binary heap for the node labels. Two shortest path routines were
coded: RHEAP (resp. CHEAP) starts from a given row (resp. column) and uses the
forward (resp. backward) data structure of Section 3.1. Both routines implicitly consider
the possible dummy elements (see above).
The overall structure of the algorithm is the following.

Algorithm SKAP:

if |A|60:01 mn and k ¿ 0:9 m then
execute the Dinic algorithm (Section 3.2) and set LB:=− 1;
if the resulting -ow is less than k then return “no solution”

32 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

else
perform the sparse version of Steps 0–2 of preprocessing (Section 2);
execute the new Step 3 (Section 3.3) and let UB denote the resulting value;
execute the sparse version of Step 4 and let LB denote the lower bound value;
if UB= LB then return the solution else reduce the instance (Step 5)

endif;
initialize the data structure for matrix NW (Section 3.1);
execute the modi.ed SPJV code for AP and let UB denote the solution value;
if UB= LB then return the solution;
for i:=1 to m− k do

add a row to NW and re-optimize by executing RHEAP;
add a column to NW and re-optimize by executing CHEAP

endfor;
for i:=1 to n− m do

add a column to NW and re-optimize by executing CHEAP;
if the solution includes dummy elements then return “no solution”
else return the solution.

4.1. Running the code

The algorithm was implemented as a FORTRAN 77 subroutine, called SKAP and
available at http://www.or.deis.unibo.it/ORCodes/. The whole subroutine is completely
self-contained and communication with it is achieved solely through the parameter list.
The subroutine can be invoked with the statement

CALL SKAP(M,N,F FIRST,F COST,F HEAD,B FIRST,B COST,B TAIL,K,
OPT,Z,ROW,COL,U,V,MU,F COST2,B COST2,F HEAD2,B TAIL2)

The input parameters are

M, N = number of rows and columns (m; n);
F FIRST, F COST, F HEAD = forward star data structure (see Section 3.1): these
arrays must be dimensioned at least at m+ 1; |A| and |A|, respectively;

B FIRST,B COST,B TAIL=backward star data structure (see Section 3.1): these
arrays must be dimensioned at least at n+ 1; |A| and |A|, respectively;

K = cardinality of the required solution;
The output parameters are

OPT = return status: value 0 if the instance is infeasible; value 1 otherwise;
Z = optimal solution value;
ROW=the set of entries in the solution is {(ROW(j), j): ROW(j)¿0; j=1; : : : ;

N}: this array must be dimensioned at least at n;
COL = the set of entries in the solution is {(i,COL(i)): COL(i)¿0; i=1; : : : ;M}:

this array must be dimensioned at least at m.
Local arrays U, V (dimensioned at least at m and n, respectively) and scalar MU

are internally used to store the dual variables (see, Dell’Amico and Martello [5]); local

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 33

arrays F COST2, F HEAD2, B COST2 and B TAIL2 are internally used to store
the restricted matrix (see Section 3.1), and must be dimensioned at least at |A|.

5. Computational experiments

Algorithm SKAP was computationally tested on a Silicon Graphics Indy R10000sc
195MHz.
We compared its performance with the following indirect approach. Consider digraph
G′ = ({s} ∪ { Ns} ∪ U ∪ V ∪ {t}; A′) introduced in Section 3.2, and assign cost wij to
each arc (i; j)∈A, and zero cost to the remaining arcs. It is then clear that sending
a min-cost s − t -ow of value k on this network will give the optimal solution to
the corresponding k-AP. This approach was implemented by using two di1erent codes
for min-cost -ow. The .rst one is the FORTRAN code RELAXT IV of Bertsekas
and Tseng, see [2], called RLXT in the sequel, and the second one is the C code
CS2 developed by Cherkassky and Goldberg, see Goldberg [3]. Parameter CRASH of
RELAXT IV was set to one, since preliminary computational experiments showed that
this value produces much smaller computing times for our instances.
Test problems were obtained by randomly generating the costs wij from the uniform

distributions [0; 102] and [0; 105]. This kind of generation is often encountered in the
literature for the evaluation of algorithms for AP.
For increasing values of m and n (up to 3000) and various degrees of density (1%,

5% and 10%), 10 instances were generated and solved for di1erent values of k (ranging
from 20

100m to
 99
100m�).

Density d% means that the instance was generated as follows. For each pair (i; j),
we .rst generate a uniformly random value r in [0; 1): if r6d then the entry is added
to the instance by generating its value wij in the considered range; otherwise the next
pair is considered. In order to ensure consistency with the values of m and n, we then
consider each row i and, if it has no entry, we uniformly randomly generate a column
j and a value wij. The same is .nally done for columns.
Tables 1–3 show the results for sparse instances. In each block, each entry in the

.rst six lines gives the average CPU time computed over 10 random instances, while
the last line gives the average over all k values considered. The results show that the
best of the two min-cost -ow approaches is faster than SKAP for some of the easy
instances of Table 1, while both are clearly slower for all the remaining instances.
More speci.cally, for the 1% density (Table 1) RLXT is faster than SKAP in the

range [0; 102] for m and n less than 3000, while CS2 is faster than SKAP in the
range [0; 105] for 5006m61000 and 10006n62000. It should be noted, however,
that SKAP solves all these instances in less than one second on average, and that it is
less sensitive to the cost range.
For the 5% instances (Table 2), SKAP is always the fastest code. For large values of
m and n it is two–three times faster than its best competitor. This trend is con.rmed
by Table 3 (10% density), where, for large instances, the CPU times of SKAP are
about one order of magnitude smaller than the others.

34 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

Table 1
Density 1%. Average computing times over 10 problems, Silicon Graphics INDY R10000sc seconds

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 SKAP RLXT CS2 SKAP

20 0.018 0.029 0.005 0.031 0.038 0.008
50 0.020 0.029 0.032 0.053 0.038 0.037
80 0.024 0.031 0.039 0.071 0.043 0.035

250 500 90 0.023 0.030 0.039 0.067 0.042 0.038
95 0.027 0.034 0.037 0.081 0.041 0.037
99 0.023 0.031 0.041 0.068 0.045 0.039

Average 0.023 0.031 0.032 0.062 0.041 0.032

20 0.033 0.049 0.056 0.082 0.062 0.063
50 0.054 0.056 0.061 0.155 0.064 0.068
80 0.070 0.057 0.078 0.218 0.068 0.087

500 500 90 0.067 0.055 0.077 0.197 0.073 0.088
95 0.076 0.058 0.073 0.165 0.074 0.077
99 0.084 0.061 0.050 0.152 0.078 0.052

Average 0.064 0.056 0.066 0.162 0.070 0.073

20 0.045 0.090 0.029 0.189 0.120 0.061
50 0.059 0.096 0.115 0.171 0.110 0.126
80 0.075 0.095 0.118 0.227 0.125 0.141

500 1000 90 0.077 0.097 0.131 0.316 0.120 0.164
95 0.072 0.100 0.182 0.364 0.122 0.202
99 0.077 0.099 0.153 0.326 0.123 0.159

Average 0.068 0.096 0.121 0.266 0.120 0.142

20 0.089 0.156 0.231 0.358 0.204 0.231
50 0.178 0.171 0.227 0.605 0.205 0.256
80 0.200 0.181 0.294 0.987 0.219 0.351

1000 1000 90 0.199 0.188 0.271 1.109 0.232 0.326
95 0.218 0.200 0.239 0.875 0.229 0.300
99 0.237 0.217 0.142 0.796 0.244 0.202

Average 0.187 0.186 0.234 0.788 0.222 0.278

20 0.191 0.399 0.323 1.695 0.489 0.448
50 0.196 0.430 0.446 0.911 0.489 0.471
80 0.330 0.435 0.455 1.344 0.497 0.571

1000 2000 90 0.257 0.439 0.519 1.530 0.511 0.683
95 0.270 0.461 0.735 1.688 0.506 0.779
99 0.249 0.454 0.612 1.831 0.493 0.615

Average 0.249 0.436 0.515 1.500 0.498 0.595

20 0.477 1.015 0.905 2.485 1.190 0.913
50 0.599 1.047 0.858 3.264 1.234 1.029
80 0.867 1.203 1.078 7.862 1.315 1.620

2000 2000 90 0.876 1.256 1.007 6.087 1.405 1.435
95 0.883 1.333 0.895 5.828 1.432 1.312
99 0.900 1.427 0.503 4.274 1.547 0.893

Average 0.767 1.214 0.874 4.967 1.354 1.200

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 35

Table 1 (continued)

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 SKAP RLXT CS2 SKAP

20 0.928 1.078 0.038 7.412 1.410 1.026
50 0.795 1.271 0.996 3.714 1.511 1.077
80 0.613 1.307 0.983 1.723 1.490 1.262

1500 3000 90 0.754 1.370 1.112 2.656 1.560 1.673
95 0.752 1.363 1.476 3.448 1.570 1.853
99 0.663 1.340 1.252 2.803 1.551 1.420

Average 0.751 1.288 0.976 3.626 1.515 1.385

20 1.088 2.476 0.069 7.119 2.941 2.083
50 1.431 2.743 2.012 5.509 3.220 2.387
80 2.826 3.064 2.543 28.727 3.397 3.926

3000 3000 90 2.239 3.207 2.328 13.689 3.594 3.428
95 2.160 3.438 1.975 14.763 3.766 3.034
99 2.096 3.656 1.194 17.572 3.950 1.973

Average 1.973 3.097 1.687 14.563 3.478 2.805

Table 2
Density 5%. Average computing times over 10 problems, Silicon Graphics INDY R10000sc seconds

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 SKAP RLXT CS2 SKAP

20 0.035 0.076 0.005 0.168 0.091 0.022
50 0.034 0.080 0.032 0.089 0.093 0.039
80 0.040 0.082 0.042 0.080 0.107 0.051

250 500 90 0.035 0.075 0.049 0.155 0.092 0.053
95 0.040 0.080 0.049 0.102 0.107 0.057
99 0.043 0.077 0.043 0.072 0.093 0.049

Average 0.038 0.078 0.037 0.111 0.097 0.045

20 0.054 0.145 0.048 0.225 0.176 0.070
50 0.063 0.147 0.078 0.176 0.186 0.088
80 0.098 0.155 0.101 0.560 0.193 0.122

500 500 90 0.111 0.168 0.107 0.489 0.199 0.125
95 0.114 0.170 0.093 0.497 0.204 0.108
99 0.114 0.176 0.066 0.388 0.211 0.085

Average 0.092 0.160 0.082 0.389 0.195 0.100

20 0.176 0.358 0.016 1.376 0.450 0.099
50 0.165 0.405 0.137 0.721 0.501 0.144
80 0.165 0.419 0.153 0.419 0.508 0.200

500 1000 90 0.170 0.432 0.168 0.326 0.499 0.237
95 0.172 0.424 0.180 0.302 0.502 0.223
99 0.171 0.435 0.173 0.320 0.488 0.198

Average 0.170 0.412 0.138 0.577 0.491 0.184

36 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

Table 2 (continued)

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 SKAP RLXT CS2 SKAP

20 0.175 0.928 0.028 1.360 1.135 0.263
50 0.296 1.035 0.267 1.213 1.230 0.339
80 0.529 1.126 0.365 4.883 1.285 0.584

1000 1000 90 0.583 1.165 0.389 3.024 1.315 0.572
95 0.586 1.215 0.361 4.574 1.365 0.486
99 0.611 1.257 0.274 3.728 1.428 0.357

Average 0.463 1.121 0.281 3.130 1.293 0.434

20 1.044 2.161 0.045 9.425 2.560 0.524
50 0.735 2.430 0.052 4.206 2.862 0.549
80 0.994 2.700 0.582 2.404 3.065 0.840

1000 2000 90 1.068 2.752 0.621 1.841 3.070 1.042
95 0.970 2.772 0.667 1.519 2.981 1.011
99 0.912 2.652 0.675 1.900 2.918 0.830

Average 0.954 2.578 0.440 3.549 2.909 0.799

20 1.914 4.775 0.085 6.455 5.419 1.054
50 2.115 5.460 0.173 4.212 6.062 1.483
80 2.676 6.048 1.502 33.195 6.475 3.074

2000 2000 90 3.624 6.334 1.778 29.435 6.662 2.648
95 3.661 6.598 1.646 35.922 6.759 2.261
99 3.132 6.943 1.237 36.167 7.402 1.671

Average 2.854 6.026 1.070 24.231 6.463 2.032

20 3.296 5.459 0.099 29.304 6.607 1.184
50 1.406 5.958 0.098 13.933 7.282 1.249
80 3.062 6.531 1.296 6.015 7.462 2.213

1500 3000 90 2.207 6.898 1.383 4.832 7.594 2.997
95 2.529 6.932 1.488 4.720 7.447 2.763
99 2.345 6.613 1.488 5.935 7.179 2.097

Average 2.474 6.399 0.975 10.790 7.262 2.084

20 9.503 11.850 0.171 14.187 13.428 2.395
50 3.867 12.669 0.175 9.093 13.938 3.710
80 12.990 15.402 3.757 74.084 16.270 8.534

3000 3000 90 12.098 15.735 4.696 94.893 16.925 7.384
95 10.224 16.366 4.446 96.993 17.938 5.911
99 7.818 17.444 3.581 105.391 19.175 4.629

Average 9.417 14.911 2.804 65.774 16.279 5.427

In Table 4, we consider complete matrices and compare the previous approaches
and the specialized algorithm PRML, developed, for dense k-APs, by Dell’Amico and
Martello [5]. The results show that SKAP is clearly superior to both min-cost -ow

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 37

Table 3
Density 10%. Average computing times over 10 problems, Silicon Graphics INDY R10000sc seconds

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 SKAP RLXT CS2 SKAP

20 0.062 0.126 0.006 0.479 0.157 0.027
50 0.062 0.140 0.044 0.243 0.172 0.045
80 0.074 0.147 0.049 0.123 0.170 0.058

250 500 90 0.071 0.141 0.062 0.103 0.166 0.069
95 0.065 0.144 0.061 0.105 0.170 0.066
99 0.066 0.150 0.062 0.118 0.171 0.064

Average 0.067 0.141 0.047 0.195 0.168 0.055

20 0.069 0.338 0.011 0.380 0.421 0.065
50 0.109 0.372 0.080 0.719 0.442 0.098
80 0.180 0.380 0.129 1.194 0.450 0.183

500 500 90 0.207 0.393 0.133 1.099 0.464 0.175
95 0.211 0.414 0.130 1.104 0.476 0.166
99 0.219 0.423 0.097 0.794 0.478 0.124

Average 0.166 0.387 0.097 0.882 0.455 0.135

20 0.362 0.848 0.027 3.299 1.068 0.116
50 0.267 0.932 0.022 1.587 1.166 0.163
80 0.399 1.029 0.168 0.894 1.188 0.236

500 1000 90 0.365 1.045 0.210 0.692 1.202 0.321
95 0.356 1.039 0.222 0.550 1.209 0.313
99 0.347 1.030 0.237 0.488 1.167 0.259

Average 0.349 0.987 0.148 1.252 1.167 0.235

20 0.491 1.951 0.037 2.177 2.335 0.303
50 0.642 2.155 0.069 2.122 2.548 0.382
80 0.892 2.503 0.474 9.234 2.722 0.843

1000 1000 90 1.085 2.578 0.569 8.973 2.789 0.817
95 1.218 2.546 0.546 8.413 2.869 0.767
99 1.107 2.748 0.436 6.904 3.049 0.577

Average 0.906 2.414 0.355 6.304 2.719 0.615

20 1.980 4.610 0.070 25.197 5.472 0.501
50 1.009 4.933 0.080 7.292 5.796 0.639
80 1.898 5.400 0.583 4.349 5.962 0.996

1000 2000 90 1.840 5.559 0.760 4.198 5.948 1.630
95 1.596 5.518 0.839 4.648 5.832 1.587
99 1.671 5.397 0.872 3.666 5.745 1.191

Average 1.666 5.236 0.534 8.225 5.793 1.091

20 6.281 9.746 0.133 9.597 10.952 1.216
50 2.105 10.495 0.149 7.715 11.145 1.670
80 6.176 12.512 2.019 46.621 12.472 4.882

2000 2000 90 7.773 12.580 3.071 66.271 13.377 4.491
95 8.017 13.426 2.624 49.976 13.855 3.745
99 5.773 14.087 2.317 67.158 14.363 2.762

Average 6.021 12.141 1.719 41.223 12.694 3.128

38 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

Table 3 (continued)

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 SKAP RLXT CS2 SKAP

20 5.124 11.413 0.155 54.703 12.920 1.232
50 3.890 12.410 0.161 20.098 13.715 1.427
80 7.012 13.495 0.168 12.327 14.986 2.510

1500 3000 90 4.381 13.674 1.491 9.505 14.774 4.529
95 5.027 14.092 1.880 14.312 14.470 4.390
99 4.666 13.821 1.957 14.103 14.433 3.168

Average 5.017 13.151 0.969 20.841 14.216 2.876

20 27.022 24.249 0.290 18.440 26.891 2.789
50 10.271 25.223 0.312 14.506 26.967 3.907
80 15.036 28.650 5.850 117.946 29.787 13.780

3000 3000 90 73.373 31.067 10.134 141.552 33.177 12.530
95 25.598 34.414 11.014 137.860 35.357 10.124
99 19.422 34.894 7.139 158.249 36.366 7.952

Average 28.454 29.750 5.790 98.092 31.424 8.514

Table 4
Complete matrices. Average computing times over 10 problems, Silicon Graphics INDY R10000sc seconds

Range [0; 102] Range [0; 105]

m n k
100
m

RLXT CS2 PRML SKAP RLXT CS2 PRML SKAP

20 0.263 2.323 0.029 0.032 5.838 2.577 0.043 0.063
50 0.347 2.431 0.040 0.039 2.594 2.806 0.117 0.128
80 0.403 2.543 0.046 0.041 2.279 2.846 0.212 0.145

250 500 90 0.482 2.585 0.049 0.052 2.678 2.905 0.297 0.175
95 0.498 2.645 0.122 0.119 2.782 2.811 0.386 0.182
99 0.503 2.693 0.132 0.136 2.777 2.938 0.457 0.243

Average 0.416 2.537 0.070 0.070 3.158 2.814 0.252 0.156

20 1.255 5.042 0.074 0.068 2.923 5.370 0.131 0.221
50 1.224 5.197 0.083 0.076 4.087 5.549 0.295 0.278
80 1.451 5.424 0.262 0.253 16.758 6.003 0.860 0.609

500 500 90 1.958 5.528 0.281 0.730 16.187 6.044 1.186 1.116
95 2.732 5.876 0.292 0.775 17.136 6.631 1.318 1.062
99 2.691 6.195 0.347 0.784 17.211 6.764 1.458 0.904

Average 1.885 5.544 0.223 0.448 12.384 6.060 0.875 0.698

approaches. In addition, in many cases, it is even faster than the specialized code. This
is probably due to the new heuristic algorithm embedded in SKAP.
Tables 1–4 also give information about the relative e�ciency of codes RELAXT IV

and CS2, when used on our type of instances. It is quite evident that the two codes
are sensitive to the cost range: RELAXT IV is clearly faster than CS2 for the range
[0; 102], while the opposite holds for the range [0; 105].

M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40 39

Fig. 2. Density 5%, range [0; 105], rectangular instances. Average CPU time (in seconds) as a function of
the instance size.

Fig. 3. Density 5%, range [0; 105], square instances. Average CPU time (in seconds) as a function of the
instance size.

Finally, Figs. 2 and 3 show the behavior of the average CPU time requested by
SKAP, for each value of k, as a function of the instance size. We consider the case
of range [0; 105] and 5% density, separately for rectangular and square instances. The
functions show that SKAP has, for .xed k value, a regular behavior. There is instead
no regular dependence of the CPU times on the value of k: small values produce easy
instances, while the most di�cult instances are encountered for k around 80

100m or 90
100m.

40 M. Dell’Amico et al. / Discrete Applied Mathematics 110 (2001) 25–40

Acknowledgements

This work was supported by Ministero dell’UniversitWa e della Ricerca Scienti.ca e
Tecnologica, and by Consiglio Nazionale delle Ricerche, Italy.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, Englewood Cli1s, NJ, 1993.
[2] D.P. Bertsekas, P. Tseng, Relaxation methods for minimum cost ordinary and generalized network -ow

problems, Oper. Res. 36 (1988) 93–114.
[3] A.V. Goldberg, An e�cient implementation of a scaling minimum-cost -ow algorithm, J. Algorithms

22 (1997) 1–29.
[4] M. Dell’Amico, F. Ma�oli, M. Trubian, New bounds for optimum tra�c assignment in satellite

communication, Comput. Oper. Res. 25 (1998) 729–743.
[5] M. Dell’Amico, S. Martello, The k-cardinality assignment problem, Discrete Appl. Math. 76 (1997)

103–121.
[6] M. Dell’Amico, S. Martello, Linear assignment, in: M. Dell’Amico, F. Ma�oli, S. Martello (Eds.),

Annotated Bibliographies in Combinatorial Optimization, Wiley, Chichester, 1997, pp. 355–371.
[7] E.A. Dinic, Algorithms for solution of a problem of maximum -ow in networks with power estimation,

Soviet Math. Dokl. 11 (1970) 1277–1280.
[8] D. Goldfarb, M.D. Grigoriadis, A computational comparison of the Dinic and network simplex methods

for maximum -ow, in: B. Simeone, P. Toth, G. Gallo, F. Ma�oli, S. Pallottino (Eds.), FORTRAN
Codes for Network Optimization, Annals of Operational Research, Vol. 13, Baltzer, Basel, 1988, pp.
83–103.

[9] R. Jain, J. Werth, J.C. Browne, A note on scheduling problems arising in satellite communication,
J. Oper. Res. Soc. 48 (1997) 100–102.

[10] R. Jonker, T. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment
problems, Computing 38 (1987) 325–340.

[11] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & Winston,
New York, 1976.

[12] S. Martello, P. Toth, Linear assignment problems, in: S. Martello et al. (Eds.), Surveys in Combinatorial
Optimization, Annals of Discrete Mathematics, Vol. 31, North-Holland, Amsterdam, 1987, pp. 259–282.

[13] C.A. Pomalaza-RYaez, A note on e�cient SS/TDMA assignment algorithms, IEEE Trans. Commun. 36
(1988) 1078–1082.

[14] C. Prins, An overview of scheduling problems arising in satellite communications, J. Oper. Res. Soc.
45 (1994) 611–623.

