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ABSTRACT
We propose a shortest trajectory planning algorithm imple-
mentation for Unmanned Aerial Vehicles (UAVs) on an em-
bedded GPU. Our goal is the development of a fast, energy-
efficient global planner for multi-rotor UAVs supporting hu-
man operator during rescue missions.
The work is based on OpenCL parallel non-deterministic
version of the Dijkstra algorithm to solve the Single Source
Shortest Path (SSSP). Our planner is suitable for real-time
path re-computation in dynamically varying environments
of up to 200 m2. Results demonstrate the efficacy of the ap-
proach, showing speedups of up to 74x, saving up to ∼ 98%
of energy versus the sequential benchmark, while reaching
near-optimal path selection, keeping the average path cost
error smaller than 1.2%.
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1. INTRODUCTION
The interest in the use of UAVs in dangerous scenar-

ios, such as natural disasters or hazardous areas is growing
quickly [18]. Autonomous robots can exploit complemen-
tary sense-act capabilities, supporting human operators in
accomplishing surveillance and rescue tasks [16].
Our target scenario is research and rescue activities, where
the rescuer has to operate in real-world, hostile environ-
ment, using robotic helpers. We address an unstructured
and dynamically changing environment, where real-time en-
vironment analysis is required (e.g. after a landslide or an
earthquake). The human operator must be considered as
not always available to supervise the robotic platform, thus
robots need to have a high degree of autonomy. Small multi-
rotor UAVs (i.e. quadrotors) are used to give the rescuer the
ability of monitoring a large area, as “flying eyes”, keeping
costs and risks at a reasonable level and improving his per-
ception and knowledge.
Autonomous navigation and cognitive capabilities play a
crucial role to increase the efficiency and reliability of hu-
mans in see-and-listen missions. Required navigation skills
are: patrolling, path following and “follow me” capability.
Cognitive skills are: obstacle avoidance [11], ambient aware-
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Figure 1: Planning strategy: computation is performed only when
a new obstacle is detected nearby the current trajectory.

ness [21], feature detection and Simultaneous Localization
And Mapping (SLAM) [22]. All requirements involve per-
forming computationally demanding tasks in real-time.
Multi-rotor UAVs are characterized by the presence of a
sensing visual system, that captures information from a pref-
erential point of view, allowing on-board computation. The
embedded processing device is in charge of both analyzing
the visual information detected and calculating the plan of
flight, as in Fig. 1. These kinds of robots are characterized
by constrained resources: payload, batteries autonomy, op-
erative radius and on-board computational capability.
Our work focuses on the UAVs navigation skill. We propose
a novel real-time parallel path planner, which allows au-
tonomous navigation using only on-board computation, han-
dling the entire mission area. We demonstrate the energy-
efficiency and the path optimality of the proposed imple-
mentations. Due to the given use case, we selected the Intel
Graphics HD 4000 GPU to execute our non-deterministic
version of the Dijkstra algorithm [8], developed with OpenCL.
We believe that reducing the power consumption of the con-
trol system in UAVs will become increasingly important as
the size of the vehicle is scaled down. Indeed, reducing the
UAV size quickly leads to order-of-magnitude reduction of
the power spent on the propellers. Beside, the computa-
tional load required to implement the UAV cognitive skills
does not vary with the vehicle size, and will thus constitute
an increasingly larger fraction of the total system power con-
sumption. In this context, the proposed solution is particu-
larly convenient for ultra-low-power embedded devices.
The remainder of the paper is organized as follows: Sec. 2
summarizes the related work and the state-of-the-art in the
trajectory planning field for UAVs. The used hardware and
software architectures are described in Sec. 3, the algorithm
and our implementations are summarized in Sec. 4, and
experimental results are given in Sec. 5. Finally, Sec. 6
concludes the paper.

2. RELATED WORK
The increasing number of contributions show growing in-

terest of advanced motion planning algorithms for UAVs.



A widely used approach in literature is the layered planner.
This combines low-level reactive local planning for fast re-
activity but limited range (i.e. obstacles avoidance), with a
high-level global planning for long range but high compu-
tation time [17, 19]. The global path planner typically re-
quires some deliberation time and may not find a solution in
time to prevent a collision. Thus, the reactive local planner
keeps the vehicle safe from immediate threats by reacting
quickly, in a potentially suboptimal manner. In [19], the
global planner follows generalized Voronoi diagram graph
while local planner is based on potential field theory [1]. In
this approach, the global planner computational time (up to
10 seconds) is not suitable to be used for dynamic environ-
ments moreover the generated trajectories are not optimal.
Several other approaches, surveyed in [10], assume complete
knowledge of the environment geometry, giving a strict limit
to the applicative scenario.
When dynamic real-world populated environments are con-
sidered, planning the motion of the vehicle may require solv-
ing complex optimization problems with high computational
load [15]. A way to solve high computation problem consists
in discretizing the environment space and/or the operative
space of robots, resulting in a discrete manifold described
by graph or lattice. Graph search or discrete techniques can
then be used to find solution on the discrete manifold in a
computationally optimized way [14].
Graph optimization, using parallel devices, are highly multi-
domain and considered in several works [6, 7, 3]. They deal
with huge dimension graphs in order to exploit all the com-
putational power delivered by high performance GPUs. In
[7], they reorder the vertices, before the path computation,
to reduce the number of cache misses, but the algorithm is
efficient only if there are sufficient computations to amortize
the preprocessing cost. In [3], the problem is tackled only
in terms of minimal cost path, reducing the memory usage
and unconcerning information to generate the route.
A graph approach is considered in [5]. The graph consid-
ered connects vertices of surfaces tangent to obstacles. The
graph size is reduced in comparison with uniform discretiza-
tion of maps but the trajectories are limited to be tangent
to obstacles, and the optimality could be considered only
for minimum length problems. Another “discrete” planner
can be found in [13]. The author proposes a strategy to dy-
namically dodge obstacles by generating an escape waypoint
when a new obstacle is detected. This algorithm aims at fast
computation using voxel discrete structure and simple avoid
strategy, but it does not take into account the feasibility and
optimality of the solution.
A similar approach to the algorithm presented in this pa-
per is given in [11], where the kinematic of the robot is
directly taken into account in the planning stage. However,
we propose a solution that does not use any heuristic for the
planning, getting the optimal path. In addition, we are also
able to compute a map 8-10 time bigger in the same time.
The power consumption of the UAV control system plays
a crucial role in the overall system energy efficiency when
the size of the vehicle is scaled down. The power analysis
of the on-board feedback control and sensing of a miniature
robotic platform is given in [2]. In [23], the authors estimate
in 5 mW the power budget to perform navigational skills on
pico-size UAVs, endorsing the need for energy-efficient solu-
tions.
In this work we present an energy-efficient optimal global
path planner, suitable for real-time decisions, capable of
handling a dynamically varying environment using only on-
board computational resources exploiting parallel program-
ming techniques.

3. SYSTEM ARCHITECTURE
Our planner is tailored to the architectural model depicted

in Fig. 2. The key components are: the Sensing System, the

Processing Device and the Autopilot.
The Sensing System is composed by Laser-scan and Stereo-
rig. They represent the sensors through which the robot
“sees” the physical space. The output of the sensing system
are the Point Cloud (i.e. 3-D model of the surrounding en-
vironment) and the Visual Information (e.g. obstacles, rele-
vant features detected and the position itself of the quadro-
tor). Sensing System information, including Measures com-
ing from the Inertial Sensors, represent information gath-
ered by on-board sensors that are used by the Visual &
Map module to build the internal map representation. This
map is based on a space discretization to reduce the com-
putational complexity and it can be expressed either by an
Occupancy Grid or by a 3D occupancy map [12].
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Figure 2: Overall HW & SW architecture of the UAVs.

The Processing Device performs the high level computation,
including the visual analysis and exploration strategy. The
Path Planner represents the heart of the control and it pro-
vides information about the feasibility of the mission, eval-
uating the optimal path. Mission Information is pushed
to the Path Planner either by a human operator or by the
system itself and represents the start point, destination and
way-points to be visited during the patrolling path. The re-
sult of this stage is the best primitive sequence to achieve
the mission with the minimal cost. Thus the Path Planner
feeds the Autopilot with a sequence of Primitives, which rep-
resents elementary movements the robot is capable of doing.
The Autopilot is in charge of the feedback control to stabilize
and track the desired trajectory. It includes also the Inertial
Sensors module (i.e. accelerometers and gyroscopes). Iner-
tial Measures and Primitives are both sent to the Control
Stabilization block, that connects each different primitive so
as to obtain a sufficiently smooth path and converts the ge-
ometrical information into a time-law Control Signal. As
introduced in [9], the control is able to produce a smooth
path, dealing with trajectory discontinuities and keeping the
real trajectory close to the primitives sequence.
For the class of UAVs considered in this work, with a total
power budget of 300 Watts, the selected Processing Device
is an embedded modular computer consuming, at most, one
tenth of the total power. The device is based on an Intel
Core Processor (Ivy Bridge1), with a Thermal Design Power
(TDP) of 35 Watts. Furthermore, the Intel x86 architecture
enables the exploitation of a wide range of legacy software
layers, like the Robot Operating System (ROS) [20]. The
processor integrates 2 CPU cores and a GPU that consists
of 2 sub-slices, each one has 8 ALUs called execution units
(EUs), each of which can perform 16 flop/cycle. Thus, the
whole GPU can perform 256 flops/cycle.
The integrated GPU supports OpenCL, using Beignet2 : an
open source implementation of the OpenCL specification for
Linux OS. The OpenCL Work-Groups (WGs) are mapped
onto EU threads and then are distributed across EUs in the
sub-slice. Each EU can run up to 8 EU threads to hide laten-

1http://ark.intel.com/products/67355/Intel-Core-i5-3210M
2http://www.freedesktop.org/wiki/Software/Beignet



cies and increase utilization. However, the number of Work-
Items (WIs) in a EU thread is kernel-dependent. Each EU
thread has access to a 4 kB register file. The compiler maps
either 8, 16 or 32 WIs to one EU thread depending upon
register usage of each WI, in a Single Instruction Multiple
Data fashion (i.e. SIMD 8/16/32). Each sub-slice has access
to 64 kB of local memory which is divided into 16 banks and
provides 64 bytes/cycle of bandwidth. The global memory
is allocated from system DDR memory.
The exploration strategy developed, is aimed at exploring
the unknown environment performing the path computation
on-line, both at start time and when new relevant infor-
mation is detected. New information could be represented
either by obstacles detected or by updating mission informa-
tion like the destination. The strategy is realized through
an Application Programming Interface (API) that puts the
control back to the Visual & Map module, allowing it to
invoke a new path computation. The Visual & Map module
pushes the Occupancy Grid to the Path Planner where it is
used to build and update the map automaton.
The map automaton, Fig. 3 (a), represents the flying zone
discretized to a fixed granularity. A single grain corresponds
to a state (i.e vertex) and events (i.e. edges) represent
elementary movements on the 2-D space. The quadrotor
automaton, shown in Fig. 3 (b), is “hard-coded” into the
planner module and represents the robot model and the in-
teraction between its primitives and the movements on the
map. The quadrotor and the map automaton are merged
together using the supervisory control theory [4], producing
the composition automaton. Finally, the Path Planner per-
forms the graph exploration of the composition automaton
in order to feed the Control Stabilization with the optimal
path sequence.

4. ALGORITHMS & IMPLEMENTATIONS
In this section we present the algorithmic flow made of

two main stages: the automaton synchronous composition
and the SSSP. The first stage delivers a complete representa-
tion of the system in graph form, including forbidden zones.
Then, we perform the SSSP exploration, for a given source
and destination, running our OpenCL parallel implementa-
tion of the Dijkstra algorithm.

4.1 Automaton Synchronous Composition
Starting from the discrete map and the quadrotor automa-

ton, Fig. 3, we perform the automaton synchronous com-
position to synchronize both automata in a new one that
represents the whole system: the composition automaton.
In the synchronous composition [4], a common event (i.e.
events that occur in both automata) can only be executed if
two automata both execute it simultaneously. Thus the two
automata are “syncronized” by the common events. Private
events (i.e. events that occur exclusively in an automaton)
are not subject to such a constraint and can be executed
whenever possible.
As shown in Fig. 3, we use a map automaton (a) with 4
events types (i.e. Up, Down, Left, Right) and a quadrotor
automaton (b) made of 21 states and 12 events types (i.e.
8 primitives and the map’s events). In the map automaton
the number of the states depends on the dimension of the
environment explored and on the step-size used during the
discretization. The primitives of the quadrotor are: go 0,
go 45, go 90, go 135, go 180, go 225, go 270, go 315 and
they represent straight lines at 45 degrees each. As shown in
Fig. 3 (b), diagonal movements (i.e. go 45, go 135, go 225,
go 315) have three states more than perpendicular move-
ments in order to prevent possible collisions with obstacles
lying on lateral locations, respect to the diagonal.
Before performing the synchronous composition, we build
the map automaton starting from the occupancy grid. This
stage is performed off-line on the CPU only at start time.
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Figure 3: Map (a) and Quadrotor (b) automaton.

During the flight (on-line), every time a new obstacle is re-
vealed by sensors the map automaton is updated removing
the state related to the occupied cell. Then, if the new ob-
stacle lies either in the current path or in its side, a new
graph exploration is executed on the GPU.

4.2 Single Source Shortest Path
In this section we present three different SSSP parallel

implementations based on the Dijkstra algorithm. The Di-
jkstra algorithm has been chosen due to its global optimality
property and for its adoption in state-of-the-art works like
ROS [20]. The SSSP problem with non-negative weights can
be stated as follows: given a weighted graph G = (V,E, c),
where V is the set of vertices or nodes, E the set of edges
(i.e. pairs of nodes) and c the cost (c : E → R+), find a
minimal weight path from one chosen node s ∈ V , called
the source node, to all other nodes in V . We say that the
nodes v, w ∈ V are neighbours if (v, w) ∈ E, i.e., if there
exists an edge between them. The graph used here is the
outcome of the automaton synchronous composition where,
defining Q the number of states of the quadrotor and M the
number of states of the map automaton, the used graph has
O(Q ·M) vertices.
We represent both vertices and edges using a state-transaction

matrix stored in array form: ~T . The matrix is built with one
column for each edge type (i.e. 12 events) and one row for
each vertex (state) of the composition automaton. As de-
picted in Fig. 3 (b) only central nodes can be reached by
more than one edge (i.e. 8 edges in general). Thus, during
the parallel graph exploration, the access to these nodes (i.e.
nodes with an id multiple of 21 in the composition automa-
ton) can turn out to be a race condition and consequently
register of a not minimal cost for that vertex. In that case a
non-optimal and non-deterministic path would be obtained.
In order to avoid this behavior we propose two distinct par-
allel implementations: Parallel Atomic and Parallel Multi-
Buffer. We also present a last implementation where race
conditions are permitted: Parallel Non-Deterministic. In
Sec. 5 we evaluate the non-deterministic solution in terms
of performance respect to path optimality.
Auxiliary structures used in our implementations are: a

mask array ~M and a temporary mask array ~Mtemp, a cost

array ~C and a temporary cost array ~Ctemp. The mask ar-
rays are used to keep track of the next nodes to be explored,
using only one Byte for each vertex. In addition to updating
the cost array, we also have to keep track of the predecessor
of each element so that we can reconstruct the minimal cost
path. Thus, we have to make sure that, when a thread is up-
dating the predecessor id of a vertex w in memory, while that

thread is reading the value ~C[w], comparing it with its cost
and writing the predecessor to memory, no other thread can
change either of those variables. For this, however, atomic
operations are not enough. We have to use a critical section,
which serializes a part of the parallel execution.
To avoid this solution, we decided to package the two pieces
of information into one 32-bit element. The 20 right-most
bits are used to store the vertex, or vertex id, while the
remaining bits store the corresponding cost, which means



that we can again use atomic function. In this way we save
both bandwidth and memory, still being able to compare
costs, since only the left-most bits affect this comparison.
We manipulate this packed data with fast bitwise opera-
tions. However, we have introduced two new constraints:
the maximum dimension allowed for the composition au-
tomaton of 220 vertices and the maximum cost allowed of
212 − 1. These two new constraints do not represent an ac-
tual limitation because the real-time requirement introduces
itself stricter upper bounds. Then, during the initialization

stage, only the left-most 12 bits of ~C and ~Ctemp are initial-
ized to the maximum value allowed and all the id bits to 0.
All proposed implementations share the same algorithmic
structure on the host side (i.e CPU): a main loop handles
the kernel invocations, where the termination is based on
the change in cost. As reported in Algo. 1, additional struc-
tures are created on the host side and then initialized on the
GPU, avoiding transfer overhead. The final result stored in
~C is then used by the host to compute the final path just
performing a backward exploration starting from the desti-
nation vertex.

Algorithm 1 OCL SSSP (Graph G(V,E,W), Source S)

Create: M, Mtemp, C, Ctemp for all V
Initialize: M to 0, C and Ctemp to UINT_MAX « 20
M[S] ← Mflag ← 1
C[S] ← Ctemp[S] ← 0
while Mflag = 1 do
     for each vertex V in parallel do
          invoke OCL_K_x.1
          invoke OCL_K_x.2 /*Not for Non-Deterministic*/
     end for
end while
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The best OpenCL configuration experienced is, as expected,
scheduling the maximum number of WIs that match the EU
threads. Thus, every WI handles more vertices during the
same execution.

4.2.1 Parallel Atomic
This implementation is composed of two kernels. The first

kernel, Algo. 2, starts re-triggering the termination variable
Mflag, shared among all WGs, to the termination value. In
this way the execution will terminate only if no WI will up-
date any vertex cost. Then, during each iteration and for

each vertex, the mask array ~M is checked. If the current
value is “to be explored”, the cost and the neighbor’s weight

are fetched respectively from ~C and ~W . The cost of each
neighbor is updated if greater than the cost of the current
vertex plus the weight of the incoming edge.

Algorithm 2 OCL K 1.1 (~T , ~M, ~C, ~Ctemp, ~W,Mflag)

Mflag ← 0  
tid ← get_global_id(0)
if M[tid] ≠ 0 then
     M[tid] ← 0
     for all neighbors nid of tid from T do
          Cnew ← (C[tid] » 20 + W[nid]) « 20 ⋁ tid
          atomic_min(Ctemp[nid], Cnew)
     end for
end if
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Algorithm 3 OCL K 1.2 ( ~M, ~C, ~Ctemp,Mflag)
  
tid ← get_global_id(0)
if C[tid] > Ctemp[tid] then
     C[tid] ← Ctemp[tid]
     M[tid] ← Mflag ← 1
end if
Ctemp[tid] ← C[tid]
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Due to our custom representation of the cost array, the new
cost Cnew is computed using the bitwise operations shift and
or. The Cnew is not reflected in the cost array but is updated

in the temporary array ~Ctemp through the atomic OpenCL
operation atomic_min. The atomic operation compares the

two costs (passed as parameters) and stores, in the location
of the first argument, the minor value. The second kernel,

shown in Algo. 3, compares cost ~C with temporary cost
~Ctemp. It updates the cost ~C only if it is bigger than ~Ctemp

and marks the corresponding entry, in the mask ~M , as “to
be explored”. Therefore, the Mflag is set to produce another
kernels round. The temporary cost array reflects the cost
array after each kernel execution for consistency. The sec-
ond kernel is required as there is no synchronization between
OpenCL WGs. Updating the cost at the time of modifica-
tion itself can result in read-after-write inconsistencies.

4.2.2 Parallel Multi-Buffer
In this implementation we prevent race conditions by al-

lowing extra-size temporary cost buffer. For each vertex
that can be reached by more than one edge (i.e. 8 edges),

we store the costs in continuous locations of ~Ctemp (multi-
buffer), as reported in Algo. 4. The storage location inside
the multi-buffer is determined exploiting a Look-Up-Table
(LUT), that is used only for vertex id multiple of 21. For
others vertices, the new cost is always stored in the only lo-
cation available, in the same way of Algo. 2.

Algorithm 4 OCL K 2.1 (~T , ~M, ~Mtemp, ~C, ~Ctemp, ~W, ~L,Mflag)

tid ← get_global_id(0)
Mflag ← 0
if M[tid] ≠ 0 then
     M[tid] ← 0
     for all neighbors nid of tid from T do
          Cnew ← (C[tid] » 20 + W[nid]) « 20 ⋁ tid
          if Cnew < C[nid] then
               Lid ← 0
               if nid is multiple of 21 then
                    Lid ← L[tid mod 21]
               end if
               Ctemp[nid + Lid] ← Cnew
               Mtemp[nid] ← 1
          end if
     end for
end if
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In a second kernel, Algo. 5, for each vertex that can be
reached by more than one edge, is selected the minimum
cost stored in the temporary cost array among its values.
The remaining kernel’s operations are the same described in
the Parallel Atomic version. Also in this case, the second
stage of the kernel execution is required because there is no
synchronization between the OpenCL WGs.

Algorithm 5 OCL K 2.2 ( ~M, ~Mtemp, ~C, ~Ctemp,Mflag)

tid ← get_global_id(0)
if Mtemp[tid] = 1 then
     Mtemp[tid] ← 0
     C[tid] ← min(Ctemp[tid+0], ..., Ctemp[tid+7])
     M[tid] ← 1
     Mflag ← 1
end if
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Algorithm 6 OCL K 3.1 (~T , ~M, ~C, ~W,Mflag)

tid ← get_global_id(0)
Mflag ← 0
if M[tid] ≠ 0 then
     M[tid] ← 0
     for all neighbors nid of tid from T do
          Cnew ← (C[tid] » 20 + W[nid]) « 20 ⋁ tid
          if Cnew < C[nid] then
               C[nid] ← Cnew
               M[nid] ← Mflag ← 1
          end if
     end for
end if
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4.2.3 Parallel Non-Deterministic
The last implementation, shown in Algo. 6, allows race

conditions with no guaranties about the path optimality.
Only one kernel is needed to perform the algorithm and the



operations here executed are the same presented in the the
first Parallel Atomic version. The main difference, respect
to others versions, is that we do not use temporary cost array
~Ctemp. Indeed, we store the cost directly in the final cost ar-

ray ~C, incurring in possible read-after-write inconsistencies.

5. RESULTS
We tested our parallel (GPU) implementations against

a sequential (CPU) Dijkstra algorithm. Performed experi-
ments measure the energy-efficiency and the speed-up brought
by the proposed parallel versions and show the maximum
map size supported to enable real-time computation. Fi-
nally, is carried out an experiment in order to evaluate the
precision, in terms of path optimality, for the Non-Determini-
stic version. Due to the intrinsic nature of this last version,
all the relative measurements (i.e. execution time and path
optimality) are presented as the average of multiple execu-
tions (1000 runs). We tested all our parallel implementations
against the simplest sequential implementation of Dijkstra
algorithm. The sequential implementation runs on one CPU
core and has time complexity O(|V | log |V |+ |E|). The spe-
cific devices configurations employed as detailed in Sec. 3 is
summarized in Table 1.

Ivy Bridge HD Graphics 4000

# Cores 2 128
Core Frequency 2.50 GHz 650 MHz

L3 Cache 3072 KB 256 KB
System DDR Memory 8192 MB

Table 1: Devices for the experiments.

5.1 CPU vs. GPU evaluation
We present quantitative results by measuring the energy-

efficiency, the overall speed-up and the execution time of all
proposed implementations. All experiments are presented
with a growing squared map resolution (x-axis), from 10x10
to 100x100 discretization size, increasing by ten both dimen-
sions at each step.
In Tab. 2, we report the power consumption measured with
the Intel Power Governor3 tool. The considered power do-
mains are represented by the Core, the Graphics accelerator,
the last level cache and memory controller (i.e. Un-Core)
and the Package that is approximatively the sum of all the
previous. All the reported measurements are given as aver-
age values over multiple iterations. As can be seen from

Package Core Graphics Un-Core

Sequential 10.65 8.11 0.27 2.27
Non-Deterministic 12.39 5.58 4.10 2.71

Atomic 8.96 3.21 3.33 2.43
Multi-Buffer 11.79 4.60 4.66 2.53

Table 2: Power consumption, in Watt, per power domain.

Fig. 4, the energy saved by the parallel implementations,
w.r.t. the sequential one, is between 95 and 98%. The Non-
Deterministic version exhibits the best behavior requiring,
at most, 3.4 J. If we consider these results in relation with
the package power consumption reported in Tab. 2, is clear
how the main contribution in the energy saving is given by
the reduced execution time of the parallel implementations,
as also shown in Fig. 6.
The speed-up, in Fig. 5, is computed as the ratio between
the CPU measured execution time and the GPU one.
Results denote the efficiency of the proposed GPU optimiza-
tions, with peak speed-ups of 20x and 21x for deterministic
versions (respectively Atomic and Multi-Buffer). The best
performance is reached by the Non-Deterministic version
with a speed-up of 74x. Both deterministic implementa-
tions benefit less from the parallel optimizations. On one

3https://software.intel.com/en-us/articles/intel-power-
governor
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Figure 4: Energy-efficiency of the evaluated implementations.

hand, for the Atomic version, the limited performance gain
is ascribed to the low efficiency of OpenCL atomic operation
used. Moreover, when more threads execute the atomic min,
addressing the same memory location, the execution is se-
rialized. On the other hand, for the Multi-Buffer version,
we pay for extra writes in global memory and for additional
operations such as modulo operation to compute the LUT
index. The Non-Deterministic version, does not suffer from
any of the discussed limitations and it uses only one kernel.
In the third experiment (Fig. 6) we investigate the maxi-
mum supported map size enabling real-time computation,
defined as computation under a given upper bound (i.e.
250 4 ms). The Non-Deterministic version is able to com-
pute maps of 10000 elements (207612 vertices) in real-time.
Atomic and Multi-Buffer versions are respectively able to
compute maps having 1600 and 2500 elements (32472 and
51312 vertices) respecting the time constraint. As the quadro-
tor diameter is around 0.5 m, the map grid used has a cell
size between 0.5 m2 and 2 m2, thus we are able to perform
real-time planning of environments up to 200 m2.
Results in Fig. 5 and 6 are based on the worst case in term
of computational requirements: the absence of obstacles. In
fact, as explained in Sec. 4.1, the more obstacles are present
in the map the less vertices are in the graph.

5.2 Accuracy evaluation
In the experiment in Fig. 7, we evaluate the loss in op-

timality for the fastest Non-Deterministic implementation
with respect to deterministic versions.
Results cover four different scenarios: Random Path - 0% ob-
stacles, Random Path - 25% obstacles, Random Path - 50%
obstacles, and Diagonal Path - 0% obstacles. Random Path
means that the source and destination points are selected
randomly from any available location in the map. Diagonal
Path means cross the entire map, from a corner to the oppo-
site one (i.e. the longest path evaluated). The percentage of
obstacles represents the number of random forbidden loca-
tions in the map. Thus, introducing more obstacles means
reducing the number of feasible paths, therefore the conver-
gence between the non-deterministic and the deterministic
path is increased. On the x-axis the map discretized resolu-
tion is reported, as in previous experiments.
The error is computed as the average of the percentage cost
error with respect to the minimal optimal path cost, over
1000 iterations. Fig. 7 also shows, for each average error,
the minimum and maximum percentage error retrieved. The
minimum error is always equal to zero except for two diag-
onal configurations (i.e. 50x50 and 100x100), where it is
of 0.68% and 1.0%, respectively. The largest error is always
lower than 5.3% and is tied to a high variance. Finally, for all
proposed configurations, the average error is always below

4We consider a flight speed of 4 m/s and only 1 meter to
prevent a collision with a dynamic obstacle (i.e. worst case).
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1.2%. As expected, the highest average error rate is related
to the longest (diagonal), obstacle-free configurations, which
represent the scenario with the highest number of feasible
paths. The presented results enable the Non-Deterministic
version to be a good trade-off between computing perfor-
mance and path optimality, giving us always a feasible path
(i.e. obstacle-free) with an average cost never higher than
1.2% w.r.t. the optimal cost.

6. CONCLUSION
This paper has proposed an energy-efficient shortest tra-

jectory planning implementation, based on Dijkstra’s algo-
rithm, which exploits the Intel’s HD Graphics accelerator
for multi-rotor UAVs used in rescue missions, increasing see-
and-listen capability of human operators.
Proposed parallel solutions show a saving of energy up to
98% of the energy required by the sequential version. Sub-
stantial speed-ups have been achieved for all proposed ver-
sions, up to 74x for the non-deterministic and 21x for the
deterministic version, both with respect to the same CPU-
based implementation. Selecting the cell size for the map
discretization of 1 m2, the proposed solutions allow the com-
putation of 100 m2 and 50 m2 map sizes in real-time, for the
non-deterministic and the deterministic version respectively.
Moreover, the non-deterministic method proposed shows a
maximum average error up to 1.2% w.r.t. the optimal cost.
Finally, we demonstrate, that even if in the current UAV
configuration the power consumption of the robot’s engine
is dominant w.r.t. the control system, the computational
requirements are achieved in a very energy-efficient man-
ner. This will be key to achieving advanced cognitive skills
on heavily resource-constrained small-scale UAVs, where the
power spent on the propellers is same-level with (or smaller
than) that spent on the processing elements.
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