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Abstract
In view of the recent proofs of the P=W conjecture, the present paper reviews and relates
the latest results in the field, with a view on how P=W phenomena appear in multiple areas
of algebraic geometry. As an application, we give a detailed sketch of the proof of P=W by
Maulik, Shen and Yin.
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1 Introduction to P=W phenomena

P=W phenomena provide a unified interpretation of the symmetries enjoyed by the coho-
mology groups of certain complex algebraic varieties. Let X be a smooth complex algebraic
variety of dimension n. If X is projective and η ∈ H2(X ,Q) is an ample class then, for every
i , the Hard Lefschetz theorem establishes isomorphisms

∪ ηi : H2n−i (X ,Q)
�−→ H2n+i (X ,Q). (1)

Given any smooth algebraic map f : X → Y of relative dimension n, we can interpret the
cohomology of X as the total hypercohomology of the complex R f∗QX on Y

H∗(X ,Q) = H∗(Y , R f∗Q),

and the Hard Lefschetz theorem is a direct consequence of its relative version

∪ηi : Rn−i f∗QX
�−→ Rn+i f∗QX ,

so that (1) can be refined into isomorphisms

∪ ηi : Grn−i
L Hd(X ,Q)

�−→ Grn+i
L Hd+2i (X ,Q), (2)

where L• denotes the Leray filtration associated with f .
When the map f : X → Y is no longer a smooth morphism, (2) continues to hold up to

replacing the Leray filtration with the Perverse Leray filtration P• associated with f :

∪ηi : Grn−i
P Hd(X ,Q)

�−→ Grn+i
P Hd+2i (X ,Q).

The perverse filtration P• on H∗(X ,Q) is defined in the same way as the classical Leray
filtration, but replacing the standard truncation functors τ≤k with the perverse truncation
functors pτ≤k (see the appendix for further details):

PkH
n+ j (X ,Q) := Im

{
H j (Y , pτ≤k R f∗QX [n]) → H j (Y , R f∗QX [n])

}
, ∀ j, k ∈ Z.

If the target Y is either affine or projective (as it happens for the cases of interest in this
exposition), P• can be described with a particularly simple “flag” form:

Proposition 1.1 ([24], Theorem 4.1.1 and [23], Proposition 5.2.4) Let f : X → Y be a
proper map of algebraic varieties and let P be the associated perverse filtration.

(1) If Y is affine then

Pk H
d(X ,Q) = Ker

{
Hd(X ,Q) → Hd( f −1(�d−k−1),Q)

}
,

where �i denotes any i-dimensional linear section of Y ⊆ AN .
(2) If Y is projective and L = f ∗α is the pullback of an ample class on Y , then

PkH
d(X ,Q) =

∑
i≥1

(
Ker(Ln+k+i−d) ∩ Im(Li−1)

)
∩ Hd(X ,Q).
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In general, in absence of some degree of properness by X or by the map f , we do not
expect any simmetries of Hard Lefschetz type on the cohomology of X . Surprisingly, this
kind of symmetries has been first observed on the cohomology of a non compact symplectic
variety, namely the character variety of (twisted) representations of the fundamental group of
a curve into some general linear group. This has led to the formulation of the P=W conjecture
and, more generally, to the investigation of P=W phenomena.

1.1 The original P=W conjecture

Let � be a smooth projective curve of genus g ≥ 1 and fix a point p ∈ �. Fix two integers
r , n ∈ Z with r > 0 and (r , n) = 1. We define the Betti moduli space

MB(r , n) :=
{
A1, . . . , Ag, B1 . . . Bg ∈ GLr (C)2g |

g∏
i=1

[Ai , Bi ] = e
2π in
r Ir

}
� GLr (C)

as the (twisted) character variety of representations of the fundamental group π1(�, p) of �

into GLr (C).
The Betti moduli space is an affine GIT quotient and its cohomology groups carry a mixed

Hodge structure, which turns out to be of Hodge–Tate type, with weight filtration W•. As
mentioned before, althoughMB(r , n) is not proper, the graded pieces of the weight filtration
on H∗(MB(r , n),Q) satisfy unexpected Hard Lefschetz symmetry, called the curious Hard
Lefschetz property.

Theorem 1.2 (Curious Hard Lefschetz) There is a class σ ∈ H2(MB(r , n),Q) of weight 4
such that

∪σ i : GrdimMB−2i
W Hd(MB(r , n),Q)

�−→ GrdimMB+2i
W Hd+2i (MB(r , n),Q).

The curious Hard Lefschetz theorem was first observed in rank 2 by Hausel and Rodriguez-
Villegas [35] and proved byMellit in full generality in [52].DeCataldo,Hausel andMigliorini
[18] conjectured that the curious Hard Lefschetz symmetry could be explained in terms of a
real analytic isomorphism ofMB(r , n) with another moduli spaces of very different nature,
the Dolbeault moduli space

MDol(r , n) = {(E, θ) semistable Higgs bundle of rank r and degree n} / ∼S,

parametrizing equivalence classes of semistable Higgs bundles of rank r and degree n. It
is well known that, under the coprimality hypothesis, MDol(r , n) is a nonsingular quasi-
projective variety of dimension 2(r2(g − 1) + 1) endowed with a holomorphic symplectic
form and it is equipped with a proper Lagrangian map h : MDol(r , n) → A ∼= Ar2(g−1)+1,
which is called Hitchin fibration.

In fact, any Higgs field θ is a twisted endomorphism of a vector bundle E , so it has a well
defined characteristic polynomial, whose coefficients are tr(θ) ∈ H0(C,
1

�), tr(�2θ) ∈
H0(�, (
1

�)⊗2), . . . , det(θ) ∈ H0(�, (
1
�)⊗n). This defines a map

h : MDol(r , n) → A, (E, θ) �→ charpol(θ).

The celebrated Beauville-Narasimhan-Ramanan (BNR) [5] correspondence states that the
fiber h−1(a) of h over a general point a ∈ A is isomorphic to the compactified Jacobian JCa

of a branched covering Ca of �, called spectral curve.
The following theorem is the coronating result of non abelian Hodge theory and is under-

stood as a sum of results of Donaldson, Corlette, Hitchin and Simpson, see [11, 26, 37, 63].
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Theorem 1.3 (Non abelian Hodge theorem) For all r and n as above there exists a real
analytic isomorphism

MDol(r , n) ∼= MB(r , n).

To explain the correspondence between curious Hard Lefschetz and the classical relative
Hard Lefschetz theorem for h, De Cataldo, Hausel and Migliorini [18] conjectured that the
non abelian Hodge theorem should exchange the weight filtration on H∗(MB(r , n),Q)with
the perverse filtration associatedwith theHitchinmap h on H∗(MDol(r , n),Q) up to a trivial
renumbering.

Conjecture 1.4 (P=W conjecture) Let r and n be coprime integers and

ψ : MB(r , n) → MDol(r , n)

be the real analytic isomorphism of the non abelian Hodge theorem. Then the associated
isomorphism in cohomology

ψ∗ : H∗(MDol(r , n),Q) → H∗(MB(r , n),Q)

is such that, for all k ∈ Z,

Pk H
∗(MDol(r , n),Q)

�−→ W2k H
∗(MB(r , n),Q).

Notation. For sake of readability, we fix the coprime integers r , n and denote MDol(r , n)

andMB(r , n) simply byMDol andMB . We will specify r and n in the notation only when
they are relevant to the context.

1.2 Tautological classes

In 2019, de Cataldo, Maulik and Shen [22] reduced the proof of P=W to the multiplicativity
of the perverse filtration. One key tool is the generation of the cohomology of MDol by
tautological classes due to Markman [43]. In particular, Markman described the generators
of the cohomology of MDol in terms of the Chern character of the (normalized) universal
bundle U on MDol × �. In particular given the diagram

MDol × �

MDol C

pM pC

one defines for each γ ∈ Hi (�,Q) a tautological class

ck(γ ) = pM,∗(chk(U) ∪ p∗
�γ ) ∈ Hi+2k−2(MDol ,Q) (3)

and proves that
{
ck(γ ) | γ ∈ H∗(�,Q), k ≥ 0

}

is a set of generators for H∗(MDol ,Q) and, consequently, so is for H∗(MB ,Q) through the
non abelian Hodge isomorphism.

On the Betti side, the weight filtration on MB has been computed by Shende in [62]. In
particular he proves the following.
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Theorem 1.5 (Weight of tautological classes) The mixed Hodge structure on H∗(MB ,Q) is
of Hodge-Tate type and for all γ ∈ Hi (�,Q) one has that

ck(γ ) ∈k Hdgi+2k−2(MB).

Here kHdgd(MB) := W2k Hd(MB ,Q)∩FkHd(MB ,C)∩F
d
(MB ,C) denotes the classes

of type (k, k) in Hd(MB ,Q).

As a result there is a canonical decomposition of graded vector spaces

H∗(MDol ,Q) ∼= H∗(MB ,Q) =
⊕
k,i

kHdgi (MB)

and the P=W conjecture can be rephrased as

PkH
∗(MDol ,Q) =

k′⊕
k′≤k

Hdg∗(MB).

Hence, one can split the resolution of the P=W conjecture in two separate problems (see [22,
Conjecture 0.3]) on the Dolbeault moduli space.

Proposition 1.6 (Equivalent version of P=W) The P=W conjecture is equivalent to the fol-
lowing statements

(i) (Tautological classes) The tautological classes ck(γ ) ∈ H∗(MDol ,Q) have perversity
k for all k ≥ 0 and all γ ∈ H∗(�,Q);

(ii) (Multiplicativity) The perverse filtration is multiplicative, i.e. for all l, k

∪ : PkH∗(MDol ,Q) × Pl H
∗(MDol ,Q) → Pp+q H

∗(MDol ,Q).

Since in the same paper de Cataldo, Maulik and Shen prove the first item of Proposition 1.6,
thus showing that the proof P=W conjecture reduces to that of the multiplicativity of the
perverse filtration in the second item.

Remark 1.7 While the weight filtration is naturally multiplicative, in general the perverse
filtration is not, see [17, Exercise 5.6.8]. Indeed, etablishing multiplicativity of P• is one the
most challenging points in all existing proofs of P=W.

1.2.1 History of proofs of P=W

The P=W conjecture has been proved in 2010 in rank 2 in the original paper by de Cataldo,
Hausel and Migliorini [18] and by the same authors in genus 1 and arbitrary rank [19]. The
conjecture remained untackled for almost ten yearswhen deCataldo,Maulik and Shen proved
it for genus 2 and arbitrary rank [22]. Moreover, an enumerative approach was proposed by
Chiarello, Hausel and Szenes in [9]. Later, two different proofs of the conjecture in full
generality appeared in September 2022: the first is due to Maulik and Shen [45], while the
second is due to Hausel, Mellit, Minets and Schiffmann [34]. The last proof appeared a
year later and is due to Maulik, Shen and Yin [46]. While here we do not treat the proofs
of Maulik-Shen and Hausel-Mellit-Minets-Schiffmann as they are reviewed in the excellent
Séminaire Bourbaki paper [38] (see also [50, 53]), in section 4 we give a detailed sketch of
the proof by Maulik, Shen and Yin [46] as it opens up to a generalization of P=W in the more
general context of Perverse=Chern phenomena.
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1.2.2 Generalizations of the conjecture to the non coprime case

One may wonder whether the picture described in the previous section holds for the honest
character variety of GLr (C), which corresponds to the Higgs bundles of rank r and degree
0. In general, when r and n are not coprime the moduli spaces are no longer smooth and
the cohomology groups ofMDol(r , n) andMB(r , n) do not satisfy the relative and curious
Hard Lefschetz theorems anymore.

Nonetheless, it is known that the relative Hard Lefschetz theorem for h holds for inter-
section cohomology I H∗(MDol(r , n),Q), see Appendix A.

Intersection cohomology is a generalization of cohomology designed to restore the Hodge
theoretic properties which cease to hold for the cohomology of singular varieties, such as
Poincaré duality. Moreover, the intersection cohomology groups of an algebraic variety carry
a mixed Hodge structure and, if the variety is projective, they satisfy Hard Lefschetz theorem
and admit a pure Hodge structure.

This suggests that a natural formulation for the P=W conjecture in the singular case would
involve this invariant. Another evidence of this fact was provided by de Cataldo andMaulik in
[20], where they proved that the perverse filtration on intersection cohomology is independent
of the complex structure of the curve �, exactly as it happens for the weight filtration. As a
result, they conjectured [20, Question 4.1.7] the following statement.

Conjecture 1.8 (PI=WI conjecture) Let r , n be two non necessarily coprime integers with
r > 0. Let ψ : MB(r , n) → MDol(r , n) be the real analytic isomorphism of the non
abelian Hodge theorem. Then the associated isomorphism in intersection cohomology

ψ∗ : I H∗(MDol(r , n),Q) → I H∗(MB(r , n),Q)

is such that, for all k ∈ Z,

Pk I H
∗(MDol , (r , n),Q)

�−→ W2k I H
∗(MB(r , n),Q).

At present, the PI=WI conjecture has been proved for n = 0 by the author andMauri in [29]
for moduli spaces which admit a symplectic resolution of singularities, namely when g = 1
and r is arbitrary and g = 2, r = 2. Remarkably, these cases can be viewed as degenerations
of the known few examples of irreducible symplectic manifolds1 up to deformation, as we
will see in more detail in Sect. 2.

Remark 1.9 Recently Davison showed that, under some conjectural hypotheses, the P=W
conjecture is equivalent to the PI=WI conjecture by a phenomenon called χ-independence,
which will be treated in Sect. 3.

1.3 P=W phenomena

After the P=W conjecture was formulated, the attempts to prove it have led to consider the
P=W statement under different perspectives, giving rise to P=W phenomena. Very vaguely
speaking, a P=W phenomenon should involve:

• A complex variety (or a stack) M of even dimension 2N and a proper algebraic map f :
M → B: this is required so that some cohomology theory of M (e.g. Betti cohomology,
intersection cohomology, Borel–Moore homology) satisfies the relative Hard Lefschetz
theorem;

1 Roughly speaking, a manifold is irreducible symplectic or, equivalently, hyperkähler if it has three complex
structures interacting quaternionically, see [3] for a precise definition.
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• An isomorphism � between the cohomologyH of M and the cohomologyH′ of another
variety (or even an endomorphism of the cohomology of M) such that H′ has mixed
Hodge structure (or simply a filtration W•) which satisfies the curious Hard Lefschetz
property.

• A correspondence PkH ∼= W2kH
′ induced by �.

We here choose to focus on three different manifestations of P=W phenomena:

• P=W in the compact symplectic case;
• stacky P=W conjecture and enumerative invariants;
• Perverse=Chern phenomena.

Other P=W phenomena involve, for example, the geometric P=W conjecture [39, 51, 65];
a P=W for Painlevé space [54, 66]; an analogue of the P=W conjecture for compact abelian
varieties [7].

2 P=W phenomena in the compact setting

One of the key ingredients in reducing proof of P=W to establishing the multiplicativity of
P• with respect to cup product is the fact that one can view the Dolbeault moduli space
as a special fiber of a “degeneration” having a compact irreducible symplectic manifold as
generic object. Here by degeneration we mean a flat (not necessarily proper) morphism of
normal algebraic varieties, typically over a curve.

2.1 Degeneration of Hitchin systems toMukai systems

The proposal of using the extensively studied geometry of irreducible symplectic manifolds
to understand that of moduli spaces of non abelian Hodge theory finds its roots in a work
by Donagi, Ein and Lazarsfeld in 1997 [25], where they exhibit the first instance of the
aforementioned degenerations. For a more detailed and general description see for instance
[21, 22, 29].

The compact irreducible symplectic manifolds appearing in the degenerations are Mukai
moduli spaces of sheaves on a K3 (or abelian) surface. Given any coherent sheaf F on a K3
surface S, one can associate to it a Mukai vector

v = (rk(F), c1(F), χ(F) − rk(F)) ∈ H∗
alg(S,Z).

We denote by Mv(S) the moduli space of Gieseker semistable sheaves on S with Mukai
vector v for a sufficiently general polarization H (which is tipically omitted in the notation);
see [64, §1].

The curve � embeds in S as an ample divisor with the map

j : � ↪→ S.

As in [25],2 we consider the degeneration of S to the normal cone of � in S (see, e.g. [31])
which is given by the family

S = (
Bl�×0S × A1) \ (S × 0) → A1.

The central fiber S0 is isomorphic to the cotangent space T ∗�: in fact, since KS is trivial,
the adjunction formula implies that the normal bundle of � in S coincides with K� , whose

2 In [25], the divisor is supposed very ample, but this assumption can in fact be dropped.
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total space is T ∗�. The restriction to A1 \ {0} is a trivial fibration S × (A1\{0}) → A1\{0}.
Take a relative compactification S ⊂ S over A1. For all t ∈ A1, set βt = r [�] ∈ H2(St ,Z)

with r > 0 and consider

M → A1,

the coarse relative moduli space of one-dimensional Gieseker semistable sheaves F whose
support is proper and contained in St ⊆ S t with χ(F) = χ and [SuppF] = βt ; see [64,
Theorem 1.21]. Choosing χ appropriately, the central fiber recovers the Dolbeault moduli
space

M0 � MDol(r , n).

In fact the moduli space of Higgs bundles on � of rank r and degree n can be realized via
the BNR-correspondence [5] as the moduli space of one-dimensional Gieseker-semistable
sheaves F on T ∗� with χ(F) = χ and [SuppF] = β0. The general fiber is isomorphic to

Mt � Mv(S)

with Mukai vector v = (0, r�,χ). In this degeneration, if dim Mv(S) = 2N , the natural
forgetful Lagrangian fibration

π : Mv(S) → PN , F �→ [SuppF]
is sent to the Hitchin fibration h : MDol(r , n) → A.

It is then natural to ask the following question:

Question: Can we see a manifestation of the P=W correspondence in the compact setting?
More generally, given a compact irreducible symplecticmanifoldwith a Lagrangian fibration,
do we have a P=W phenomenon?

2.2 P=W phenomena for irreducible holomorphic symplectic manifolds

The answer to this question was first provided by Shen and Yin in [60]. Given a nonsingular
irreducible symplecticmanifoldM with a Lagrangian fibrationπ : M → B, the cohomology
groups of M admit a pure Hodge structure. Moreover, one can consider the perverse filtration
on H∗(M,Q) associated with π . As a result, we have well defined Hodge numbers and
perverse Hodge numbers as

hi, j (M) = dimGriF H
i+ j (M,C), phi, j (M) = dimGriP H

i+ j (M,C).

Using a deformation argument on theperiod domain D parametrizing all possible hyperkähler
structures on M , Shen and Yin prove that, given a compact irreducible symplectic manifold
with a Lagrangian fibration, the perverse numbers associated with the fibration match with
the Hodge numbers of the total space, establishing a Perverse=Hodge phenomenon.

Theorem 2.1 Let π : M → B be a Lagrangian fibration from a nonsingular compact
irreducible symplectic manifold to an algebraic variety B and let P• be the perverse filtration
associated with π . Then

phi, j (M) = hi, j (M). (4)

The above result has applications in several areas of algebraic geometry: for example it
can be used to determine that the cohomology of the base of the Lagrangian fibration π is that
of a projective space, providing an answer to a question of Matsushita [44]; also the equality
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between perverse and Hodge numbers allows to compute enumerative invariants associated
with specific Calabi-Yau threefolds, see Sect. 3.

Later, Harder, Li, Shen and Yin refined the result of Theorem 2.1 by identifying the
perverse filtration of a Lagrangian fibration on M with the monodromy weight filtration of a
maximally unipotent degeneration of compact irreducible symplectic manifolds [33].

In particular, the result of [33] implies the multiplicativity of the perverse filtration with
respect to cup product on H∗(M,Q).

Theorem 2.2 (Multiplicativity of the perverse filtration in the compact setting) Let π : M →
B be a Lagrangian fibration from a nonsingular compact irreducible symplectic manifold to
an algebraic variety B. The perverse filtration P associated with π is multiplicative under
cup product, i.e.

∪ : PkH
dM,Q) × Pl H

d ′
(M,Q) → Pk+l H

i+ j (M,Q).

Remark 2.3 A categorification of Theorem 2.1 formulated in terms of quasi-isomorphisms
of complexes on the base B has been conjectured in [61] and proved in [59].

Remark 2.4 Theorem 2.1 has been generalized by Shen, Yin and the author to singular
irreducible symplectic varieties which admit a symplectic resolution, again replacing coho-
mology by intersection cohomology and providing a compact counterpart of the PI=WI
conjecture [30]. Moreover, there are partial results when M has isolated singularities [68].

Remark 2.5 The P=W phenomena in the compact case, the singular generalizations of P=W
and the proof of the Curious Hard Lefschetz theorem [52] suggest that the existence of a
symplectic structure on M should be a key ingredient in finding P=W phenomena. However,
somehow remarkably, the symplectic structure on the moduli spaces plays no essential role
in all existing proofs of the P=W conjecture. This may have an explanation in view of the
P=C phenomena treated in Sect. 4.

3 P=W phenomena in enumerative geometry

3.1 From P=Wphenomena to enumerative geometry counting invariants

P=W phenomena have tremendous impact in enumerative geometry: for instance, perverse
Hodge numbers play an important role in recent constructions of curve counting invariants.

In the late 90’s, Gopakumar and Vafa defined numerical invariants ng,β ∈ Z for a Calabi-
Yau 3-fold Y and a curve class β ∈ H2(Y ,Z), calledGV invariants or BPS invariants. These
invariants count genus g curves on Y lying in the curve class β, see [32]. Moreover they are
expected to give an equivalent counting to that of the Gromov-Witten invariants (see [56] for
a detailed account of this fact).

In 2018, Maulik and Toda [48] proposed a definition of BPS-invariants via the Hilbert-
Chow morphism

hc : Mβ → Chowβ(Y )

from the moduli space of 1-dimensional stable sheaves on Y with support β to the corre-
sponding Chow variety. When Mβ is nonsingular, Maulik and Toda prove an equality of
power series

∑
i∈Z

χ( pHi (Rhc∗QMβ [dimMβ ]))yi =
∑
g≥0

ng,β
(
y

1
2 + y− 1

2

)2g
. (5)
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The quantity on left hand side of (5) is the Euler characteristic3 of the perverse cohomology
sheaves (see Appendix A) arising in the decomposition theorem of the map hc and it can be
computed in terms of the perverse hodge numbers phi, j (Mβ).

If one considers Y = S × C for a K3 surface S, then the topology of the map hc is
uniquely determined by that of π : Mv(S) → PN where the Mukai vector on S is chosen
appropriately (so that β is the support of the sheaves and Mv(S) is nonsingular). In that case
Mv(S) is deformation equivalent to the N -th Hilbert scheme of S, for N = 1

2β
2 + 1, so its

Hodge numbers (and thus the perverse!) are known.
In other words, Theorem 2.1 provides a direct calculation of the BPS invariants of a K3

surface in terms of the Hodge numbers of the Hilbert schemes of points on a K3 surface, see
[60] and [22] for a detailed discussion on this fact.

3.2 From enumerative geometry to P=W phenomena

In the other direction, it is not to be underestimated the large amount of evidences that
enumerative geometry has offered to the P=W conjecture, its variants and more generally to
P=W phenomena.

Let us start by an easy observation: two Betti moduli spacesMB(r , n) andMB(r , n′) are
Galois conjugate when gcd(r , n) = gcd(r , n′) = 1, thus the algebraic isomorphism between
them induces an isomorphism of mixed Hodge structures

H∗(MB(r , n),Q) ∼= H∗(MB(r , n′),Q)

between their cohomology groups. Hence, the P=W conjecture suggests that the perverse
filtration on H∗(MDol(r , n),Q) should be independent of n as long as it is coprime with r .

Using methods coming from cohomological Donaldson-Thomas theory [67], in 2021
Kinjo and Koseki [40] (see also [8]) proved that this is in fact true, providing new evidences
of the P=W conjecture. This phenomenon is usually referred to as χ-independence since an
invariant of the moduli space of Higgs bundles, such as the perverse filtration, depends only
on the rank r of the Higgs sheaves and it is not affected by choice of their Euler characteristic
χ . The following result is [40, Theorem 1.1].

Theorem 3.1 (χ-independence forMDol(r , n)) Let r , n, n′ be integers such that r > 0 and
gcd(r , n) = gcd(r , n′) = 1. Then there exists an isomorphism

H∗(MDol(r , n),Q) ∼= H∗(MDol(r , n
′),Q)

preserving Hodge structures and the perverse filtration.

When r and n are not coprime, as explained in section 1.2.2, the natural invariant suggested
by perverse sheaves theory is intersection cohomology. However, motivated by physics,
Chuang, Diaconescu and Pan [10] proposed to use BPS cohomology: in fact, despite being
just phisically defined, BPS cohomology is expected to enjoy aχ-independence phenomenon
without assuming coprimality between r and n. Further, the BPS cohomology groups on
both Dolbeault and Betti sides carry a Lie algebra structure (see [13] and [15]) compatible
with non abelian Hodge isomorphism [58, Conjecture 1.5], opening the way to a possible
representation theoretic approach to P=W problems.

3 For any bounded constructible complex K on an algebraic variety Y , one sets χ(K ) :=∑
(−1) j dim H j (Y , K ).
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To overcome the difficulty of a rigorous mathematical definition, Kinjo and Koseki [40]
propose a definition ofBPS cohomology onMDol(r , n) using the cohomologicalDonaldson-
Thomas theory of the 3-fold Tot(O� ⊕ 
1

�). Such as the intersersection cohomology of
MDol(r , n) is defined as the hypercohomology of intersection complexes ICDol

r ,n , the BPS
cohomology is the hypercohomology of another complex BPSDol

r ,n :

H∗
BPS(MDol(r , n),Q) := H∗(BPSDol

r ,n ).

The complex BPSDol
r ,n is a perverse sheaf and there is a natural injection

ICDol
r ,n ↪→ BPSDol

r ,n

which is an isomorphism in the coprime case.

Example 3.2 To see that in the non coprime case there is no isomorphism between the com-
plexes it is sufficient to consider the moduli space MDol(2, 0) on a genus 2 curve. Setting

P IC
t (X) =

∑
i

dim(I Hi (X ,Q))t i

P BPS
t (X) =

∑
i

dim(Hi
BPS(X ,Q))t i

one has that by [28] and [57]

P IC
t (MDol(2, 0)) = (1 + t)4(1 + t2 + 2t4 + 2t6)

PBPS
t (MDol(2, 0)) = (1 + t)4(1 + t2 + 4t3 + 2t4 + 4t5 + 2t6).

On the other hand, if one considers the coprime case of moduli spaceMDol(2, 1) on a genus
2 curve then

Pt (MDol(2, 1)) = P IC
t (MDol(2, 1)) = PBPS

t (MDol(2, 1)) = PBPS
t (MDol(2, 0)).

Kinjo and Koseki generalize Theorem 3.1 to BPS cohomology.

Theorem 3.3 ([40], Corollary 5.15)Let r , n, n′ be integers such that r > 0. Denote by h (resp.
h′): MDol(r , n)(resp. MDol(r , n′))→ A the Hitchin map. There exists an isomorphism of
complexes on A

h∗BPSDol
r ,n

∼= h′∗BPSDol
r ,n′

inducing

H∗
BPS(MDol(r , n),Q) ∼= H∗

BPS(MDol(r , n
′),Q)

preserving Hodge structures and the perverse filtration.

It is now natural to wonder whether there is a formulation of the P=W conjecture for BPS
cohomology and what would be the relation with P=W and PI=WI. This is understood if, in
place of moduli spaces, one considers stacks.
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3.2.1 All P=W conjectures at once

Let MDol(r , n) and MB(r , n) be the stacks of respectively semistable Higgs bundles on �

and semisimple representations of its fundamental group into GLr (C).
In [14], Davison conjectured the existence of an isomorphismϒ between the Borel-Moore

homology groups ofMDol(r , 0) andMB(r , 0)

H∗
BM(MDol(r , 0)) ∼= H∗

BM(MB(r , 0))

and formulated a stacky version of the P=W conjecture, involving the natural weight filtration
W • on H∗

BM(MB(r , 0)) and a suitably defined perverse filtration P• on H∗
BM(MDol(r , 0)),

see [14, §1.3]. This is usually referred to as the stacky P=W conjecture PS=WS (we omit
shifts for ease of the reader and refer to [14, Conjecture B] for a precise statement).

Conjecture 3.4 (PS=WS conjecture) There exists an isomorphism

ϒ : H∗
BM(MB(r , 0),Q)

�−→ H∗
BM(MDol(r , 0),Q)

such that

ϒ(W2i H
∗
BM(MB(r , 0),Q)) = Pi H

∗
BM(MDol(r , 0),Q)).

To see how the PS=WS is related with P=W and PI=WI, we need to introduce some

notation. For any nonzero rational number μ, μ = b

a
for a, b ∈ Z, a > 0 and gcd(a, b) = 1,

we define

Mμ
Dol := �k∈Z≥0MDol(ka, kb); Mμ

B := �k∈Z≥0MB(ka, kb);
M

μ
Dol = �k∈Z≥0MDol(ka, kb); M

μ
B = �k∈Z≥0MB(ka, kb).

Similarly, we set

ICDol
μ =

⊕
k∈Z≥0

ICDol
ka,kb; ICB

μ =
⊕
k∈Z≥0

ICB
ka,kb; BPSDol

μ =
⊕
k∈Z≥0

BPSDol
ka,kb.

The following result of Kinjo andKoseki allows to decompose theBorel-Moore homology
ofMμ

Dol into tensor products of the BPS cohomologies.

Theorem 3.5 ([40], Theorem 5.16)

H∗
BM(M

μ
Dol ,Q)) = H∗ (

Sym(H∗(BC∗ ⊗ BPSDol
μ ))

)

Later, in [15, Theorem 1.5], Davison, Hennecart and Schlegel-Mejia proved that the coho-
mologies of Mμ

Dol and M
μ
B can be respectively described as the symmetric algebra of free

Lie algebras on intersection cohomologies of the corresponding moduli spaces.

Theorem 3.6 ([15], Theorem 1.5)

H∗
BM(M

μ
Dol ,Q)) = H∗ (

Sym ⊕ (H∗(BC∗ ⊗ FreeLie(ICμ
Dol)))

)

H∗
BM(M

μ
B ,Q)) = H∗ (

Sym ⊕ (H∗(BC∗ ⊗ FreeLie(ICμ
B)))

)

Combining theorems, in the Dolbeault setting this yields the following isomorphism.

Corollary 3.7

BPSDol
μ = FreeLie(ICDol

μ )).
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It is then natural to define

BPSB
μ := FreeLie(ICB

μ)),

so that one can rewrite the isomorphisms in Theorem 3.6 as

H∗
BM(M

μ
Dol ,Q)) = H∗ (

Sym⊕H∗(BC∗ ⊗ BPSDol
μ )

)
;

H∗
BM(M

μ
B ,Q)) = H∗ (

Sym⊕H∗(BC∗ ⊗ BPSB
μ)

)
.

This result is crucial in constructing the isomorphism between the Borel–Moore homology
of the stacks: in fact, the non abelian Hodge isomorphism between the corresponding moduli
spaces, induces an isomorphism

ICDol
μ

∼= ICB
μ. (6)

The above isomorphism yields an isomorphism between the corresponding Free Lie algebras

BPSDol
μ

∼= BPSB
μ. (7)

This in turn yields

H∗
BM(M

μ
Dol ,Q)) ∼= H∗

BM(M
μ
B ,Q)) (8)

proving the first part of PS=WS.

Remark 3.8 (PS=WS ⇔ PI=WI) Theorem 3.6 implies that the intersection cohomologies
of the moduli spaces MDol(r , 0) and MB(r , 0) appear as direct summands respectively
of H∗

BM(MB(r , 0),Q) and H∗
BM(MDol(r , 0),Q). Moreover, the isomorphism (8) maps the

intersection cohomology of MDol(r , 0) in that of MB(r , 0). In [14, Theorem 6.1] Davison
shows that the inclusions of the intersection cohomology of the moduli spaces in the Borel–
Moore cohomology of the corresponding stacks respect both the perverse and the weight
filtration.Hence PS=WS implies PI=WI.Using the generation result of Theorem3.6,Davison
shows that also the converse is true, thus establishing the equivalence between PS=WS and
PI=WI.

Remark 3.9 (Betti χ-independence ⇒ (PS=WS ⇔ P=W)) Let BPSDol
Lie,r ,n (resp. BPSB

Lie,r ,n)

be the vector space given by the global sections of the component of bidgree (r , n) inBPSDol
μ

(resp. BPSB
μ ). Observe that, on the one hand, the non abelian Hodge isomorphism combined

with (7), yields an isomorphism

BPSDol
Lie,r ,n

∼= BPSB
Lie,r ,n .

On the other hand, the χ-independence Theorem 3.3 implies that there is an isomorphism

BPSDol
Lie,r ,n

∼= BPSDol
Lie,r ,n′

for all r , n, n′, such that the perverse filtration is preserved. In [15, Theorem 14.10] the
authors show that there is an analogous isomorphism of vector spaces

BPSB
Lie,r ,n

∼= BPSB
Lie,r ,n′ , (9)

on the Betti side. However it is not known whether this isomorphisms preserves the weight
filtration.

If this were true, it would imply the equivalence of P=W, PI=WI and PS=WS.
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Despite conjectural, the fact that weight filtration are preserved by (9), has more than one
evidence. In the coprime case, it is implied by the proof of the P=Wconjecture and the fact the
corresponding isomorphism on theDolbeault side preserves the perverse filtration.Moreover,
it is shown in [35], that the E-polynomials (recording weights, but taking alternating sums
over cohomological degrees) of both sides of (9) coincide.

4 P=C phenomena and the proof of P=W byMaulik, Shen and Yin

4.1 P=C phenomena and overview of the proof

The proof of P=W by Maulik, Shen and Yin [46] is obtained as a consequence of a more
general result on a class of morphisms, which the authors call dualizable abelian fibrations,
that are modeled on abelian schemes and compactified Jacobian fibrations. This approach
consists of two main points.

• The definition of a set of features characterizing dualizable abelian fibrations and the
phrasing of a condition called Fourier Vanishing, which ensures that this class of mor-
phisms enjoys remarkable properties such as multiplicativity of perverse filtration.

• The proof that several classes of maps related to compactified Jacobian fibrations are
dualizable abelian fibrations.

Loosely speaking, a dualizable abelian fibration is an abelian fibration π : M → B of
relative dimension g with a dual fibration π∨ : M∨ → B∨ satisfying two main properties:

(i) (Fourier-Mukai) M and M∨ are related via a Fourier-Mukai (FM) transform with nice
properties mimicking those of dual abelian schemes;

(ii) (Full support) All the simple perverse summands in the decomposition theorem of
Rπ∗QM are supported on the whole base B.

The Chern character of the FM kernel induces a Fourier transform in cohomology

F =
∑

Fk : H∗(M∨,Q) → H∗(M,Q), such that Fk(H
i (M∨,Q)) ⊆ H≥i+2k−2g(M,Q),

and a filtration

CF
k H∗(M,Q) = Span{ImF j | j ≤ k}.

called the Chern filtration associated with F.

Example 4.1 Any abelian scheme π : M → B is a dualizable abelian fibration. While
Fourier transforms can be described in terms of the multiplication map on M , the full support
condition is a consequence of the fact that π is a smooth proper morphism and thus the
decomposition theorem reduces to Deligne’s theorem for smooth projective families, see
Appendix A.

The main result in Maulik-Shen-Yin’s paper is the following theorem, see [46, Theorem
0.1], establishing multiplicativity of the perverse filtration and the inclusion of the Chern
filtration in the perverse one for all dualizable abelian fibration satisfying a techincal condition
on the Fourier-Mukai transforms called Fourier Vanishing (FV).

Theorem 4.2 Let π : M → B be a dualizable abelian fibration satisfying (FV). Then

1. (Multiplicativity of P) The perverse filtration P• on H∗(M,Q) associated with π is
multiplicative;
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2. (Perverse ⊇ Chern) For any class α ∈ H∗(M∨,Q)

Fk(α) ∈ PkH
∗(M,Q).

Remark 4.3 Given a dualizable abelian fibration π : M → B and the associated cohomo-
logical operators Fi , the (FV) condition prescribes that

F−1
i ◦ F j = 0, for i + j < 2g.

This condition, which is in general hard to verify, ensures that the operators Fi provides
projectors on the cohomology of M , which recover the perverse filtration on H∗(M,Q).
Moreover, the presence of projectors together with (FV) reduces the statement (Perverse ⊇
Chern) to a simple calculation, cfr. proof of Theorem 4.10.

Maulik, Shen and Yin prove that, given a family C → B of integral projective locally

planar curves which admits a section and defined πd : J
d
C → B to be the associated

compactified Jacobian fibration, if the total space of J
d
C is nonsingular then πd satisfies

conditions (i) and (ii) of dualizable abelian fibrations (see [46, Theorem 0.2]), together with
Fourier Vanishing. Indeed the theory of Fourier-Mukai transforms for compactified Jacobians
has been developed by Arinkin [1, 2], while the full support in the decomposition theorem of
Rπd∗QJ

d
C
is ensured by a combination of Ngô support theorem [55] and Severi identitities

[49, Lemma 4.1]. Later, they generalize the result to families without a section.

Corollary 4.4 ([46], Corollary 4.5) Let C → B be a family of projective integral locally

planar curves and let πd : JdC → B the relative compactified Jacobian. If the total space of

J
d
C is nonsingular, the statements in Theorem 4.2 hold for πd : JdC → B.

Consider now the Hitchin map h : MDol → A and restrict it to the elliptic locus B ⊂ A
parametrising integral spectral curves. On B, the Hitchin fibration is nothing but the relative
compactified Jacobian fibration of the spectral family C → B:

πd : JdC → B,

where the degree d of the compactified Jacobian is determined by r and n via Riemann–Roch
formula.

In this setting, if we restrict the tautological generators ck(γ ) introduced in section 1.1 to

J
d
C , the filtration defined via the Chern character of a universal family on MDol(r , n)

CkH
∗(JdC ,Q) = Span

{
c j (γ ) | j ≤ k

}
(10)

is determined by the Chern filtration associated with the Fourier–Mukai transforms, see
section 4.5.2.

As an application of Corollary 4.4, Maulik, Shen and Yin provide a new proof of P=W.
In fact the P=W conjecture can be decomposed into three identities:

Pk(H
∗(MDol ,Q)) = Ck(H

∗(MDol ,Q)) = Ck(H
∗(MB ,Q)) = W2k(H

∗(MB ,Q)).

The second identity has been established earlier by works of Markman [43] and Hausel-
Thaddeus [36], whereas the third by Shende [62].

Hence, one is leftwith proving the first identity P=ConMDol . TheCuriousHardLefschetz
theorem allows to reduce the proof of the equality to just showing that

CkH
∗(MDol ,Q) ⊆ PkH

∗(MDol ,Q).
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Now, Corollary 4.4 ensures that C ⊆ P on the elliptic locus of the Hitchin map. The result
can now be extended to the whole Hitchin base A via the same argument as in [34, Section
8].

Remark 4.5 The above discussion suggests that P=C phenomena might make sense in a
broader context. For example, there is no Betti version of D-twisted Higgs moduli spaces, so
we cannot ask about P =W, but we can ask whether P = C holds. Moreover, the streamline of
the proof suggests that P=C is rather a property of compactified Jacobian fibrations associated
with family of curves and does not depend on the representation theory perspective of the
other proofs of P=W.

Remark 4.6 In the same way as the P=W conjecture, it is possible to establish a P ⊇ C
phenomenon analogous to Theorem 4.2 for the moduli space Mr ,χ of 1-dimensional stable
sheaf on P2 having support on [r H ] and Euler Characteristic χ [46, Theorem 0.6]. Here H
denotes the hyperplane class. It is conjectured that also the other inclusion is true, giving a
P = C phenomenon. The conjecture has been recently verified in some cases in [42] and it
is expected to hold for more general Del Pezzo surfaces, see also [41].

In what follows, for expository purposes, we first show how Fourier–Mukai transforms
control the perverse filtration in the case of abelian schemes, then we present a sketch of
the proof of Theorem 4.2 in the case of the relative compactified Jacobian associated with
familiesC → B with a section. Later, by promoting schemes to gerbes, one extends Theorem
4.10 to (twisted) compactified Jacobians associated to families without a sections. Finally,
we show how to deduce the P=W conjecture from it.

4.2 Perverse=Chern for abelian schemes

Suppose π : A → B is a smooth abelian scheme of relative dimension g. Since A has a
group structure, one can consider multiplication by [N ] : A → A inducing

[N ]∗ : H∗(A,Q) → H∗(A,Q)

in cohomology. The eigenspace decomposition of [N ]∗ is called Beauville decomposition
and reads as

H∗(A,Q) =
2g⊕
i=0

H∗(A,Q)(i), (11)

where H∗(A,Q)(i) = {
α ∈ H∗(A,Q) | [N ]∗α = Niα

}
.Let us point out two key properties

of the Beauville decomposition.

• (Splitting of Leray filtration) The Beauville decomposition splits the Leray filtration
associated with π . Note that, since π is a smooth projective morphism, the Leray and the
Perverse Leray filtration coincide.

• (Strong multiplicativity) The Beauville decomposition is multiplicative with respect to
cup product, i.e.

Hd(A,Q)(i) × Hd ′
(A,Q)( j) → Hd+d ′

(A,Q)(i+ j). (12)

Beauville [4] shows that there is a way to retrace the decomposition in (11) via Fourier
transforms as follows. There is a Poincaré line bundle P → A×B A∨, which we think of as
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an element of DbCoh(A ×B A∨). Its Chern character ch(P) ∈ H∗(A ×B A∨,Q) defines a
Fourier–Mukai transform

F : H∗(A∨,Q) → H∗(A,Q), α �→ p2∗(p∗
1α ∪ ch(P)), (13)

which admits an inverse F−1 : H∗(A,Q) → H∗(A∨,Q) (i.e. F−1 ◦ F = O�/B).
Beauville shows the decomposition (11) enjoys the following properties.

1) (Fourier stability) Calling Fi the component of F given by cupping with chi (P) in (13),
we have mappings

Hd(A,Q)(i) Hd+2g−2i (A∨,Q)(2g−i).

F−1
2g−i

Fi

In particular, when applying the Fourier transform on each summand of the Beauville
decomposition, there is just one degree of the Chern character wich contributes. Also,
note that the Chern grading of F affects also the cohomological degree of the image.

2) (Strong multiplicativity) Given the addition map μ : A∨ ×B A∨ → A∨ on A∨, we can
define the Pontryagin convolution product

∗ : H∗(A∨,Q) × H∗(A∨,Q) → H∗(A∨,Q), α ∗ β := μ∗(p∗
1α ∪ p∗

2α)

whose convolution kernel is supported on the graph of μ (and thus it is supported in
codimension g in A∨ ×B A∨ ×B A∨). Thanks to Fourier stability and the convolution
product, we can get a new proof of the strong multiplicativity (12). In fact, given α ∈
Hd(A,Q)(i) and β ∈ Hd ′

(A,Q)( j), their cup product α ∪β ∈ Hd+d ′
(A,Q)? for a given

index “?” which we want to determine. If we apply the F−1, we can easily verify that

F−1(α ∪ β) = F−1(α) ∗ F−1(β).

On the one hand, by Fourier stability, one knows that the first member must lie in
Hd+d ′+2g−2?(A∨,Q)(2g−?). On the other hand, the properties of the convolution prod-
uct and the codimension of the support of the convolution kernel imply that the second
member of the equality lies in Hd+d ′+2g−2(i+ j), hence that ? = i + j .

3) (Perverse = Chern) One has that

Fi (H
∗(A∨,Q)) = Hi (A,Q)(i) (14)

Remark 4.7 Among the three properties above, the only one which is proved using the exis-
tence of multiplication by [N ] is Fourier stability. In particular, one can show that rescaling
by different powers of [N ]∗ yields the following vanishing condition:

F−1
i ◦ F j = 0 ∀ i + j �= 2g. (15)

Once (15) is established, the strong multiplicativity and Perverse = Chern follow as a formal
direct consequences.

The upshot that one should get from the above discussion is that the Beauville decompo-
sition, which is a splitting of the (perverse) Leray filtration, is governed by the Chern grading
of the Fourier transforms associated with the Poincaré line bundle on A∨ ×B A∨. It is then
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natural to wonder how to extend the abelian scheme picture to settings where singular fibers
may appear, such as the cases of the relative compactified Jacobians, Mukai and Hitchin
systems. The main difficulty in extending Beauville work is that it is not possible to extend
the multiplication by [N ] to singular fibers. However, thanks to the work of Arinkin [1, 2],
it is possible to extend Fourier transforms in the case of dualizable abelian fibrations.

Inwhat follows,we present an extension ofBeauville results to the case of the compactified
Jacobian fibration as it is one of the key examples and it is a crucial step in the proof of
the P=W conjecture. Indeed Maulik, Shen and Yin prove a theorem which generalizes the
above notions for all dualizable abelian fibrations, see [46, Theorem 2.4] (see also [47] for
a refinement of this result). Since their strategy involves passing from coherent sheaves to
cycle classes, the authors use the language of relative Chow Motives developed by Corti and
Hanamura [12]. In fact, this language has the advantage of admitting various realizations:
Chow groups, mixed Hodge modules and global cohomology endowed with a mixed Hodge
structure. For expository purposes, we present the results in terms of their cohomological
realization and we refer to [46, §2] for further details.

4.3 Compactified Jacobians with a section

We work in the following setup. Let C → B be a family of projective integral locally planar
curves such that there is a section B → C . Let π : JC → C be the corresponding relative
compactified Jacobian fibration and suppose also to choose B so that the total space JC is
nonsingular. This latter request is not a restrictive hypothesis: fix a point b0 ∈ B such that the
corresponding curve Cb0 is singular and let (V, 0) be the product of the versal deformations
of the singularities of Cb0 . To ensure that the total space of JC is smooth around Cb0 , it
is sufficient that the image T of Tb0 B in T0V is transverse to the image of Tx JCb0

for all

x ∈ JCb0
. This is achieved for instance if dim T is greater than the cogenus of Cb0 (see [27]

for more details).
On the regular locus of B, the map π restrict to an abelian scheme satisfying Beauville

decomposition. The following result by Arinkin provides a Cohen-Macaulay extension of
the Poincaré bundle on the regular locus to the boundary of the family.

Proposition 4.8 (Arinkin) Let π : JC → C be a relative compactified Jacobian as above.
Then there exists an element P ∈ DbCoh(JC ×B JC ), extending the Poincaré bundle on the
regular locus4, which defines a Fourier–Mukai transform

F : H∗(JC ,Q) → H∗(JC ,Q)

admitting an inverse F−1.

It is not difficult to verify that, unlike in the abelian scheme case, the vanishing

F−1
i ◦ F j = 0 ∀ i + j �= 2g (16)

no longer holds and thus that the image of a cohomology class α ∈ H∗(JC ,Q) under F splits
into different degrees of the perverse filtration of π .

Thanks to a dimension estimate on the support of P , Maulik, Shen and Yin manage to
prove the vanishing for i + j < 2g. The idea of the proof consist in replacing multiplication
by [N ] by a more complicated strucure involving again δ-inequality and Adams operations,
see [46, §3.5] for a detailed account.

4 More precisely, P is the direct image by the open embedding j : JC ×B JC ∪ JC ×B JC ↪→ JC ×B JC
of the Poincaré bundle on JC ×B JC .
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Proposition 4.9 Keep the notation as above. The Fourier–Mukai transform F satisfies

F−1
i ◦ F j = 0 ∀ i + j < 2g.

With half of the vanishings, it is then possible to define operators

pk :=
∑
i≤k

Fi ◦ F−1
2g−i , (17)

such that

pk ◦ pk = pk; pk+1 ◦ pk = pk . (18)

Thanks to the operators pk one can extend the results of section 4.2 as follows.

Theorem 4.10 ([46], Theorem 0.2) Let C → B be a family of integral locally planar curves
with a section and let π : JC → B be the associated compactified Jacobian fibration.
Suppose further that JC is nonsingular.

1. (Realization of P via Fourier–Mukai) Setting, for each k pk := ∑
i≤k Fi ◦F−1

2g−i one has

Pk H
∗(JC ,Q) = Impk ⊂ H∗(JC ,Q);

2. (Multiplicativity) for each k, l one has

∪ : PkH
∗(JC ,Q) × PkH

∗(JC ,Q) → Pk+l H
∗(JC ,Q);

3. (Perverse ⊇ Chern) for all k

Fk(H
∗(JC ,Q)) ⊆ PkH

∗(JC ,Q).

Proof (Sketch) Let

P ′
k H

∗(JC ,Q) := Impk .

The first condition in (18) implies that pk is a projection, while the second condition ensures
that P ′• is an increasing filtration on the cohomology of JC :

P ′
0H

∗(JC ,Q) ⊆ P ′
1H

∗(JC ,Q) ⊆ . . . ⊆ P ′
2gH

∗(JC ,Q).

Moreover, as a direct consequence of the vanishing in (17) one has

F−1(P ′
k H

d(JC ,Q)) ∈ H≥d+2g−k(JC ,Q)), ∀ k (19)

which can be thought as the generalization of Fourier stability.

1. We want to prove that the filtration P ′ defined above is indeed the perverse filtration
associated with π . This is done by Ngô support theorem: since the properties which
imply Proposition 4.9 can be checked étale locally and the perverse cohomology groups
pHi have full support, to prove that P and P ′ coincide, one essentially needs to show that
P ′ recovers the Leray filtration on the regular locus of the family, and this holds since
the restriction of the π : JC → B to the regular locus is an abelian scheme. The full
support condition implies that P ′ coincides with the perverse Leray filtration P on the
whole family.
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2. As in the abelian case, the proof of the multiplicativity involves compatibility of F with
a convolution product. Again, Arinkin shows that it is possible to extend the convolution
product of the smooth locus of the family (which is an abelian scheme) so that the support
of the convolution kernel is still of codimension g and

∗ : Hd(JC ,Q) × Hd ′
(JC ,Q) → H≥d+d ′−2g(JC ,Q). (20)

Now, given α ∈ PkHd(JC ,Q) and β ∈ Pl Hd(JC ,Q) we have that

F−1(α ∪ β) = F−1(α) ∗ F−1(β).

Then the multiplicativity of P• is implied by (20) and (19) following the same argument
as in the abelian scheme case.

3. Setting qk = ∑
i≥k+1 Fi ◦ F−1

2 g−i , it is not difficult to see that

H∗(JC ,Q) = pk H
∗(JC ,Q) ⊕ qk+1H

∗(JC ,Q).

Hence, given α ∈ PkH∗(JC ,Q) it suffices to show that

qk+1 ◦ F(α) = 0.

This follows by the definition of qk+1 and (17).

��

4.4 Compactified Jacobian without a section

A subsequent step leading to P=C phenomena and the proof of the P=W conjecture is to
extend Theorem 4.10 to the case of relative compactified Jacobians of families C → B
having smooth total space but equipped only with a multisection of degree r finite and flat
over B. This is for example the case of the Hitchin fibration or the Le Poitier moduli spaces

of sheaves on P2. In both cases, one considers relative compactified Jacobians πd : JdC → B
of torsion free semistable sheaves of degree d on the fibers of C → B. When there is no

honest section B → C , extending the result of Theorem 4.10 to πd : JdC → B is far from
immediate and we refer to [46, §4] for more details. In fact there are two main technical
obstacles.

1. First, the universal sheaf on C × J
d
C might not exist.

2. Second, even if it exists, it might not be unique and different choices of a universal family
might affect the Poincaré sheaf and thus the associated Fourier–Mukai transform (which
should recover the perverse filtration). The presence of a section allows to trivialize the
universal family along it, thus eliminating the ambiguity given by a line bundle pulled

back from J
d
C .

4.5 Proof of the P=W conjecture

The final step in the proof of the P = W conjecture is to apply the machinery developed for
πd to the Hitchin fibration h. Let us summarize how this is achieved.

• As mentioned at the beginning of the section, the proof of the P=W conjecture can be
reduced to showing that the Chern filtration Ck defined by the Chern character of the
universal family on the moduli space is contained in the perverse filtration associated
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with h. Since two universal families onMDol ×� differ by the pullback of a line bundle
on MDol , we introduce the notion of normalized Chern characters so that the filtration
is defined Ck without ambiguity. This is explained in section 4.5.1.

• Then we take family of integral curves C → B lying on a surface S (for example one
might think of S as the total space of a bundle over � and take a linear system of curves

inside it) and considers the associated relative compactified Jacobian fibration J
d
C . In

section 4.5.2, we show that the perverse filtration associated with the map idS × π× :
S× J

d
C → S×B ismultiplicative and that there arewell defined Fourier–Mukai operators

Fk , whose image is in the right perversity to ensure that the Chern ⊆ Perverse.
• Finally, in section 4.5.3 we introduce several moduli spaces of Higgs bundles with deco-

rations and we first prove P=C for the moduli space Mparell
Dol of parabolic Higgs bundles

having integral associated spectral curve and such that the residue θp has distinct eigen-

values over a fixed point p. The moduli space Mparell
Dol is equipped with a finite group

action whose quotient is a relative compactified Jacobian fibration of curves lying in an
appropriate surface (namely the total space of the bundle 
1

�(p) on �). Applying the

results in the previous step, one deduces P=C forMparell
Dol and from it the P=C forMDol .

4.5.1 Normalized tautological classes and Chern filtration

Fix integers r , n such that r > 0, (r , n) = 1 and denote MDol(r , n) simply by MDol .
The coprimality condition ensures that MDol admits a rank r universal family (U, θ) on
MDol × �. Given a class

δ := p∗
�δ� + p∗

MδM ∈ H2(MDol × �,Q)

with δ� ∈ H2(�,Q) and δM ∈ H2(MDol ,Q), one defines the twisted Chern Character
chδ(U) as

chδ(U) := ch(U) ∪ exp(δ) ∈ H∗(MDol × �,Q)

and denote by chδ
k(U) its degree k component in H2k(MDol × �,Q). The class chδ(U) is

said to be normalized if, with respect to the Künneth decomposition of H2(MDol × �,Q),
one has

chδ
1(U) ∈ H1(�,Q) ⊗ H1(MDol ,Q).

Since a universal family (U, θ) onMDol ×� is determined up to twisting by the pullback
of a line bundle on MDol , a direct calculation shows normalized chδ(U) are do not depend
on the choice of (U, θ, δ). We are now in a position to define the tautogical classes as in (3):
for any γ ∈ H∗(�,Q) and a normalized universal family (U, θ, δ) we set

ck(γ ) := pM∗(p∗
�γ ∪ chδ

k(U)).

The classes ck(γ ) generate the cohomology of MDol .

Definition 4.11 We define the Chern filtration C• on H∗(MDol ,Q) as

CkH
∗(MDol ,Q) := Span

{
s∏

i=1

cki (γ ) |
s∑

i=1

ki ≤ k

}
⊆ H∗(MDol ,Q).

The integer
∑s

i=1 ki associatedwith any class inCkH∗(MDol ,Q) is called itsChern grading.
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Remark 4.12 The definition of Chern filtrationC• implies that it is multiplicative with respect
to the cup product on H∗(MDol ,Q).

We recall that Shende [62] proved that, on the Betti side, one has

CkH
∗(MB ,Q) = W2k H

∗(MB ,Q).

As a result proving the P=W conjecture amounts to showing P=C. Reducing further, one
just needs to prove that P⊇C as the other inclusion is granted via Curious Hard Lefschetz.
So far, for compactified Jacobians and their variants we have been able to relate P with
the Chern filtration arising from Fourier transforms. Since on a dense open set the Hitchin
fibration reduces to a family of compactified Jacobian of integral curves, it is natural to
investigate whether the above defined Chern filtrationCk can be expressed in terms of Fourier
Transforms.

4.5.2 Curves on surfaces and tautological classes

Let S be a nonsingular projective surface, and let d be an integer. We assume that C → B is
a flat family of integral curves lying in S. Assume H ⊂ S is a divisor which does not contain
any curve Cb in the family. Then H ⊂ S yields a multisection

D := ev−1(H) ⊂ C → B

where ev denotes the evaluation map ev : C → S from the total space of C to the surface.

Again, we consider πd : J
d
C → B the associated compactified Jacobian, assuming that

both C and J
d
C are nonsingular. Moreover we denote by AJ the (stacky) Abel–Jacobi maps5

AJ : C → J
1
C , AJ : C → J 1

C ,

where C is a μr -gerbe over C . Next, we consider the closed embeddings

ev : = ev ×B id
J
d
C

: C ×B J
d
C → S × J

d
C , AJ := AJ

×B idJ d
C

: C ×B J d
C → J 1

C ×B J d
C . (21)

We can define Fourier transforms associated with a Poincaré sheaf P1,d on J 1
C ×B J d

C :

F =
∑

Fi ∈ H∗(J 1
C ×B J d

C ), Fi ∈ H2(dim B+2g+i)(J 1
C ×B J d

C ).

Now, if there is a universal sheaf Fd on C ×B J
d
C , this gives a family Fd of 1-dimensional

sheaves on S by pushing forward via ev:

F
d := ev∗Fd � S × J

d
C . (22)

For proving P=C=W one needs to express ch(Fd) in terms of F.

Proposition 4.13 ([46], Proposition 5.1)Consider themorphismπd := idS×πd : S× J
d
C →

S × B.

5 The second is obtained pulling back the first by the μr -gerbe J d
C → J

d
C .
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(i) One has

ch(F
d
) =

(
ev∗

(
exp(λ • p∗

C D) ∩ AJ
∗
F
))

∪
(

l0
1 − exp(−(l0))

)
∪ exp(p∗

J lJ ) ∈ H∗(S × J
d
C ,Q),

where λ ∈ Q is a constant, lJ ∈ H2(J
d
C ,Q) and l0 is such that the Todd class with

respect to ev is given by td(Tev) = ev∗l0
1 − exp(−ev∗l0)

.

(ii) Let P•H∗(S × J
d
C ,Q) be the perverse filtration associated with πd . This perverse fil-

tration is multiplicative and for any class β ∈ H∗(C,Q), one has

ev∗
(
p∗
Cβ ∩ AJ

∗
Fk

)
∈ PkH

≥2k+2(S × J
d
C ,Q).

4.5.3 The moduli spaces

Fix two coprime integers n and r with r > 0 and we consider the moduli space MDol :=
MDol(r , n) of rank r and degree n Higgs bundles on the curve �. Let us also fix p ∈ �. We
set

• MDol : the moduli space of stable Higgs bundles

(E, θ), θ : E → E ⊗ 
1
�.

• Mmero
Dol : the moduli space of stable meromorphic Higgs bundles

(E, θ), θ : E → E ⊗ 
1
�(p).

• Mpar
Dol : the moduli space of stable parabolic Higgs bundles

(E, θ, F•), θ : E → E ⊗ 
1
�(p),

where F• is a complete flag on the fiber Ep , and the residue θp preserves the flag.
• M0

Dol ⊂ Mpar
Dol : the moduli of parabolic Higgs bundles such that the residue θp is

nilpotent.
• Mparell

Dol ⊂ Mpar
Dol : the moduli of parabolic Higgs bundles having integral associated

spectral curve and such that the residue θp has n distinct eigenvalues over p.
• M̃Dol ⊂ M0

Dol : the moduli of parabolic Higgs bundles with trivial residue at the point
p, i.e. θp = 0.

Each of the above moduli spaces admits a proper Hitchin map defined in the obvious way
by calculating the characteristic polynomial of the Higgs field, from which we may define
the corresponding perverse filtrations. Also, for each of them there is a universal bundle U
which allows to define the normalized tautological classes

ck(γ ), k ∈ N, γ ∈ H∗(�,Q)

as in (3).
We summarize the relations between moduli spaces above by the diagram

MDol
f←−− M̃Dol

ι̃
↪−−→ M0

Dol
ι0

↪−−→ MDol
par ι←−−↩ Mparell

Dol
q−−→ J

d
C . (23)
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While ι̃, ι0, ι are natural inclusions, the map f : M̃Dol → MDol is given by forgetting the

flag. The symbol C in J
d
C stands for

C → W ⊂
r⊕

i=1

H0
(
�,
1

�(p)⊗i
)

,

the family of integral spectral curves in the total space of the bundle 
1
�(p) on � which

intersects the fiber over p in r distinct points. From this perspective, one can think of J
d
C as

the open subvariety ofMmero
Dol given by the pre-image ofW under the corresponding Hitchin

map: more precisely, the pre-image is isomorphic to the compactified Jacobian fibration
associated withC → W . Finally,Mparell

Dol is equipped with a naturalSr -action permuting the
complete flag: the condition that the eigenvalues of θp are distinct ensures that this action is

free. In this way we have a quotient map q : Mparell
Dol → J

d
C , which fits into the commutative

diagram

Mparell
Dol J

d
C

W̃ W .

q

h
(24)

Here, W̃ can be interpreted as the parameter space of the spectral curves lying in W which
have a marking over p ∈ � and whose projection to W is the naturalSr -quotient. Since the

map h in (24) is the pullback of the compactified Jacobian fibration J
d
C along a finite étale

map W̃ → W , we deduce that the perverse filtration P•H∗(Mparell
Dol ,Q) is multiplicative

with respect to cup product. As a result, establishing P ⊇ C amounts to show that cupping
with a tautological class ck(γ ) increases perversity exactly by k.

Proposition 4.14 Let ck(γ ) be the tautological classes on Mparell
Dol . Then

∪ ck(γ ) : Pi H∗(Mparell
Dol ,Q) → Pi+k H

∗(Mparell
Dol ,Q).

Since P•H∗(Mparell
Dol ,Q) is multiplicative, one just needs to show that

ck(γ ) ∈ PkH
∗(Mparell

Dol ,Q).

Moreover, since this class is pulled back from J
d
C , in view of the diagram (24) it suffices to

prove the corresponding statement for J
d
C .

Claim: ck(γ ) ∈ PkH∗(JdC ,Q).

Let S be the total space of projectivization of the bundle 
1
�(p) over �:

pr : S := P�

(

1

�(p) ⊕ O�

) → �.

Then C → W can be viewed as a family of curves in the linear system |r�| with � ⊂ S the

0-section. A universal sheaf F
d
on S × J

d
C of Sect. 4.5.2 provides a universal bundle

U := (pr × idJ )∗F
d � � × J

d
C .

In particular, with the Grothendieck–Riemann–Roch formula with respect to

pr := pr × idJ : S × J
d
C → � × J

d
C
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one can express the class ck(γ ) in terms of the tautological classes associated with S defined

via F
d
. More precisely, the formula

ch(U) = pr∗
(
ch(F

d
) ∪ p∗

S tdpr
)

,

implies that every tautological class ck(γ ) can be written in terms of Künneth components
of

chpr
∗δ

j (F
d
), j ≤ k + 1.

We are thus reduced to showing

chδ′
k+1(F

d
) ∈ PkH

∗(S × J
d
C ,Q).

with δ′ = pr∗δ. Now by item (i) of Proposition 4.13, one can express chδ′
k+1(F

d
) in terms of

F and l0. In particular it will be a sum of terms of the form
(
ev∗

(
exp(λ • p∗

Cβ j ) ∩ AJ
∗
F
))

∪ (
γ j (l0)

)
, for j ≤ k.

Here γ j (l0) is a polynomial in l0 of degree ≤ j . Note that, by item (ii) of Proposition 4.13,
we have (

exp(λ • p∗
Cβ j ) ∩ AJ

∗
F
)

∈ Pj H
≥2 j+2(S × J

d
C ,Q).

Now, since the component of l0 in J
d
C is pulled back fromW , it belongs to P0H2(S× J

d
CQ) ⊆

P1H2(S × J
d
CQ), thus

γ j (l0) ∈
⊕
i≤ j

Pi H
2i (S × J

d
CQ).

By the multiplicativity of P•, one can finally conclude

chδ′
k+1(F

d
) ∈ PkH

∗(S × J
d
C ,Q).

This completes the proof of Proposition 4.14 and establishes Perverse⊇Chern forMparell
Dol .

The last step in the proof ofMaulik, Shen and Yin consists in reducing the proof of P ⊇ C
for MDol to that for Mparell

Dol . This is pursued following the strategy developed in the proof
of Hausel–Mellit–Minets–Schiffmann [34, Section 8]. We briefly recall it here; see also [46,
§5.4.3] and [38, §4.3]. As already mentioned in section 1.1, the P=W conjecture for MDol

can be deduced from the following analogue of Proposition 4.14 for themoduli spaceMDol :

ck(γ ) ∪ : Pi H∗(MDol ,Q) → Pi+k H
∗(MDol ,Q). (25)

If such a statement holds for one of theHitchin typemoduli spaces defined at the beginning
of the section, we say that this moduli space satisfies stronger P ⊇ C. For the moduli space
MDol , the stronger P ⊇ C condition is equivalent to the weaker version due to Markman’s
generation result [43]. However for other spaces, these two conditions are not equivalent.

The argument goes by fixing a normalized pair (U, δ) on�×Mmero
Dol so that one can define

tautological classes whose pullback to the other moduli spaces yield tautological classes on
them. Then, knowing that P ⊇ C hold on Mparell

Dol , one investigates how the stronger P ⊇ C
condition changes with respect to the morphisms in (23) from the right end to the left end.
Since the P ⊇ C is preserved by all morphisms in (23), the proof is concluded.
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Appendix A. Intersection cohomology and perverse sheaves

In this appendix we recall the main notions of the theory of perverse sheaves and intersection
cohomology, which appear in the paper. For proofs, examples and several enlighting expla-
nations, we refer to [16]. All cohomology groups are considered with rational coefficient, so
we omit it in the notation.

Let Y be an algebraic variety. We denote by Db
c (Y ) the bounded derived category of Q-

constructible complexes on Y . Let D : Db
c (Y ) → Db

c (Y ) be the Verdier duality functor. The
two full subcategories

pDb≤0(Y ) :=
{
K ∗ ∈ Db

c (Y ) | dim Supp(H j (K ∗)) ≤ − j
}

pDb≥0(Y ) :=
{
K ∗ ∈ Db

c (Y ) | dim Supp(H j (DK ∗)) ≤ − j
}

define a t-structure on Db
c (X), called perverse t-structure. The heart

P(Y ) := pDb≤0(Y ) ∩ pDb≥0(Y )

of the t-structure is the abelian category of perverse sheaves.
The truncation functors are denoted pτ≤k : Db

c (Y ) → pDb
≤k(Y ), pτ≥k : Db

c (X) →
pDb

≥k(Y ), and the perverse cohomology functors are

pHk := pτ≤k
pτ≥k : Db

c (Y ) → P(Y ).

The category P(Y ) is Artinian, thus every K ∈ P(Y ) admits an increasing finite filtration
with quotients simple objects. Simple perverse sheaves are all of the form

ICZ (L)

where ICZ (L) denotes the intersection complex associated with some locally closed smooth
subvariety Z and a simple local system L on it.

Definition A.1 The intersection complex ICZ (L) associated with a local system L is a com-
plex of sheaves on Z which extends L[dim Z ] and is determined up to unique isomorphism
in the derived category by the conditions:

• H j (IC)Z (L)) = 0 for all j < − dim Z ,

• H− dim Y (ICZ (L)|Z ) ∼= L,
• dim SuppH j (ICZ (L)) < − j, for all j ∈ Z,
• dim SuppH j (DICZ (L)) < − j, for all j ∈ Z.

When L = QU for an open nonsingular Zariski dense subset U of Y we simply denote
ICY (L) by ICY . Note that, if Y is smooth, then ICY ∼= Q[dim Y ].
Definition A.2 (Intersection cohomology) Let Y be an algebraic variety. We set

I Hi (Y )
.= Hi−dim Y (ICY )

and we call it the i-th intersection cohomology group of Y .

In general, given any local system L supported on a locally closed subset Z of Y , the
cohomology groups of Y with coefficients in L are shifted hypercohomology groups of the
intersection complex associated to L:

I H∗(Y ,L) = H∗−dim Y (Y , ICY (L)).
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Proposition A.3 (Properties of Intersection cohomology) Let Y be an algebraic variety of
dimension n. Then its intersection cohomology group enjoys the following properties:

(i) I Hi (Y ) is finite dimensional vector spaces and I Hi (Y ) = 0 for i /∈ {0 . . . 2n}.
(ii) There is a natural morphism Hd(Y ) → I Hd(Y ) which is an isomorphism when Y as

at worst finite quotient singularities. This morphism endows I H∗(Y ) with a module
structure over H∗(Y ), but in general I H∗(Y ) has no ring structure or cup product.

(iii) (Poincaré duality) There is a canonical isomorphism I Hi (Y ) ∼= I H2n−i (Y )∨ for all
i ∈ N.

(iv) I Hi (Y ) carry a natural mixed Hodge structure. If Y is projective, the mixed Hodge
structure is pure of weight i and I Hi (Y ) admits a Hodge decomposition

I Hi (Y ) ⊗ C ∼=
⊕

I H p,q(Y ), I H p,q(Y ) ∼= Hq,p(Y ).

A.1 The decomposition theorem package

The crowning result of the theory of perverse sheaves is the Decomposition theorem by
Beilinson,Bernstein andDeligne [6]. For the rest of the sectionwe state all result not assuming
varieties to be necessarily nonsingular; when a variety X is nonsingular then I H∗(X) can
by replaced simply by H∗(X).

Theorem A.4 (Decomposition theorem) Let h : X → Y be a proper algebraic map of
complex algebraic varieties. There is an isomorphism in Db

c (Y )

Rh∗ICX ∼=
⊕
i∈Z

pHi (Rh∗ICX )[−i]. (26)

Furthermore, the perverse sheaves pHi (Rh∗ICX ) are semisimple, i.e. there exists a stratifi-
cation of Y � Yα such that pHi (Rh∗ICX ) decomposes as direct sum

pHi (Rh∗ICX ) ∼=
⊕

α

ICYα
(Lα), (27)

where Lα are semisimple local systems on Yα .

The direct sum (26) is finite and i ranges from −r(h) to r(h), where r(h) is defined as

r(h) = dim X ×Y X − dim X .

The decomposition theorem is understood in combination with the Relative Hard Lefschetz
theorem. As the name suggests, the Relative Hard Lefschetz theorem stated below is a relative
version of Hard Lefschetz theorem and it is closely intertwined with the decomposition
theorem as it expresses a symmetry between the summands in (26).

Theorem A.5 (Relative Hard Lefschetz) Let h : X → Y be a proper map of algebraic
varieties with X quasi-projective and let α be the first Chern class of a hyperplane line
bundle on X. Then we have isomorphisms

αi∪ : pH−i (Rh∗ICX )
�−→p

Hi (Rh∗ICX ).
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A.2 Perverse Leray filtration

Let h : X → Y be a projective map of algebraic varieties.

Definition A.6 The perverse Leray filtration associated to h is defined as

Pk I H
∗(X) = Im

{
H∗(Y ,p τ≤−kRh∗ICX ) → H∗(Y ,Rh∗ICX )

}
.

Remark A.7 In some papers, like in the original one on the P=W conjecture [18], the perverse
filtration is defined with a shift so that it ranges from 0 to the cohomological degree:

P ′
k I H

∗(X) = PkH
∗−(dim X−r(h))(Y ,Rh∗ICX [dim X − r(h)]).

In the case of the Hitchin fibration this amounts to shift by the dimension of the Hitchin base.

Definition A.8 A class η ∈ H∗(X) has perversity k if

η ∈ PkH
∗(X) and α /∈ Pk−1H

∗(X).

Definition A.9 A splitting of the perverse filtration is a vector space decomposition
I H∗(X) = ⊕

� G� I H∗(X) such that

Pk I H
∗(X) =

⊕
�≤k

G� I H
∗(X).

For ease of the reader, we restate the relative the relative Hard Lefschetz theorem in terms
of the perverse Leray filtration.

Theorem A.10 (Relative hard Lefschetz for the perverse filtration)Let h : X → Y be a proper
map of algebraic varieties and let α ∈ H2(X) be the first Chern class of a relatively ample
line bundle. Then there exists an isomorphism

∪ αk : Gr P−k I H
d(X) → Gr Pk I Hd+2l(X).
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