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Abstract. In this paper, we present a forward–backward linesearch–based algorithm suited for
the minimization of the sum of a smooth (possibly nonconvex) function and a convex (possibly
nonsmooth) term. Such algorithm first computes inexactly the proximal operator with respect
to a given Bregman distance, and then ensures a sufficient decrease condition by performing a
linesearch along the descent direction. The proposed approach can be seen as an instance of the
more general class of descent methods presented in [7], however, unlike in [7], we do not assume
the strong convexity of the Bregman distance used in the proximal evaluation. We prove that
each limit point of the iterates sequence is stationary, we show how to compute an approximate
proximal–gradient point with respect to a Bregman distance and, finally, we report the good
numerical performance of the algorithm on a large scale image restoration problem.

1. Introduction

This paper is concerned with the following optimization problem

arg min
x∈Rn

f(x) ≡ f0(x) + f1(x) (1)

where f0 : Rn → R is continuously differentiable on an open set Ω, f1 : Rn → R ∪ {∞} is a
proper, convex, continuous function on a closed domain dom f1 ⊆ Ω, and f is bounded from
below. Several problems arising in signal and image processing can be reformulated as (1), such
as image deconvolution, image segmentation, image compression and inpainting, non-negative
matrix and tensor factorization [4, 10]. The structure of the objective function in (1) can be
exploited by using the forward–backward (or proximal–gradient) algorithm [7, 12, 13], whose
general iteration is given by

x(k+1) = x(k) + λk

(

proxDk

αkf1
(x(k) − αkD

−1
k ∇f0(x

(k)))− x(k)
)

, (2)

where αk > 0 is a steplength parameter, Dk ∈ R
n×n is a symmetric positive definite matrix,

proxDαf1 denotes the proximal operator of αf1 w.r.t. the norm ‖x‖D = xTDx induced by D, i.e.

proxDαf1(z) = arg min
y∈Rn

f1(y) +
1

2α
‖y − z‖2D, (3)

http://creativecommons.org/licenses/by/3.0
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and λk ∈ (0, 1) is an additional relaxation parameter which aims at ensuring the sufficient
decrease of the objective function. Since, in its basic implementation, method (2) can be quite
slow, several accelerated versions have been devised, in which either the steplength αk and/or the
scaling matrix Dk are chosen in a variable manner [7, 8, 11]. More recently, the scheme (2) has
been generalized by replacing the (scaled) Euclidean norm in (3) with the more general concept of
Bregman distance [1, 7, 9]. Given ϕ : Rn → R∪{∞} a strictly convex and differentiable function
on int(domϕ) 6= ∅, the Bregman distance Dϕ : dom(ϕ)× int(domϕ) → [0,+∞] associated to ϕ
is defined as [2, Definition 3.1]

Dϕ(x, y) = ϕ(x) − ϕ(y) −∇ϕ(y)T (x− y), ∀ x ∈ dom(ϕ), ∀ y ∈ int(domϕ). (4)

Observe that the scaled Euclidean norm is recovered from (4) by setting ϕ = ‖ · ‖2D/2. Then one
can apply (2) by using, instead of (3), the following generalized proximal operator [1, p. 337]

proxϕαf1(z) = arg min
y∈Rn

f1(y) +
1

α
Dϕ(y, z). (5)

In the following, we present a Bregman version of algorithm (2) whose main features are the
computation of an approximate proximal–gradient point ỹ(k) with respect to a prefixed Bregman
distance, the adaptive choice of the steplength αk, which can take any value in a prefixed
interval [αmin, αmax], and the linesearch performed along the descent direction detected by
the approximate point ỹ(k). Such algorithm can be considered as an instance of the general
framework proposed in [7], where the concept of Bregman distance is replaced by a generalized
distance-like function satisfying appropriate assumptions. We prove that each limit point of the
iterates sequence is stationary under the assumption of super-coercivity of the Bregman distance,
which is weaker than the one of strong convexity adopted in [7]. Furthermore, we provide a
general procedure to compute an approximate Bregman proximal–gradient point satisfying the
required inexactness criterion, and we evaluate the effectiveness of the proposed approach on a
Poisson image restoration problem.

2. Algorithm and convergence result

The domain of a function f : Rn → R ∪ {∞} is defined as dom f = {x ∈ R
n : f(x) < ∞}.

Given ǫ > 0, the ǫ−subdifferential of a proper, convex function f at x ∈ dom f is the set
∂ǫf(x) = {w ∈ R

n : f(z) ≥ f(x) + wT (z − x) − ǫ, ∀ z ∈ R
n}. The limiting subdifferential of a

function f at x ∈ dom f is defined as ∂f(x) = {v ∈ R
n : ∃{y(k)}k∈N ⊆ R

n, v(k) ∈ ∂̂f(y(k)) ∀k ∈

N s.t. y(k) → x, f(y(k)) → f(x) and v(k) → v}, where ∂̂f(x) denotes the Fréchet subdifferential
of f at x [8, Definition 1]. The conjugate function f∗ is defined as f∗(v) = supx xT v − f(x).
For any c ∈ R, lev≤c(f) = {x ∈ R

n : f(x) ≤ c} denotes the sublevel set of f .
Throughout the paper, we will make the following blanket assumptions.

Assumption 1 (i) ϕ is a Legendre function [2], i.e. it is strictly convex and differentiable on
int(domϕ), and ‖∇ϕ(x(k))‖ → ∞ for every sequence {x(k)} ⊆ int(domϕ) converging to a
boundary point of domϕ as k → ∞.

(ii) 0 ∈ int(domϕ).

(iii) dom f1 ⊆ int(domϕ).

(iv) domϕ∗ = R
n.

Remark 1 Note that Assumption 1(iv) is equivalent to require that ϕ is super-coercive, namely
[2, Definition 2.15, Proposition 2.16]

lim
‖x‖→+∞

ϕ(x)

‖x‖
= +∞. (6)
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Such an hypothesis is weaker than requiring strong convexity, i.e. that ϕ − m
2 ‖ · ‖2 is convex

for a certain m > 0. Indeed every strongly convex function is super-coercive [3, Corollary
11.17] but the converse is not true. As an example, consider the Boltzmann–Shannon entropy
ϕ(x) =

∑n
i=1 ϕi(xi) =

∑n
i=1(xi + γ) log(xi + γ), where γ > 0 and 0 log 0 = 0 [1]. Note that

ϕ∗(v) =
∑n

i=1(e
vi−1 − γvi) is defined on all Rn and, therefore, ϕ is super-coercive. However,

the second derivative of ϕi is bounded away from zero only on bounded subsets of the half-line
(−γ,+∞), hence ϕ is not strongly convex.

We also recall the following properties of Bregman distances.

Theorem 1 [2] Suppose that ϕ : Rn → R ∪ {∞} satisfies Assumption 1. Then

(i) ∇ϕ : int(domϕ) → int(domϕ∗) is a bijection and (∇ϕ)−1 = ∇ϕ∗.

(ii) For all x, y ∈ int(domϕ), we have

Dϕ(x, y) = Dϕ∗(∇ϕ(y),∇ϕ(x)). (7)

(iii) (Three Points Identity) For all x ∈ dom(ϕ), y, z ∈ int(domϕ), we have

Dϕ(x, z) = Dϕ(x, y) +Dϕ(y, z) + (∇ϕ(y)−∇ϕ(z))T (x− y). (8)

Given x(k) ∈ dom f1 and αk > 0, we define the following function

hαk
(y, x(k)) := ∇f0(x

(k))T (y − x(k)) +
1

αk

Dϕ(y, x
(k)) + f1(y)− f1(x

(k)) (9)

and, assuming that (9) has an unique minimizer, we set y(k) = argminy∈Rn hαk
(y, x(k)). As

described in [1, Section 3.1], the point y(k) can be naturally decomposed as a Bregman proximal–
gradient point. Indeed, let us write down the optimality condition

0 ∈ ∂hαk
(y(k), x(k)) ⇔ 0 ∈ αk∇f0(x

(k)) +∇ϕ(y(k))−∇ϕ(x(k)) + αk∂f1(y
(k)). (10)

Since Assumption 1(iv) implies that ∇ϕ(x(k))− αk∇f0(x
(k)) ∈ dom∇ϕ∗, we can always define

the point z(k) = ∇ϕ∗(∇ϕ(x(k))−αk∇f0(x
(k))). Then, by recalling Theorem 1(i), the optimality

condition (10) can be equivalently rewritten as

0 ∈ ∇ϕ(y(k))−∇ϕ(z(k)) + αk∂f1(y
(k))

which yields y(k) = proxϕαkf1
(z(k)).

We are now ready to fully detail the proposed approach, which is reported in Algorithm 1. At
each iteration, we look for an approximation ỹ(k) of the Bregman proximal–gradient point y(k)

which satisfies the following conditions

hαk
(ỹ(k), x(k)) < 0, 0 ∈ ∂ǫkhαk

(ỹ(k), x(k)). (11)

On one hand, the first condition guarantees that the point ỹ(k) defines a descent direction
d(k) = ỹ(k) − x(k) [7, Proposition 2.2.] and, on the other hand, it ensures that the linesearch at
STEP 3 is well-defined [7, Proposition 3.1]. The second condition can be seen as a relaxation
of the optimality condition (10) associated to the point y(k), where the exact subdifferential of
hαk

is replaced with its ǫk−subdifferential. The linesearch at STEP 3 enforces condition (12),

thus making {f(x(k))}k∈N a monotone nondecreasing sequence.
Algorithm 1 belongs to the class of line–search based descent methods described in [7],
denominated Variable Metric Inexact Linesearch based Algorithms (VMILA). In [7, Theorem
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Algorithm 1 Bregman Inexact Linesearch based Algorithm

Choose x(0) ∈ dom f1, 0 ≤ αmin ≤ αmax, ϕ : Rn → R∪{∞} satisfying Assumption 1, δ, β ∈ (0, 1).
For k = 0, 1, 2, ...

Step 1. Choose αk ∈ [αmin, αmax] and ǫk > 0.
Step 2. Compute ỹ(k) satisfying (11) and set d(k) = ỹ(k) − x(k).
Step 3. Compute the smallest non-negative integer ik such that

f(x(k) + δikd(k)) ≤ f(x(k)) + βδikhαk
(ỹ(k), x(k)) (12)

and set λk = δik .
Step 4. Set x(k+1) = x(k) + λkd

(k).

End

3.1], the stationarity of the limit points of VMILA is proved according to the following outline:
(i) show that the subsequence {ỹ(k)}k∈K is bounded (using the strong convexity of ϕ); (ii) deduce
that limk→∞,k∈K hαk

(ỹ(k), x(k)) = 0 (using [7, Proposition 3.1]) ; (iii) conclude that the limit
point is stationary (using again the strong convexity of ϕ). In the following theorem, we prove
an analogous result for Algorithm 1, by adopting the same line of proof described above, but
assuming that ϕ is super-coercive instead of strongly convex.

Theorem 2 Assume that there exists a limit point x̄ of {x(k)}k∈N and that limk→∞ ǫk = 0.
Then x̄ is a stationary point for problem (1), i.e. 0 ∈ ∂f(x̄).

Proof: Let K ⊆ N be a subset of indices such that limk→∞,k∈K x(k) = x̄ and limk→∞,k∈K αk =
ᾱ ∈ [αmin, αmax]. By continuity of the function hα(y, x) with respect to the arguments α
and x, we also have limk→∞,k∈K y(k) = ȳ, with ȳ = argminy hᾱ(y, x̄). From (10), it follows

w ∈ ∂f1(y
(k)) if and only if w = −∇f0(x

(k)) − 1
αk

(∇ϕ(y(k)) − ∇ϕ(x(k))). Observe that the

right-hand side condition in (11) can be rewritten as hαk
(ỹ(k))− hαk

(y(k)) ≤ ǫk. Then we have

ǫk ≥ hαk
(ỹ(k))− hαk

(y(k)) (13)

= ∇f0(x
(k))T (ỹ(k) − y(k)) +

1

αk

(

Dϕ(ỹ
(k), x(k))−Dϕ(y

(k), x(k))
)

+ f1(ỹ
(k))− f1(y

(k))

≥ ∇f0(x
(k))T (ỹ(k) − y(k)) +

1

αk

(

Dϕ(ỹ
(k), x(k))−Dϕ(y

(k), x(k))
)

+ wT (ỹ(k) − y(k))

=
1

αk

(

Dϕ(ỹ
(k), x(k))−Dϕ(y

(k), x(k))− (∇ϕ(y(k))−∇ϕ(x(k)))T (ỹ(k) − y(k))
)

(8)
=

1

αk

Dϕ(ỹ
(k), y(k)) ≥

1

αmax
Dϕ(ỹ

(k), y(k)).

Thanks to the hypothesis on {ǫk}k∈N, the above inequalities yield limk→∞Dϕ(ỹ
(k), y(k)) = 0.

By applying (8) with x = ỹ(k), y = ȳ, z = y(k), and the Cauchy-Schwarz inequality, we have

Dϕ(ỹ
(k), y(k)) = Dϕ(ỹ

(k), ȳ) +Dϕ(ȳ, y
(k)) + (∇ϕ(ȳ)−∇ϕ(y(k)))T (ỹ(k) − ȳ)

≥ Dϕ(ỹ
(k), ȳ)− ‖∇ϕ(ȳ)−∇ϕ(y(k))‖‖ỹ(k) − ȳ‖

Since {y(k)}k∈K is bounded, ∇ϕ is continuous and limk→∞,k∈K Dϕ(ỹ
(k), ȳ) = 0, there exist two

constants c1, c2 > 0 such that

Dϕ(ỹ
(k), ȳ)− c1

‖ỹ(k)‖
≤ c2, ∀ k ∈ K
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or, in other words, {ỹ(k)}k∈K ⊆ lev≤c2

(

Dϕ(·,ȳ)−c1
‖·‖

)

. By Assumption 1(iv) combined with Re-

mark 1, this means that the sequence {ỹ(k)}k∈K lies in a sublevel set of a coercive function.
Therefore, {ỹ(k)}k∈K is bounded and, consequently, we can apply [7, Proposition 3.1] to obtain
that limk→∞,k∈K hαk

(ỹ(k), x(k)) = 0. This last fact, combined with (13) and the assumption on

{ǫk}k∈N, implies limk→∞,k∈K hαk
(y(k), x(k)) = hᾱ(ȳ, x̄) = 0, which allows to conclude that x̄ is

stationary [7, Proposition 2.3]. �

3. Practical computation of the approximate point ỹ(k)

In this section, we show how we can practically compute a point ỹ(k) satisfying (11) in the
case when f1 = g ◦ A, being A ∈ R

m×n and g : Rm → R ∪ {∞} a proper, convex function.
The following procedure is a generalization of the one presented in [7, Section 4.2] for (scaled)
Euclidean distances. Let us rewrite (10) in its equivalent primal-dual and dual formulations:

min
y∈Rn

hαk
(y, x(k)) = min

y∈Rn
max
v∈Rm

Fαk
(y, v, x(k)) = max

v∈Rm
Ψαk

(v, x(k)).

By applying Theorem 1(i) to point z(k), we have ∇f0(x
(k)) =

(

∇ϕ(x(k))−∇ϕ(z(k))
)

/αk. Using

this relation and (8), we can rewrite the function hαk
(·, x(k)) as follows

hαk
(y, x(k)) =

1

αk

(

Dϕ(y, z
(k))−Dϕ(x

(k), z(k))
)

+ f1(y)− f1(x
(k)).

Recalling that f1(y) = maxv∈Rm vTAy − g∗(v), we come to the expression of Fαk
(y, v, x(k)):

Fαk
(y, v, x(k)) =

1

αk

Dϕ(y, z
(k)) + vTAy − g∗(v)−

1

αk

Dϕ(x
(k), z(k))− f1(x

(k)). (14)

The minimum of Fαk
(·, v, x(k)) is reached at the point y

(k)
min = ∇ϕ∗(∇ϕ(z(k))−αAT v). Replacing

y
(k)
min into Fαk

(y, v, x(k)), we get the dual function Ψαk
(·, x(k)):

Ψαk
(v, x(k)) =

1

αk

Dϕ(y
(k)
min, z

(k)) + vTAy
(k)
min − g∗(v)−

1

αk

Dϕ(x
(k), z(k))− f1(x

(k))

(8)
=

1

αk

Dϕ(∇ϕ∗(∇ϕ(z(k))− αkA
T v), 0) +

1

αk

(∇ϕ(0) − (∇ϕ(z(k))− αkA
T v))T (∇ϕ∗(∇ϕ(z(k))− αkA

T v))

− g∗(v)−
1

αk

Dϕ(x
(k), z(k)) +

1

αk

Dϕ(0, z
(k))− f1(x

(k))

(7)
=

1

αk

Dϕ∗(∇ϕ(0),∇ϕ(z(k))− αkA
T v)

+
1

αk

(∇ϕ(0) − (∇ϕ(z(k))− αkA
T v))T (∇ϕ∗(∇ϕ(z(k))− αkA

T v)−∇ϕ∗(∇ϕ(0)))

− g∗(v)−
1

αk

Dϕ(x
(k), z(k)) +

1

αk

Dϕ(0, z
(k))− f1(x

(k))

(8)
= −

1

αk

Dϕ∗(∇ϕ(z(k))− αkA
T v,∇ϕ(0)) − g∗(v)−

1

αk

Dϕ(x
(k), z(k)) +

1

αk

Dϕ(0, z
(k))− f1(x

(k))

where, in the second equality, we used (8) with x = y
(k)
min, y = 0, z = z(k) whereas,

in the fourth equality, we used (8) with x = z = ∇ϕ(0), y = ∇ϕ(z(k)) − αkA
T v. If

it is possible to generate a sequence {v(k,ℓ)}ℓ∈N such that v(k,ℓ) −→
ℓ→∞

argmaxv Ψαk
(v, x(k)),
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Ψαk
(v(k,ℓ), x(k)) −→

ℓ→∞
maxv Ψαk

(v, x(k)), then a point ỹ(k) satisfying (11) can be found by setting

ỹ(k,ℓ) = Pdom f1

(

∇ϕ∗(∇ϕ(z(k))− αkA
T v(k,ℓ))

)

and stopping the iterates when condition

hαk
(ỹ(k,ℓ), x(k)) ≤ ηΨαk

(v(k,ℓ), x(k)) (15)

is satisfied, with η ∈ (0, 1] being a prefixed parameter. Indeed, ỹ(k) = ỹ(k,ℓ) satisfies (11) with
ǫk = (1− 1/η)hαk

(ỹ(k), x(k)) [7, Section 4.5].

4. Application to Poisson image restoration

In the Bayesian framework, the recovering of an unknown image x ∈ R
n from a blurred

noisy image g ∈ R
n can be reformulated as a problem of the form (1), where f0 is a

discrepancy function, typically depending on the type of noise affecting the data, whereas f1 is a
regularization term including a-priori information and possible physical constraints. When the
data are corrupted by Poisson noise, f0 is the generalized Kullback-Leibler (KL) divergence [4]:

f0(x) = KL(Hx+ b; g) =
n
∑

i=1

gi log
gi

(Hx)i + b
+ (Hx)i + b− gi (16)

where the matrix H ∈ R
n×n represents the blurring operator satisfying the conditions Hi,j ≥ 0,

H1 and HT1 (with 1 being the vector of all ones) and b > 0 is a background term. In order to
preserve the edges of the image and the non negativity of its pixels, the term f1 is chosen as

f1(x) = ρTV (x) + ιRn
≥0
(x), (17)

where TV (x) = ρ
∑n

i=1 ‖∇ix‖2 is the total variation functional [14], being∇i ∈ R
2×n the discrete

gradient operator at the i–th pixel, ιRn
≥0

is the indicator function of the non negative orthant

and ρ > 0 is the regularization parameter.
We now discuss the application of Algorithm 1 to the above problem. Concerning the Legendre
function ϕ, it seems quite natural, looking at the discrepancy term (16), to use the Boltzmann–
Shannon entropy described in Remark 1. Indeed, the Bregman distance associated to such

function is Dϕ(x, y) =
∑n

i=1(xi + γ) log
(

xi+γ
yi+γ

)

+ (yi + γ) − (xi + γ) = KL(y + γ1;x + γ1),

i.e. the Kullback–Leibler divergence itself. The approximate point ỹ(k) is then computed
as described in Section 3, using the scaled gradient projection method [6] to generate the
dual sequence {v(k,ℓ)}ℓ∈N. Regarding the steplength αk, we observe that the point z(k) can

be rewritten as z
(k)
i = x

(k)
i − Dk(αk)∇if0(x

(k)) = x
(k)
i − qi(αk)(xi + γ)∇if0(x

(k)), with

qi(α) = (1− e−α∇if0(x
(k)))/∇if0(x

(k)) when ∇if0(x
(k)) 6= 0 and qi(α) = α when ∇if0(x

(k)) = 0.
Thus, it is reasonable to consider the following quasi-Newton approaches

α
(k)
1 = min

α∈[αmin,αmax]
‖Dk(α)

−1s(k) − w(k)‖2, α
(k)
2 = min

α∈[αmin,αmax]
‖s(k) −Dk(α)w

(k)‖2

where s(k) = x(k)−x(k−1) and w(k) = ∇f0(x
(k))−∇f0(x

(k−1)). In our experiments, we alternate
the two above rules using the same strategy adopted in [6].
We show the results obtained by running Algorithm 1 on a set of three test problems well-known
in the literature, whose description can be found in [7]. In Figure 1 we report the relative decrease
of the objective function with respect to the iteration number of Algorithm 1, denominated
VMILA-Bregman, in comparison with two other instances of the VMILA algorithm, one in
which the proximal operator (5) is computed w.r.t to the Euclidean norm (VMILA-ID), and the
other one in which a variable scaled Euclidean norm is used (VMILA-SG). As it can be drawn
from the plots, both VMILA-Bregman and VMILA-SG outperform VMILA-ID of several orders
of magnitude, which suggests that adopting non Euclidean metrics may be advantageous both
in terms of efficiency and accuracy.
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Figure 1. Relative decrease of the objective function values with respect to the iteration
number. Left column: cameraman. Middle column. micro. Right column: phantom.

5. Acknowledgements

The authors are members of the INdAM Research group GNCS. This work has been partially
supported by the Italian GNCS-INdAM under the project GNCS - Finanziamento Giovani
Ricercatori 2017-2018.

References
[1] H. H. Bauschke, J. Bolte, and M. Teboulle 2017, A descent lemma beyond Lipschitz gradient continuity:

first-order methods revisited and applications, Math. Oper. Res. 4(1), 330–348.
[2] H. H. Bauschke, and J. M. Borwein 1997, Legendre functions and the method of Bregman projection, J.

Convex Anal. 4, 27–67.
[3] H. H. Bauschke, and P. L. Combettes 2011, Convex analysis and monotone operator theory in Hilbert spaces,

(Springer).
[4] M. Bertero, and P. Boccacci 1998, Introduction to Inverse Problems in Imaging, (Bristol: Institute of Physics

Publishing).
[5] M. Bertero, P. Boccacci, G. Desider, and G. Vicidomini 2009, Image deblurring with Poisson data: From

cells to galaxies, Inverse Probl. 25(12), 123006.
[6] S. Bonettini, R. Zanella, and L. Zanni 2009, A scaled gradient projection method for constrained image

deblurring, Inverse Probl. 25, 015002.
[7] S. Bonettini, I. Loris, F. Porta, and M. Prato 2016, Variable metric inexact line-search-based methods for

nonsmooth optimization, SIAM J. Optim. 26(2), 891–921.
[8] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Rebegoldi 2017, On the convergence of a linesearch based

proximal–gradient method for nonconvex optimization, Inverse Probl. 33(5), 055005.
[9] S. Bonettini, M. Prato, and S. Rebegoldi 2016, A cyclic block coordinate descent method with generalized

gradient projections, Appl. Math. Comput. 286, 288–300.
[10] A. Chambolle, and T. Pock 2016, An introduction to continuous optimization for imaging, Acta Numerica

25, 161–319.
[11] E. Chouzenoux, J.-C. Pesquet, and A. Repetti 2014, Variable metric forward–backward algorithm for

minimizing the sum of a differentiable function and a convex function, J. Optim. Theory Appl. 162(1),
107–132.

[12] P. L. Combettes, and V. R. Wajs 2005, Signal recovery by proximal forward–backward splitting, Multiscale

Model. Simul. 4, 1168–1200.
[13] P. L. Combettes, and J.-C. Pesquet 2011, Proximal splitting methods in signal processing, in Fixed-point

algorithms for inverse problems in science and engineering, H. H. Bauschke et al., New York, Springer,
185–212.

[14] L. Rudin, S. Osher, and E. Fatemi 1992, Nonlinear total variation based noise removal algorithms, J. Phys.
D. 60(1-4), 259–268.


