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ABSTRACT

This paper explores a periodic review inventory model under
stochastic demand. The setup (or ordering) cost and the lead
time are controllable. The model considers an imperfect production
process, whose quality can be improved by means of an investment.
A backorder price discount to motivate customers to wait for
backorders is included. The demand in the protection interval is first
assumed Gaussian; then, the distribution-free approach is adopted.
The objective is to determine the review period, the setup cost, the
quality level, the backorder price discount, and the length of lead
time that minimize the long-run expected total cost per time unit. A
solution method for each case is presented. Numerical experiments
show that substantial savings can be achieved if the quality level, the
setup cost and the lead time are controlled, and if a backorder price
discount is applied. A sensitivity analysis is finally carried out.
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1. Introduction

Inventories can bemanaged according to two alternative approaches: continuous review or
periodic review. In deterministic systems, there is no substantial difference between these
models; however, their nature becomes somewhat different in stochastic environments. It
is known that, in the past, the number of systems using periodic review was much greater
than the number using continuous review (Hadley &Whitin, 1963). In more recent times,
it has been observed that periodic review inventorymodels can often be found inmanaging
inventory cases such as smaller retail stores, drug stores and grocery stores (Taylor, 2015).
In addition, periodic review inventory models have gathered over the years great attention
from researchers (Braglia, Castellano, & Song, 2017; Sarkar & Mahapatra, 2015; Wensing,
2011).

Traditional inventory literature considers lead time as a prescribed deterministic quan-
tity or a random variable. Hence, under this viewpoint lead time is not controllable (see,
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e.g. Hadley & Whitin, 1963; Zipkin, 2000). However, this may not be realistic. In fact,
Tersine (1982) observed that lead time usually consists of several components, such as
order preparation, order transit, supplier lead time, delivery time, and setup time. In some
practical cases, these components can be shortened at an added crashing cost (Liao &
Shyu, 1991). In other words, lead time is controllable. According to the just-in-time (JIT)
philosophy, several benefits can be achieved by controlling lead time, e.g. lower investment
in inventory, better product quality, higher flexibility, and increased productivity (Glock,
2012; Hariga, 2000; Lin, 2009). The concept of controllable lead time has been widely
endorsed in the inventory management literature. The reader is referred to, e.g. Huang
(2001), Lin (2009), Glock (2012), Braglia et al. (2017).

Further actions can be tackled to reach JIT goals. One of these initiatives is concerned
with setup/ordering cost reduction. This can be achieved in practice by means of various
ways, such as procedural changes, specialized equipments acquisition andworkers training
(Chuang, Ouyang, & Chuang, 2004; Leschke, 1996). Benefits that can be obtained by
decreasing the setup/ordering cost include the possibility to improve quality and flexibility,
lower investment in inventory, and increase effective capacity (Chuang et al., 2004; Leschke
& Weiss, 1997). The importance of investing to reduce setup/ordering cost is also shown
by the number of works that include this aspect (see, e.g. Lin, 2009; Priyan&Uthayakumar,
2014; Sarkar & Moon, 2014; Sarkar, Chaudhuri, & Moon, 2015).

In classical inventory models, it is implicitly assumed that the quality level is fixed at an
optimal level. That is, all items are assumed to have perfect quality. However, this is not
always true in the real production environment. In fact, it can often be observed that there
are defective items being produced due to imperfect production processes, which may be
related to equipment breakdowns, labour problems, and long-run of machinery systems
(Sarkar, Chaudhuri, et al., 2015). The defective itemsmust be rejected, repaired, reworked,
or, if they have reached the customer, refunded. In all cases, substantial costs are incurred.
Therefore, for the system with an imperfect production process, the decision-maker may
consider investing capital on quality improvement, so as to reduce the quality-related costs
(Ouyang, Wu, & Ho, 2007). After Porteus (1986) and Rosenblatt and Lee (1986), who are
amongst the first to model explicitly the relationship between quality level and lot size,
further researchers have considered this aspect. In this regard, it is possible to cite, for
example, Ouyang et al. (2007), Sarkar and Moon (2014), Shu and Zhou (2014), Sarkar,
Mandal, and Sarkar (2015).

In the realmarket,many aspectsmay affect customers’ willingness towait for backorders
during the stockout period. Clearly, for some well-famed products or fashionable goods
such as brand-name bags, shoes, hi-fi equipment, and clothes, customers may prefer to
wait for delivery. Besides, the problem of motivating customers to wait for backorders is
worth considering. In other words, we should endeavour to generate high customer loyalty
so that the customers is willing to accept backorders. This can be accomplished by offering
a price discount to customers (Chuang, Ouyang, & Lin, 2004; Ouyang, Chuang, & Lin,
2007b; Pan & Hsiao, 2001). As Lin (2009) observed, through controlling a price discount,
we could generate high customer loyalty. Thismeans that we could reduce cost of lost-sales
and reduce holding cost, and thenminimize the total relevant cost. The larger the discount,
the bigger the advantage to the customers, and hence, a larger number of backorder ratio
may result. This argument reveals that, as unsatisfied demands occur during the stockout
period, the question of finding an optimal backorder ratio through controlling a price
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discount from a retailer to minimize the relevant total cost is a decision-making problem
worth discussing. A backorder price discount has been applied in numerous inventory
management models (see, e.g. Lee, Wu, & Lei, 2007; Priyan & Uthayakumar, 2014; Sarkar,
Mandal, et al., 2015).

In some practical situations, information about the demand distribution may be rather
limited. That is, the decision-maker may only know an estimate of the mean and of the
variance, but not the specific distribution type. There is a tendency to use the normal
distribution under these circumstances (Moon & Gallego, 1994; Sarkar, Mandal, et al.,
2015). This approach is called ‘Gaussian approximation’. According to Silver et al. (1998),
there are several supporting arguments to adopt the Gaussian approximation, which is
appropriate in specific conditions. First, this approach is practical for fast-moving items
whose demand is characterized by a relatively small (<.5) coefficient of variation. In the
case of expensive, slow-moving items this approach is not suitable. Secondly, the Gaussian
distribution is generally recommended to model forecast demand: (i) empirically, the
normal distribution usually provides a better fit to the data than other distributions; and
(ii) the forecast errors in many periods are added together, so we can rely on the central
limit theorem to expect a normal distribution (especially over a long time horizon). Lastly,
the normal distribution provides analytically tractable results.

However, in some cases the Gaussian approximation may be little practical. In fact,
the normal distribution does not offer the best shield against the occurrences of other
distributions with the same mean and same variance. This poses a challenge to decision-
makers who have to take a decision about what demand distribution should be used. In
order to solve this problem, it is reasonable to follow a conservative procedure (Moon
& Gallego, 1994). That is, the replenishment policy can be optimized considering the
worst non-negative distribution with the givenmean and variance. This is called ‘minimax
distribution-free approach’. Some applications of this technique can be found in literature,
e.g. Chuang et al. (2004), Sarkar, Mandal, et al. (2015), Braglia et al. (2017).

It can be observed that little effort has been done to consider the above aspects jointly.
That is, periodic review inventory models that consider investments to reduce setup (or
ordering) cost and improve quality, controllable lead time, and backorder price discount
seem to be scarce in literature. For this reason, the aim of this paper is to investigate their
joint effect in the case of a periodic review policy. See Table 1 for a comparison between
this work and others.

The objective is to determine the review period, the setup cost, the quality level, the
backorder price discount, and the length of lead time that minimize the long-run expected
total cost per time unit. The problem is solved in two different cases: (i) the distribution
of the demand in the protection interval is supposed to be Gaussian; and (ii) the minimax
distribution-free approach is adopted. Numerical experiments have been carried out to
investigate the effect of the main features characterizing the model, and to study the
system behaviour when parameter values are made to vary.

The rest of the paper is organized as follows. Section 2 gives notation and assumptions
adopted to develop themodel; Section 3dealswith themodel development and the problem
formulation; Section 4 presents the optimization methods; Section 5 concerns numerical
experiments; finally, Section 6 concludes the paper and indicates future research.
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Table 1. Comparison between this work and others that consider a periodic review policy.

Distribution-free Setup cost Quality Backorder price Controllable lead
Author(s) approach reduction improvement discount time

Braglia, Castellano, and Frosolini (2016) � �
Braglia et al. (2017) � � �
Chuang et al. (2004) � � �
Lin (2008) �
Ouyang and Chuang (2000) � �
Ouyang and Chuang (2001) � �
Lin (2010) � �
Ouyang, Chuang, and Lin (2007a) �
Sarkar and Mahapatra (2015) � �
Ouyang, Chuang, and Lin (2005) � �
Annadurai and Uthayakumar (2010) � �
Kim and Sarkar (2017) � � �
This paper � � � � �

2. Preliminaries

In this section, we define the preliminary aspects necessary to developing the proposed
model and formulating the related optimization problem. In particular, this section intro-
duces notation and assumptions.

2.1. Notation

The main notation adopted in this paper is listed below.
Decision variables

T Review period [time unit]
L Length of lead time [time unit]
A Setup cost [money/setup]
θ Probability that the production process can go out of control
πx Backorder price discount [money/quantity unit]

Parameters

D Average demand rate [quantity unit/time unit]
σ Standard deviation of demand rate [quantity unit/time unit]
R Target level [quantity unit]
A0 Initial value of the ordering cost [money/setup]
θ0 Initial value of the probability that the production process can go out of control
β0 Upper bound of the backorder ratio, i.e. of the fraction of shortage that will be

backordered
h Unit inventory holding cost rate [money/quantity unit/time unit]
π0 Marginal profit per unit [money/quantity unit]

Random variables

X Demand in the protection interval, i.e. within T + L
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Functions and operators

f ( · ) Probability density function (p.d.f.) of X
φ( · ) Standard normal probability density function
Φ( · ) Standard normal cumulative distribution function
ψ( · ) Standard normal loss function
E[ · ] Mathematical expectation
x+ Maximum between 0 and x, i.e. x+ ≡ max {0, x}

Classes

F Class of probability density functionswith finitemeanD
(
T + L

)
andfinite standard

deviation σ
√
T + L

2.2. Hypotheses

The main assumptions considered to develop the model are given below:

(1) A single, fast-moving item is considered.
(2) The inventory level is reviewed every T time units. A sufficient quantity is ordered

up to the target level R and the order arrives after L time units. There is no more
than a single order outstanding in a given inventory cycle.

(3) The demand in the protection interval, X, is a random variable with finite mean
D

(
T + L

)
and finite standard deviation σ

√
T + L.

(4) The target level is given by R = D
(
T + L

)+ zσ
√
T + L, where the first addendum

is the average demand within the protection interval, while the second one is the
safety stock. The safety factor z satisfies Pr

(
X > R

) = q, where q represents the
fixed allowable stockout probability during the protection interval.

(5) Shortages are allowed and partially backordered with ratio β . The backorder ratio
β is variable and is proportional to the backorder price discount πx . In particular,
it is assumed that β = πx β0π0 , with 0 ≤ β0 < 1 and 0 ≤ πx ≤ π0 (see, e.g. Lin, 2009;
Sarkar, Mandal, et al., 2015).

(6) The time horizon is infinite.

According to, e.g. Liao and Shyu (1991) and Tersine (1982), the lead time of a generic
item can be supposed to be made of several components, such as setup time, process time,
and queue time. This observation makes it possible to assume that lead time be negotiable
and controllable. That is, each component may be reduced with an additional charge. This
approach to controlling lead time was originally proposed by Liao and Shyu (1991) and
then endorsed by several authors, e.g. Huang (2001), Chuang et al. (2004), Lin (2009),
Glock (2012), Sarkar, Mandal, et al. (2015).

In this paper, the same assumption is made. In particular, it is assumed that the lead
time L is made up of M mutually independent, deterministic and constant components.
The generic mth component has a minimum duration bm, a normal duration am, and a
crashing cost per time unit cm, with c1 ≤ c2 ≤ . . . ≤ cM . Components are crashed one at
a time starting with the component of least cm and so on. If Lm is the length of lead time
with components 1, 2, . . . ,m crashed to their minimum durations, we can write
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Lm = L0 −
(
a1 − b1

)− (
a2 − b2

)− ...− (
am − bm

)
,

where L0 ≡ ∑
m sm. For Ln ∈

[
Lm, Lm−1

]
with m = 1, 2, . . . ,M, the lead time crashing

cost U can be expressed as follows:

U
(
L
) = cm

(
Lm−1 − L

)+ c1
(
a1 − b1

)+ c2
(
a2 − b2

)+ · · · + cm−1
(
am−1 − bm−1

)
. (1)

Note that U is a piecewise-linear, decreasing function in the interval †LM , L0‡, where it is
also continuous and convex.

To reflect the industrial practice concerned with controlling setup cost by means of
ad hoc actions (e.g. worker training, procedural changes, and equipments updating), we
assume that A is controllable through a capital investment I , which is a function of A.
This investment is required to reduce the setup cost from the original level A0 to a target
level A, with 0 < A ≤ A0. The function I is the one-time investment cost whose benefits
will extend to the long-term into the future. Hence, if τ is the fractional cost of capital
investment in the time unit (e.g. interest rate), then τ I is the cost of such an investment
per time unit. We assume that I follows a logarithmic investment function:

I
(
A
) = 1

δ1
ln

(
A0

A

)
, 0 < A ≤ A0, (2)

where δ1 is the percentage decrease in A per money unit increase in investment. This
expression for I was introduced by Porteus (1985) and then has been extensively adopted
in literature (see, e.g. Braglia et al., 2016, 2017; Ouyang, Chen, & Chang, 2002; Sarkar,
Chaudhuri, et al., 2015; Sarkar & Majumder, 2013). Note that I is a convex and strictly
decreasing function.

We take into account the relationship between lot size and quality outlined by Porteus
(1986). During the production process, the process can go ‘out of control’ with a given
probability θ each time another unit is produced. The process is assumed to be ‘in control’
when the production of a lot begins. Once ‘out of control’, the process produces defective
items and continues to do so until the entire lot is produced.

To improve quality, it is required to control the production process during ‘out of
control’ state. In this regard, an investment is needed to reduce the ‘out of control’ state.
We denote by K the capital investment to improve process quality, i.e. to reduce the ‘out
of control’ probability from the initial value θ0 to θ , with 0 < θ ≤ θ0. A generally adopted
expression forK is the following logarithmic function (see Porteus, 1986) andmore recent
works, e.g. Ouyang et al. (2002), Sarkar and Moon (2014), Sarkar, Mandal, et al. (2015),
Sarkar, Chaudhuri, et al. (2015):

K
(
θ
) = 1

δ2
ln

(
θ0

θ

)
, 0 < θ ≤ θ0, (3)

where δ2 is the percentage decrease in θ per money unit increase in K . We recall that τ
is the fractional cost of capital investment in the time unit. Hence, τK is the opportunity
cost of quality improvement investment per time unit. Evidently, for θ = θ0, there is not
any investment for quality improvement.
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In real industrial contexts, the ‘out of control’ probability θ takes very small values. This
makes it possible to assume θ ≤ 10−5 (Sarkar, Mandal, et al., 2015).

The notation and assumptions given in this section will serve to develop the model and
the related optimization problem, which are presented in the next section.

3. Model definition and problem formulation

In this section, we first develop the mathematical model according to the assumptions
stated in Section 2. Then, the related optimization problem is formulated.

With similar arguments to, e.g. Annadurai and Uthayakumar (2010), the expected
inventory holding cost per time unit is h

[
R − DL− DT

2 +
(
1− β)

E
[(
X − R

)+]]
, which

becomes h
[
R − DL− DT

2 +
(
1− πx β0π0

)
E

[(
X − R

)+]]
by assumption 5. Since the ex-

pected demand shortage per time unit is
E
[(
X−R)+]
T , the expected stockout cost per time

unit is
E
[(
X−R)+]
T

[
πxβ + π0

(
1− β)]

(Lin, 2009), which can be rewritten as
E
[(
X−R)+]
T(

π2
x
β0
π0
− β0πx + π0

)
. Under the hypothesis of small θ , Porteus (1986) proved that the

expected number of defective items during the production of a lot made of Q units is
approximately θ Q2

2 . If the cost for rework/replace a defective unit is v, the expected cost
for defective items per time unit is vDθ Q

2 , which becomes vD2θ T
2 according to the relation

Q = TD. We finally observe that the ordering cost per time unit is A
T and the lead-time

crashing cost per time unit is U
T . Hence, taking into account the cost of investments to

reduce setup cost (i.e. τ I) and to improve quality level (i.e. τK), the long-run expected
total cost per time unit is

K0
(
T ,A, θ ,πx , L

) = ε1 ln
(
A0

A

)
+ ε2 ln

(
θ0

θ

)
+ 1

T
(
A+ U

(
L
))

+ h
[
R − DL− DT

2
+

(
1− πx β0

π0

)
E

[(
X − R

)+]]

+
E

[(
X − R

)+]
T

(
π2
x
β0

π0
− β0πx + π0

)
+ vD2θ

T
2
, (4)

where we have put ε1 ≡ τ
δ1

and ε2 ≡ τ
δ2
.

The objective is to find the review period, the setup cost, the quality level, the backorder
price discount, and the lead time that minimize the long-run expected total cost per time
unit. This problem can be formalized as follows:

(P) min(
T ,A,θ ,πx ,L

) K0
(
T ,A, θ ,πx , L

)
s.t. T > 0 (5)

0 < A ≤ A0 (6)
0 < θ ≤ θ0 (7)
0 ≤ πx ≤ π0 (8)
L ∈ [LM , L0]. (9)
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The above problemwill be approached in two cases depending on the assumptionmade
about the distribution of the demand in the protection interval: (i) Gaussian distribution;
and (ii) distribution-free approach. The next section presents the solution methods.

4. Optimizationmethods

In this section, two optimization methods are presented depending on the assumption
made about the distribution of the demand in the protection interval, X. Section 4.1
concerns the case in which X is a Gaussian random variable. Section 4.2 deals with the
distribution-free approach.

4.1. Gaussian distribution

We consider the case in which the demand in the protection interval, X, is Gaussian with
mean D

(
T + L

)
and standard deviation σ

√
T + L. In this circumstance, the expected

demand shortage per cycle E
[(
X − R

)+]
is given by Annadurai and Uthayakumar (2010)

E
[(
X − R

)+]
=

∫ +∞
R

(
x − R

)
f
(
x
)
dx = σ√T + Lψ

(
z
)
, (10)

where ψ
(
z
) = φ

(
z
) − z

(
1−Φ (

z
))

and z is the safety factor (see assumption No. 4).
According to Equation (10) and to the expression of the target level R = D

(
T + L

) +
zσ
√
T + L, Equation (4) becomes

KN
(
T ,A, θ ,πx , L

) = ε1 ln
(
A0

A

)
+ ε2 ln

(
θ0

θ

)
+ 1

T
(
A+ U

(
L
))

+ h
[
DT
2
+ zσ
√
T + L+

(
1− πx β0

π0

)
σ
√
T + Lψ

(
z
)]

+ σ
√
T + Lψ

(
z
)

T

(
π2
x
β0

π0
− β0πx + π0

)
+ vD2θ

T
2
. (11)

The objective is to solve problem (P) under constraints (5)–(9) with K0 replaced by KN .
This is a nonlinear program and its solution requires a number of steps that are described
below.

By examining the second-order sufficient condition for optimality, it can be verified
that KN is not a convex function of

(
T ,A, θ ,πx , L

)
. However, for fixed

(
T ,A, θ ,πx

)
, KN is

concave in L ∈ [
Lm, Lm−1

]
, withm = 1, 2, . . . ,M, as

∂2KN

∂L2
= − σ

4
(
T + L

) 3
2

[
hz + h

(
1− πx β0

π0

)
ψ

(
z
)

+ ψ
(
z
)

T

(
π2
x
β0

π0
− β0πx + π0

)]
< 0.

Hence, for fixed
(
T ,A, θ ,πx

)
, the minimum of KN in L ∈ [

Lm, Lm−1
]
will occur at one of

the endpoints of the interval
[
Lm, Lm−1

]
.
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Now, we ignore constraints 0 < θ ≤ θ0, 0 < A ≤ A0 and 0 ≤ πx ≤ π0 and take the
first-order partial derivative of KN with respect to T , A, θ , and πx , respectively:

∂KN

∂T
= −A+ U

(
L
)

T2 + h

[
D
2
+ zσ

2
√
T + L

+
(
1− πx β0

π0

)
σψ

(
z
)

2
√
T + L

]

−σψ (
z
) (
π2
x
β0

π0
− β0πx + π0

)
2L+ T

2T2
√
T + L

+ 1
2
vD2θ , (12)

∂KN

∂A
= 1

T
− ε1

A
, (13)

∂KN

∂θ
= 1

2
vD2T − ε2

θ
, (14)

∂KN

∂πx
= σ√T + Lψ

(
z
) [

1
T

(
2πx

β0

π0
− β0

)
− h

β0

π0

]
. (15)

If we set Equations (12)–(15) equal to zero, we get the first-order condition for optimality:

A+ U
(
L
)

2
√
T + L

+ h

[
D
2
+ zσ

2
√
T + L

+
(
1− πx β0

π0

)
σψ

(
z
)

2
√
T + L

]

−σψ (
z
) (
π2
x
β0

π0
− β0πx + π0

)
2L+ T

2T2
√
T + L

+ 1
2
vD2θ = 0 (16)

A = A
(
T

)
(17)

θ = θ (
T

)
(18)

πx = πx
(
T

)
(19)

where

A
(
T

) = ε1T , (20)

θ
(
T

) = 2ε2
vD2T

, (21)

πx
(
T

) = hT + π0
2

. (22)

Inasmuch KN is continuous on the domain identified by constraints (5)–(8), the min-
imum in

(
T ,A, θ ,πx

)
, for fixed L ∈ [

Lm, Lm−1
]
, lies either on a stationary point, which

is obtained by solving the first-order condition, or on the frontier of the domain. We
observe that it is hard to determine analytically whether KN is convex in

(
T ,A, θ ,πx

)
, for

fixed L ∈ [
Lm, Lm−1

]
, or not. Hence, we have carried out extensive numerical experiments

to investigate the properties of KN , for fixed L ∈ [
Lm, Lm−1

]
. These tests, which have

considered parameter values typically adopted in literature, have shown that KN admits
two stationary points. However, only one is located in the region of practically admissible
values for decision variables. We can thus assert that, to our practical purposes, the system
of Equations (16)–(19) admits a single valid solution in

(
T ,A, θ ,πx

)
. Let

(
T̂ , Â, θ̂ , π̂x

)
be

such admissible solution.
Moreover, the same numerical experiments have shown that this stationary point is

a local minimum. If we further observe that A
(
T

)
, θ

(
T

)
, and πx

(
T

)
are positive for
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Table 2. Overview of all possible cases.

Â ≤ A0 Â > A0

θ̂ ≤ θ0 π̂x ≤ π0 Case 1 Case 2
π̂x > π0 Case 3 Case 4

θ̂ > θ0 π̂x ≤ π0 Case 5 Case 6
π̂x > π0 Case 7 Case 8

each T > 0, it is clear that
(
T̂ , Â, θ̂ , π̂x

)
gives the solution to our problem, for fixed

L ∈ [
Lm, Lm−1

]
, when constraints θ ≤ θ0, A ≤ A0, and πx ≤ π0 are ignored.

To find
(
T̂ , Â, θ̂ , π̂x

)
, Equations (17)–(19) are put into Equation (16), which is thus

solved in T to obtain T̂ . The value T̂ is then substituted into A
(
T

)
, θ

(
T

)
and πx

(
T

)
to

determine Â, θ̂ and π̂x , respectively. Note that to find T̂ a numerical method can be used
only. In fact, Equation (16) cannot be solved in T analytically.

Once
(
T̂ , Â, θ̂ , π̂x

)
is determined, several cases can be identified depending on which

constrains among θ ≤ θ0, A ≤ A0 and πx ≤ π0 are satisfied. Table 2 gives an overview
of all possible occurrences. In Case 1, the solution

(
T̂ , Â, θ̂ , π̂x

)
results admissible for

problem (P) under constraints (5)–(8), for fixed L ∈ [
Lm, Lm−1

]
; thus,

(
T̂ , Â, θ̂ , π̂x

)
is the

searched solution (for fixed L ∈ [
Lm, Lm−1

]
). In any other case, it is necessary to convert

those constraints that are not satisfied to equality, and then repeat the calculation to solve
the first-order condition. For example, in Case 2 we have to put A = A0 and then solve the
system of equations (16), (18) and (19). This procedure must be repeated as long as any of
constraints (5)–(8) is unsatisfied. Note that this optimization method based on verifying
which constraints are satisfied and then converting to equality those that are unsatisfied is
optimal (see, e.g. Sarkar, Mandal, et al., 2015).

The following computational procedure, which is based on studying the cases shown
in Table 2, permits us to find the solution

(
T∗,A∗, θ∗,π∗x , L∗

)
, and the related cost K∗, to

problem (P) under constraints (5)–(9):

Algorithm 1. Procedure to approach problem (P) under Gaussian distribution
1. set K∗ = +∞
2. for (m = 0, 1, . . . ,M) do
3. set L← Lm
4. calculate

(
T̂ , Â, θ̂ , π̂x

)
by solving Equations (16)–(19)

5. if (θ̂ ≤ θ0, π̂x ≤ π0, Â ≤ A0) then
6. if (K

(
T̂ , Â, θ̂ , π̂x , L

)
≤ K∗) then

7. set K∗ ← K
(
T̂ , Â, θ̂ , π̂x , L

)
,
(
T∗,A∗, θ∗,π∗x , L∗

)← (
T̂ , Â, θ̂ , π̂x , L

)
8. end if
9. end if
10. if (Â > A0) then
11. set Â← A0, A← A0
12. if (θ̂ ≤ θ0) then
13. if (π̂x ≤ π0) then
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14. calculate
(
T̂ , θ̂ , π̂x

)
by solving Equations (16), (18) and (19)

15. go to line 5
16. else
17. set π̂x ← π0, πx ← π0

18. calculate
(
T̂ , θ̂

)
by solving Equations (16) and (18)

19. go to line 5
20. end if
21. else
22. set θ̂ ← θ0, θ ← θ0
23. if (π̂x ≤ π0) then
24. calculate

(
T̂ , π̂x

)
by solving Equations (16) and (19)

25. go to line 5
26. else
27. set π̂x ← π0, πx ← π0
28. calculate T̂ by solving Equation (16)
29. go to line 5
30. end if
31. end if
32. else
33. if (θ̂ ≤ θ0) then
34. if (π̂x > π0) then
35. set π̂x ← π0, πx ← π0

36. calculate
(
T̂ , Â, θ̂

)
by solving Equations (16), (17) and (18)

37. go to line 5
38. end if
39. else
40. set θ̂ ← θ0, θ ← θ0
41. if (π̂x ≤ π0) then
42. calculate

(
T̂ , Â, π̂x

)
by solving Equations (16), (17) and (19)

43. go to line 5
44. else
45. set π̂x ← π0, πx ← π0

46. calculate
(
T̂ , Â

)
by solving Equations (16) and (17)

47. go to line 5
48. end if
49. end if
50. end if
51. end for

4.2. Distribution-free approach

In Section 4.1, we have developed a model in which the demand in the protection interval,
X, is stochastic and follows a normal distribution. However, in some practical situations,
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information about the demand distribution may be rather limited. That is, the decision
maker may only know an estimate of the mean and of the variance, but not the specific
distribution type. In this circumstance, the available information is not sufficient to evaluate
the expected demand shortage per cycle E

[(
X − R

)+]
, and hence the decision variables

cannot be optimized.
To overcome this issue, it is reasonable to follow a conservative approach (Moon &

Gallego, 1994), which permits us to optimize the decision variables taking into account the
worst non-negative distribution with the given mean and variance. This is called minimax
distribution-free approach.

The assumption is made that the p.d.f. f of X belongs to the class F of probability
density functions with finite mean D

(
T + L

)
and finite standard deviation σ

√
T + L.

The minimax principle is to choose f as the most unfavourable p.d.f. in F for each(
T ,A, θ ,πx , L

)
and then minimize over

(
T ,A, θ ,πx , L

)
.

Although the minimax principle is a conservative approach, several supporting argu-
ments can be raised. First, it can be easily applied in practice, as statistical tables and
computer programs used to evaluate distribution functions are not required. In addition,
analytically tractable expressions can be obtained (Braglia et al., 2017). Secondly, it is
optimal under some conditions (Gallego & Moon, 1993; Moon & Gallego, 1994). Last
but not least, the minimax principle has found large consensus in the inventory literature
(see, e.g. Kumar & Goswami, 2015; Raza, 2015; Sarkar, Chaudhuri, et al., 2015; Sarkar &
Mahapatra, 2015).

According to the minimax principle, problem (P) becomes

(P̄) min(
T ,A,θ ,πx ,L

)max
f ∈F

K0
(
T ,A, θ ,πx , L

)
.

Problem (P̄) can be simplified with the following proposition (Chuang et al., 2004):
Lemma 1: For any f ∈ F ,

E
[(
X − R

)+]
≤ 1

2

{√
σ 2

(
T + L

)+ [
R − D

(
T + L

)]2 − [
R − D

(
T + L

)]}
. (23)

Moreover, the upper bound is tight.
Proposition 1 and the definition of R permit us to consider the following problem

(Q) min(
T ,A,θ ,πx ,L

) KD
(
T ,A, θ ,πx , L

)

in place of problem (P̄), where KD is the long-run expected total cost per time unit for the
distribution-free case, which is expressed as follows:

KD
(
T ,A, θ ,πx , L

)
= ε1 ln

(
A0

A

)
+ ε2 ln

(
θ0

θ

)
+ 1

T
(
A+ U

(
L
))

+ h
[
DT
2
+ zσ
√
T + L+ 1

2
σ
√
T + L

(
1− πx β0

π0

)(√
1+ z2 − z

)]
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+ 1
2T
σ
√
T + L

(
π2
x
β0

π0
− β0πx + π0

) (√
1+ z2 − z

)
+ vD2θ

T
2
.

Note that, from inequality (23),KD represents an upper bound toK0. For the distribution-
free case, the objective is thus to solve problem (Q) under constraints (5)–(9).

By similar arguments to the Gaussian distribution case, it is possible to observe that KD
is not a convex function of

(
T ,A, θ ,πx , L

)
. However, for fixed

(
T ,A, θ ,πx

)
, KD is concave

in L ∈ [
Lm, Lm−1

]
, with m = 1, 2, . . . ,M. Hence, for fixed

(
T ,A, θ ,πx

)
, the minimum of

KD in L ∈ [
Lm, Lm−1

]
will occur at one of the endpoints of the interval

[
Lm, Lm−1

]
.

Since KD is continuous on the domain defined by constraints (5)–(8), the minimum
in

(
T ,A, θ ,πx

)
, for fixed L ∈ [

Lm, Lm−1
]
, lies either on a stationary point or on the

frontier of the domain. Similarly to the case studied in the previous subsection, when
constraints 0 < θ ≤ θ0, 0 < A ≤ A0 and 0 ≤ πx ≤ π0 are ignored, it is difficult to
verify that KD is a convex function of

(
T ,A, θ ,πx

)
, for fixed L ∈ [

Lm, Lm−1
]
. Extensive

numerical experiments have been carried out to investigate the properties of KD in a
range of admissible values for parameters and decision variables. Similar conclusions to
the Gaussian distribution case have been drawn. In particular, it has been verified that KD
admits a single stationary point in the interval of practically admissible values for decision
variables. In addition, this stationary point has been observed to be a local minimum.

If this local minimum is denoted by
(
T̂ , Â, θ̂ , π̂x

)
, its components T̂ , Â, θ̂ , and π̂x can

be determined by solving the first-order condition for optimality. To this aim, we take the
first-order partial derivative of KD with respect to T , A, θ , and πx , respectively:

∂KD

∂T
= −A+ U

(
L
)

T2 + h

[
D
2
+ zσ

2
√
T + L

+ σ
(
1− πx β0

π0

) √
1+ z2 − z
4
√
T + L

]

−σ
(√

1+ z2 − z
)(
π2
x
β0

π0
− β0πx + π0

)
2L+ T

4T2
√
T + L

+ 1
2
vD2θ , (24)

∂KD

∂A
= 1

T
− ε1

A
, (25)

∂KD

∂θ
= 2ε2

vD2T
, (26)

∂KD

∂πx
= hT + π0

2
. (27)

By settingEquations (24)–(27) equal to zero,we get the first-order condition for optimality:

A+ U
(
L
)

2
√
T + L

+ h

[
D
2
+ zσ

2
√
T + L

+ σ
(
1− πx β0

π0

) √
1+ z2 − z
4
√
T + L

]

−σ
(√

1+ z2 − z
)(
π2
x
β0

π0
− β0πx + π0

)
2L+ T

4T2
√
T + L

+ 1
2
vD2θ = 0, (28)

A = A
(
T

)
, (29)

θ = θ (
T

)
, (30)

πx = πx
(
T

)
, (31)
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whereA
(
T

)
, θ

(
T

)
, and πx

(
T

)
are given by Equations (20)–(22), respectively. Noting that

A
(
T

)
, θ

(
T

)
, and πx

(
T

)
are positive for each T > 0, we can assert that

(
T̂ , Â, θ̂ , π̂x

)
gives

the solution to problem (Q), for fixed L ∈ [
Lm, Lm−1

]
, when constraints θ ≤ θ0, A ≤ A0,

and πx ≤ π0 are ignored.
To solve the systemof equations (28)–(31), the sameprocedure described in the previous

subsection can be adopted. In addition, depending on which constraints among θ ≤ θ0,
A ≤ A0 and πx ≤ π0 are satisfied by the obtained solution, several cases can be identified
(see Table 2). We remind the reader that this optimization method based on verifying
which constraints are satisfied and then converting to equality those that are unsatisfied is
optimal (see, e.g. Sarkar, Mandal, et al., 2015).

With similar arguments to the Gaussian distribution case, the solution
(
T∗,A∗, θ∗,π∗x ,

L∗
)
, and the related cost K∗, to problem (Q) under constraints (5)–(9) can be determined

with the following computational procedure, which is based on studying the cases shown
in Table 2:

Algorithm 2. Procedure to approach problem (Q) under constraints (5)–(9)
1. set K∗ = +∞
2. for (m = 0, 1, . . . ,M) do
3. set L← Lm
4. calculate

(
T̂ , Â, θ̂ , π̂x

)
by solving Equations (28)–(31)

5. if (θ̂ ≤ θ0, π̂x ≤ π0, Â ≤ A0) then
6. if (K

(
T̂ , Â, θ̂ , π̂x , L

)
≤ K∗) then

7. set K∗ ← K
(
T̂ , Â, θ̂ , π̂x , L

)
,
(
T∗,A∗, θ∗,π∗x , L∗

)← (
T̂ , Â, θ̂ , π̂x , L

)
8. end if
9. end if
10. if (Â > A0) then
11. set Â← A0, A← A0
12. if (θ̂ ≤ θ0) then
13. if (π̂x ≤ π0) then
14. calculate

(
T̂ , θ̂ , π̂x

)
by solving Equations (28), (30) and (31)

15. go to line 5
16. else
17. set π̂x ← π0, πx ← π0

18. calculate
(
T̂ , θ̂

)
by solving Equations (28) and (30)

19. go to line 5
20. end if
21. else
22. set θ̂ ← θ0, θ ← θ0
23. if (π̂x ≤ π0) then
24. calculate

(
T̂ , π̂x

)
by solving Equations (28) and (31)

25. go to line 5
26. else
27. set π̂x ← π0, πx ← π0



342 D. CASTELLANO ET AL.

28. calculate T̂ by solving Equation (28)
29. go to line 5
30. end if
31. end if
32 else
33. if (θ̂ ≤ θ0) then
34. if (π̂x > π0) then
35. set π̂x ← π0, πx ← π0

36. calculate
(
T̂ , Â, θ̂

)
by solving Equations (28), (29) and (30)

37. go to line 5
38. end if
39. else
40. set θ̂ ← θ0, θ ← θ0
41. if (π̂x ≤ π0) then
42. calculate

(
T̂ , Â, π̂x

)
by solving Equations (28), (29) and (31)

43. go to line 5
44. else
45. set π̂x ← π0, πx ← π0

46. calculate
(
T̂ , Â

)
by solving Equations (28) and (29)

47. go to line 5
48. end if
49. end if
50. end if
51. end for

5. Numerical experiments

The first part of this section is concerned with investigating the solution procedures and
examining the effect of themain features (i.e. investments to reduce setup cost and improve
quality, and backorder price discount) characterizing the inventory models presented in
the previous sections. The second part deals with the sensitivity analysis to study the system
behaviour when changes in parameter values occur.

5.1. Analysis on the impact of themain features

For these experiments, we consider the following parameter values (Sarkar &Moon, 2014):
D = 600 units/year; σ = 7 units/week; h = $20/unit/year; π0 = $150/unit; θ0 = .0002;
A0 = $200/setup; v = $75/defective unit; τ = .1/$/year. In addition, we assume q = .2
(Ouyang & Chuang, 2000). The lead time has three components whose data are shown in
Table 3 (Sarkar, Mandal, et al., 2015). It is supposed 1 year = 52 weeks. In the experiments
below, β0 takes values in the set {0, 0.3, 0.6, 0.9, 0.95, 1}, which are similar to those typically
adopted in literature (see, e.g. Chuang et al., 2004). The values assigned to δ1 and δ2 are in
the range adopted in similar works, e.g. Sarkar and Moon (2014). However, δ1 also takes
smaller values than the typical ones to make evident the effect of the related investment.
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Table 3. Lead time data.

Lead time component,m Normal duration, am [days] Minimum duration, bm [days] Unit crashing cost, cm [$/day]

1 20 6 .4
2 20 6 1.2
3 16 9 5.0

Table 4. Numerical results for Example 1.

δ1 T∗ [years] A∗ [$/setup] L∗ [days] K∗ [$/year] Savings (%)

1/12,000 .1387 166.4 56 2637 .4
1/10,000 .1158 115.8 56 2565 3.1
1/8000 .0930 74.4 56 2413 8.9
1/4000 .0481 19.2 56 1777 32.9

.1520 (No investment) 56 2648

Table 5. Numerical results for Example 2.

δ1 T∗ [years] A∗ [$/setup] L∗ [days] K∗ [$/year] Savings (%)

1/12,000 .1396 167.5 56 2648 .4
1/10,000 .1169 116.9 56 2578 3.0
1/8000 .0944 75.5 56 2428 8.7
1/4000 .0505 20.2 56 1803 32.2

.1524 (No investment) 56 2658

5.1.1. Example 1
Here, we assume that the demand within the protection interval follows a Gaussian
distribution. In this circumstance, from the table of the standard normal we find z =
.845. We consider the case with investments to reduce setup cost; while investments to
improve quality and backorder price discount are not included in this example (i.e. we
put θ = θ0 and πx = π0). We obtain the solution for β0 = .95, δ2 = 1/400, and δ1 =
1/12,000, 1/10,000, 1/8000, and 1/4000. Applying Algorithm 1, the results of the solution
procedure are summarized in Table 4. Furthermore, the results for the no-investment in
setup cost reduction case are shown too. From Table 4, we can note that the greater the
parameter about the percentage decrease in A per money unit increase in investment (i.e.
δ1), the higher the savings. In particular, savings range from .4% to 32.9%. In addition,
it is possible to note that, as δ1 increases, T∗ and A∗ become smaller, while no change is
observed in L∗.

5.1.2. Example 2
We use the same data and assumptions as in Example 1, except that the distribution of
the demand within the protection interval is supposed to be unknown, and therefore the
minimax distribution-free approach is adopted. To obtain the value of z that satisfies
the condition q = .2, the maximal distribution is considered (Zipkin, 2000). The quantile
corresponding to q = .2 is z = .750. Algorithm 2 is used to obtain the results shown in Table
5. Even in this example, the effect of investing to reduce setup cost is evident: savings range
from .4 to 32.2%. Similarly to the previous example, as δ1 increases, T∗ and A∗ decrease,
while no change is evident in L∗.
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Table 6. Numerical results for Example 3.

δ2 T∗ [years] θ∗ L∗ [days] K∗ [$/year] Savings (%)

1/4000 .1527 1.9× 10−4 56 2648 .4
1/3000 .1597 1.4× 10−4 56 2626 1.2
1/2000 .1671 8.9× 10−5 56 2571 3.3
1/500 .1789 2.1× 10−5 56 2363 11.1

.1524 (No investment) 56 2658

Table 7. Numerical results for Example 4.

δ2 T∗ [years] θ∗ L∗ [days] K∗ [$/year] Savings (%)

1/4000 .1532 1.9× 10−4 56 2655 .1
1/3000 .1602 1.4× 10−4 56 2638 .8
1/2000 .1676 8.8× 10−5 56 2580 2.9
1/500 .1794 2.1× 10−5 56 2372 10.8

.1524 (No investment) 56 2658

5.1.3. Example 3
In this example, the demand within the protection interval is supposed to be Gaussian.We
consider the case with investments to improve quality; while investments to reduce setup
cost and backorder price discount are not included (i.e. we put A = A0 and πx = π0). The
solution forβ0 = .95, δ1 = 1/8000, and δ2 = 1/4000, 1/3000, 1/2000, and 1/500 is determined.
Applying Algorithm 1, the results of the solution procedure are given in Table 6, where
the solution for the no-investment case is also shown. The results in Table 6 highlight that
.4–11.1% of savings can be achieved if investments to improve quality are carried out. We
can also observe that T∗ increases while θ∗ decreases with an increment in δ2. No change
is apparent in L∗.

5.1.4. Example 4
The same assumptions and data of Example 3 are considered here, but the distribution
within the protection interval is unknown. The results, obtained by means of Algorithm
2, are shown in Table 7. When information about the demand distribution are incomplete
and the distribution-free approach is adopted, it is advisable to invest to improve quality.
From Table 7, we note that savings are between .1 and 10.8%. Similarly to the outcomes
in the previous example, T∗ increases while θ∗ decreases with an increment in δ2, and no
change is evident in L∗.

5.1.5. Example 5
This example analyses the case in which backorder price discount is considered, while
investments to reduce setup cost and improve quality are not included (i.e. we put A = A0
and θ = θ0). The demand within the protection interval is Gaussian, and Algorithm 1
is thus executed to find the solution. The results are given in Table 8, and have been
obtained for δ1 = 1/8000, δ2 = 1/2000, and β0 = 0.0, 0.3, 0.6, 0.9, and 1.0. From Table 8, we
observe that applying backorder price discount makes it possible to reach savings, which
are however quite limited probably because of the specific parameter values adopted in the
example. Note that, for larger values of β0, T∗ decreases slowly, while no change is evident
in π∗x and L∗.



PRODUCTION & MANUFACTURING RESEARCH 345

Table 8. Numerical results for Example 5.

β0 T∗ [years] π∗x [$/unit] L∗ [days] K∗ [$/year] Savings (%)

.0 .1520 76.5 56 2648 ≈ .0

.3 .1519 76.5 56 2647 < .1

.6 .1519 76.5 56 2647 < .1

.9 .1519 76.5 56 2646 < .1
1.0 .1519 76.5 56 2646 < .1

.1520 (No discount) 56 2648

Table 9. Numerical results for Example 6.

β0 T∗ [years] π∗x [$/unit] L∗ [days] K∗ [$/year] Savings (%)

.0 .1524 75.0 56 2658 ≈ .0

.3 .1523 76.5 56 2656 < .1

.6 .1523 76.5 56 2655 .1

.9 .1522 76.5 56 2654 .2
1.0 .1522 76.5 56 2653 .2

.1524 (No discount) 56 2658

5.1.6. Example 6
The same assumptions and data of Example 5 are considered here, but the distribution
within the protection interval is unknown. The results, obtained by means of Algorithm 2,
are shown in Table 9. We can observe that, when limited information about the demand
distribution are available and thedistribution-free approach is adopted, applyingbackorder
price discount is recommended. In fact, savings can be reached, although these cannot be
fully appreciated probably because of the specific parameter values adopted in the example.
Also note that the percentage of average annual cost reduction appears to be greater in the
case of distribution-free approach than in the Gaussian case. In this example, a change in
β0 produces a larger effect in T∗ and π∗x than in the previous one. We can observe that T∗
decreases more rapidly and π∗x increases as β0 becomes larger, while changes are still not
present in L∗.

5.1.7. Example 7
This example studies the case in which backorder price discount is considered, in addition
to investments to reduce setup cost and improve quality. The demandwithin the protection
interval is Gaussian. The solution is obtainedwithAlgorithm 1 for δ1 = 1/8000, δ2 = 1/2000,
and β0 = 0.0, 0.3, 0.6, 0.9, and 1.0, and is shown in Table 10. The results make evident the
benefits from carrying out investments to reduce setup cost and improve quality, along
with considering backorder price discount. In particular, although for different β0 savings
change little, it is noteworthy that the joint effect of these improvement actions permits to
achieve larger benefits than if considered individually (see Tables 4, 6, and 8). The results
also show that T∗ and A∗ decrease while π∗x increases with an increment in β0. No change
can be appreciated in θ∗ and L∗.

5.1.8. Example 8
In this example, we use the same assumptions and data as in Example 7. The only difference
is that the distribution of the demand within the protection interval is unknown and hence
the distribution-free approach is used. The solution for the considered problems, obtained
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Table 10. Numerical results for Example 7.

β0 T∗ [years] A∗ [$/setup] θ∗ π∗x [$/unit] L∗ [days] K∗ [$/year] Savings (%)

.0 .1014 82.2 1.5× 10−4 75.0 56 2406 9.1

.3 .1013 81.1 1.5× 10−4 76.0 56 2405 9.2

.6 .1012 81.0 1.5× 10−4 76.0 56 2404 9.2

.9 .1011 81.0 1.5× 10−4 76.0 56 2403 9.3
1.0 .1011 81.0 1.5× 10−4 76.0 56 2403 9.3

.1520 (No investment) (No discount) 56 2648

Table 11. Numerical results for Example 8.

β0 T∗ [years] A∗ [$/setup] θ∗ π∗x [$/unit] L∗ [days] K∗ [$/year] Savings (%)

.0 .1195 95.6 6.2× 10−5 75.0 56 2348 11.7%

.3 .1193 95.4 6.2× 10−5 76.2 56 2346 11.7%

.6 .1191 95.3 6.2× 10−5 76.2 56 2345 11.8%

.9 .1189 95.1 6.2× 10−5 76.2 56 2343 11.9%
1.0 .1188 95.0 6.2× 10−5 76.2 56 2342 11.9%

.1524 (No investment) (No discount) 56 2658

with Algorithm 2, is shown in Table 11. Similar conclusions to the previous example
can be drawn here. That is, when information about the demand distribution are limited,
investing to reduce setup cost and improve quality, in addition to applying backorder price
discount, permits to achieve savings.Moreover, although for different β0 they change little,
these savings are larger than if improvement actions are performed individually (see Tables
5, 7, and 9). Similarly to the previous example, T∗ andA∗ decrease while π∗x increases with
an increment in β0, and no change can be noted in θ∗ and L∗.

5.2. Sensitivity analysis

In this section, we examine the effect of changes in the system parametersD, h, and cv ≡ σ
D

on
(
T∗,A∗, θ∗,π∗x , L∗

)
and K∗ for both cases Gaussian distribution and distribution-free

approach. This analysis is carried out by changing each of the considered parameters by
+50%,+25%,−25%, and−50%, taking one parameter at a time and keeping the value of
the remaining parameters unchanged. Experiments are done for δ1 = 1/8000, δ2 = 1/2000,
and β0 = .95. The results are shown in Table 12 for the Gaussian distribution case, and in
Table 13 for the distribution-free approach case.

From the results in Table 12, the following managerial insights can be obtained for the
Gaussian case:

• T∗, A∗, θ∗ and π∗x decrease, while K∗ increases with an increase in D. Moreover, T∗,
A∗ and θ∗ appear to be highly sensitive to a change in D, while K∗ is moderately
sensitive and π∗x is slightly sensitive.
• T∗ and A∗ decrease, while θ∗ and K∗ increase with an increase in h. Moreover, T∗,
A∗, θ∗ and K∗ appear to be highly sensitive to a change in h, while π∗x is almost
insensitive.
• T∗,A∗ andK∗ increase, while θ∗ decreases with an increase in cv . Note thatT∗,A∗,K∗
and θ∗ seem to be slightly sensitive to a change in cv , while π∗x is almost insensitive.



PRODUCTION & MANUFACTURING RESEARCH 347

Table 12. Results of the sensitivity analysis for the Gaussian distribution case.

% of change in the solution

Parameter % of change T∗ A∗ θ∗ π∗x L∗ K∗

D +50 −33.0 −33.0 −2.8 −.4 0 +17.0
+25 −19.8 −19.8 +16.9 −.3 0 +9.4
−25 +33.0 +33.0 +95.9 +.4 0 −12.0
−50 +116.1 +116.1 +10.0 +1.5 0 −28.5

h +50 −31.6 −31.6 +100.0 ≈ 0 0 +10.3
+25 −19.8 −19.8 +82.7 ≈ 0 0 +5.7
−25 +33.0 +33.0 +10.2 ≈ 0 0 −7.3
−50 +99.0 +99.0 −26.4 ≈ 0 0 −17.5

cv +50 +.5 +.5 +45.8 ≈ 0 0 +.2
+25 +.3 +.3 +46.1 ≈ 0 0 +.1
−25 −.3 −.3 +46.9 ≈ 0 0 −.1
−50 −.5 −.5 +47.3 ≈ 0 0 −.2

Table 13. Results of the sensitivity analysis for the distribution-free approach case.

% of change in the solution

Parameter % of change T∗ A∗ θ∗ π∗x L∗ K∗

D +50 −32.6 −32.5 −4.8 −.4 0 +17.1
+25 −19.5 −19.5 +15.0 −.3 0 +9.4
−25 +32.5 +32.6 +93.8 +.4 0 −12.1
−50 +114.3 +114.3 +100.0 +1.5 0 −28.6

h +50 −31.5 −31.5 +100.0 ≈ 0 0 +10.4
+25 −19.5 −19.5 +79.6 ≈ 0 0 +5.7
−25 +32.6 +32.6 +9.0 ≈ 0 0 −7.3
−50 +97.7 +97.7 −26.9 ≈ 0 0 −17.6

cv +50 +1.2 +1.2 +42.9 ≈ 0 0 +.4
+25 +.6 +.6 +43.7 ≈ 0 0 +.2
−25 −.6 −.6 +45.4 ≈ 0 0 −.2
−50 −1.2 −1.2 +46.3 ≈ 0 0 −.4

• Changes in L∗ are not reported for any variation in the model parameters D, h and
cv .

If we consider the distribution-free approach, Table 13 permits us to observe that the
solution behaves similarly to the Gaussian case, in terms of response direction (i.e. positive
or negative), to changes in the model parameters D, h and cv . However, we can note that
the absolute magnitude of changes is somewhat different:

• The sensitivity of K∗ and θ∗ is larger than in the Gaussian case for changes in any
parameter D, h and cv .
• The sensitivity of T∗ andA∗ is larger than in the Gaussian case for changes in cv while
is smaller for changes in D and h.
• The sensitivity of π∗x is identical to the Gaussian case.
• Similarly to the Gaussian case, changes in L∗ are not reported for any variation in D,
h and cv .
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6. Discussion

The issues of quality improvement, setup cost reduction, backorder price discount, and
controllable lead time discussed in the previous sections are consistent with the approach
called ‘changing the givens’ as suggested by Silver (1992). The numerical experiments
carried out in Section 5 permit us to observe the benefits that can be reached taking into
account the main features that this paper introduces. In particular, the following findings
can be highlighted:

(1) The larger the parameter δ1 about the percentage decrease in A per money unit
increase in investment, the greater the savings. A similar conclusion can be drawn
concerning the parameter δ2 about the percentage decrease in θ per money unit
increase in investment.

(2) The application of a backorder price discount permits to reach savings, which are
even greater if investments to reduce setup cost and improve quality are considered
as well.

(3) Investing to reduce setup cost or to improve quality gives greater savings in the
Gaussian case than when the distribution-free approach is used. The contrary
happens when a backorder price discount is applied.

The observed effects of applying a backorder price discount and carrying out investments to
reduce setup cost and improve quality are congruouswith the results of similar studies (see,
e.g. Ouyang et al., 2002; Sarkar and Moon, 2014; Sarkar, Mandal, et al., 2015). Moreover,
although the observed findings were obtained with a single dataset, it is likely that the
behaviour of the model does not change if other parameter values are used. This can be
deduced noting that our results are consistent with those of other researchers, which used
a different dataset.

7. Conclusions

This paper investigated a single-item periodic review inventory model with investments to
reduce setup/ordering cost and improve quality, backorder price discount, and controllable
lead time. The objective was to determine the review period, the setup/ordering cost, the
quality level, the backorder price discount, and the length of lead time that minimize the
long-run expected total cost per time unit. The problem was solved in two different cases:
(i) the distribution of the demandwithin the protection interval is assumed to be Gaussian;
and (ii) the minimax distribution-free approach is adopted.

Numerical experiments served to demonstrate the importance of investing to reduce
setup/ordering cost and to improve quality, and applying a backorder price discount in
a periodic review inventory model. In fact, we observed that considerable savings can be
achieved if these actions are carried out. Further tests were performed to analyse the system
behaviour when parameter values are made to vary.

Future researches may be directed to introduce fuzziness into the developed model, or
to include investment to reduce lost-sale rate.
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