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. Highlights

- Revisiting the Love hypothesis for introducing dispersion of longitudinal waves in elastic rods

3 Andrea Nobili,Giuseppe Saccomandi

s e Variational derivation through the Love hypothesis leads to the Bishop-Love equation;

5 e This is not asymptotically equivalent to the Love equation;

s o The Love hypothesis naturally emerges from a two-modal kinematics by multiscale analysis;
7 e This approach provides a correction term of the same order as that in the Love equation;

8 e The traditional ill-posedness coming from nonstandard boundary conditions is remedied.
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ARTICLE INFO ABSTRACT

Keywords: We re-examine the Love equation, which forms the first historical attempt at improving on the
Love hypothesis classical wave equation to encompass for dispersion of longitudinal waves in rods. Dispersion is
Dispersion introduced by accounting for lateral inertia through the Love hypothesis. Our aim is to provide
Multiscale a rigorous justification of the Love hypothesis, which may be generalized to other contexts. We
Logitudinal waves in rods show that the procedure by which the Love equation is traditionally derived is misleading: indeed,

proper variational dealing of the Love hypothesis in a two-modal kinematics (the Mindlin-
Herrmann system) leads to the Bishop-Love equation instead. The latter is not asymptotically
equivalent to the Love equation, which is in fact a long wave low frequency approximation of
the Pochhammer-Chree solution. However, the Love hypothesis may still be retrieved from the
Mindlin-Herrmann system, by a slow-time perturbation process. In so doing, the linear KdV
equation is retrieved. Besides, consistent approximation demands that a correction term be added
to the classical Love hypothesis. Surprisingly, in the very special case of isotropic linear elasticity,
this correction term produces no effect in the correction term of the Lagrangian, so that, to first
order, the same Bishop-Love equation is the Euler-Lagrange equation corresponding to a family
of Love-like hypotheses, all being different by the correction term. Remarkably, ill-posedness
coming from non-standard (namely non static) natural boundary conditions is now amended.

1. Introduction

The theory describing propagation of longitudinal waves in elastic rods, based on the seminal works of D’Alambert,
Bernoulli, Euler and Lagrange (Oliveira et al., 2020), retains great significance, both from the practical as well as from
the theoretical standpoint. Modern non-destructive testing procedures are being developed which rely on a deeper
understanding on the mechanics of wave propagation, also in connection with the idea of generalized continua (Nobili
and Volpini, 2021). As it is well know, the celebrated wave equation represents the prototype for nondispersive
phenomena, since it neglects any effect transversal to the direction of wave propagation. In this sense, the wave
equation is perfectly unidirectional and it describes a rod with vanishingly thin cross-section. Rayleigh is credited
as the first who came to recognize the importance of accounting for transversal effects (Rayleigh, 1894). Shortly later,
elaborating on this idea, Love (1927) introduced what is now known as the Rayleigh-Love equation (sometimes simply
the Love’s equation, or, as in Hutchinson and Percival (1968), Love’s modified wave equation), that describes dispersive
longitudinal waves in thin elastic rods. This model, which represents the forefather of several successive attempts in
the literature, accounts for dispersion through the Love hypothesis, which stipulates that inertial effects attached to
the transversal motion of the cross-section are to be considered. It is important to emphasize that, as Love explicitly
points out, only inertial effects are considered, while the elastic response remains unaltered (i.e. totally unidirectional).
Indeed, following Hutchinson and Percival (1968), “Love’s equation includes the radial inertia of the bar, which
adds the effect of dispersion to the description of the wave phenomenon and allows the consideration of shorter
wavelengths than does the simple wave equation”. The resulting Love equation remains attractive for its simplicity
and favorably compares with the exact solution developed by Pochhammer (1876) and, shortly later, independently,
by Chree (1889), for a circular cross-section. Besides, Hutchinson and Percival (1968) offer experimental support for
the capability of the Love equation to accurately describe the propagation of fundamental modes, while higher modes
can be only interpreted through the Pochhammer-Chree solution. Yet, the Love equation cannot accommodate the
boundary conditions on the free lateral surface of the rod and, in this sense, it should be regarded as an approximation,
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Revisiting the Love hypothesis

the limits of which should be well investigated. Nonetheless, the idea behind the Love hypothesis stands at the basis
of several refined models of longitudinal wave propagation, a nice account of which may be found in Shatalov et al.
(2011). Among these, the Mindlin-Hermann model (Mindlin, 1951) stands out because it represents the first attempt
to develop, in a rigorous manner, a refined model starting from a restricted kinematics (here, the Euler-Bernoulli
kinematics), through the so-called Kirchhoff method. More recently, the Love hypothesis has been applied outside the
linear framework, whereto it properly belongs, to incorporate the lateral motion of the cross-section when developing
nonlinear models. As a case in point, Samsonov (1994) considers the Murnaghan model for compressible materials and
the Love hypothesis because it is “the first term of a transverse displacement expansion in a power series with respect
to the small longitudinal strain [..] and remains valid for long waves, while one should consider the Herrmann and
Mindlin model for a possible refinement of the correlation between longitudinal strain and transverse displacement”.
Accordingly, it is suggested that the Love hypothesis is the leading order term in a small strain expansion, whose
refinement is the Mindlin-Herrmann model. Yet, this interpretation does not match the original idea developed by
Love, which, instead, calls upon the Love hypothesis only for inertial effects. Besides, as we shall show in this paper,
the Love hypothesis is the leading term approximation in a multiscale analysis of the Mindlin-Herrmann system, the
latter being asymptotically different from the Love equation in the long wave regime. The same approach by which
the Love hypothesis is carried over to the nonlinear framework is undertaken by Dai and Huo (2002), in analogy
with Ostrovskii and Sutin (1977), Sgrensen et al. (1984) and Clarkson et al. (1986). The Love hypothesis is again
retrieved by Dai and Fan (2004) for incompressible elastic materials under finite cylindrical deformations from an
asymptotic procedure in the small parameter given by the axial displacement A over the typical wavelength /. The same
result is illustrated by Dai and Huo (2000) for compressible materials. As a workaround, Wright (1985) employs the
incompressibility constraint to connect transversal and longitudinal motion without the need for the Love hypothesis,
the incompatibility of the two assumptions being shown by Amendola and Saccomandi (2021). Furthermore, Samsonov
et al. (1998) shows experimental results on soliton formation which support dependence on the cross-section geometry
and therefore discourage the adoption of the Love hypothesis. It then appears that it is important to precisely frame the
range of validity of the Love hypothesis and clear-cut its origin, so that its adoption and generalization may be rigorously
justified. This is precisely the aim of this paper, which revisits the traditional derivation of the Love hypothesis in Sec.2
and then moves, in Sec.3, to illustrate how it also comes from a multiscale analysis of the Mindlin-Herrmann system.
The corresponding variational principle is illustrated in Sec.4 and results are finally drawn in Sec.5.

2. Mathematical background

To obtain in a direct way an unimodal (i.e. encompassing a single dependent field) dispersive equation for
longitudinal waves in rod, within the framework of linear elasticity, two approaches are possible. The first is connected
to the derivation of the wave equation from a discrete lattice: We consider an infinite elastic chain of equidistant
particles, with lattice spacing a, in equilibrium and acted upon by linear springs of identical stiffness. In the continuum
limit, we justify a Taylor expansion with respect to a and, to second order, we obtain the classical dispersive linear wave
equation: the Boussinesq’s equation. This approach can be extend to the nonlinear setting in several ways (Maugin,
1999). The second possibility relies on the use the axiomatic theory of continuum mechanics for deducing a dispersive
wave equation such as, for example, the Love hypothesis, which then leads to the Love equation.

The classical derivation of the Love equation (L) is contained in Section 278, Chapter XX, page 428, of the book
by A.E.H.Love (1927). Essentially, the same derivation may be found in the book by Graff (Graff, 2012, §2.5.3, p.116)
or by Miklowitz (Miklowitz, 1978, §7.1.1.2).

Let us briefly review this derivation, which often goes under the name of the Love-Rayleigh rod theory. To obtain
the linear Love equation, the first step is to assume the Navier—Bernouilli (NB) hypothesis: during deformation, plane
cross-sections remain planar and normal to the rod axis (Achenbach, 1973).

Let us consider a rod that, in a reference configuration, is a circular cylinder of radius A and let us introduce
cylindrical coordinates in the current configuration x = re, + e, + ze, and, equally, cylindrical coordinates in the
reference configuration X = RER + OEg + ZE ;, with 0 < R < A. In this framework, the NB hypothesis consists
of assuming the following axisymmetric time dependent two-modal motion (Wright, 1981, Eq.(12))

r=R+RUZT), 0=0, z=Z+W(Z,T). (1)

Indeed, displacement is described by a two-term powers series expansion in the radial coordinate of the axisymmetric
problem. We assume that the determining equation for the functions U(Z,T) and W (Z,T) may be obtained directly
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as the Euler-Lagrange equations associated with the Lagrangian density £ = 7 — V. Here, the kinetic energy density
per unit length is given by (Graft, 2012, Eq.(2.5.49))

A 2z
T = / / g (W2 + R?UZ) Rd©dR, ©)
0 0

where p is the mass density in the reference configuration. It is understood that a coordinate subscript implies
differentiation with respect to the relevant variable, i.e. Wy = 0W /9T . In the linear framework, the "potential energy"
is obtained considering the isotropic strain-energy density per unit volume

W= putr €+ %ﬂtrz(e),
where y and A are the usual Lamé parameters and
e=3[Vu+(Vw'], €)

is the infinitesimal strain tensor (by V we denote the two-dimensional gradient operator). Here, u = x — X clearly
denotes the displacement vector. Within the NB assumption, we have that

u(R,Z,t)=RUZ,T), up=0, u,(Z,T)=W(Z,T), “)

whence the kinetic energy density is given by

nA%p 2 A2
T = 2 (2w7 + A°U7). )
Similarly, we obtain
1
U 0 SRUZ
[e] = 0 U 0 |,
1
;RUZ 0o w,
whereupon the strain-energy density easily follows
1 2
W= (2024 W2+ JRUZ ) + 54 (20 + W) ©)
Integrating over the cross section
A 2r
V= / WRAOdR, @)
0o Jo
we obtain the potential energy per unit length
1 uA?
V= 7A? [2(/4+/1)U2+2/1UWZ+ <u+5/1> W§+TU§]. (8)
Two Euler-Lagrange equations naturally emerge
Q0L 0 oL _ 9 L 0 9L oL )
oT oWy 0Z oW, oT oUy 0Z0U, oU

namely (see (Shatalov et al., 2011, Eq.(65)) or (Graff, 2012, §8.3.3) where, however, u is our U / A)

(10)
UAU ;; — 8(A+ WU — 4iAW, = pA*Ury.

In the framework of linear elasticity, equations (10) have been first derived by Mindlin and Herrmann (MH) (Mindlin,
1951), whence this system is usually named after them. Once acknowledging for different dimensional reduction,
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Eqgs.(10) correspond to (20) of Wright (1981), to which we refer for a nice discussion in terms of wave propagation. A
critique of the MH-equations is presented in many papers, see for example Whiston (1986), on the ground that, for the
assumed displacement (1), it is not possible to satisfy the load free condition at the mantle.
The Love (L-) hypothesis assumes a linear relationship between the radial displacement and the longitudinal strain
ie
U = —vyWy, (1n

where
A 1 k2 =2

IS0 w21

is the Poisson’s ratio and A and yu are the Lamé parameters of linear elasticity. Here, we let ¢; = /(A +2u)/p
and cg = 1/u/p, respectively the speed of longitudinal and shear body waves, alongside their ratio k = ¢; /cg =

\/ 2(1 = vp)/(1 = 2v;). In the practical range 0 < v < %, this ratio is always greater than \/5 and it becomes unbounded
for incompressible materials. Under (11), the dependence of 7 and V with respect to U, U, and Uy is replaced by
dependence with respect to W, W, and W 1 instead. Hence, it is now L* = L*(W, Wy, W75, Wz7), with
namely

AZy2?

zA%p 2, 42,2702 2 2 A 2 P 0
(2WF + A2GW2y) = 2A% { 2G4+ w2 =20 + 5 4| W2+ —L2W2, 0. (D)

4

L=

2 4

Carrying out the usual variational procedure we obtain the single partial differential equation describing the dynamics
of the rod -
v:K w-
0 TT
Wzz+—5— (Wrrzz = ¢§Wzz222) = — (13)

B ‘B
where E = u(34+2u)/(A+ p) is Young’s modulus, K?> = A?/2 = I, /S is the (square of the) polar radius of gyration
of the cross-section (whose area is S and whose polar moment of inertia is I, = 7A*/2) and we have let the beam

longitudinal wavespeed
_ \/f _ 3k2 -4
BV =V ETT

Equation (13) is sometimes referred to as the Bishop-Love (BL) or the Rayleigh-Bishop equation (Shatalov et al.,
2011). Love’s equation, as it appears in (Love, 1927, §278) or in (Graff, 2012, Eq.(2.5.61)) or in (Hutchinson and
Percival, 1968, Eq.(16)), is given by

212
voK W
0
Wzz+—Wgzzrr = gT- (14)
‘s ‘B

Clearly, with respect to (13), this equation misses the fourth space derivative W,,,, and the reason for this
discrepancy is that, in the literature, the potential energy considered for developing Love’s equation (14) accounts
for the elongation term only, as in (Graff, 2012, Eq.(2.5.49)), namely

E

W=2

w2, (15)
in contrast to the exact full strain-energy density of linear isotropic elasticity (6). In fact, Love specifically points out,
in his book, that transversal deformation is considered only inasmuch as inertia effects are concerned, statics being
already encompassed by the use of the Young’s modulus in (15). It would therefore seem as the Love equation emerges
from a very special procedure, that is difficult to generalize.

It is possible to contrast the dispersion relation associated with Love’s equation (14), namely

212
viK
2 _ 2.2 0 2
®” =cgk (1— 5 a)), (16)

‘B
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against the exact dispersion relation obtained independently by Pochhammer and Chree (P-C) from the three
dimensional linear theory of elasticity, see (Graff, 2012, §8.2.2) or (Shatalov et al., 2011, Eq.(96)), i.e.

2a (B2 +Kk2) J (A K2 — p2)% J (A
(206 s

= ; ) — 4ak>J (Aa)Jy(AB) = O, a7

where J, (k) are Bessel’s function of the first kind (Abramowitz and Stegun, 1948, §9). Also, k is the wavenumber
along Z, w is the angular frequency and

2 2
(6] (6]
a = - = kz? ﬁ = - = k29
2 2
L N

are the wavenumbers in the radial direction (for irrotational and solenoidal waves, respectively). Indeed, the Love
equation naturally emerges by taking a regular asymptotic expansion in the radius A of the first branch of the P-C
solution (Love, 1927, §201), namely

6x* — 3k —4 Kt +x? -1
o =cl lk2+%K2<k4— ( 5 )k2w2+ g — ) st || +0(4%), (18)
2epk (K —1) 2epx (K —l)cS
and then plugging into the correction term the leading order equation @ = c12g k?. Extending the analysis to the first
correction in the speed, we get
2 2
v
A2 = w? (1 + 1K2—°w2> , (19)
27 2
B

that reduces to Love’s equation provided that k ~ @ < 1, that is in the LWLF regime. Furthermore, looking at the
eigenform, we get

U= _VOWZ +

2 2
VoK ( Vols Kkt =22 42 R2> 3
+ — | Wzz2+0O(A), (20)
2 _ 20,2 7.2 2 2
k2 =1\ egzlep/cs—1) 4 A

where the leading order term is precisely the Love hypothesis, while the O(A?) correction reveals a O(R?) contribution
which embodies the deviation from the plane cross-section assumption.

Similarly to Figure 2.27 of (Graff, 2012, p.120) or to Figure 1 of (Shatalov et al., 2011, p.208), this comparison
is illustrated in Fig.l in terms of the frequency spectrum, and in Figs.2,3 in terms of the dispersion diagram.
Dimensionless wavenumber, frequency and wavespeed have been introduced in analogy with Graff (2012)

k=Qr) kA, @=wAle, i=-2=2,

kcg cp
and so is the parameter value v = 0.29. These Figures show the curves from the P-C (17), Love (14), Bishop-Love (13)
and MH (10) models. It is clear that all equations are good low-frequency long-wavelength (LFLW) approximations
of the first branch of the P-C solution, which, however, fail already beyond small wavenumbers. Besides, Fig.3 reveals
that, as anticipated, the Love model best captures the LWLF regime. In contrast, the two mode MH-system and the
BL model provide a qualitatively accurate picture for large wavenumbers, given that they both plateauGraff (2012). Of
course, all such models are doomed to fail for it is known that, to obtain a good approximation of the exact solution, at
least four modes in the Taylor expansion of the axisymmetric deformation field needs to be considered Shatalov et al.
(2011).

Despite its shortcomings, the Love hypothesis is widely used and not only within the framework of the linear
theory of elasticity, whereto it properly belongs, but also in the nonlinear setting, see, for instance Dai and Fan (2004),
and references therein, or Ostrovskii and Sutin (1977), Sgrensen et al. (1984), where, only apparently, a more general
approach is taken.

The aim of this paper is to provide a rigorous re-examination and justification of the Love hypothesis, moving from
the Navier-Bernouilli approximation, which may be easily extended to the nonlinear regime. This process will lead to
a refined Love hypothesis, whose merits will be apparent.
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Figure 1: Dimensionless P-C frequency spectrum (black, solid) compared to that obtained from the Love (green, dash-dot),
Bishop-Love (blue, dotted) and Mindlin-Herrmann (red, dashed) models (v =0.29, 5 = 0.2).
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Figure 2: Dimensionless P-C dispersion diagram (black, solid) compared to that obtained from the Love (green, dash-dot),
Bishop-Love (blue, dotted) and Mindlin-Herrmann (red, dashed) model (v =0.29, § = 0.2).

3. From the Mindlin-Herrmann system to Love equation

We begin by considering the relationship among the L-equation and the MH-system. For this, we introduce the
dimensionless coordinate { = Z /I and the time scale ¥ = I/c, where [ is any characteristic length, such as the
rod length, and c is any speed, which we choose to be ¢ = cg for convenience. The dimensionless time is therefore
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Figure 3: Low-frequency long-wave range in the P-C dispersion diagram (black, solid) compared to that obtained from the
Love (green, dash-dot), Bishop-Love (blue, dotted) and Mindlin-Herrmann (red, dashed) model (v =0.29, § =0.2).

t=T/2. Wealsoset 6 = A2/I*> < 1 and (U, W) = (u, lw). In dimensionless form, equations (10) read

4 (k%= 1) u+2(k? = 2) w, = 36 (uge —uy,) =0, (2la)
2(kK* =2) up + KPwer — wy, = 0. (21b)
By solving (21b), we obtain
2

K 1
Uy = —————W¢p + ——— Wy,
E7 ow2-2) f T a2 "
and plugging this into Eq.(21b), differentiated with respect to {, we obtain a single partial differential equation in terms

of w

(22)

6‘2 S
B 2 _
%wcc BT (0ce = 01) (K0pe = 0,) w = 1wy, (23)
where cp is the speed of elongation waves in rods. Eq.(23) may be recast in terms of dimensional variables
chg’ ) 2 -2 -2
Wiz = —— (027 —c5’0rr) (K027 — c5*0rr ) W = e’ W (24)
dep(cs = 1)

This equation has already been determined in Wright (1981) and it may be rewritten as

Wzt Gaap @ Voot~ g gy K Wezzat e Wirrr) = e War. @s)
B B

so that it can be easily compared with Love’s equation (13) and with the Bishop-Love equation (14). It is easily seen
that they do not correspond, even in the static case. It is concluded that the unimodal problem emerging from the MH
model does not reduce to either Love or Bishop-Love model. However, a hunch to a possible connection is obtained
by solving (21a), whence
1

u= —vowc - 6m (ut, - ”cg) . (26)
To leading order, this is indeed Love’s hypothesis (11), which is then supplemented by a O(6) correction term
proportional to the deviation from the shear wave speed. Indeed, such refined Love hypothesis will come naturally
in the next Section from a multiscale analysis.
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3.1. Slow-time perturbation
In a multiscale approach, we introduce the slow time 7 = 6t and the moving coordinate § = { — ¢t, hence the
dimensionless speed of the moving coordinate system is ¢,

ul@. 1) =¢E& 1), wn=wy ).
Thus, the MH-system (21) becomes
4 (K =1)p+ (4—2c%) y — % (&% = 1) 6ps + 66% ¢, — %53% =0, (272)
(k2 = &) wee +2 (7 = 2) s + 288y, — %y, =0, (27b)
whose solution is sought in asymptotic series
b=y +6P +67Py+ ..., w=wyo+8y 5+ ... (28)
To leading order, we obtain the compatibility condition
¢ =+cp/cg, 29)
whence the dimensional moving frame speed ¢cg equals cp, that is the longitudinal wavespeed in rods. Also, we get
bo = —Vo¥o ¢ 30)

which is the leading term in Love’s hypothesis (11). Carrying on the analysis, we find that Love’s hypothesis is refined
up to O(6) terms through

2.2
cp/eg—1 )
= -V, —0——— + O(67). 31
b 0 <W1§ 82— 1) Yoeee (69) (€29
Besides, we obtain the governing equation for the travelling disturbance,
2 /.2
Cp Yo [ B _

Integrating in & and to leading order, Eq.(39) reduces to the well-known linear KdV equation, whose nonlinear form is
similarly obtained by Dai and Fan (2004). This equation lends the time evolution of the longitudinal wave profile and,
as it is well know, dispersion is introduced by the term W, ,. Consequently, dispersion appears through (1 — cé / clzg)
whereby the wave profile rests unchanged (hence no dispersion), inasmuch as cz = cg, that is bulk shear waves move
with a speed close to that of longitudinal waves in the rod. This is never possible and the closer we can get is (for

ordinary materials) for k — \/5 so that 1 — cg / c% - % In contrast, when « is extremely large, we get maximum

. . 2 2 . . . .
dispersion for 1 — ¢ /¢y — 2/3.Accounting for (32), we can rewrite (30,31) consistently up to O(6) in the form

W, + 0(8%), (33)

¢ 5—=
= —y, e —
T )

which introduces an inertia-like correction.

Moving back to the original dimensionless variables, we have, to leading order,
2
1 ¢ s
O, = s——= | 0pr — =0
e 2655< ] tr)

- 1) Wegge =0, 4

whence Eq.(32) reads

[ N2
|t

c2

B 1o 2
—2w§§ — Wy + 55\/0
s
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that is resemblant of Eq.(23). Besides, plugging the leading term of (34) into the correction term, two equivalent forms
are obtained, namely

2
‘B 1¢2
2 Wer = Wu T 30% (ween = weeee) =0, 35)
S
and also
0123 1¢2 C?s
Cs ‘B
Likewise, Eq.(33) becomes
2
C
up = —vowpe — —— | By, —w, |, (37)
¢ 44 2(1('2 _ 2) c2 ¢¢ !
S

whose structure resembles that of (26). However, this form is not very attractive because it cannot be integrated with
respect to ¢ and it fails to bring out the O(6) nature of the correction. Naturally, an asymptotically equivalent form is
readily obtained through plugging the leading term of (34) into the correction term of (37) and integrating

5v(2) clzg . 38
=—yywy + ———— | — — Wyspp.
u Yoy 12 -2) Ciw cee (38)

In terms of dimensional variables, Eq.(34) lends

2 212 c§
WZZ—CB WTT+V0K 1—_2 WZZZZ=O’ (39)
‘B
while Eqgs.(35,36), read, respectively,
WZZ - CEZWTT + CEZV(z)KZ (WTTZZ - CgWZzzz) =0. (40)
and
-2 -2 212 CLZT
Wzz —cgWrr +cg"vK l—c—2 Wrrzz = 0. (4D
B

Clearly, Eq.(40) corresponds to the Bishop-Love model (13), while Eq.(41) is the refined Love equation, the difference

with (14) being given by the term in round brackets. As expected, all these models coincide to leading order, and in

fact they collapse onto the leading order term in the P-C solution. Furthermore, as it may be physically anticipated,

dispersion, regardless of the differential form it takes, always appears as a function of the relative mismatch between

the speed of longitudinal and radial waves through the factor c% / cé — 1. This feature is missing from the Love model

because of the fulfillment of the boundary conditions in the P-C model, wherefrom it ultimately comes.
Consideration of the refined Love hypothesis (38) in dimensional form gives

K22 c?
= _ 0 (E_
U=-vWz+ 22— 2) <c2 1) Wzzz (42)

that is similar to the first order eigenform (20), provided that complete correspondence is impossible given that the
cubic dependence on the radius is not accessible within the NB kinematics (4). In fact, it is precisely the refined Love
hypothesis that allowed us to guess the form of the correction term in the P-C solution as a multiple of W, .

Also, returning to dimensional variables in the asymptotic series (28), we have

W =W, + AW, + O(4%), (43a)
K2v? 2

Us=-wWz+557s _02) <—§ - 1) W,z +O(A%), (43b)
K CS
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which reminds of the refined assumption introduced in (Porubov and Samsonov, 1993, Eq.(1)), that we rewrite in our
symbols,

W =W, + R*W, + O(R®), (44a)
U = —vyW,, + R*U, + O(R?). (44b)

This structure comes from introducing higher order terms in R and, in fact, it contains three unknown functions of

Z and T (i.e. it is tri-modal), two of which, namely W] and U, may be used to accommodate the zero boundary

conditions on the radial stress at the mantle (the zero hoop stress BC being trivially satisfied from the kinematics)
Porubov and Samsonov (1993),

2

Yo

-— 0 . 4
2G - ZVO)WOZZZ 435)

W = %VOVVOZZ Uy =
However, we have already seen in (20) that this solution form cannot fully represent the P-C solution, because it misses
out the correction term in the form A2W,, 77+ Which is of the same order as (if not bigger than) the R?U, contribution.
In this respect, the expression for U; in (45) may be seen as complementary to our refined assumption (42), which
instead provides only the O(A?) part of the correction. Yet, we point out that, following the multiscale analysis, the
refined Love hypothesis provides an expansion for u that is now consistent up to O(6) terms, within the NB kinematics.
How this affects the Lagrangian (12), in comparison with the original Love assumption, is now discussed.

4. Unimodal refined variational model

It was shown that the variational procedure by which the Love equation is usually obtained, which makes use of
the Love hypothesis, really lends the BL equation instead (and this is because the Love hypothesis is meant for the
kinetic term only). The latter is not asymptotically equivalent to the Love equation, for it lacks the factor 1 — cg / clzg in
the correction term. One would therefore be lead to believe that the Lagrangian (12) is accurate only to leading order,
given that it was obtained by using the Love hypothesis, which lacks the correction term for U, i.e. U is only correct
to O(1). However, it turns out that this is not the case and in fact the Lagrangian (12) is accurate up to O(5) terms
regardless of the correction to the Love hypothesis. In fact, we may say that the Lagrangian (12) accurately represents,
up to O(6), a family of Love-like assumptions, which all differ by the correction term for U. This outcome follows from
the fact that, looking at (5,8), we see that the only terms where the correction to U appears are given by the first and
by the second term in the potential energy (8). However, it can be easily seen that, for any Love-like assumption, their
total contribution vanishes up to O(6). Still, it should be emphasized that this cancellation seems entirely accidental
and it no longer takes place when, say, nonlinearity is taken into account.

To show that this is in fact the case, in the isotropic linear framework, we introduce the refined Love hypothesis
(33) into the system kinetic energy density

2 2

Vv, C
_ 1.2 1 2.2 1¢2 0 B 3

T_ ELU[ +Z(SVOI/U§I—§5 m(c—z—1> w{th(:Ct-i_O((g ), (46)

as well as into the potential energy,

C2 V2 C2 C2
_1°B 2 1g¢2 2 2.0 [IB_ _ 1{”B _ 2 3
V= 1wt 26Vowz, +6 62 T) <c2 1)( WeeWeeee + 3 <c2 1) w§§€> +0(8). (47
S K S
The Lagrangian density immediately follows
2 2
¢ 1
L=-228u2 4 L4265 <w2 - w? )
2c§ ¢ 2 4 0\ "¢ 49
V2 &2 2
+62—C0 B 1) [—whwpre, + wpewpere = {2 =1 w2 | + 0%, 48)
16(K2—1) (ch [4aad944; ereeee o ci, 1444
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and, as anticipated, it corresponds to Love Lagrangian up to O(6) terms. Naturally, the E-L equation is the BL equation
up to O(8) terms

B 1o 2% (% 7
—w, + c—zwgg +56v; (wy, - wCC)gg +6 60— o 1 o 1 )wee = 2w, =0. (49)
S S S 4449

The natural boundary conditions holding at the rod ends, up to O(6), read

C%‘ L2 dw + 1612 dw, =0 50
2 Wt 30v gy | Wt 3 vo (wee = weee) bwg =0, (50)
S

where D is the variation symbol, to avoid confusion with the small parameter 6. Such conditions should be compared
with (Miklowitz, 1978, Eq.(7.23)) and we point out that the contribution of the strain variation dw; is there missing,
owing to the improper dealing of the strain energy. In particular, following Miklowitz (1978) to which we refer for
details, we observe that the dual condition on dw takes on an unexpected dynamic form which may lead to ill posedness.
However, using (34), we can equally write

2
‘s
2
Cs

1¢c 2 1¢ 2 —
<w§ + §5VOLU§C§) dw + Eévo (M)Cg - W§§C) wa = 0, (51)

which no longer suffers from such drawback.

4.1. Quality of the approximation

As we have already observed, the Love equation provides the best LWLF approximation to P-C and it cannot be
surpassed. However, it is interesting to investigate how well the linear KdV, in either of the forms (34), (35) and (36),
approximates the problem. Fig.4 shows the frequency spectrum for the P-C solution, alongside the Love, BL, and the
KdV (39,41) approximations. As already discussed, from a multiscale perspective, three models are equivalent and
correspond to the Love equation only to leading order. The frequency spectra are shown in Fig.5. All models, except
MH (not shown) and BL, fail to reproduce the flattening out of the frequency spectrum, that asymptotes to the Rayleigh
speed. The KdV (36) appears very similar to the Love model.

5. Concluding Remarks

A seemingly natural way to accommodate for dispersion in the equation for longitudinal waves in thin elastic
rods, originally introduced by A.H. Love, consists of accounting for the transversal motion of the cross-section. In
particular, the Love hypothesis relates the transversal to the longitudinal strain in the rod through Poisson’s ratio.
Usually, this hypothesis is introduced in a two-modal kinematics connected to the Navier—Bernoulli assumption of
plane cross-sections remaining plane after deformation. The Love equation, encompassing dispersion, is finally arrived
at by Hamilton’s principle. Although this derivation appears in every classical textbook, its examination reveals that
proper dealing with the elastic energy leads instead to a variant of the Love equation, sometimes named the Bishop-
Love equation. Indeed, we show that the Love equation is most simply obtained from the regular expansion of the
Pochhammer-Chree (P-C) frequency equation for longitudinal waves in cylindrical elastic rods, assuming the cylinder
radius A to be small. More specifically, the Love equation is merely a long-wave low-frequency approximation of this
solution and it matches the Bishop-Love equation only to leading order. This fact becomes important when dealing
with the nonlinear extension of this approach, which equally moves from a two-modal kinematics, in the absence of a
general solution like P-C to approximate. In the linear case, this leads to the well-known Mindlin-Herrman system of
equations. In the nonlinear case, the resulting system is often very complicated and extra assumptions are needed to
make progress. These assumptions often take the form of the Love hypothesis. One therefore wonders if this approach is
at least well founded in the linear case. Indeed, we show that the Love hypothesis may also be derived from a slow-time
perturbation of the Mindlin-Herrman system. In the process, the governing equation of the longitudinal perturbation is
arrived at, namely the linear KdV. These results suggest a rigorous method to generalize the Love hypothesis in more
general settings. Besides, it is shown that, already in the linear case, a correction to the Love hypothesis is demanded
to achieve consistency (with the accuracy of the longitudinal motion), and this correction is in fact proportional to the
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Figure 4: Frequency spectrum for the P-C (black, solid), Love (green, dash-dotted), Bishop-Love (blue, dotted) and the
linear KdV (39) (brown, short-dashed) and (41) (brown, long-dashed) for v, = 0.29 and 6 = 0.2
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Figure 5: Dispersion diagram for the Pochhammer (black, solid), MH (red, dashed), Love (green, dash-dotted), Bishop-Love
(blue) and for the refined model (39) (pink, solid) for v, = 0.29 and 6 = 0.2

second derivative of the rod longitudinal strain, i.e. W . This dependence of the correction on W, is also met
when expanding, for A small, the P-C eigenform, although this also brings out cubic terms in the radial coordinate
R < A, which are not accessible within our plane cross-section hypothesis. Also, the same form for the correction
term already appears in the literature, although for completely different reasons, namely in an attempt to enrich the
kinematics to tri-modal and therefore be able to meet two boundary conditions on the mantle, instead of the usual one.
Interestingly, in the linear isotropic framework (and in a two-modal kinematics), this correction term for transversal
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strain may be taken freely, yet retaining a Lagrangian that is consistent to the first correction terms (and likewise for the
longitudinal motion). This surprising outcome results from cancellations in the Lagrangian, and in fact we may equally
define the Love hypothesis as the assumption through which first order terms in the transversal strain do not affect the
Lagrangian first correction. However, in the general case, the original Love hypothesis is not accurate enough, even
in the linear case, and should be refined. Besides, slow-time perturbation lends static boundary conditions which no
longer cause stress-type problems to be ill-posed. The application of this approach to non-linear scenarios will form
the basis for future work.
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