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Highlights1

Revisiting the Love hypothesis for introducing dispersion of longitudinal waves in elastic rods2

Andrea Nobili,Giuseppe Saccomandi3

• Variational derivation through the Love hypothesis leads to the Bishop-Love equation;4

• This is not asymptotically equivalent to the Love equation;5

• The Love hypothesis naturally emerges from a two-modal kinematics by multiscale analysis;6

• This approach provides a correction term of the same order as that in the Love equation;7

• The traditional ill-posedness coming from nonstandard boundary conditions is remedied.8
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16 ABSTRACT17
18

We re-examine the Love equation, which forms the first historical attempt at improving on the19

classical wave equation to encompass for dispersion of longitudinal waves in rods. Dispersion is20

introduced by accounting for lateral inertia through the Love hypothesis. Our aim is to provide21

a rigorous justification of the Love hypothesis, which may be generalized to other contexts. We22

show that the procedure bywhich the Love equation is traditionally derived ismisleading: indeed,23

proper variational dealing of the Love hypothesis in a two-modal kinematics (the Mindlin-24

Herrmann system) leads to the Bishop-Love equation instead. The latter is not asymptotically25

equivalent to the Love equation, which is in fact a long wave low frequency approximation of26

the Pochhammer-Chree solution. However, the Love hypothesis may still be retrieved from the27

Mindlin-Herrmann system, by a slow-time perturbation process. In so doing, the linear KdV28

equation is retrieved. Besides, consistent approximation demands that a correction term be added29

to the classical Love hypothesis. Surprisingly, in the very special case of isotropic linear elasticity,30

this correction term produces no effect in the correction term of the Lagrangian, so that, to first31

order, the same Bishop-Love equation is the Euler-Lagrange equation corresponding to a family32

of Love-like hypotheses, all being different by the correction term. Remarkably, ill-posedness33

coming from non-standard (namely non static) natural boundary conditions is now amended.34

35

1. Introduction36

The theory describing propagation of longitudinal waves in elastic rods, based on the seminal works of D’Alambert,37

Bernoulli, Euler and Lagrange (Oliveira et al., 2020), retains great significance, both from the practical as well as from38

the theoretical standpoint. Modern non-destructive testing procedures are being developed which rely on a deeper39

understanding on the mechanics of wave propagation, also in connection with the idea of generalized continua (Nobili40

and Volpini, 2021). As it is well know, the celebrated wave equation represents the prototype for nondispersive41

phenomena, since it neglects any effect transversal to the direction of wave propagation. In this sense, the wave42

equation is perfectly unidirectional and it describes a rod with vanishingly thin cross-section. Rayleigh is credited43

as the first who came to recognize the importance of accounting for transversal effects (Rayleigh, 1894). Shortly later,44

elaborating on this idea, Love (1927) introduced what is now known as the Rayleigh-Love equation (sometimes simply45

the Love’s equation, or, as in Hutchinson and Percival (1968), Love’s modifiedwave equation), that describes dispersive46

longitudinal waves in thin elastic rods. This model, which represents the forefather of several successive attempts in47

the literature, accounts for dispersion through the Love hypothesis, which stipulates that inertial effects attached to48

the transversal motion of the cross-section are to be considered. It is important to emphasize that, as Love explicitly49

points out, only inertial effects are considered, while the elastic response remains unaltered (i.e. totally unidirectional).50

Indeed, following Hutchinson and Percival (1968), “Love’s equation includes the radial inertia of the bar, which51

adds the effect of dispersion to the description of the wave phenomenon and allows the consideration of shorter52

wavelengths than does the simple wave equation”. The resulting Love equation remains attractive for its simplicity53

and favorably compares with the exact solution developed by Pochhammer (1876) and, shortly later, independently,54

by Chree (1889), for a circular cross-section. Besides, Hutchinson and Percival (1968) offer experimental support for55

the capability of the Love equation to accurately describe the propagation of fundamental modes, while higher modes56

can be only interpreted through the Pochhammer-Chree solution. Yet, the Love equation cannot accommodate the57

boundary conditions on the free lateral surface of the rod and, in this sense, it should be regarded as an approximation,58
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the limits of which should be well investigated. Nonetheless, the idea behind the Love hypothesis stands at the basis59

of several refined models of longitudinal wave propagation, a nice account of which may be found in Shatalov et al.60

(2011). Among these, the Mindlin-Hermann model (Mindlin, 1951) stands out because it represents the first attempt61

to develop, in a rigorous manner, a refined model starting from a restricted kinematics (here, the Euler-Bernoulli62

kinematics), through the so-called Kirchhoff method. More recently, the Love hypothesis has been applied outside the63

linear framework, whereto it properly belongs, to incorporate the lateral motion of the cross-section when developing64

nonlinear models. As a case in point, Samsonov (1994) considers theMurnaghan model for compressible materials and65

the Love hypothesis because it is “the first term of a transverse displacement expansion in a power series with respect66

to the small longitudinal strain [..] and remains valid for long waves, while one should consider the Herrmann and67

Mindlin model for a possible refinement of the correlation between longitudinal strain and transverse displacement”.68

Accordingly, it is suggested that the Love hypothesis is the leading order term in a small strain expansion, whose69

refinement is the Mindlin-Herrmann model. Yet, this interpretation does not match the original idea developed by70

Love, which, instead, calls upon the Love hypothesis only for inertial effects. Besides, as we shall show in this paper,71

the Love hypothesis is the leading term approximation in a multiscale analysis of the Mindlin-Herrmann system, the72

latter being asymptotically different from the Love equation in the long wave regime. The same approach by which73

the Love hypothesis is carried over to the nonlinear framework is undertaken by Dai and Huo (2002), in analogy74

with Ostrovskii and Sutin (1977), Sørensen et al. (1984) and Clarkson et al. (1986). The Love hypothesis is again75

retrieved by Dai and Fan (2004) for incompressible elastic materials under finite cylindrical deformations from an76

asymptotic procedure in the small parameter given by the axial displacement ℎ over the typical wavelength l. The same77

result is illustrated by Dai and Huo (2000) for compressible materials. As a workaround, Wright (1985) employs the78

incompressibility constraint to connect transversal and longitudinal motion without the need for the Love hypothesis,79

the incompatibility of the two assumptions being shown byAmendola and Saccomandi (2021). Furthermore, Samsonov80

et al. (1998) shows experimental results on soliton formation which support dependence on the cross-section geometry81

and therefore discourage the adoption of the Love hypothesis. It then appears that it is important to precisely frame the82

range of validity of the Love hypothesis and clear-cut its origin, so that its adoption and generalizationmay be rigorously83

justified. This is precisely the aim of this paper, which revisits the traditional derivation of the Love hypothesis in Sec.284

and then moves, in Sec.3, to illustrate how it also comes from a multiscale analysis of the Mindlin-Herrmann system.85

The corresponding variational principle is illustrated in Sec.4 and results are finally drawn in Sec.5.86

2. Mathematical background87

To obtain in a direct way an unimodal (i.e. encompassing a single dependent field) dispersive equation for88

longitudinal waves in rod, within the framework of linear elasticity, two approaches are possible. The first is connected89

to the derivation of the wave equation from a discrete lattice: We consider an infinite elastic chain of equidistant90

particles, with lattice spacing a, in equilibrium and acted upon by linear springs of identical stiffness. In the continuum91

limit, we justify a Taylor expansion with respect to a and, to second order, we obtain the classical dispersive linear wave92

equation: the Boussinesq’s equation. This approach can be extend to the nonlinear setting in several ways (Maugin,93

1999). The second possibility relies on the use the axiomatic theory of continuum mechanics for deducing a dispersive94

wave equation such as, for example, the Love hypothesis, which then leads to the Love equation.95

The classical derivation of the Love equation (L) is contained in Section 278, Chapter XX, page 428, of the book96

by A.E.H.Love (1927). Essentially, the same derivation may be found in the book by Graff (Graff, 2012, §2.5.3, p.116)97

or by Miklowitz (Miklowitz, 1978, §7.1.1.2).98

Let us briefly review this derivation, which often goes under the name of the Love-Rayleigh rod theory. To obtain99

the linear Love equation, the first step is to assume the Navier–Bernouilli (NB) hypothesis: during deformation, plane100

cross-sections remain planar and normal to the rod axis (Achenbach, 1973).101

Let us consider a rod that, in a reference configuration, is a circular cylinder of radius A and let us introduce102

cylindrical coordinates in the current configuration x = rer + �e� + zez and, equally, cylindrical coordinates in the103

reference configuration X = RER + ΘEΘ + ZEZ , with 0 ≤ R ≤ A. In this framework, the NB hypothesis consists104

of assuming the following axisymmetric time dependent two-modal motion (Wright, 1981, Eq.(12))105

r = R + RU (Z, T ), � = Θ, z = Z +W (Z, T ). (1)
Indeed, displacement is described by a two-term powers series expansion in the radial coordinate of the axisymmetric106

problem. We assume that the determining equation for the functions U (Z, T ) andW (Z, T ) may be obtained directly107
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as the Euler-Lagrange equations associated with the Lagrangian density  =  −  . Here, the kinetic energy density108

per unit length is given by (Graff, 2012, Eq.(2.5.49))109

 = ∫

A

0 ∫

2�

0

�
2
(

W 2
T + R

2U2T
)

RdΘdR, (2)

where � is the mass density in the reference configuration. It is understood that a coordinate subscript implies
differentiation with respect to the relevant variable, i.e.WT = )W ∕)T . In the linear framework, the "potential energy"
is obtained considering the isotropic strain-energy density per unit volume

 = � tr (�2) + 1
2
� tr2(�),

where � and � are the usual Lamé parameters and110

� = 1
2

[

∇u + (∇u)T
]

, (3)
is the infinitesimal strain tensor (by ∇ we denote the two-dimensional gradient operator). Here, u = x − X clearly111

denotes the displacement vector. Within the NB assumption, we have that112

ur(R,Z, t) = RU (Z, T ), u� = 0, uz(Z, T ) = W (Z, T ), (4)
whence the kinetic energy density is given by113

 =
�A2�
4

(

2W 2
T + A

2U2T
)

. (5)
Similarly, we obtain

[�] =
⎡

⎢

⎢

⎢

⎣

U 0 1
2RUZ

0 U 0
1
2RUZ 0 WZ

⎤

⎥

⎥

⎥

⎦

,

whereupon the strain-energy density easily follows114

 = �
(

2U2 +W 2
Z +

1
2R

2U2Z
)

+ 1
2
�
(

2U +WZ
)2 . (6)

Integrating over the cross section115

 = ∫

A

0 ∫

2�

0
RdΘdR, (7)

we obtain the potential energy per unit length116

 = �A2
[

2(� + �)U2 + 2�UWZ +
(

� + 1
2�
)

W 2
Z +

�A2

4
U2Z

]

. (8)

Two Euler-Lagrange equations naturally emerge117

)
)T

)
)WT

+ )
)Z

)
)WZ

= 0, )
)T

)
)UT

+ )
)Z

)
)UZ

− )
)U

= 0. (9)

namely (see (Shatalov et al., 2011, Eq.(65)) or (Graff, 2012, §8.3.3) where, however, u is our U∕A)118

(� + 2�)WZZ + 2�UZ = �WTT ,

�A2UZZ − 8(� + �)U − 4�WZ = �A2UTT .
(10)

In the framework of linear elasticity, equations (10) have been first derived by Mindlin and Herrmann (MH) (Mindlin,119

1951), whence this system is usually named after them. Once acknowledging for different dimensional reduction,120
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Eqs.(10) correspond to (20) of Wright (1981), to which we refer for a nice discussion in terms of wave propagation. A121

critique of the MH-equations is presented in many papers, see for example Whiston (1986), on the ground that, for the122

assumed displacement (1), it is not possible to satisfy the load free condition at the mantle.123

The Love (L-) hypothesis assumes a linear relationship between the radial displacement and the longitudinal strain124

i.e125

U = −�0WZ , (11)
where

�0 =
�

2(� + �)
= 1

2
�2 − 2
�2 − 1

,

is the Poisson’s ratio and � and � are the Lamé parameters of linear elasticity. Here, we let cL =
√

(� + 2�)∕�126

and cS =
√

�∕�, respectively the speed of longitudinal and shear body waves, alongside their ratio � = cL∕cS =127
√

2(1 − �0)∕(1 − 2�0). In the practical range 0 < � < 1
2 , this ratio is always greater than

√

2 and it becomes unbounded128

for incompressible materials. Under (11), the dependence of  and  with respect to U,UZ and UT is replaced by129

dependence with respect to WZ , WZZ and WZT instead. Hence, it is now ∗ = ∗(WZ ,WT ,WZZ ,WZT ), with130

namely131

∗ = �A2�
4

(

2W 2
T + A

2�20W
2
ZT

)

− �A2
{

[

2(� + �)�20 − 2��0 +
�
2
+ �

]

W 2
Z +

�A2�20
4

W 2
ZZ

}

. (12)

Carrying out the usual variational procedure we obtain the single partial differential equation describing the dynamics132

of the rod133

WZZ +
�20K

2

c2B

(

WTTZZ − c2SWZZZZ
)

=
WTT

c2B
, (13)

where E = �(3�+2�)∕(�+�) is Young’s modulus, K2 = A2∕2 = I2∕S is the (square of the) polar radius of gyration
of the cross-section (whose area is S and whose polar moment of inertia is I2 = �A4∕2) and we have let the beam
longitudinal wavespeed

cB =
√

E
� = cs

√

3�2 − 4
�2 − 1

.

Equation (13) is sometimes referred to as the Bishop-Love (BL) or the Rayleigh-Bishop equation (Shatalov et al.,134

2011). Love’s equation, as it appears in (Love, 1927, §278) or in (Graff, 2012, Eq.(2.5.61)) or in (Hutchinson and135

Percival, 1968, Eq.(16)), is given by136

WZZ +
�20K

2

c2B
WZZTT =

WTT

c2B
. (14)

Clearly, with respect to (13), this equation misses the fourth space derivative WZZZZ and the reason for this137

discrepancy is that, in the literature, the potential energy considered for developing Love’s equation (14) accounts138

for the elongation term only, as in (Graff, 2012, Eq.(2.5.49)), namely139

 = E
2
W 2
Z , (15)

in contrast to the exact full strain-energy density of linear isotropic elasticity (6). In fact, Love specifically points out,140

in his book, that transversal deformation is considered only inasmuch as inertia effects are concerned, statics being141

already encompassed by the use of the Young’s modulus in (15). It would therefore seem as the Love equation emerges142

from a very special procedure, that is difficult to generalize.143

It is possible to contrast the dispersion relation associated with Love’s equation (14), namely144

!2 = c2Bk
2

(

1 −
�20K

2

c2B
!2

)

, (16)
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against the exact dispersion relation obtained independently by Pochhammer and Chree (P-C) from the three145

dimensional linear theory of elasticity, see (Graff, 2012, §8.2.2) or (Shatalov et al., 2011, Eq.(96)), i.e.146

J1(A�)

(

2�
(

�2 + k2
)

J1(A�)
A�

−

(

k2 − �2
)2 J0(A�)
�

)

− 4�k2J1(A�)J0(A�) = 0, (17)

where Jn(k) are Bessel’s function of the first kind (Abramowitz and Stegun, 1948, §9). Also, k is the wavenumber147

along Z, ! is the angular frequency and148

� =

√

!2

c2L
− k2, � =

√

!2

c2s
− k2,

are the wavenumbers in the radial direction (for irrotational and solenoidal waves, respectively). Indeed, the Love149

equation naturally emerges by taking a regular asymptotic expansion in the radius A of the first branch of the P-C150

solution (Love, 1927, §201), namely151

!2 = c2B

[

k2 + 1
2K

2

(

k4 −

(

6�4 − 3�2 − 4
)

2c2B�
2
(

�2 − 1
) k2!2 +

(

�4 + �2 − 1
)

2c2B�
2
(

�2 − 1
)

c2S
!4

)]

+ O(A3), (18)

and then plugging into the correction term the leading order equation !2 = c2Bk
2. Extending the analysis to the first152

correction in the speed, we get153

c2Bk
2 = !2

(

1 + 1
2K

2
�20
c2B
!2

)2

, (19)

that reduces to Love’s equation provided that k ∼ ! ≪ 1, that is in the LWLF regime. Furthermore, looking at the154

eigenform, we get155

U = −�0WZ +
�0K2

�2 − 1

(

�0c2S
c2B(c

2
B∕c

2
S − 1)

+ �4 − 2�2 + 2
4�2

R2

A2

)

WZZZ + O(A3), (20)

where the leading order term is precisely the Love hypothesis, while theO(A2) correction reveals aO(R2) contribution156

which embodies the deviation from the plane cross-section assumption.157

Similarly to Figure 2.27 of (Graff, 2012, p.120) or to Figure 1 of (Shatalov et al., 2011, p.208), this comparison158

is illustrated in Fig.1 in terms of the frequency spectrum, and in Figs.2,3 in terms of the dispersion diagram.159

Dimensionless wavenumber, frequency and wavespeed have been introduced in analogy with Graff (2012)160

k̄ = (2�)−1kA, !̄ = !A∕cs, c̄ = !
kcB

= c
cB
,

and so is the parameter value � = 0.29. These Figures show the curves from the P-C (17), Love (14), Bishop-Love (13)161

and MH (10) models. It is clear that all equations are good low-frequency long-wavelength (LFLW) approximations162

of the first branch of the P-C solution, which, however, fail already beyond small wavenumbers. Besides, Fig.3 reveals163

that, as anticipated, the Love model best captures the LWLF regime. In contrast, the two mode MH-system and the164

BL model provide a qualitatively accurate picture for large wavenumbers, given that they both plateauGraff (2012). Of165

course, all such models are doomed to fail for it is known that, to obtain a good approximation of the exact solution, at166

least four modes in the Taylor expansion of the axisymmetric deformation field needs to be considered Shatalov et al.167

(2011).168

Despite its shortcomings, the Love hypothesis is widely used and not only within the framework of the linear169

theory of elasticity, whereto it properly belongs, but also in the nonlinear setting, see, for instance Dai and Fan (2004),170

and references therein, or Ostrovskii and Sutin (1977), Sørensen et al. (1984), where, only apparently, a more general171

approach is taken.172

The aim of this paper is to provide a rigorous re-examination and justification of the Love hypothesis, moving from173

the Navier-Bernouilli approximation, which may be easily extended to the nonlinear regime. This process will lead to174

a refined Love hypothesis, whose merits will be apparent.175
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Figure 1: Dimensionless P-C frequency spectrum (black, solid) compared to that obtained from the Love (green, dash-dot),
Bishop-Love (blue, dotted) and Mindlin-Herrmann (red, dashed) models (� = 0.29, � = 0.2).
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Figure 2: Dimensionless P-C dispersion diagram (black, solid) compared to that obtained from the Love (green, dash-dot),
Bishop-Love (blue, dotted) and Mindlin-Herrmann (red, dashed) model (� = 0.29, � = 0.2).

3. From the Mindlin-Herrmann system to Love equation176

We begin by considering the relationship among the L-equation and the MH-system. For this, we introduce the
dimensionless coordinate � = Z∕l and the time scale T = l∕c, where l is any characteristic length, such as the
rod length, and c is any speed, which we choose to be c = cS for convenience. The dimensionless time is therefore
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Figure 3: Low-frequency long-wave range in the P-C dispersion diagram (black, solid) compared to that obtained from the
Love (green, dash-dot), Bishop-Love (blue, dotted) and Mindlin-Herrmann (red, dashed) model (� = 0.29, � = 0.2).

t = T ∕T. We also set � = A2∕l2 ≪ 1 and (U,W ) = (u, lw). In dimensionless form, equations (10) read
4
(

�2 − 1
)

u + 2
(

�2 − 2
)

w� −
1
2�

(

u�� − utt
)

= 0, (21a)
2
(

�2 − 2
)

u� + �2w�� −wtt = 0. (21b)
By solving (21b), we obtain177

u� = −
�2

2(�2 − 2)
w�� +

1
2(�2 − 2)

wtt, (22)
and plugging this into Eq.(21b), differentiated with respect to � , we obtain a single partial differential equation in terms178

of w179

c2B
c2S
w�� −

�
8(�2 − 1)

(

)�� − )tt
) (

�2)�� − )tt
)

w = wtt, (23)
where cB is the speed of elongation waves in rods. Eq.(23) may be recast in terms of dimensional variables180

WZZ −
K2c2S

4c2B(�
2 − 1)

(

)ZZ − c−2S )TT
) (

�2)ZZ − c−2S )TT
)

W = c−2B WTT . (24)

This equation has already been determined in Wright (1981) and it may be rewritten as181

WZZ +
�4 − 1
(�2 − 2)2

�20K
2

c2B
WZZTT −

K2c2S
4c2B(�

2 − 1)

(

�2WZZZZ + c−4S WTTTT
)

= c−2B WTT , (25)

so that it can be easily compared with Love’s equation (13) and with the Bishop-Love equation (14). It is easily seen182

that they do not correspond, even in the static case. It is concluded that the unimodal problem emerging from the MH183

model does not reduce to either Love or Bishop-Love model. However, a hunch to a possible connection is obtained184

by solving (21a), whence185

u = −�0w� − �
1

8(�2 − 1)
(

utt − u��
)

. (26)
To leading order, this is indeed Love’s hypothesis (11), which is then supplemented by a O(�) correction term186

proportional to the deviation from the shear wave speed. Indeed, such refined Love hypothesis will come naturally187

in the next Section from a multiscale analysis.188
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3.1. Slow-time perturbation189

In a multiscale approach, we introduce the slow time � = �t and the moving coordinate � = � − ĉt, hence the
dimensionless speed of the moving coordinate system is ĉ,

u(�, t) = �(�, �), w(�, t) =  (�, �).

Thus, the MH-system (21) becomes
−4

(

�2 − 1
)

� +
(

4 − 2�2
)

 � −
1
2

(

ĉ2 − 1
)

���� + ĉ�2��� −
1
2�
3��� = 0, (27a)

(

�2 − ĉ2
)

 �� + 2
(

�2 − 2
)

�� + 2ĉ� �� − �2 �� = 0, (27b)
whose solution is sought in asymptotic series190

� = �0 + ��1 + �2�2 +… ,  =  0 + � 1 + �2 2 +… . (28)
To leading order, we obtain the compatibility condition191

ĉ = ±cB∕cS , (29)
whence the dimensional moving frame speed ĉcS equals cB , that is the longitudinal wavespeed in rods. Also, we get192

�0 = −�0 0 � , (30)
which is the leading term in Love’s hypothesis (11). Carrying on the analysis, we find that Love’s hypothesis is refined193

up to O(�) terms through194

�1 = −�0

(

 1� − �
c2B∕c

2
S − 1

8(�2 − 1)
 0���

)

+ O(�2). (31)

Besides, we obtain the governing equation for the travelling disturbance,195

cB
cS
 0�� +

�20
4

(

c2B
c2S
− 1

)

 0���� = 0. (32)

Integrating in � and to leading order, Eq.(39) reduces to the well-known linear KdV equation, whose nonlinear form is196

similarly obtained by Dai and Fan (2004). This equation lends the time evolution of the longitudinal wave profile and,197

as it is well know, dispersion is introduced by the termWZZZ . Consequently, dispersion appears through (1 − c2S∕c2B)198

whereby the wave profile rests unchanged (hence no dispersion), inasmuch as cB ≈ cS , that is bulk shear waves move199

with a speed close to that of longitudinal waves in the rod. This is never possible and the closer we can get is (for200

ordinary materials) for � →
√

2, so that 1 − c2S∕c2B → 1
2 . In contrast, when � is extremely large, we get maximum201

dispersion for 1 − c2S∕c2B → 2∕3.Accounting for (32), we can rewrite (30,31) consistently up to O(�) in the form202

�� = −�0 �� − �
cB

cS (�2 − 2)
 �� + O(�2), (33)

which introduces an inertia-like correction.203

Moving back to the original dimensionless variables, we have, to leading order,

)�� =
1
2
cB
cS�

(

)�� −
c2S
c2B
)tt

)

whence Eq.(32) reads204

c2B
c2S
w�� −wtt +

1
2��

2
0

(

c2B
c2S
− 1

)

w���� = 0, (34)
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that is resemblant of Eq.(23). Besides, plugging the leading term of (34) into the correction term, two equivalent forms205

are obtained, namely206

c2B
c2S
w�� −wtt +

1
2��

2
0
(

w��tt −w����
)

= 0, (35)

and also207

c2B
c2S
w�� −wtt +

1
2��

2
0

(

1 −
c2S
c2B

)

w��tt = 0. (36)

Likewise, Eq.(33) becomes208

u� = −�0w�� −
1

2(�2 − 2)

(

c2B
c2S
w�� −wtt

)

, (37)

whose structure resembles that of (26). However, this form is not very attractive because it cannot be integrated with209

respect to � and it fails to bring out the O(�) nature of the correction. Naturally, an asymptotically equivalent form is210

readily obtained through plugging the leading term of (34) into the correction term of (37) and integrating211

u = −�0w� +
��20

4(�2 − 2)

(

c2B
c2S
− 1

)

w��� . (38)

In terms of dimensional variables, Eq.(34) lends212

WZZ − c−2B WTT + �20K
2

(

1 −
c2S
c2B

)

WZZZZ = 0, (39)

while Eqs.(35,36), read, respectively,213

WZZ − c−2B WTT + c−2B �20K
2 (WTTZZ − c2SWZZZZ

)

= 0. (40)
and214

WZZ − c−2B WTT + c−2B �20K
2

(

1 −
c2S
c2B

)

WTTZZ = 0. (41)

Clearly, Eq.(40) corresponds to the Bishop-Love model (13), while Eq.(41) is the refined Love equation, the difference215

with (14) being given by the term in round brackets. As expected, all these models coincide to leading order, and in216

fact they collapse onto the leading order term in the P-C solution. Furthermore, as it may be physically anticipated,217

dispersion, regardless of the differential form it takes, always appears as a function of the relative mismatch between218

the speed of longitudinal and radial waves through the factor c2B∕c2S − 1. This feature is missing from the Love model219

because of the fulfillment of the boundary conditions in the P-C model, wherefrom it ultimately comes.220

Consideration of the refined Love hypothesis (38) in dimensional form gives221

U = −�0WZ +
K2�20

2(�2 − 2)

(

c2B
c2S
− 1

)

WZZZ , (42)

that is similar to the first order eigenform (20), provided that complete correspondence is impossible given that the222

cubic dependence on the radius is not accessible within the NB kinematics (4). In fact, it is precisely the refined Love223

hypothesis that allowed us to guess the form of the correction term in the P-C solution as a multiple ofWZZZ .224

Also, returning to dimensional variables in the asymptotic series (28), we have
W = W0 + A2W1 + O(A3), (43a)

U = −�0WZ +
K2�20

2(�2 − 2)

(

c2B
c2S
− 1

)

WZZZ + O(A3), (43b)
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which reminds of the refined assumption introduced in (Porubov and Samsonov, 1993, Eq.(1)), that we rewrite in our
symbols,

W = W0 + R2W1 + O(R3), (44a)
U = −�0W0Z + R

2U1 + O(R3). (44b)
This structure comes from introducing higher order terms in R and, in fact, it contains three unknown functions of225

Z and T (i.e. it is tri-modal), two of which, namely W1 and U1, may be used to accommodate the zero boundary226

conditions on the radial stress at the mantle (the zero hoop stress BC being trivially satisfied from the kinematics)227

Porubov and Samsonov (1993),228

W1 =
1
2�0W0ZZ U1 = −

�20
2(3 − 2�0)

W0ZZZ . (45)

However, we have already seen in (20) that this solution form cannot fully represent the P-C solution, because it misses229

out the correction term in the formA2W0ZZZ , which is of the same order as (if not bigger than) theR2U1 contribution.230

In this respect, the expression for U1 in (45) may be seen as complementary to our refined assumption (42), which231

instead provides only the O(A2) part of the correction. Yet, we point out that, following the multiscale analysis, the232

refined Love hypothesis provides an expansion for u that is now consistent up toO(�) terms, within the NB kinematics.233

How this affects the Lagrangian (12), in comparison with the original Love assumption, is now discussed.234

4. Unimodal refined variational model235

It was shown that the variational procedure by which the Love equation is usually obtained, which makes use of236

the Love hypothesis, really lends the BL equation instead (and this is because the Love hypothesis is meant for the237

kinetic term only). The latter is not asymptotically equivalent to the Love equation, for it lacks the factor 1 − c2S∕c2B in238

the correction term. One would therefore be lead to believe that the Lagrangian (12) is accurate only to leading order,239

given that it was obtained by using the Love hypothesis, which lacks the correction term for U , i.e. U is only correct240

to O(1). However, it turns out that this is not the case and in fact the Lagrangian (12) is accurate up to O(�) terms241

regardless of the correction to the Love hypothesis. In fact, we may say that the Lagrangian (12) accurately represents,242

up toO(�), a family of Love-like assumptions, which all differ by the correction term for U . This outcome follows from243

the fact that, looking at (5,8), we see that the only terms where the correction to U appears are given by the first and244

by the second term in the potential energy (8). However, it can be easily seen that, for any Love-like assumption, their245

total contribution vanishes up to O(�). Still, it should be emphasized that this cancellation seems entirely accidental246

and it no longer takes place when, say, nonlinearity is taken into account.247

To show that this is in fact the case, in the isotropic linear framework, we introduce the refined Love hypothesis248

(33) into the system kinetic energy density249

 = 1
2w

2
t +

1
4��

2
0w

2
�t −

1
2�
2

�20
16(�2 − 1)

(

c2B
c2S
− 1

)

w�tw���t + O
(

�3
)

, (46)

as well as into the potential energy,250

 = 1
2

c2B
c2S
w2� +

1
4��

2
0w

2
�� + �

2
�20

16
(

�2 − 1
)

(

c2B
c2S
− 1

)(

−w��w���� +
1
2

(

c2B
c2S
− 1

)

w2���

)

+ O
(

�3
)

. (47)

The Lagrangian density immediately follows

 = − 12
c2B
c2S
w2� +

w2t
2
+ 1
4
��20

(

w2�t −w
2
��

)

+ �2
�20

16
(

�2 − 1
)

(

c2B
c2S
− 1

)[

−w�tw���t +w��w���� −
1
2

(

c2B
c2S
− 1

)

w2���

]

+ O(�3), (48)
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and, as anticipated, it corresponds to Love Lagrangian up toO(�) terms. Naturally, the E-L equation is the BL equation251

up to O(�) terms252

−wtt +
c2B
c2S
w�� +

1
2��

2
0
(

wtt −w��
)

�� + �
2

�20
16(�2 − 1)

(

c2B
c2S
− 1

)[(

c2B
c2S
− 1

)

w�� − 2wtt

]

����

= 0. (49)

The natural boundary conditions holding at the rod ends, up to O(�), read253

(

c2B
c2S
w� +

1
2��

2
0w�tt

)

dw + 1
2��

2
0
(

w�� −w���
)

dw� = 0, (50)

where d is the variation symbol, to avoid confusion with the small parameter �. Such conditions should be compared254

with (Miklowitz, 1978, Eq.(7.23)) and we point out that the contribution of the strain variation dw� is there missing,255

owing to the improper dealing of the strain energy. In particular, following Miklowitz (1978) to which we refer for256

details, we observe that the dual condition on dw takes on an unexpected dynamic formwhichmay lead to ill posedness.257

However, using (34), we can equally write258

c2B
c2S

(

w� +
1
2��

2
0w���

)

dw + 1
2��

2
0
(

w�� −w���
)

dw� = 0, (51)

which no longer suffers from such drawback.259

4.1. Quality of the approximation260

As we have already observed, the Love equation provides the best LWLF approximation to P-C and it cannot be261

surpassed. However, it is interesting to investigate how well the linear KdV, in either of the forms (34), (35) and (36),262

approximates the problem. Fig.4 shows the frequency spectrum for the P-C solution, alongside the Love, BL, and the263

KdV (39,41) approximations. As already discussed, from a multiscale perspective, three models are equivalent and264

correspond to the Love equation only to leading order. The frequency spectra are shown in Fig.5. All models, except265

MH (not shown) and BL, fail to reproduce the flattening out of the frequency spectrum, that asymptotes to the Rayleigh266

speed. The KdV (36) appears very similar to the Love model.267

5. Concluding Remarks268

A seemingly natural way to accommodate for dispersion in the equation for longitudinal waves in thin elastic269

rods, originally introduced by A.H. Love, consists of accounting for the transversal motion of the cross-section. In270

particular, the Love hypothesis relates the transversal to the longitudinal strain in the rod through Poisson’s ratio.271

Usually, this hypothesis is introduced in a two-modal kinematics connected to the Navier–Bernoulli assumption of272

plane cross-sections remaining plane after deformation. The Love equation, encompassing dispersion, is finally arrived273

at by Hamilton’s principle. Although this derivation appears in every classical textbook, its examination reveals that274

proper dealing with the elastic energy leads instead to a variant of the Love equation, sometimes named the Bishop-275

Love equation. Indeed, we show that the Love equation is most simply obtained from the regular expansion of the276

Pochhammer-Chree (P-C) frequency equation for longitudinal waves in cylindrical elastic rods, assuming the cylinder277

radius A to be small. More specifically, the Love equation is merely a long-wave low-frequency approximation of this278

solution and it matches the Bishop-Love equation only to leading order. This fact becomes important when dealing279

with the nonlinear extension of this approach, which equally moves from a two-modal kinematics, in the absence of a280

general solution like P-C to approximate. In the linear case, this leads to the well-known Mindlin-Herrman system of281

equations. In the nonlinear case, the resulting system is often very complicated and extra assumptions are needed to282

make progress. These assumptions often take the form of the Love hypothesis. One therefore wonders if this approach is283

at least well founded in the linear case. Indeed, we show that the Love hypothesis may also be derived from a slow-time284

perturbation of the Mindlin-Herrman system. In the process, the governing equation of the longitudinal perturbation is285

arrived at, namely the linear KdV. These results suggest a rigorous method to generalize the Love hypothesis in more286

general settings. Besides, it is shown that, already in the linear case, a correction to the Love hypothesis is demanded287

to achieve consistency (with the accuracy of the longitudinal motion), and this correction is in fact proportional to the288
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Figure 4: Frequency spectrum for the P-C (black, solid), Love (green, dash-dotted), Bishop-Love (blue, dotted) and the
linear KdV (39) (brown, short-dashed) and (41) (brown, long-dashed) for �0 = 0.29 and � = 0.2
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Figure 5: Dispersion diagram for the Pochhammer (black, solid), MH (red, dashed), Love (green, dash-dotted), Bishop-Love
(blue) and for the refined model (39) (pink, solid) for �0 = 0.29 and � = 0.2

second derivative of the rod longitudinal strain, i.e.WZZZ . This dependence of the correction onWZZZ is also met289

when expanding, for A small, the P-C eigenform, although this also brings out cubic terms in the radial coordinate290

R ≤ A, which are not accessible within our plane cross-section hypothesis. Also, the same form for the correction291

term already appears in the literature, although for completely different reasons, namely in an attempt to enrich the292

kinematics to tri-modal and therefore be able to meet two boundary conditions on the mantle, instead of the usual one.293

Interestingly, in the linear isotropic framework (and in a two-modal kinematics), this correction term for transversal294

Nobili, Saccomandi: Preprint submitted to Elsevier Page 12 of 14



Revisiting the Love hypothesis

strain may be taken freely, yet retaining a Lagrangian that is consistent to the first correction terms (and likewise for the295

longitudinal motion). This surprising outcome results from cancellations in the Lagrangian, and in fact we may equally296

define the Love hypothesis as the assumption through which first order terms in the transversal strain do not affect the297

Lagrangian first correction. However, in the general case, the original Love hypothesis is not accurate enough, even298

in the linear case, and should be refined. Besides, slow-time perturbation lends static boundary conditions which no299

longer cause stress-type problems to be ill-posed. The application of this approach to non-linear scenarios will form300

the basis for future work.301
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