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A B S T R A C T

A large number of technology applications still remain where Artificial Intelligence techniques, carefully
tailored to the specific application needs, could provide performance benefits to hardware technologies.
One such area is biosensing with innovative complementary-metal–oxide–semiconductor nanocapacitor arrays.
These sensors operate as powerful imaging platforms but, despite the advancements in the field, the knowledge
necessary for precise and robust interpretation of their response to analytes is still largely lacking.

In this work, we leverage the ability of Machine Learning methods for computer vision to construct precise
and robust models in different operation scenarios. By recognizing the similarity between multifrequency
capacitance maps and multispectral images, we identified optimal Machine Learning algorithms to accurately
estimate the size of analytes measured by the nanoelectrode array biosensor.

As a relevant case study, we focus on measurements of the radius of dielectric spherical nano-particles
dispersed in deionized water and phosphate buffer saline. The performance of large, established image-
processing neural networks is compared to that of less complex, purposely developed ones. Sizable training
data sets are generated by accurate finite element simulations of the sensor response combined with measured
data. An excellent accuracy, comparable to traditional sizing technology, is achieved for the task of providing
a quantitative measure of the nano-particle radius when the latter is comparable to the pitch of the pixels in
the array. We report a size median error below 15% in all scenarios when a few percent of measured data
samples is added to the simulation-based training data set.
1. Introduction

Machine learning (ML) and Deep learning (DL) techniques have
enabled tremendous progress in several domains, such as computer
vision, speech recognition, natural language processing, and generative
models (Dong et al., 2021; Otter et al., 2020; Croitoru et al., 2023). In
some other fields, however, their adoption is still in its infancy, while
showing tremendous potential. One such field is that of biosensors
capable of accurate and reliable measurements on biological objects
dispersed in liquid solutions, ranging from small biomolecules to cells.
So far, only limited applications of ML to biosensing have been demon-
strated (see for instance Cui et al., 2020; Meiler et al., 2023; Oh et al.,
2021; Massarelli et al., 2021; Lorenzo-Navarro et al., 2020), and in
most cases, it is difficult to obtain large and reliable training data
sets covering with fine granularity the entire operational space of the
sensors, as required to achieve high accuracy and robustness.

Empowerment of conventional biosensors with ML-based data anal-
ysis appears as a promising strategy to advance measurement accuracy
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and reliability of data interpretation (Ansah et al., 2023; Gomes et al.,
2021; Pennacchio et al., 2022; Hamedi et al., 2023). Measurements,
however, are affected by variability, uncertainty, drifts, and noise,
which hamper accuracy, and can be difficult and/or expensive. Accu-
rate physics-based simulations, which could enable the derivation of
larger and cleaner data sets, are not yet established, nor of widespread
usage. Moreover, most biosensing platforms have small parallelism,
which prevents to obtain large data sets for several different analytes.

In recent years, several complementary-metal–oxide–semiconductor
(CMOS) micro/nano-electrode array systems have been proposed that
overcome one or more of the limitations above (Abbott et al., 2022;
Hu et al., 2021; Jung et al., 2021; Lai et al., 2023b; Senevirathna
et al., 2019; Lai et al., 2023a). Among these, high-frequency impedance
spectroscopy nano-electrode (NE) array biosensors as the one in (Wid-
dershoven et al., 2010; Laborde et al., 2015) offer numerous advan-
tages, such as miniaturization, massive parallelization, mitigation of
vailable online 11 October 2023
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the spatial sensitivity limits imposed by Debye screening, and label-
free detection of nano-scale objects (hereafter defined as having di-
mensions ≤ 1 μm), and it is therefore used in this work. The po-
entiality of this platform has been proven with measurements on
icro-particles (Stadlbauer et al., 2019; Widdershoven et al., 2018),
ano-particles (Goldoni et al., 2023), oil droplets (Renault et al., 2021),
ells (Laborde et al., 2015), and recently for continuous water monitor-
ng of nano-pollutants (Goldoni et al., 2023).

Besides these examples, the detection and quantification of
anoscale objects are also of great interest to environmental and health
tudies. In fact, nanopollutants and contaminants in soil and water
ose serious and not yet fully understood health hazards on animals
nd plants (Jan et al., 2022; Sangkham et al., 2022; Lee and Chae,
021). In this regard, state-of-the-art technologies for monitoring and
izing nano-particles are mainly based on optical principles and suffer
everal limitations in terms of costs, complexity, and detection of
anoscale particles (Lee and Chae, 2021; Enfrin et al., 2020). For
hese reasons, several techniques have been recently proposed for
icro and nano-particles detection and sizing, also integrating machine

earning methods. As an example, electrochemical impedance spec-
roscopy enhanced by machine learning was used to detect and size
arge micro-plastics (2–4 mm) (Meiler et al., 2023); microwave block
op-gap resonator and support vector machine (SVM) were proposed
or detection (not sizing) of metallic pollutants in water (Oh et al.,
021). Additionally, computer vision techniques (RGB images) have
een reported for plastic debris counting and classification (Massarelli
t al., 2021; Lorenzo-Navarro et al., 2020). However, sizing and mor-
hology measurements were performed after the sampling procedure
or water analysis, which is complex and time-consuming (Lee and
hae, 2021) and the plastic debris analyzed had a large diameter
1–5 mm) (Massarelli et al., 2021; Lorenzo-Navarro et al., 2020).

Thanks to the huge throughput, massively parallel CMOS
anobiosensors are perfect companions of ML algorithms. In addition,
hese biosensors share an architectural similarity with conventional
amera sensors, such that their output resembles a multispectral image.
his, in turn, implies that state-of-the-art computer vision DL meth-
ds, modified for multispectral images (as, for instance, in Jameel
t al., 2020; Khan et al., 2022), are promising candidates for the
rocessing and interpretation of the sensor’s output. For these reasons,
uilding upon the largely unexplored potentialities of the NE array
latforms (Widdershoven et al., 2018), and on accurate simulations of
he NE array response to analytes (Pittino and Selmi, 2014; Cossettini
t al., 2021), we investigate if this combination enables the derivation
f ML/DL models trained on simulations and/or measurements, for
ccurate estimation of key features of nano-particles (NPs) dispersed
n aqueous solution. As a challenging demonstrator, we target the
mpowerment of nanoelectrode array biosensors with particles’ radii
stimation algorithms; however, the approach may be extended to
stimate additional features, e.g. shape, dielectric constant or position
.r.t. the electrodes. We also evaluate the Neural Network (NN) com-
lexity requirements in terms of the number of parameters, in order
o address low-memory and low-power requirements for edge devices
ensing applications.

To the best of our knowledge, this work reports for the first time
he application of multiple ML algorithms (originally derived for com-
uter vision of RGB images), to multifrequency capacitance images of
anoscale objects in water solution and for metrology purposes.

The manuscript is organized as follows. Section 2 describes the
ettings of both measurements (Section 2.1) and simulations (Sec-
ion 2.2) of the dielectric beads on the nanoelectrode array. Moreover,
ection 2.3 discusses the algorithms developed to estimate the particle
adius. Subsequently, Section 3 shows and discusses the results, both in
eionized water (MilliQ) and phosphate buffer saline (PBS) solutions.
inally, Section 4 draws the conclusions.
2

s

2. Materials and methods

2.1. Measurements: experimental setup, procedure and data preparation

In this work we use the High Frequency Impedance Spectroscopy
(HFIS) nano-electrode (NE) array chip described in Widdershoven et al.
(2018), which was designed and provided by NXP Semiconductors. For
the sake of a self-contained manuscript, we report in the following its
key features. The CMOS chip embeds an array of 256 × 256 individually
addressable NEs (pixels) with 90 nm radius, 600 nm × 720 nm pitch,
fabricated with 90 nm CMOS technology. It employs Charged-Based
Capacitance Measurement (CBCM) and ad hoc calibration procedures
to deliver spectrally resolved measurement of each electrode’s capaci-
tance in the 1–70 MHz frequency range (Widdershoven et al., 2010),
with potential extension up to 500 MHz (Cossettini et al., 2020). A
capacitance image is constructed sequentially activating one row of
electrodes (working electrodes, WEs) while all other rows are grounded
to create a large counter electrode (CE). The capacitance change caused
by analyte(s) is measured as the difference between the mean capaci-
tance (100 values) after (𝐶𝑚𝑒𝑎𝑛,𝑤∕𝑎𝑛𝑎𝑙𝑦𝑡𝑒) and before (𝐶𝑚𝑒𝑎𝑛, 𝑤∕𝑜 𝑎𝑛𝑎𝑙𝑦𝑡𝑒) the
nalyte arrival event:

𝐶 = 𝐶𝑚𝑒𝑎𝑛, 𝑤∕ 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 − 𝐶𝑚𝑒𝑎𝑛, 𝑤∕𝑜 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 (1)

𝐶 is due to the perturbation of the electric field caused by the analyte
nd related to its conductivity, dielectric permittivity, dimensions, and
osition with respect to the electrodes (Cossettini et al., 2019; Pittino
t al., 2015; Widdershoven et al., 2018). The HFIS NE array chip is
ntegrated in an experimental setup (Fig. 1(a)) that implements the
hip initialization and communication, the temperature control, and
he microfluidic system (Widdershoven et al., 2018). An example of
nalyte arrival event (nano-particle with radius 500 nm in MilliQ) is
hown in Fig. 1(b).

Polystyrene (PS) nano-particles (NPs) with nominal radius (mean
std) of (275 ± 8) nm and (500 ± 5) nm suspended in 2.74%, and

.66% (w/v) 15 mL of H2O, respectively, were used in this work. The
Ps were analyzed in MilliQ and PBS. Each solvent was filtered with
.2 μm pores syringe filter to remove possible impurities; then each NP
olution was diluted (≈ 1:40), filtered across 3 𝜇m pores membrane,
nd sonicated.

Before proceeding with the measurement with the NE array chip,
he NPs solution is measured with Dynamic Light Scattering (DLS),
hich is a common sizing technology for nanoparticles (Jia et al.,
023). The DLS system used in our work employs a 633 nm HeNe
aser coupled to an optical fiber as a light source, and a single-
hoton counting module by PerkinElmer as a light detector. The setup
as mounted on an optical table and equipped with a PC with Bi-
000AT Digital Autocorrelator by Brookhaven Instruments for data
rocessing. The results with DLS are (mean value ± standard deviation):
78.3 ± 65 nm and 500.4 ± 68 nm for 275 and 500 nm nominal values
espectively.

Once the NP dispersion was prepared, the sensor platform and the
emperature controller were turned on, the measurement conditions
nitialized, and the system was allowed to reach thermal equilibrium
temperature set to 22 ◦C) before starting the measurements. The sys-
em was then flushed with ≈ 3 mL isopropyl alcohol (IPA, filtered with
.2 𝜇m pores syringe filter), at a flow rate of 100 𝜇L/min. Afterward,
he NPs were introduced into the microfluidics. At the end of the
easurements, the NE array and the microfluidics system were flushed
ith ≈ 3 mL of IPA at a flow rate of 200 𝜇L/min for cleaning.

Concerning data preparation, the raw-data were elaborated accord-
ng to (Widdershoven et al., 2018) and to Eq. (1). Additionally, a
re-processing of the measurements was necessary to exclude outliers
nd to match the data to the simulations. The first step has been the
dentification of 7 × 7 electrodes 𝛥𝐶 maps, hereafter denoted (data)

amples, in which only a single bead (no clusters) is present around
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Fig. 1. (a) picture of the experimental setup and magnification of the chip with the PDMS seal ring around the NE array on top. 1(b) example of capacitance traces upon arrival
on electrodes of a 500 nm radius NP in MilliQ, and corresponding 7 × 7 𝛥𝐶 map, as per Eq. (1). 1(c)) 7 × 7 electrode matrix highlighting electrodes used to estimate noise.
1(d)) Empirical Cumulative Distribution Functions (ECDF) of the 𝛥𝐶 standard deviation of all the samples in the measurement dataset. Radius=275 nm (left) and 500 nm (right)
in MilliQ environment. All samples above the 85th percentile vertical lines are removed from the dataset.
the central electrode. These maps are complete of all 49 capacitance
values and exclude outliers.

Moreover, since measurements are intrinsically noisy (unlike sim-
ulations), and outliers may fool the training algorithm reducing the
accuracy, training the prediction model on ideal simulations only is not
recommended for robustness against real-world fluctuations.

To mitigate this issue:

1. for each measurement data sample 𝑖, we extracted the mean
(𝜇𝑖) and the standard deviation (𝜎𝑖) of the 𝛥𝐶 of the outermost
electrodes (see light blue sets in Fig. 1(c)), where the impact of
the NP is negligible;

2. we removed from the datasets outlier samples having a standard
deviation higher than the 85th percentile of the 𝜎𝑖 Empirical
Cumulative Distribution Function (ECDF) of the measurement
samples, see Fig. 1(d);

3. we subtracted 𝜇𝑖 to all the elements of the 𝛥𝐶 matrix of sample 𝑖;
4. we computed the median �̂� of the remaining 𝜎𝑖, and used it to

generate a zero-mean Gaussian noise to perturb the simulated
𝛥𝐶𝑒𝑓𝑓 at each electrode of the simulated samples.

This procedure removes from measurements possible residual off-
sets deriving from drifts and supports the generation of realistic (hence,
noisy) simulated samples, thus enabling direct comparison of measure-
ments and simulations.
3

This procedure yielded 194 data samples for the MilliQ environment
(141 and 53 for the 275 and 500 nm radii, respectively) and 169 data
samples for the PBS environment (116 and 53 for the 275 and 500 nm
radii, respectively), excluding the outliers as described below.

2.2. Numerical simulations: calculations and data preparation

The response of the nanoelectrode array described in Section 2.1 has
been simulated with the ENBIOS software (Pittino and Selmi, 2014),
which is capable to estimate the 𝛥𝐶 with good accuracy, as previously
demonstrated in (Laborde et al., 2015; Widdershoven et al., 2018;
Cossettini et al., 2021). The simulation model solves the so called
Poisson–Boltzmann and Poisson–Drift–Diffusion set of equations (in DC
and AC, respectively) to calculate the change in electrode capacitance
due to the nanoparticle, i.e., the same quantity that is also measured
by the sensor. Similar results could be achieved with general-purpose
multiscale-multiphysics simulation platforms, e.g. COMSOL (COMSOL
Inc., 2022). The simulation domain comprises a matrix of 13 × 17
electrodes around the particle to accurately represent the electric field
distribution at the innermost electrodes. Simulations are carried out at
the same frequencies as in the experiments, i.e.:

• a unique 𝑓 = 50 MHz for the MilliQ case. Since it is essentially de-
ionized, similarly to air and IPA, the NE response is independent
of frequency (Widdershoven et al., 2018; Cossettini et al., 2020).
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Fig. 2. Parameters used for the simulations 2(a) and schematic representation of how the dataset has been augmented by flipping each simulated image along the 𝑥 and 𝑦 axes
(example with 500 nm radius nano-particle, 𝑑𝑧=1 nm, in MilliQ) 2(b).
• ten equally log-spaced frequencies in the range 2–70 MHz for the
PBS case.

Two cases are simulated at each frequency: (i) the reference condi-
tion without NP, and (ii) the detection condition, where the particle
is placed at more than 100 locations above and around the central
electrode. In the construction of the simulated images, only data from
the innermost 7 × 7 electrodes out of the 13 × 17 ones in the domain
is considered for improved stability and accuracy. The simulated re-
sponse is computed according to (Laborde et al., 2015) as 𝛥𝐶𝑒𝑓𝑓 =
|𝛥𝑌𝐴|∕(2𝜋𝑓 ), where 𝛥𝑌𝐴 is the AC admittance change upon particle
arrival; this expression is a good approximation of the variation of
the measured capacitance. Throughout this work, we will refer to the
𝛥𝐶𝑒𝑓𝑓 matrix as a sample. Taking advantage of the array symmetry, only
particle displacements in the positive 𝑥 and 𝑦 direction are considered.
Additional capacitance images are easily constructed with a simple data
augmentation technique; namely: by flipping the image along the 𝑥
and 𝑦 axis (see Fig. 2(b)). These data augmentation transformations are
necessary to render the model insensitive to the exact position of the
particle in the whole horizontal plane around the electrode. The radius
of the particle is also varied, in the range [200, 1500] nm. A summary
of the simulations parameter is shown in Fig. 2(a). The number of
simulated samples in the training data set are 1065 and 770; the total
including test and validation sets is 1578 and 1133, for MilliQ and PBS,
respectively.

All the data sets (measured and simulated data samples) that are
used in this work are available online (Lombardo et al., 2023).
4

2.3. Radius estimation model development

The estimation of the particles radii takes advantage of the struc-
tural similarity of the multifrequency 𝛥𝐶 maps to common (RGB)
images, thereby employing successful machine learning (ML) algo-
rithms developed for Computer Vision applications. In particular, the
following ML model architectures have been investigated:

• popular Deep Learning models for image recognition available in
the PyTorch library (e.g., MobileNet-V3Small, ResNet18) (Paszke
et al., 2019), and their adaptations to the problem at hand.

• Two simple Convolutional Neural Networks (CNN) specifically
designed for this work (see below), where the layers are the ones
originally proposed in (LeCun et al., 1995) as the foundations of
all modern CNNs.

• The popular distributed gradient-boosted decision tree XGBoost
(Chen and Guestrin, 2016).

Since the number of training samples is limited in our application,
and so are the memory and computational resources within ultra-low
power edge devices, we focused our attention on small size models
to avoid overfitting the training data. MobileNet-V3 Small (Howard
et al., 2019) has one of the smallest number of parameters (≈ 1 × 106)
among the Neural Networks (NNs) in the PyTorch Library, since it
targets embedded applications. Nevertheless, it was still necessary to
further reduce the model’s dimension, by creating two variants: (I) the
first one denoted Tiny Mobile Net (also shortly referred as Tiny MoNet
in the following) (≈ 1.5 × 104 parameters), where eight of the last
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Fig. 3. Schematics and list of parameters for the neural network (NN) models designed in this work. The input is the sequence of 7 × 7 simulated (by ENBIOS) or measured (by
the biosensor chip) capacitance maps at one (milliQ) or multiple (PBS) frequencies. The output is the predicted radius of the nanoparticle.
inverted residual blocks are replaced by Identity layers (Learning Rate
(LR) 4×10−3, epochs 500); (II) the second one denoted SuperLite MoNet
(≈ 4 × 104 and ≈ 5.5 × 104 parameters for MilliQ (LR 5 × 10−4, epochs
1000) and PBS case (LR 5 × 10−4, epochs 1000), respectively), removing
the last seven inverted residual blocks. The number of parameters and
complexity of both were dramatically reduced. Other models from the
PyTorch library, such as Resnet18 (He et al., 2016) have been investi-
gated in a preliminary phase, but soon discarded due to unsatisfactory
performance in our application.

In order to further optimize the radius estimation models for low-
memory, low-power application, in terms of number of model parame-
ters, two simple ad-hoc CNNs have been designed as sketched in Fig. 3
and they are:

• The Two Blocks Network (≈ 5 × 103 and ≈ 17 × 103 parameters
for MilliQ (LR 5 × 10−4, epochs 500) and PBS case (LR 5 × 10−4,
epochs 1000), respectively) (Fig. 3) consists of two convolutional
blocks and two fully-connected layers separated by a Rectified
Linear Unit (ReLU) activation function. Each convolutional block
consists of:

– A convolutional layer with: 𝑛 input and 𝑘 output channels,
kernel size of 3 or 1, and stride of 1.

– A batch normalization layer, to improve overall stability and
speed-up the architecture (Ioffe and Szegedy, 2015).

– A ReLU used as a non-linearity.
– A pooling layer, to reduce the dimensions of the feature

maps, and in turn select the most significant features of the
image.

• The Simplest Network (≈ 1.5 × 103 parameters for MilliQ with LR
1 × 10−3, epochs 500 and ≈ 9 × 103 parameters for the PBS case
with LR 1×10−3, epochs 1000 respectively), a simplification of the
Two Blocks Network, featuring only one convolutional block.

The input is the sequence of 7 × 7 simulated (by ENBIOS) or measured
5

(by the biosensor chip) capacitance maps at one (milliQ) or multiple
(PBS) frequencies. The output is the predicted radius of the nanoparti-
cle. The number of channels and kernel sizes depend on the architecture
and on the case it was designed for (MilliQ or PBS), see Fig. 3.

All models have been trained to predict the radius of the particle
in units of micrometers, in order to manage data values close to unity
which improves the stability of the training.

The chosen loss function is the Gaussian Negative Log-Likelihood
loss (GNLL) (Nix and Weigend, 1994), which assumes that the quantity
to estimate is a random variable with Gaussian distribution, thereby
allowing the model to estimate both the mean value and its variance
(a key feature for uncertainty quantification). The training procedure
is carried out using the Adamax (Kingma and Ba, 2017) algorithm
implemented in PyTorch. Note that the whole procedure has to be
unambiguously considered as supervised learning, since the simulated
and experimental samples are labeled with the known (in simulation)
and nominal (in experiments) particle radius, respectively.

2.4. Model evaluation criteria

In this section, we detail the optimization of the NN algorithms with
two main objectives: (i) to obtain an average estimated radius as close
as possible to the nominal (in the case of measurements) and set (in the
case of simulations) radius, (ii) to obtain as low as possible spread of
the estimated radii. For these reasons, the results are mostly presented
in boxplots, which report both the average estimated radius and the
spread of the results. We aim to achieve these objectives with simple
NNs, having a small number of parameters, to meet the low-memory
and low-power specifications of sensing applications with edge devices.

The results are compared to a common and consolidated nanopar-
ticle sizing method; namely: dynamic light scattering (see Section 2.1).
The following strategies have been adopted and investigated.

The models have been trained and tested in both MilliQ and PBS
environments. The traits common to both conditions are:

• as a first attempt, the models have been trained and validated

(hyperparameters tuning) on data sets of simulations only. The
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Fig. 4. Plots of the loss functions associated with two of the NNs developed. (a) Two Blocks Network tuned for the MilliQ environment with 𝐿𝑅 = 5× 10−4 , 𝑒𝑝𝑜𝑐ℎ𝑠 = 500. (b) Two
Block Network tuned for the PBS environment with 𝐿𝑅 = 5 × 10−4 , 𝑒𝑝𝑜𝑐ℎ𝑠 = 1000. (c) SuperLite tuned for the PBS environment with 𝐿𝑅 = 5 × 10−4 , 𝑒𝑝𝑜𝑐ℎ𝑠 = 1000.
Table 1
Summary of the number of samples (NS) for each data set. The definition of a sample is given in Section 2.

MilliQ PBS

Initial simulation data set 1578 1133

Initial measurement data set 194 169

Initial total data set 1772 1302

Test on
Simulations

Test on
Measurements

Test on
Simulations

Test on
Measurements

Training set 1065 1065 (sim.)/ 770 654 (sim.)/
1085
(sim.+meas)

674(sim.+meas)

Validation set 267 267 193 164

Test set 246 174 170 149

Particles excluded from training
and validation sets

750 nm 750 nm 750 nm 1000, 1500 nm
Fig. 5. Training and validation loss functions for the 5-fold cross validation of Simplest
Net for the MilliQ environment. The solid lines are the average; the error bars represent
the spread between the five different curves.

samples (excluding the 750 nm particles used for testing) were
randomly split between a training and a validation set with a
80–20 ratio, respectively. Fig. 4 shows three representative loss
functions optimization examples on training and validation sets.
In addition, a 5-fold cross-validation has been performed, in order
to confirm the validity of the hyper-parameters tuning. Fig. 5
shows the training and validation losses at each epoch for the
Simplest Net trained on MilliQ simulation samples, the solid
lines are the average and the error bars are the spread between
the different 5 curves. We see that, as the number of epochs
increases, the trained models are very consistent with each other,
also meaning that the hyperparameters are appropriate to reduce
overfitting.
Then, the models trained on simulations are tested:

– on simulated data samples only (samples of NPs with
750 nm radius, excluded from previous training and valida-
tion). Figs. 7(a) and 8(a) show the results of this first step
for MilliQ and PBS case, respectively;
6

– on measured data samples. The results are reported in
Figs. 7(b) and 8(b) for MilliQ and PBS case, respectively.

• Additionally, the models have been trained and validated on data
sets combining simulations with a small portion of the measure-
ments samples not previously used (10 samples for each radius).
The performances are then tested on the remaining measurement
samples. To this end, we consider the smallest portion of added
measurement that led to an improvement in the performance (10
samples for each radius, i.e. ≈ 2% and 3% in MilliQ and PBS
environments, respectively). These results are reported as well in
Figs. 7(b) and 8(b) for MilliQ and PBS case, respectively.

For the NN testing on measured samples in PBS, the training data
set excluded 1000 nm and 1500 nm radii, since we found that simula-
tions of these large particles, otherwise not present in the experiments
produced larger errors.

This procedure has a twofold objective. On one hand, to show that it
is possible to achieve good model performance in this challenging appli-
cation of nanoscale metrology by training the networks on simulations
data set, as opposed to relying solely on measurements, which are more
difficult to control and to reliably gather in large quantities. On the
other hand, to understand whether the addition of a small number of
measurements to the training data sets is or not beneficial for improving
the performance beyond what simulations data sets can achieve.

Table 1 summarizes the number of samples (NS) in the data sets.
Notice that the NS of the Training set and Validation set always respect
a ≃ 80:20 ratio, as stated before. Additionally (see row ‘‘Training set’’),
the ‘‘Sim. + Meas.’’ data set always has 20 samples more than the ‘‘Sim.
Only’’ data set, which is the number of measured data samples (10
for each radius) included. Finally, notice that the ‘‘Test set’’ used for
the test on simulations is removed from the total initial data set in
both MilliQ and PBS cases. Indeed, by summing the number of samples
(NS) of ‘‘Test set’’, ‘‘Validation set’’, and Training set‘‘ for the ’’Test on
Simulations’’ case (𝑁𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔∕𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛∕𝑡𝑒𝑠𝑡,𝑠𝑖𝑚−𝑡𝑒𝑠𝑡) in both MilliQ and PBS

(𝑁𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,𝑠𝑖𝑚−𝑡𝑒𝑠𝑡 +𝑁𝑆𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝑠𝑖𝑚−𝑡𝑒𝑠𝑡 +𝑁𝑆𝑡𝑒𝑠𝑡,𝑠𝑖𝑚−𝑡𝑒𝑠𝑡):
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Fig. 6. Schematic flowchart of the steps made for dataset generation from simulations (left column), for measurements (middle column), and for the NN model development and
test (right column). Please consider the specificity of the NN testing on measured samples in the case of PBS reported in Section 2.4. Table 1 provides the sizes of all data sets.
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• in the MilliQ case: 1065 + 267 + 246 = 1578.
• in the PBS case: 770 + 193 + 170 = 1133.

hich are exactly the initial simulation data set in MilliQ and PBS,
espectively.

For the ‘‘Test on Measurements’’ case the sum is the following:
𝑆𝑡𝑒𝑠𝑡,𝑠𝑖𝑚−𝑡𝑒𝑠𝑡 +𝑁𝑆𝑡𝑒𝑠𝑡,𝑚𝑒𝑎𝑠−𝑡𝑒𝑠𝑡+
𝑁𝑆𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝑚𝑒𝑎𝑠−𝑡𝑒𝑠𝑡 + 𝑁𝑆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,𝑚𝑒𝑎𝑠−𝑡𝑒𝑠𝑡, which for MilliQ is simply:

46 + 174 + 267 + 1085 = 1772, which is exactly the initial total
ataset. The PBS case is less straightforward because, as stated before,
he 750 nm samples (NS = 170) remained in the training/validation
et (i.e. NS = 170 reported in the third column is actually included in
he training/validation numerosity), whilst the 1000 nm and 1500 nm
NS = 315) were removed. This is also the reason why the training and
alidation set for ‘‘Test on Simulations’’ and ‘‘Test on Measurements’’
n the case of PBS are different, while in the case of MilliQ are equal.
n fact: 149 + 164 + 674 + 315 = 1302, which is exactly the initial
otal dataset for PBS environment.

. Results and discussion

Fig. 6 provides a schematic summary of the steps made to generate
he simulated and measured datasets used to train and test the NNs ei-
her individually or in a mixed fashion. For a more detailed description
f the data sets employed in this work see Table 1.

In the following, we will discuss in detail the performance achieved
n the task of measuring the radius of nanoparticles in different repre-
entative scenarios.

.1. Results in MilliQ environment

.1.1. Training and test on simulated samples only
The models were firstly trained on the set containing only simula-

ion samples of all NP radii except the 750 nm one. The added white
aussian noise estimated from measurements was �̂�𝑀𝑄 = 0.3 aF. Its
ddition to the simulation datasets was important to achieve more
table results. The models’ hyperparameters were then tuned on the
alidation set, which comes from the same distribution as the training
et. Finally, the model was applied to the test data set (simulations of
50 nm radius particles only) to check its robustness and accuracy.

Fig. 7(a) (Table and Boxplot) shows the test results for the MilliQ
7

nvironment and for all the NNs taken into consideration. We observe s
hat the models with the less parameters achieve the best performances,
ince they are more robust to overfitting. The best models, Simplest
et and Two Blocks Net, exhibit a remarkably low (below 10%, see
ig. 7(a)) relative median error. On the other hand, the heaviest model
f all, MobileNet, dramatically suffers from overfitting, and does not
each a satisfactory performance. Therefore it will be excluded from
he following analysis.

.1.2. Test on measurement samples (different trainings)
The models described above have also been tested on the measure-

ents data set. As discussed in Section 2.1, these measurements refer to
75 nm and 500 nm radius NPs. Since the two measurements were done
eparately, and in order to better identify the models strengths and
eaknesses, their performance is evaluated separately for each radius.
ue to its poor performance, MobileNet has been replaced with the
opular algorithm XGBoost in this investigation.

Fig. 7(b) shows the results produced by each model on the measure-
ent test set including or not in the training set the small amount of
easurements previously excluded from the test data set (ten samples
er radius). We observe that all models except Tiny MoNet are able
o generate two separated clusters for the two radii. Simplest Net
xhibits very good performance with the lowest median error (highest
ccuracy), and a spread of predictions only slightly larger than that
f XGBoost. Except for the very simple SuperLite MoNet model, the
nclusion of a few measured data samples during training, rather than
mproving the model predictions, either degrades or leaves unchanged
he accuracy.

The most likely explanation for the degradation is that, since Tiny
oNet and Two Blocks Net (the ones showing the largest degradation)

re the ones with the most parameters, their training remains unstable
ue to overfitting. On the other hand, the more accurate Simplest Net
nd XGBoost have probably reached their maximum performance given
heir capacity, and therefore a small amount of additional data does
ot significantly improve their accuracy. In fact, the measurements
re quite sensitive to uncontrolled variables (particle displacement
nd height w.r.t. the electrode), and therefore the radius estimation
s particularly challenging, especially for the NPs with dimensions
maller than the electrode pitch. The frequency-independent spectrum
f NPs in MilliQ deprives the NNs of a source of information that can,
nstead, facilitate a more precise estimation, as we will see in the next

ections.
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Fig. 7. Comparison among all models for the simulations test set (table and 7(a)) and the measurements test set 7(b) in MilliQ solution. The targets are highlighted with a dashed
orizontal line in the boxplot.
As a final note, Fig. 7(b) (and as well Fig. 8(b) for the PBS case)
rovides in itself also the results of an ablation study. In fact, the
wo simplest model (Simplest Net and Two Blocks Net) have been
erived through a bottom-up approach, by starting from the simplest
onceivable model and adding complexity. On the other hand, Tiny
oNet and SuperLite Monet come from repeated simplification of a

arger model (MobileNet). This ablation study points in the direction
f using the simplest available models.
8

3.2. Results in PBS environment

3.2.1. Training and test on simulated samples only
Similarly to Section 3.1.1, also in this PBS case the models have

been firstly trained and tested on simulations. Tiny Mobile Net has been
excluded from the comparison due to its very poor performance in the
MilliQ environment.
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Fig. 8. Comparison on the simulations test set 8(a) and the measurements test set 8(b) between all models for the case with a PBS solution. The target radius for each case is
highlighted with a dashed horizontal line in the boxplot.
Fig. 8(a) (Table and Boxplot) shows results in PBS on the simula-
tions test set. Consistently with previous observations in Section 3.1.1,
the most accurate models are the simplest ones, i.e., Simplest Net and
Two Blocks Net. They achieve low median errors of a few percent,
consistent with those in MilliQ. SuperLite MoNet exhibits much worse
figures. Comparing these results to Fig. 7(a) puts in evidence a larger
number and broader distribution of the outliers, especially for Simplest
Net. On the other hand, SuperLite MoNet has the lowest accuracy, but
it does not suffer from as many outliers.

A closer inspection of the outliers for Simplest Net and Two Blocks
Net revealed that they correspond to particles at the largest distance
from the electrodes (𝑑𝑧 = 100 nm). Indeed, this is the most challenging
etection condition in PBS because, due to strong Debye screening
especially at low frequency), the electrode response decays rapidly
rom its maximum value when 𝑑𝑧 increases and/or the particle centroid

is not vertically aligned to the center of the electrode. This limitation
9

could probably be alleviated by extending the measurement/simulation
range to even higher frequencies.

3.2.2. Test on measurements samples (different trainings)
The same procedure of Section 3.1.2 was applied also in this case.

However, due to the salinity of the solution, and the use of multi-
frequency data, a few differences emerged which led to a slightly
different procedure:

• Due to the weakened Debye screening, especially at high fre-
quency, the NPs affect the capacitance of much more distant
electrodes than in the MilliQ case. Therefore, to increase the ac-
curacy of the noise estimation, only measurements of the 275 nm
radius particles have been considered when determining the noise
from the response of the electrodes on the edge.
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Table 2
Summary of the best results achieved by the Neural Network models on the measurement test set. The models with best
average performance in MilliQ and PBS, respectively, are highlighted in bold.
Solution Model

Name
Training
Dataset

Radius
[nm]

Predicted
mean [nm]

Median rel.
error [%]

95th percent
error [%]

MilliQ

SuperLite
MoNet

sim. 275 237 14 27
500 326 31 58

sim. +
meas.

275 235 15 24
500 419 7 58

Simplest
Net

sim. 275 264 8 33
500 454 14 60

sim. +
meas.

275 241 8 40
500 449 11 61

Two
Blocks
Net

sim. 275 246 7 34
500 473 15 62

sim. +
meas.

275 287 22 53
500 525 28 63

XGBoost
sim. 275 234 14 31

500 421 12 60

sim- +
meas.

275 232 14 30
500 413 8 59

PBS

SuperLite
MoNet

sim. 275 263 10 24
500 333 33 49

sim. +
meas.

275 274 6 21
500 505 7 29

SimplestNet
sim. 275 248 12 26

500 403 20 37

sim. +
meas.

275 298 15 38
500 477 6 18

Two
Blocks
Net

sim. 275 278 7 23
500 413 18 40

sim. +
meas.

275 300 16 37
500 487 7 19

XGBoost
sim. 275 227 20 25

500 334 33 52

sim. +
meas.

275 238 16 21
500 370 25 48
o
m
d
t

N
d
i
a
t
t
q
p
s

4

t
t
p
s
m
a
a
b
t
a

• Different percentiles of the noise standard deviation �̂� have been
considered. After the model hyperparameters tuning on the val-
idation set, we decided to use the median of the 𝜎 distribution
at each frequency as in Section 3.1.2, hereafter denoted as �̂�𝑃𝐵𝑆 .
The noise variance is calculated separately at each frequency (and
values between 𝜎𝑃𝐵𝑆,𝑚𝑖𝑛 = 2 aF and 𝜎𝑃𝐵𝑆,𝑚𝑎𝑥 = 6 aF) have been
found and used in the generation of noisy simulated images.

• one additional processing step was introduced in the training set
to increase the sample diversity, hence the accuracy; namely: the
addition of a random Gaussian noise to the ground-truth value
of the radius. In this way, for each sample and at each training
epoch, the value of the radius 𝑅𝑖 has been perturbed as:

𝑅∗
𝑖 = 𝑅𝑖 + 𝜖, 𝜖 ∼  (0, 𝜎𝑅𝑖

) (2)

where  (0, 𝜎𝑅𝑖
) is a Gaussian distribution with zero mean and

standard deviation 𝜎𝑅𝑖
= 0.05×𝑅𝑖. This value is marginally larger

than the ideal nominal dimensional spread of the NP radius, see
Section 2.1.

Fig. 8(b) and Table 2 show the performance of the models on the
easurements test set. If only simulations are used for training (left

ox-plot for each model), we see that SuperLite MoNet and XGBoost
re unable to create two separate radius clusters, while Simplest Net
nd Two Blocks Net provide quantitatively unsatisfactory results for the
argest particle. The inclusion of a small number of measurements (10
ata samples for each radius) during training dramatically increases the
odels performance, especially for SuperLite MoNet which becomes

he most accurate (right box-plot for each model). Training the models
10
nly on measurements, instead, yields largely unsatisfactory perfor-
ance (middle box-plot for each model), most probably because the
ata is too scarce, thereby proving the importance of expanding the
raining data set using simulations.

Table 2 summarizes the most relevant accuracy metrics for the best
Ns explored in this work. We notice that after the improvements
escribed above, the performance in PBS became actually better than
n the MilliQ environment. This is probably due to the wealth of
dditional information embodied in the frequency sweep, that helps
o overcome the detrimental impact of the uncontrolled position of
he particles. This highlights once again the advantage of the high fre-
uency impedance spectroscopy sensing paradigm implemented by the
latform, which was specifically designed to operate in physiological
olutions (Widdershoven et al., 2018).

. Conclusions

This work investigated strategies to empower innovative nanoelec-
rode array biosensors with optimized Machine Learning algorithms,
o quantitatively and robustly estimate physical parameters of nano-
articles in liquid solutions from multi-frequency capacitance mea-
urements. The approach leverages the structural similarity of the
easurements to regular multi-spectral images and employs ad-hoc

nd remarkably simplified versions of state-of-the-art computer vision
lgorithms. The radius estimation case study is particularly challenging
ecause the NPs have sub-micron size and a much smaller radius than
he electrode pitch, i.e. the image pixel size. We highlight the following
s unique contributions of this study (to the best of our knowledge):
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• the use of simulated data samples as a promising data-
augmentation technique for ML-based advanced nanoparticle
metrology with High Frequency Impedance Spectroscopy biosen-
sor arrays.

• optimization strategies and investigation of traditional computer
vision algorithms, usually applied on RGB images, to capacitance
images of NPs taken with an advanced biosensor array.

• the application of ad-hoc developed machine-learning methods
for sizing nanoparticles in water solution at the resolution limit of
the imaging biosensor array, which gives a concrete and unique
contribution in the rising field of nano-plastics monitoring in
water, overcoming limitations of current monitoring technologies.

For the optimized training protocol (based on less than 1100 and
00, mostly simulated samples for the MilliQ and PBS case, respec-
ively), the lean Simplest and SuperLite nets exhibit an excellent accu-
acy, with a median error below 15% in all scenarios (MilliQ and PBS,
raining on simulations or simulations and measurements, see Table 2).
urthermore, the ad-hoc developed Simplest Net shows ≤ 20% median
rror in all scenarios with both pure simulations and mixed training
ets. The results reported in this work with Simplest Net and SuperLite
oNet are in agreement and with an even lower spread with respect

o the DLS sizing benchmark.
While investigating strategies for ML-enhanced biosensor array ap-

lications, the study has highlighted a few important points to consider:

• it is advantageous to derive the training data from a large number
of accurate simulations, covering the operational space of the
biosensor and providing accurate labels to the samples;

• for robust algorithms, the simulations must be diversified with
a realistic random noise, which can be estimated from a much
smaller set of measurements;

• the size of the ML models has to be carefully tailored to the
amount of available data, the size of the capacitance map and the
complexity of the task, in order to avoid overfitting. In particular,
two-layers network have a size appropriate to the estimation of
spherical NP radius comparable to the array pixel pitch.

The proposed methodology supports accurate and label-free metrol-
gy of nanoparticles featuring size comparable to the spatial resolution
f the array by purely electrical means, and with accuracy in line
ith the more complex DLS method. Furthermore, it is amenable to
xtensions serving additional tasks (such as estimation of the particle
ielectric constant, shape, and orientation), possibly by processing the
56 × 256 array with techniques developed for object detection in com-
uter vision, with the goal of automatically identifying the locations of
ll particles, and then quantitatively characterize them.

We finally observe that, while numerous radii have been analyzed
y simulations, only two are experimentally measured. Furthermore,
e use spherical nanoparticles, but real-world nanoplastic monitoring

echnologies might deal also with other shapes. Notwithstanding the
bove observations, our promising new results reinforce the interest
oward nanoelectrode array biosensor technology. Analysis of func-
ionalized particles with different shapes and materials represents an
nteresting future development but falls outside the scope of this pio-
eering work. Future work is expected to push these highly innovative
FIS nanobiosensors to evolve from demonstrators in prototypical lab
onditions to powerful and reliable tools for a wide variety of industrial
nd commercial applications.
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