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Background: HER2-low expression has gained clinical relevance in breast cancer (BC) due to the availability of anti-HER2
antibodyedrug conjugates for patients with HER2-low metastatic BC. The well-reported instability of HER2-low status
during disease evolution highlights the need to identify patients with HER2-0 primary BC who may develop a HER2-low
phenotype at relapse. In response to the urgency of maximizing treatment access, we utilized artificial intelligence to
predict this occurrence.
Patients and methods: We included a large multicentric retrospective cohort of patients with BC who underwent tissue
resampling at relapse. The dataset was preprocessed to address relevant issues such as missing data, feature abundance,
and target class imbalance. We then trained two models: one focused on explainability [Extreme Gradient Boosting
(XGBoost)] and another aimed at performance (an ensemble of XGBoost and support vector machine).
Results: A total of 1200 patients were included in this study. Among 386 patients with HER2-0 primary BC and matched
HER2 status at relapse, 42.5% (n ¼ 157) converted to a HER2-low phenotype. The explainable model achieved a
balanced accuracy of 58%, with a sensitivity of 53% and a specificity of 64%. The most important variables for this
model were primary BC phenotype [mean Shapley value (SHAP) 0.540], primary BC histological type (SHAP 0.101),
grade (SHAP 0.182), and sites of relapse (SHAP 0.008-0.213). The ensemble model had a balanced accuracy of 64%,
with a sensitivity of 75% and a specificity of 53%.
Conclusions: This work represents one of the first proof-of-concept applications of machine learning models to predict a
highly relevant phenomenon for drug access in modern BC oncology. Starting with an explainable model and
subsequently integrating it with an ensemble approach enabled us to enhance performance while maintaining
transparency, explainability, and intelligibility.
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INTRODUCTION

Breast cancer (BC) is the most frequently diagnosed solid
tumor in women worldwide.1 It represents a highly
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heterogeneous disease, characterized by diverse biological
and clinicopathological features, thus accounting for
different clinical behaviors in terms of prognosis and
treatment sensitivity.

In clinical practice, the classification driving the treatment
decision process in terms of prognostic stratification and
drug access is mostly based on hormone receptor (HR)
expression and HER2 status by immunohistochemistry (IHC)
and in situ hybridization (ISH) analyses.2,3 This allows the
identification of three major BC subtypes: HR-positive/
HER2-negative (HRþ/HER2� BC), HER2-positive (HER2þ
BC), and triple-negative (TNBC) BC.
https://doi.org/10.1016/j.esmoop.2024.104087 1
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In the past years, a finer classification based on the
assessment of these traditional biomarkers has been put
forward. Particularly, the dichotomic stratification in
HER2þ/� has now evolved as a three-tier classification,
characterized by a further subdivision of HER2� BC into
HER2-0 and HER2-low phenotypes, with the latter further
classified based on IHC score 1þ or 2þ in the absence of
gene amplification by ISH.4 The recognition of HER2-low as
a self-standing entity builds on the availability of the novel
anti-HER2 antibodyedrug conjugate trastuzumab der-
uxtecan for the treatment of patients with advanced HER2-
low BC.5 This scenario is set to evolve further in the near
future due to the expansion of the target population for
trastuzumab deruxtecan, which has been demonstrated to
be effective even in patients with HER2-ultra low advanced
disease (HER2 IHC >0 and <1þ).6 We and others reported
that BC can undergo dynamic evolution throughout its
natural history, and this can be captured as a phenotypic
switch from the primary disease to recurrence.7-9 This
phenomenon has also been confirmed in the context of the
HER2-low phenotype,10,11 with a substantial proportion of
patients with HER2-0 phenotype on primary tumors
evolving toward HER2-low BC at disease relapse, with
clinical implication in terms of enrichment of their thera-
peutic armamentarium. Based on these notions, interna-
tional guidelines currently emphasize the clinical value of
resampling the metastatic disease, also from the perspec-
tive of re-evaluating HER2 expression in case of HER2-0-only
status throughout the disease history.2,4 Within this
framework, the development of tools capable of assisting in
the identification of patients for whom a relapse/metastasis
biopsy can provide substantially impactful clinical informa-
tion at many levels is of great interest and, in this context,
artificial intelligence (AI) may represent the ideal approach
to address the complexity of this need. Indeed, although AI
promises to integrate into many aspects of BC manage-
ment, the main areas of application are restricted, so far, to
BC early detection, prediction of BC development in higher-
risk populations, and computational pathology. A broader
and less niche use of AI-based tools is highly prioritized in
BC research and requires the identification of relevant
clinical questions to be addressed. Based on these premises
we conducted a proof of principle study, developing two
machine learning-based models, each addressing a different
need, explainability, and performance, to predict the phe-
nomenon of HER2-low phenotype gain from primary BC to
relapse.

METHODS

Population

Patients (female or male aged �18 years) diagnosed with
BC and undergoing resampling of relapse at five different
Italian Institutions (Istituto Oncologico Veneto - IRCCS,
Padova; Treviso Hospital, Italy; Fondazione IRCCS Istituto
Nazionale Tumori, Milan; Oncologia Medica del Policlinico
Umberto I, Rome; Division of Medical Oncology, Depart-
ment of Medical and Surgical Sciences for Children and
2 https://doi.org/10.1016/j.esmoop.2024.104087
Adults, University Hospital of Modena) between January
1999 and December 2022 were included. Patients experi-
encing contralateral BC in the absence of other sites of
recurrence were excluded. Estrogen receptor (ER) expres-
sion and HER2 status of primary and recurrent BC were
retrieved from the original report and HER2� cases were
reclassified as HER2-0 (IHC score ¼ 0) versus HER2-low (IHC
score ¼ 1þ/2þ in the absence of HER2 gene amplification
by ISH). Based on ER expression and HER2 status, BC
phenotype was stratified as follows: TN (ER ¼ 0% and HER2-
0/low), ER-low (ER ¼ 1%-9% and HER2-0/low), ERþ/HER2�
(ER ¼ 10%-100% and HER2-0/low), and HER2þ (any ER,
HER2þ). Clinicopathological, treatment, and follow-up data
were also collected.
Machine learning model design

Intuitively, the modelization we present in this work aims at
predicting patients likely to switch from ‘0’ to ‘low’ HER2
status between primary tumor and recurrence. When ach-
ieved successfully, this task allows preselecting candidate
patients likely to switch, and send them to a dedicated and
personalized treatment path. Because of limitations in the
clinical dataset, model training is not a simple operation for
several reasons.

First and foremost, given the relatively restricted number
of patients (1200 observations) and well-known cancer
heterogeneity, the model is likely to overly adapt to the
training set, thus causing overfitting, a recurring issue that
must not be overlooked.12 Therefore particular effort
should be put into the training of a model able to generalize
well with respect to the population and limit bias, eventu-
ally at the cost of reducing the overall performance.

Second, data missingness is a curse that, if poorly
treated, may represent a source of bias in the model. Gaps
in the observations must be tested for randomness to
choose whether it is the best option to eliminate, by
working only with complete cases, or imputing an entry in
the dataset.

The third reason is represented by the strong imbalance
within the target variable: as the switch between HER2-0 in
primary malignancy and HER2-low in recurrence is a rare
event, constituting just 18% of all cases, a naive model
training on such an imbalanced dataset would certainly lead
to distorted results.

As all aforementioned challenges were tackled, we
introduce two models, each focusing on two aspects,
explainability and performance. The impact of variables in
the final model should be measurable and understandable,
on the one hand, to avoid black boxes without practical
meaning, and on the other to enhance visibility and
potentially reduce sources of bias by enabling informed
supervision on biological topics. Furthermore, an applied
model must aim at optimal performance to enhance
translation into clinical practice. Ultimately, we compared
these two models with a simpler one, generalized linear
model (GLM) to answer whether it is worth and beneficial
to deploy nonlinear models in such a scenario. The models’
Volume 10 - Issue 1 - 2025
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specifications and design will be explained in the following
paragraphs.

Data missingness and feature selection. An immediate
consideration to account for is data missingness. If admis-
sible, data are commonly assumed to be missing completely
at random, therefore allowing to simply remove observa-
tions or entire variables that are cursed by missingness over
a certain defined threshold. In our case, this assumption
cannot hold: the package naniar in R (RRID:SCR_001905)
offers an implementation of Little’s missing completely at
random test,13 which returned a significant P value (�0.05)
in the dataset at hand, suggesting that features’ missing
values correlate over observations (i.e. missing not at
random). Supplementary Figure S1, available at https://doi.
org/10.1016/j.esmoop.2024.104087, provides a visualiza-
tion of this phenomenon, and Supplementary Table S1,
available at https://doi.org/10.1016/j.esmoop.2024.
104087, details the worst cases of missingness. Therefore
we are forced to assume patterns of missingness and
impute the dataset as it is, ensuring not to introduce bias by
removing relevant pieces of information. As the majority of
variables is categorical, and the continuous ones were fac-
torized and one-hot encoded through informed cut-offs (i.e.
age, 50 years as threshold), for the imputation task we
selected the multiple correspondence analysis (MCA)
method,14 implemented in package missMDA in R (R
Foundation, Vienna, Austria), which is well suited for cate-
gorical data. We carried out the imputation procedure
before applying any feature selection step, to exploit the
relationship and redundancy between variables to better
reconstruct an approximation of the ‘real’ value. However,
to make the model focus on a reduced set of variables and
increase its applicability to clinical practice, it is necessary to
carry out feature selection: we chose to apply the Boruta
algorithm15 through the omonymous R package, which
highlighted 10 features (primary BC’s histology, grade and
phenotype-related variables, plus recurrence site) as
important for subsequent training.

Class imbalance. As we have already made clear, the target
to be predicted is the switch characteristic from HER2-
0 level to HER2-low level. This feature is obtained by
combining the levels of HER2 at primary malignancy (401/
1200 at the HER2-0 level) and at recurrence (382/1200 at
the HER2-low level). Thus these two particular measure-
ments are singularly occurring in approximately one-third of
the population at hand, while their combination (target
switch) is even rarer, present in 217 out of 1200 patients
(18%). This scenario complicates the development of a
functional model: as the prediction class is extremely un-
balanced, the training step would cause the classification to
focus on the majority class. This would eventually lead to
high overall accuracy, as the majority class would be well
detected, and the inability to correctly predict the minority
class.16 Therefore we randomly subdivided the dataset into
training and test sets (70-30 split) by exploiting the
balanced partition method available in package groupdata2.
Volume 10 - Issue 1 - 2025
Then, we deployed a sampling technique to balance the
target representation in the training data alone. To choose
whether it was more beneficial to oversample, down-
sample, or apply a mixture of both, we generated sampled
sets from the original training set, one for each combination
of method and sample size, and trained a naive linear
model to compare performances. At the end of this process,
the optimal combination was a mixture of oversampling and
downsampling, with a final sample size of 650. This corre-
sponds approximately to downsampling the majority class
by half and oversampling the minority class by double. The
starting and resulting sample sizes for each of the two in-
stances of the target class are shown in Supplementary
Material, Figure S2, available at https://doi.org/10.1016/j.
esmoop.2024.104087.
XGBoost model.
Model Framework and Shapley Values. Our main argu-

ment driving the decision process of the model was
explainability. Therefore we first tried to fit a GLM, unfor-
tunately not leading to sufficiently satisfactory results, due
to the lack of tunable hyperparameters. We then opted to
use tree-based models, selecting Extreme Gradient Boosting
(XGBoost) for its scalability,17 parallelization capabilities,
and compatibility with ‘shapr’, the R implementation of the
suite of algorithms designed to calculate Shapley values.
After training a model, the Shapley value can be calculated
as the average marginal contribution to the prediction of
each single feature value, across all possible combinations
of features. This metric enables the estimation of both the
impact that each variable has on the target of interest and
the direction of the said impact.18 In our scenario, Shapley
values suggest relevant baseline clinical features with
respect to switching patients.

Overfitting. When training a classification model, one
must avoid developing an algorithm that lacks generaliza-
tion ability. This problem is commonly known as overfitting,
and it is usually taken care of by validating the model on an
external cohort. Unfortunately, given the scarce sample size
of our dataset (particularly in terms of relative shortage of
switching patients), we chose to apply bootstrap as a
resampling technique, during the phase of training of the
model, to ensure internal validation before moving to the
test set.

SuperLearner: ensemble models. The explainable model
has been tuned and trained to achieve, to our best effort,
the highest performances in terms of balanced accuracy
between the two classes. This is justified by the objective
of the explainable model, which is characterizing the
general relationships between relevant variables and the
target. Ultimately, we felt the need to address a more
contingent issue, which is the need to obtain the best
overall performance, at the cost of explainability. One way
to achieve this is by deploying the so-called ensemble
models. Ensemble models constitute a machine learning
approach able to combine multiple models in the learning
https://doi.org/10.1016/j.esmoop.2024.104087 3
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Figure 1. Sankey diagram illustrating the dynamics of HER2 level distribution
between primary breast cancer (BC) and relapse. The target of interest is
represented by patients who switched from HER2-0 to HER2-low, comprising
157 observations.

ESMO Open F. Miglietta et al.
process: they suit our situation well, with a dataset char-
acterized by high variance, and a single model with sub-
optimal accuracy.19 Therefore we tried to combine the
model we just presented, XGBoost, and Support Vector
Machines, a flexible classifier able to perform well in
nonlinear scenarios. The ensemble model, deployed
thanks to the SuperLearner package in R, allowed us to
overcome the limited generalization capability of a single
learner, defined ‘weak’, combining the strength of two
promising ones. After selecting the two weak models, we
fine-tuned their hyperparameters to maximize their overall
performance.

Ethical statement

The study was conducted in accordance with Good Clinical
Practice (GCP) principles and received approval from the
Institutional Ethical Committee (Institutional Review Board).
Informed consent was obtained from all participating
patients.

RESULTS

Population and HER2 dynamics

A total of 1200 patients were included. Primary BC pheno-
type data were available for 975 patients, with the following
distribution: 199 HER2þ cases (20.4%) and 783 HER2� cases
(79.6%). Among the HER2e group, 13.9% were TNBC (n ¼
135), 3.6% were ER-low (n ¼ 35), and 62.1% were ERþ/
HER2� (n ¼ 606). The main clinicopathological features of
the HER2� population (n ¼ 783) are detailed in
Supplementary Table S2, available at https://doi.org/10.
1016/j.esmoop.2024.104087. In brief, the vast majority of
patients were female; 51.2% were HER2-0, and 48.8% were
HER2-low. The distribution of BC phenotype across HER2
categories is presented in Table 1. In particular, among HER2-
low cases, 13.7% were TN, 4.5% were ER-low, and 81.8%
were ERþ, respectively. Notably, TNBC was significantly
enriched in the HER2-0 cases, while ERþ BC was significantly
enriched in the HER-low cases (Table 1). The dynamics of
HER2 status from primary BC to metastases are reported in
Figure 1. In particular, among patients with HER2-0 primary
BC who had matched HER2 status at relapse (n ¼ 735),
42.5% converted to the HER2-low phenotype.

Explainable model performances

The model achieved a balanced accuracy of 58%, with a
sensitivity of 53% and a specificity of 64%.

The plot of the Shapley values and the relative impor-
tance of the model variables are illustrated in Figure 2. The
Table 1. Association between primary BC phenotype and HER2 status

Association Total, n (%) HER2-0, n (%) HER2-low, n (%) P value

TNBC 134 (100) 82 (61.2) 52 (38.8) 0.025
ER-low 34 (100) 17 (50.0) 17 (50.0)
ERþ 599 (100) 289 (48.2) 310 (51.8)

BC, breast cancer; ER, estrogen receptor; TNBC, triple-negative breast cancer.

4 https://doi.org/10.1016/j.esmoop.2024.104087
importance plot (Figure 2, top) highlights the overall
contribution of each variable. The primary BC phenotype
was of the greatest importance, followed by variables
related to the site of relapse, primary BC histological type,
and tumor grade. In particular, non-ERþ/HER2� primary BC
phenotype; no special type primary BC histology; high-
grade primary tumors; usual metastatic localizations; and
visceral, liver, nonlung, nonsoft tissue/skin metastases pre-
dicted the probability of switching from HER2-0 primary to
HER2-low recurrent disease. Figure 2 (bottom) provides a
cloud-like representation in the form of a Beeswarm plot,
showing the contribution of each patient to the classifica-
tion outcome, pushing predictions toward higher or lower
probabilities within the trained model. In our scenario, the
outcome is defined by the presence or absence of a switch
from HER2-0 to HER2-low. Additional visual representation
is presented in the Supplementary Material, specifically the
Force plot in Figure S3, available at https://doi.org/10.1016/
j.esmoop.2024.104087.

Ensemble model performances

The model achieved a balanced accuracy of 64%, with a
sensitivity of 75% and a specificity of 53%. Given the study’s
focus on maximizing the likelihood of detecting conversion
from HER2-0 primary BC to HER2-low recurrence, the model
was trained to prioritize sensitivity at the expense of
specificity. This approach ultimately improved balanced ac-
curacy, increasing it by 6 percentage points. As shown in
Table 2, the contributions of the two models were 69.1% for
XGBoost and 30.9% for support vector machines.

Performance comparison with simpler models

Explainable and performance-related solutions, such as
XGBoost and Ensemble models, involve nonlinear frame-
works that require significant computation power and
optimization efforts. As a result, one might consider using
linear models, such as logistic regression, which are rela-
tively easy to deploy and can be explained through odds
ratio analysis. Therefore we compared our two main results
Volume 10 - Issue 1 - 2025
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Figure 2. Elaboration of Shapley (SHAP) values into visual insights. Both graphs illustrate the overall contribution of each feature to the prediction: the Importance
plot (top) aggregates the absolute SHAP values, providing a compact and additive explanation, while the Beeswarm plot (bottom) offers a detailed overview of each
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Table 2. The contribution of the two weak learners within the ensemble
model

Learners Riska Weighta

Extreme Gradient Boosting 0.201 0.691
Support vector machine 0.213 0.309

aRisk is a measure of accuracy that should be minimized for optimal performance,
whereas weight indicates the importance of each component within the overall
ensemble.

ESMO Open F. Miglietta et al.
with a simple GLM. Figure 3 illustrates the performance of
the logistic regression model using key metrics: balanced
accuracy, sensitivity, and specificity. When focusing on
explaining the biological relationships between features and
the target, it is essential to prioritize balanced accuracy.
Instead, when maximizing performance for predicting pa-
tients switching from HER2-0 to HER2-low, which is the
positive value within the class of interest, sensitivity must
be taken into account. Although the GLM and XGBoost
models show similar performance, XGBoost demonstrates a
slight advantage in balanced accuracy over the simpler
model. This little advantage might be crucial in representing
the biological context effectively. The coherence of Shapley
values is influenced by overall model performance, partic-
ularly when dataset limitations prevent achieving high ac-
curacy; for this reason, we recommend deploying XGBoost.
On the other hand, the Ensemble model performs
extremely well in predicting the positive class, achieving a
sensitivity of up to 75%. This means the model can identify
three out of four patients likely to switch in the following
months at baseline. For completeness, we also report the
specificity metric, even though that is beyond the main
scope. It is evident that the Ensemble model prioritizes the
positive class, leading to a trade-off with the less relevant
class.

DISCUSSION

This study included 1200 patients with BC undergoing
resampling of relapse/metastases from five centers and
developed a nine-variable model based on classical clini-
copathological features. The explainable model showed
promising accuracy in predicting the acquisition of HER2-
low phenotype at relapse in the case of HER2-0 primary
tumor. In addition, the assessment of the Shapley values
offered the opportunity to understand the importance that
each variable retained for the model, thus allowing us to
capture the potential clinicopathological drivers of the final
observation (HER2-low gain). In particular, we observed that
a non-ERþ/HER2� primary BC phenotype was the most
important feature associated with our target event, indi-
rectly suggesting that ER-low/HER2� or TN phenotype at
BC diagnosis was capable of predicting, with the highest
importance, the acquisition of HER2-low phenotype on
metastases. A possible explanation for such finding is that
ERþ/HER2� tumors are inherently at a higher likelihood of
showing HER2-low phenotype at diagnosis,20 thus poten-
tially downsizing the relative impact of the acquisition of
low HER2 expression levels at relapse/on metastases in this
6 https://doi.org/10.1016/j.esmoop.2024.104087
BC subtype. On the same ground may lie the observation
that other variables that typically proceed in tandem with
the total or subtotal absence of ER expression, namely,
high-grade and no special type histology, were similarly
importantdalbeit to a lesser extentdfor the model. The
other cluster of variables emerging as highly important for
the model is those reflecting the site of metastases. In
particular, the model isolated specific patterns of relapse/
metastatic localization characterizing patients with HER2-
0 primary BC gaining HER2-low phenotype at disease
resampling. Lacking HER2-low phenotype and inherent
biological significance, it is unlikely that this finding may
have a solid biological driver. A more convincing explanation
might be that certain metastatic patterns may be more
technically prone to yield a HER2-low result. Indeed, the
available evidence is scattered and inconsistent regarding
the intrametastatic heterogeneity in terms of the preva-
lence of HER2-low expression and tendency of HER2 status
instability,10,21,22 thus being limited in scope in terms of the
benchmark. Having met the need to support the observa-
tions related to the phenomenon of interest (HER2-low
gain) with explainable drivers, we shifted our focus to-
ward the possibility of enhancing performance by
combining the XGBoost model with support vector ma-
chines, a flexible classifier. By doing so, we were able to
reach a 75% sensitivity, which, in our view, albeit improv-
able, is remarkable. Indeed, we proposed a model suffi-
ciently powered to overall meet the clinical principle of
accountability for reliability, thus laying the ground for its
external clinical validation. However, when evaluating the
potential of the models, one needs to account for a foun-
dational aspect driving the translation from the statistical to
the clinical point of view: feature importance refers to the
weight that the model attributes to each variable when
computing the classification decision. One may be tempted
to attribute causal links between features and the target,
only based on these correlational relationships. It is worth
reminding that more complex and assumption-demanding
algorithms need to be deployed in order to draw such
conclusions. In fact, we have been rather cautious when
depicting the biological landscape, labeling our findings as
potential indicators. We instead focused on the reliability
and influence of our models in clinical practice, emphasizing
on their predictive impact. With this clarification, we
established a straightforward, clinically relevant, and prior-
itized objective in the current contemporary landscape of
advanced BC: predicting the gain of the HER2-low pheno-
type. We demonstrate that applying an AI-based approach
to this question, using easily obtainable traditional clinico-
pathological features, is both feasible and reliable. Ideally,
this model fits within the specific setting of a patient with
advanced, pretreated HER2-0 BC, who may be a potential
candidate for trastuzumab deruxtecan in the presence of
evidence indicating a gain of the HER2-low phenotype, for
whom the decision to carry out a rebiopsy of a metastatic
site is entirely guided by this consideration. However, our
primary intent was to provide a proof of concept, and we do
not expect our model to have an immediate clinical impact.
Volume 10 - Issue 1 - 2025
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It is indeed imperative to envisage a further evolution and
expansion of this model, to cover the various levels of
complexity of the information that can be obtained from a
disease rebiopsy. Currently, the decision on whether to
carry out a metastasis resampling on a patient with BC is
guided by various clinical needs, sometimes overlapping,
such as confirming the diagnosis of metastatic disease,
evaluating the dynamics of the overall receptor/phenotypic
status, and searching for diverse druggable targets.
Furthermore, within the specific context of our study,
enhancing the model with the ability to predict HER2-low
gain in patients whose initial relapse biopsy revealed a
HER2-0 status would be particularly valuable and make the
model more acceptable. Such capability could inform the
decision to carry out an additional biopsy of a metastatic
site with the specific aim of capturing a druggable target,
such as HER2-low. Based on that, before integrating such AI-
based models within BC decision-making algorithms, they
must be demonstrated to be capable of recapitulating all
these aspects. Furthermore, efforts should be directed to-
ward ensuring that such AI models are sufficiently flexible
and capable of adjusting and adapting to the constantly
evolving landscape of advanced BC treatment. In this
context, the recent emergence of the HER2-ultralow entity
as druggable in terms of trastuzumab deruxtecan access 6
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serves as an emblematic example, imposing the need to
generate specific data regarding the possible dynamic
behavior also of this novel category.

Major strengths of this study are (i) the vast sample size,
making it, to the best of our knowledge, the largest
modeling study on the topic of HER2-low status instability
during disease evolution; (ii) the twofold development of
models serves a dual objective: on one side, a focus on
explainability and the unraveling of biological mechanisms;
on the other, the pursuit of high performance; and (iii) the
reduction to essential variables through Boruta feature se-
lection, with the aim of pinpointing the attention toward
less, but more informative features. Some limitations
should be acknowledged as well: (i) the model builds on a
retrospective clinical platform, inherently subjected to the
risk of selection, information, and confusion bias; (ii) the
model has been developed and trained to set the sights on
sensitivity while slightly sacrificing the overall accuracy. This
choice was based on the clear and deliberate intent of
maximizing the likelihood of capturing HER2-low phenotype
acquisition, therefore judging the relatively low positive
predictive value as acceptable; (iii) this study lacks external
validation, raising concerns about the generalizability of the
findings. While a simpler pipeline might have delivered
better performances, we decided to prioritize reliability
https://doi.org/10.1016/j.esmoop.2024.104087 7
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over optimizing metrics. Additionally, we used resampling
rather than an external cohort to cross-validate our
framework. At the same time, we ensured the development
of the best practices to avoid overfitting, thereby safe-
guarding the generalization capabilities of the model itself.
Finally, it should be noted that optimizing the model by
incorporating additional capabilities, particularly the ability
to predict HER2-low gain in patients with HER2-0 status in
both the primary tumor and the first metastatic sample,
would be highly beneficial. Future efforts will undoubtedly
focus on achieving these objectives.

In conclusion, we believe that this work represents the
first proof of concept for applying a machine learning model
to predict a highly relevant clinical phenomenon in the field
of modern oncology: the acquisition of a druggable target.
By starting with an explainable model and subsequently
integrating it within an ensemble approach, we are able to
enhance performance while maintaining transparency,
explainability, and intelligibility.
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