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FATIGUE AND PHASE TRANSITION IN AN OSCILLATING

ELASTOPLASTIC BEAM∗

Michela Eleuteri1,∗∗, Chiara Gavioli1 and Jana Kopfová2

Abstract. We study a model of fatigue accumulation in an oscillating elastoplastic beam under the
hypothesis that the material can partially recover by the effect of melting. The model is based on the
idea that the fatigue accumulation is proportional to the dissipated energy. We prove that the system
consisting of the momentum and energy balance equations, an evolution equation for the fatigue rate,
and a differential inclusion for the phase dynamics admits a unique strong solution.
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1. Introduction

Our present paper deals with a model for the cyclic fatigue accumulation in a transversally oscillating elasto-
plastic beam, which is based on the idea that the fatigue accumulation is proportional to the dissipated energy.
Temperature and phase transition effects, which usually accompany the process, are taken into account. The
full system of equations consists of the momentum balance equation coupled with the energy balance, fatigue
accumulation equation and a differential inclusion for the phase dynamics.

For our model we first use the results from [20], where by means of the Kirchhoff-Love method it was
shown that the 3D problem of transversal oscillations of a solid elastoplastic beam with the single yield von
Mises plasticity law can be transformed into the beam equation with a multiyield hysteresis Prandtl-Ishlinskii
constitutive operator.

The simplified model was first derived in [9] and its thermodynamical consistency was shown there.
The mathematical treatment of the model started in [11], where we considered the non-isothermal case and

a simplified setting – only the elastic component of the model depends on the fatigue parameter. We showed
existence and uniqueness of a strong solution in a time interval depending on the size of the data.

In [4] we presented a new phase field model under the additional hypothesis that the material can partially
recover by the effect of local melting. The system of equations was completed with a differential inclusion for
the phase dynamics.
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The mathematical treatment for the phase model for the beam started in [13], where we proved existence and
uniqueness of a strong solution under the simplified assumption that the elastic component of the model is inde-
pendent of the fatigue parameter while the plastic one depends only on the fatigue. We assumed proportionality
of the fatigue rate to the plastic dissipation.

The 2D case – the plate – was considered in [10], assuming that both the elastic and the plastic characteristics
change with increasing fatigue, under the simplified situation of fixed temperature. We obtained existence and
uniqueness of a solution locally in time; accordingly to the model indeed, material softening takes place under
increasing fatigue and material failure is manifested in finite time.

The non-isothermal 2D model has been considered in [12], where we proved existence of solutions for the
whole time interval, taking a perspective usually considered in engineering analysis, assuming that the fatigue
accumulation rate is proportional only to the plastic part of the dissipation rate. From the mathematical
viewpoint, the problem does not exhibit singularities anymore and the expected solutions turn to be global in
time.

In [14] also the dependence of the plastic dissipation on both the temperature and the fatigue parameter
was considered in the 2D case. It was mentioned that in principle it makes sense from the point of view
of modeling and applications to allow a further dependence of the Prandlt-Ishlinskii density on the phase
parameter and it was shown, assuming a new special flow rule for the phase variable, that the resulting model
is still thermodynamically consistent.

Here we start the mathematical analysis of this new problem, first in the 1D case, i.e. we additionally
allow this dependence of the Prandtl-Ishlinskii density function not only on the fatigue parameter, as was first
considered in [13], but also on the phase variable.

The aim of the present paper is to show existence and uniqueness of a strong solution of the underlying
system of equations, this brings non-trivial mathematical difficulties.

We remark that our viewpoint is different from the contributions already present in the literature: on one
hand we focus on the dynamics (compared, for instance, with [18, 26, 30] that go into the direction of rate-
independent damage processes in nonlinear elasticity and/or thermo-elasto-plasticity, see also [8, 28, 29]) and
also because the approach used in other papers, that interpret damage processes as a kind of phase transition
in the material (see for instance [1–3, 27]), is based on the idea that damage processes are driven by large
deformations. Moreover, the multiyield character emerging from our bending problem does not seem to have
been taken into consideration before, neither in the multidimensional setting: see for instance [5, 7, 21, 24].
Finally the methods of the papers [17, 22, 25] based on Γ-convergence of energy minimizers have been only
recently refined in [23] to obtain the Prandtl-Ishlinskii model in the Γ-limit as well; this approach has the
drawback that it cannot be extended to the study of oscillating systems, and of nonequilibrium problems in
general. On the other hand, new approaches are constantly appearing in the literature to describe in the most
effective way the fatigue in materials, we quote for instance [31, 33].

The plan of the paper is the following: Section 2 deals with the Prandtl-Ishlinskii model and its properties;
in Section 3 we derive the model; Section 4 contains the statement of our main result and finally Sections 5–7
contain the proof of the existence part of our theorem, while Section 8 deals with the proof of the uniqueness.

2. Hysteresis in elasto-plasticity: the stop operator

Before presenting our model problem, we would like to recall some basic facts about an important hysteresis
operator which is widely used in modelling elasto-plastic processes: the Prandtl-Ishlinskii operator. Let us first
recall the definition of the stop. For more details we refer for instance to [19].

Definition 2.1. Let u ∈W 1,1(0, T ) and a closed interval Z ⊂ R be given. We define the stop operator sZ and
the play operator pZ by the formula

z(t) = sZ [z0, u](t), ξ(t) = pZ [z0, u](t), (2.1)
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where z(t) is the unique solution of the variational inequality

u(t) = z(t) + ξ(t) ∀t ∈ [0, T ],

z(t) ∈ Z,

ξ̇(t)(z(t)− y) ≥ 0 a.e. ∀y ∈ Z,

z(0) = z0 ∈ Z.


(2.2)

It is well known, see e.g. [19], that for each u ∈ W 1,1(0, T ) and each z0 ∈ Z the solution z(t) ∈ W 1,1(0, T ) of
(2.2) exists and is unique. For a canonical choice of Z = [−r, r] with some r > 0 and for the initial condition
z(0) = Qr(u(0)), where Qr is the projection of R onto the interval [−r, r], we simply write

z(t) = sr[u](t), ξ(t) = pr[u](t). (2.3)

A simple proof of the following easy properties of the play and stop can be found e.g. in ([19], Prop. II.1.1).

Proposition 2.2. Let u1, u2 ∈W 1,1(0, T ), a closed interval Z ⊂ R, and data z01 , z
0
2 ∈ Z be given, zi = sZ [z0i , ui],

ξi = ui − zi, i = 1, 2. Then zi, ξi ∈W 1,1(0, T ), and

(i) (z1(t)− z2(t))(u̇1(t)− u̇2(t)) ≥ 1

2

d

dt
(z1(t)− z2(t))2 a. e.;

(ii) |ξ̇1(t)− ξ̇2(t)|+ d

dt
|z1(t)− z2(t)| ≤ |u̇1(t)− u̇2(t)| a.e.;

(iii) |z1(t)− z2(t)| ≤ |z01 − z02 |+ 2 max
0≤τ≤t

|u1(τ)− u2(τ)| ∀t ∈ [0, T ];

(iv) ξ̇i(t)u̇i(t) = ξ̇i(t)
2 a.e.

The variational inequality (2.2) is also used to model single-yield elastoplasticity. In this case, the constraint
Z = [−r, r] is the admissible stress domain, the input u = ε is the strain, and the output z = σr := sr[ε] is the
stress. We can rewrite (2.2) equivalently in “energetic” form

ε̇(t)σr(t) =
d

dt

(
1

2
σ2
r(t)

)
+ r|ξ̇(t)|. (2.4)

Indeed, ε̇(t)σr(t) is the power supplied to the system, part of it is used for the increase of the potential 1
2σ

2
r(t),

and the rest r|ξ̇(t)| is dissipated.
The Prandtl-Ishlinskii model is constructed as a combination of stops with all possible yield points r > 0. Here,

given a measurable function ϕ : [0,∞)× [0, 1]× (0,∞)→ [0,∞) satisfying Hypothesis 4.1 (i) below, we define
the Prandtl-Ishlinskii operator, dependent on the fatigue and phase variable, P : (W 1,1(0, T ))3 → W 1,1(0, T )
by the integral

P [m,χ, ε](t) =

∫ ∞
0

ϕ(m(t), χ(t), r) sr[ε](t) dr. (2.5)

Equation (2.4) enables us to establish the energy balance for the Prandtl-Ishlinskii operator (2.5). Indeed, if we
define the Prandtl-Ishlinskii potential

V [m,χ, ε](t) =
1

2

∫ ∞
0

ϕ(m,χ, r)s2r[ε](t) dr, (2.6)

and the dissipation operator

D[m,χ, ε](t) =

∫ ∞
0

rϕ(m,χ, r)|pr[ε]t(t)|dr, (2.7)
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we can write the Prandtl-Ishlinskii energy balance in the form

ε̇(t)P [m,χ, ε](t) =
d

dt
V [m,χ, ε](t) +D[m,χ, ε](t)

−1

2
mt

∫ ∞
0

ϕm(m,χ, r)s2r[ε](t) dr − 1

2
χt

∫ ∞
0

ϕχ(m,χ, r)s2r[ε](t) dr a.e. (2.8)

As a consequence of Proposition 2.2 (iv), we have

D[m,χ, ε](t) ≤ |ε̇(t)|
∫ ∞
0

rϕ(m,χ, r) dr. (2.9)

3. The model

In this paper we deal with a transversally inhomogeneous beam of length 1; we denote by x ∈ [0, 1] the
longitudinal variable, by t ∈ [0, T ] the time variable, by w(x, t) the transversal displacement of the point x at
time t, by ε(x, t) = wxx(x, t) the linearized curvature, and by σ(x, t) the bending moment. The new thermo-
visco-elasto-plastic scalar constitutive relation can be written in the form

σ = Bε+ P [m,χ, ε] + νεt − β(θ − θref), (3.1)

with B > 0 the elastic modulus, m ≥ 0 a scalar time and space dependent parameter which accounts for the
accumulation of fatigue, ν the viscosity coefficient and β the thermal expansion coefficient related to a layered
structure of the beam. Moreover θ > 0 is the absolute temperature, θref is the melting temperature, which is
considered as a fixed referential temperature. As we already outlined the main novelty is the dependence on
χ of the Prandtl-Ishlinskii constitutive operator of elasto-plasticity P [m,χ, ε], see (2.5), extended in a natural
way to a space continuous dependent input.

Following [20], we can write Newton’s law of motion as

ρwtt − αwxxtt + σxx = F (x, t); (3.2)

here α = ρl2/12 with l > 0 the thickness of the beam, ρ is the mass density, which is assumed to be constant,
and F the external load.

The following free energy operator is associated with the new constitutive law (3.1)

F(m, θ, χ, ε) = cθ(1− log(θ/θref)) +
B

2
ε2 + V [m,χ, ε]

−β(θ − θref)ε−
L

θref
(θ − θref)χ+ I[0,1](χ), (3.3)

where V [m,χ, ε] is the fatigue dependent Prandtl-Ishlinskii potential introduced in (2.6) while the specific heat
capacity c and the latent heat L are given constants; moreover I[0,1] denotes the indicator function of the interval
[0, 1]. The entropy operator S and internal energy operator U consequently have the form

S(θ, χ, ε) = −∂F
∂θ

= c log(θ/θref) + βε+
L

θref
χ, (3.4)

U(m, θ, χ, ε) = F(m, θ, χ, ε) + θS(θ, χ, ε) = cθ +
B

2
ε2 + V [m,χ, ε] + βθrefε+ Lχ+ I[0,1](χ). (3.5)

We consider the first and the second principles of thermodynamics in the form

U(m, θ, χ, ε)t + qx = εtσ + g, (3.6)

S(θ, χ, ε)t +
(q
θ

)
x
≥ g

θ
, (3.7)



FATIGUE AND PHASE TRANSITION IN AN OSCILLATING ELASTOPLASTIC BEAM 5

where q = −κθx is the heat flux with a constant heat conductivity κ > 0, and g is the heat source density. Note
that (3.6) is the energy conservation law, and by (2.8) it is equivalent to

cθt − κθxx = D[m,χ,wxx] + νw2
xxt − βθwxxt −

1

2
mt

∫ ∞
0

ϕm(m,χ, r)s2r[wxx] dr

− 1

2
χt

∫ ∞
0

ϕχ(m,χ, r)s2r[wxx](t) dr − Lχt + g(θ, x, t). (3.8)

On the other hand, (3.7) is the Clausius-Duhem inequality, and we will check in Section 4 after stating Hypothesis
4.1 that the system is thermodynamically consistent.

The evolution of the phase variable χ is assumed to be of “phase-relaxation” type, i.e. governed by the
inclusion −γχt ∈ ∂χF (see e.g. [16, 32]), that is,

− γχt ∈ ∂I[0,1](χ)− L

θref
(θ − θref) +

1

2

∫ ∞
0

ϕχ(m,χ, r)s2r[ε](t) dr, (3.9)

where γ > 0 is a characteristic time of phase transition and ∂I[0,1] is the subdifferential of the indicator function
I[0,1]. Indeed, we necessarily have χ ∈ [0, 1], and we interpret χ = 0 as the solid phase, χ = 1 as liquid, and the
intermediate values correspond to the relative liquid content in a mixture of the two.

Let D[m,χ, ε] be the dissipation operator defined in (2.7) associated with the Prandtl-Ishlinskii operator
P [m,χ, ε]. The analysis of the so-called rainflow method of cyclic fatigue accumulation in elastoplastic materials
carried out in [6] has shown a close relation between accumulated fatigue and dissipated energy, similarly as in
[15]. Here, we assume in addition that partial recovery of the damaged material is possible under strong local
melting. Mathematically, this is expressed in terms of the evolution equation for the fatigue variable m

mt(x, t) ∈ −∂I[0,∞)(m)− h(χt(t)) +

∫ 1

0

λ(x− y)D[m,χ, ε](y, t) dy, (3.10)

where h is a nonnegative nondecreasing function vanishing for negative arguments, see Hypothesis 4.1 (vi), λ is
a nonnegative smooth function with (small) compact support and D[m,χ, ε] is the fatigue dependent dissipation
operator, see (2.7). The subdifferential ∂I[0,∞) of the indicator function I[0,∞) ensures that the fatigue parameter
remains nonnegative.

The meaning of (3.10) is simple. If no phase transition takes place or if the material solidifies, that is, χt ≤ 0,
then fatigue at a point x increases proportionally to the energy dissipated in a neighborhood of the point x.
On the other hand, under strong melting if χ grows faster than the plastic dissipation rate, the fatigue may
decrease until it possibly reaches the unperturbed state m = 0.

Observing that the variational inequality (2.2) can be rewritten in an equivalent way as the inclusion ż(t) +
∂IZ(z(t)) 3 u̇(t), we can interpret the differential inclusions (3.9) and (3.10) for the phase variable χ and fatigue
variable m with a choice χ0(x) ∈ [0, 1], m0(x) ≥ 0 of initial conditions in an equivalent way in the form

χ(x, t) = s[0,1][χ
0(x), A(x, ·)](t), (3.11)

m(x, t) = s[0,∞)[m
0(x), S(x, ·)](t), (3.12)

where

A(x, t) :=

∫ t

0

1

γ

(
L

θref
(θ − θref)−

1

2

∫ ∞
0

ϕχ(m,χ, r)s2r[ε](t) dr

)
(x, τ) dτ, (3.13)

S(x, t) :=

∫ t

0

(
−h(χt(τ)) +

∫ 1

0

λ(x− y)D[m,χ, ε](y, τ) dy

)
(x, τ) dτ. (3.14)

The advantage of this representation is that now, χ and m are defined by equations involving, by virtue of
Proposition 2.2, only operators that are Lipschitz continuous in W 1,1(0, T ).
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4. Statement of the problem

For any T > 0, we set

ΩT := (0, 1)× (0, T ) , u(x, t) =

∫ t

0

σ(x, τ) dτ , f(x, t) =

∫ t

0

F (x, τ) dτ + ρwt(x, 0)− αwxxt(x, 0).

We rewrite the equations (3.1), (3.2), (3.8), (3.9), (3.10) as the system

ut = Bwxx + P [m,χ,wxx] + νwxxt − β(θ − θref), (4.1)

ρwt − αwxxt = −uxx + f(x, t), (4.2)

cθt − κθxx = D[m,χ,wxx] + νw2
xxt − βθwxxt −

1

2
mt

∫ ∞
0

ϕm(m,χ, r)s2r[wxx] dr

−1

2
χt

∫ ∞
0

ϕχ(m,χ, r)s2r[wxx](t) dr − Lχt + g(θ, x, t), (4.3)

−γχt ∈ ∂I[0,1](χ)− L

θref
(θ − θref) +

1

2

∫ ∞
0

ϕχ(m,χ, r)s2r[wxx](t) dr, (4.4)

mt ∈ −∂I[0,∞)(m)− h(χt) +

∫ 1

0

λ(x− y)D[m,χ,wxx](y, t) dy, (4.5)

for unknown functions u,w, θ,m, χ, with initial conditions

w(x, 0) = u(x, 0) = 0,
m(x, 0) = m0(x) = 0,
θ(x, 0) = θ0(x),
χ(x, 0) = χ0(x),

 (4.6)

and boundary conditions

w(0, t) = u(0, t) = w(1, t) = u(1, t) = 0,
θx(0, t) = θx(1, t) = 0.

}
(4.7)

The zero initial conditions for w and m are motivated by the fact that it is difficult to determine the initial
degree of fatigue for a material with unknown loading history, and the most transparent hypothesis consists in
assuming that no deformation (and therefore no fatigue) has taken place prior to the time t = 0.

The data are required to fulfill the following hypotheses:

Hypothesis 4.1.

(i) P is a Prandtl-Ishlinskii operator (2.5) with a measurable distribution function ϕ : [0,∞) × [0, 1] ×
(0,∞) → [0,∞), locally Lipschitz continuous in the first two variables, and there exist ϕ̃, ϕ∗ ∈ L1(0,∞)
such that ϕ(m,χ, r) ≤ ϕ̃(r), 0 ≤ −ϕm(m,χ, r) ≤ ϕ∗(r), −ϕ∗(r) ≤ ϕχ(m,χ, r) ≤ ϕ∗(r), |ϕmm(m,χ, r)| ≤
ϕ∗(r) a.e., |ϕχm(m,χ, r)| ≤ ϕ∗(r) a.e., |ϕχχ(m,χ, r)| ≤ ϕ∗(r), with M :=

∫∞
0
rϕ̃(r) dr < ∞ and also∫∞

0
(1 + r2)ϕ∗(r) dr < 2L, being L the latent heat of the process.

(ii) B, ν, β, θref , ρ, α, c, κ, L, γ are given positive constants.
(iii) λ : R→ [0,∞) is a C1 function with compact support, and we set Λ := max{λ(x) + |λ′(x)| , x ∈ R}.
(iv) f ∈ L2(ΩT ) is a given function for some fixed T > 0, such that fx, ftt, fxt ∈ L2(ΩT ).
(v) θ0 ∈ L∞(0, 1) and χ0 ∈W 1,2(0, 1) are such that θ0 ≥ θ∗ > 0, θ0x ∈ L2(0, 1), χ0(x) ∈ [0, 1] for all x ∈ [0, 1].

(vi) h : R→ [0,∞) is a nondecreasing Lipschitz continuous function such that 0 ≤ h′(z) ≤ a a.e. and h(z) ≤ bz2
for z ∈ R, where a, b are positive constants; in particular b is such that bL ≤ γ/2, where L is as in (i) and
γ is the relaxation coefficient from (4.4).

(vii) g : [0,∞) × ΩT → R is a Carathéodory function such that g0(x, t) := g(0, x, t) ≥ 0, g0 ∈ L2(ΩT ), and
|gθ(θ, x, t)| ≤ g1 a.e. with g1 a constant.
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The assumptions required on the function h are needed for the proof of the thermodynamic consistency of
the model, for more details see [4]; moreover the assumption of boundedness of the derivative of h in (vi) is
used to show the positivity of the temperature.

The assumption that ϕ(m,χ, r) decreases with increasing fatigue m corresponds to the observation that
the stiffness of the material decreases with increasing fatigue. Moreover, the assumptions on ϕχ allow us to
conclude that the last summand in (3.9) is bounded by the latent heat, which is physically reasonable. Also the
assumption that g0(x, t) ≥ 0 makes sense. Note that g is the heat source density, so that at zero temperature,
we cannot remove heat from the system.

We now check that regular solutions to (4.1)–(4.7) satisfy (3.7) with ε = wxx and σ given by (3.1). Indeed,
we have by (3.4), (4.3), and (4.4)

S(θ, χ, ε)t +
(q
θ

)
x
− g

θ
=
κθ2x
θ2

+
νε2t
θ

+
1

θ

(
D[m,χ, ε](t)− 1

2
mt

∫ ∞
0

ϕm(m,χ, r)s2r[ε](t) dr + γχ2
t

)
.

By Hypothesis 4.1 (i) and (4.5)

D[m,χ, ε](t)− 1

2
mt

∫ ∞
0

ϕm(m,χ, r)s2r[ε](t) dr + γχ2
t ≥ γχ2

t −
1

2
· 2Lh(χt), (4.8)

hence, by Hypothesis 4.1 (vi)

S(θ, χ, ε)t +
(q
θ

)
x
− g

θ
≥ κθ2x

θ2
+
νε2t
θ

+
γχ2

t

2θ
≥ 0,

provided we check that the absolute temperature θ stays positive. In Subsection 6.1, we will find a positive lower
bound for the discrete approximations of the temperature, which is independent of the discretization parameter,
and therefore it is preserved in the limit and it implies the positivity of the temperature.

The main result of this paper reads as follows.

Theorem 4.2. Let Hypothesis 4.1 hold. Then there exists a unique solution to the system (4.1)–(4.7) in ΩT
such that θ(x, t) > 0 for all (x, t) ∈ ΩT , and with the regularity

• wxxxt, wxxtt, θt, θxx, utt, uxxt ∈ L2(ΩT ),
• θ,mt, χt ∈ L∞(ΩT ).

The proof of the existence result is carried out in three steps: approximation, a priori estimates and passage
to the limit. We will follow the lines of [13], trying to focus on the main differences, due to the presence of the
new terms.

5. Approximation

From now on, the values of all physical constants are set to 1 for simplicity, with the exception of γ, L, θref
in order to emphasize the role of the phase transition.

Let us choose an integer n ∈ N and consider an equidistant partition of the interval [0, 1]. Let us take the
space discrete approximations of (4.1)–(4.5) for k = 1, . . . , n− 1:

u̇k = εk + P [mk, χk, εk] + ε̇k − θk + θref , (5.1)

ẇk − ε̇k = −n2(uk+1 − 2uk + uk−1) + fk, (5.2)

εk = n2(wk+1 − 2wk + wk−1), (5.3)

θ̇k = n2(θk+1 − 2θk + θk−1) + ṁk Kk + χ̇k (Mk − L) +Dk + ε̇2k − θkε̇k + gk(θk, t), (5.4)

γ χk = s[0,1][χ
0
k, Ak], Ak(t) =

∫ t

0

(
L

θref
(θk − θref) +Mk

)
(τ) dτ, (5.5)
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mk = s[0,∞)[0, Sk], Sk(t) =

∫ t

0

(−h(χ̇k) +D∗k)(τ) dτ, (5.6)

where

Kk(t) = −1

2

∫ ∞
0

ϕm(mk(t), χk(t), r)s2r[εk](t) dr,

Mk(t) = −1

2

∫ ∞
0

ϕχ(mk(t), χk(t), r)s2r[εk](t) dr,

Dk(t) =

∫ ∞
0

ϕ(mk(t), χk(t), r) sr[εk](t)(εk − sr[εk])t(t) dr ≥ 0,

D∗k(t) =
1

n

n−1∑
j=1

λk−jDj(t) ≥ 0,

λi = λ(i/n),

fk(t) = n

∫ k/n

(k−1)/n
f(x, t) dx,

gk(θ, t) =

 n

∫ k/n

(k−1)/n
g(θ, x, t) dx for θ ≥ 0,

gk(0, t) for θ < 0.

Let us notice that, by Hypothesis 4.1 (i), we have Kk(t) ∈ [0, L] , |Mk(t)| ≤ L for a.e. t ∈ [0, T ].
We prescribe initial conditions for k = 1, . . . , n− 1

wk(0) = uk(0) = 0,

θk(0) = θ0k := θ0(k/n),

mk(0) = 0,

χk(0) = χ0
k := n

∫ k/n

(k−1)/n
χ0(x) dx,


(5.7)

and “boundary conditions”

w0 = wn = u0 = un = 0,
θ0 = θ1, θn = θn−1.

}
(5.8)

This turns to be a system of ODEs for the unknowns uk, wk, θk, χk,mk, with a locally Lipschitz continuous
and locally bounded right hand side. This follows from the properties of the stop operator, namely Proposition
2.2 (ii). Therefore, from the standard theory of ODEs, it is possible to deduce the existence and uniqueness
of a local solution in an interval [0, Tn] and the solution belongs to W 1,∞(0, Tn). We will show at the end of
Subsection 6.2 that the solution exists globally, and actually Tn = T.

6. A PRIORI estimates

This section is divided into 4 subsections:

• Positivity of the temperature: it is important for the thermodynamical consistency of the model;
• Discrete energy inequality: it constitutes the basic a priori estimate giving the first minimal regularity

(which is however not enough to pass to the limit);
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• Discrete Dafermos estimates: it provides additional regularity for the temperature, necessary to deduce
further a priori estimates;

• Higher order estimates: this subsection provides the necessary estimates to be able to proceed with the
passage to the limit.

In the sequel, we will systematically use the “summation by parts formula”

n−1∑
k=1

ξk(ηk+1 − 2ηk + ηk−1) +

n∑
k=1

(ξk − ξk−1)(ηk − ηk−1) = ξn(ηn − ηn−1)− ξ0(η1 − η0) (6.1)

for all vectors (ξ0, . . . , ξn), (η0, . . . , ηn).

6.1. Positivity of the temperature

First of all it is important to prove that all θk remain positive in the whole range of existence. We test (5.4)
by −θ−k , where θ−k is the negative part of θk, getting on one hand

− 1

n

n−1∑
k=1

θ̇kθ
−
k =

1

2n

d

dt

n−1∑
k=1

(θ−k )2.

Moreover, by (6.1) we also deduce

−n
n−1∑
k=1

(θk+1 − 2θk + θk−1)θ−k = n

n∑
k=1

(θk − θk−1)(θ−k − θ
−
k−1) ≤ −n

n∑
n=1

(θ−k − θ
−
k−1)2 ≤ 0.

On the other hand, having Dk(t) ≥ 0 and gk(θ, t) ≥ 0 for θ ≤ 0 by Hypothesis 4.1 (vii), it follows that

−
(
Dk(t) + ε̇2k(t) + gk(θk, t)

)
θ−k ≤ 0.

By Hypothesis 4.1 (i) for the phase term we have

χ̇k(t)θ−k (t) = 0 if χ̇k(t) = 0,

χ̇k(t)θ−k (t) =
L

θrefγ
(θk(t)− θref)θ−k (t) +

Mk

γ
θ−k (t) ≤ 0 otherwise,

 (6.2)

therefore

−(Mk − L)χ̇k(t)θ−k (t) ≤ 0.

Finally, (6.2) and Hypothesis 4.1 (vi) allow us to show that if ṁk(t) 6= 0

−ṁk(t)Kk(t)θ−k (t) = (h(χ̇k(t))−D∗k(t)) θ−k (t)Kk(t) ≤ h(χ̇k(t))θ−k (t)Kk(t) ≤ 0.

Putting together the previous estimates and setting

Kn := max{|ε̇k(t)| : k = 1, . . . , n− 1, t ∈ [0, Tn]},

we come to

d

dt

1

2n

n−1∑
k=1

(θ−k )2 ≤ 1

n

n−1∑
k=1

(θ−k )2|ε̇k| ≤
Kn

n

n−1∑
k=1

(θ−k )2.

Gronwall’s argument now allows us to obtain θ−k (t) = 0 for all k and t ∈ [0, Tn].
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At this point we prove that in addition θk(t) are bounded away from 0 for all k and all t ∈ [0, Tn]. More
precisely, if p is the solution of the differential equation

ṗ+ ψ(p) = 0 , p(0) = θ∗, (6.3)

with θ∗ > 0 from Hypothesis 4.1 (v), and where ψ is a suitable function of polynomial kind we will choose later,
then we are able to show that θk(t) ≥ p(t) > 0 for all k and all t ∈ [0, Tn].

First of all, if χ̇k 6= 0 then

− γχ̇k = − L

θref
(θk − θref)−Mk ≥ −

Lθk
θref

, (6.4)

so that

χ̇k(Mk − L) ≥ Lθk
θref γ

(Mk − L) ≥ − 2L2

θref γ
θk.

On the other hand

ṁk ≥ −h(χ̇k) ≥ −aχ̇k ≥ −
Laθk
θrefγ

,

from which we deduce

ṁkKk ≥ −
aL2

θrefγ
θk. (6.5)

Moreover, by Hypothesis 4.1 (vii)

gk ≥ n
∫ k/n

(k−1)/n
(g(θk, x, t)− g(0, x, t)) dx ≥ n

∫ k/n

(k−1)/n
(−g1)θk dx = −g1θk. (6.6)

We additionally have

ε̇2k − θkε̇k ≥ −
1

4
θ2k.

Summing up all together we deduce from (5.4)

θ̇k − n2(θk+1 − 2θk + θk−1) ≥ −ψ(θk)

with

ψ(z) :=
1

4
z2 +

[
L2

θrefγ
(2 + a) + g1

]
z.

On the other hand we have from (6.3) that

p(t) =
µθ∗e

−µt

δθ∗(1− e−µt) + µ
with δ =

1

4
, µ =

L2

θrefγ
(2 + a) + g1.

At this point we compare θk and p. We have

(ṗ− θ̇k)− n2((p− θk+1)− 2(p− θk) + (p− θk−1)) + ψ(p)− ψ(θk) ≤ 0, (6.7)

so testing (6.7) by (p− θk)+ and using (6.1), we deduce

1

2

d

dt

n−1∑
k=1

((p− θk)+)2 + n2
n∑
k=1

((p− θk)+ − (p− θk−1)+)2 + (ψ(p)− ψ(θk))(p− θk)+ ≤ 0. (6.8)
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But ψ is nondecreasing for positive arguments, so

n−1∑
k=1

((p− θk)+)2(t) ≤
n−1∑
k=1

((p− θk)+)2(0) = 0,

which yields the desired result.

6.2. Discrete energy estimate

We obtain the usual energy estimate by testing (5.1) by ε̇k, differentiating (5.2) in time and testing it by ẇk,
summing then the result over k = 1, . . . , n− 1. From (5.3), with a repeated use of (5.8) and (6.1), we obtain

d

dt

(
1

2n

n−1∑
k=1

ẇ2
k +

n

2

n∑
k=1

(ẇk − ẇk−1)2

)

+
1

n

n−1∑
k=1

ε̇k(εk + P [mk, χk, εk] + ε̇k − θk + θref) =
1

n

n−1∑
k=1

ḟkẇk. (6.9)

Adding (6.9) to (5.4) allows us to obtain, by virtue of (2.8),

d

dt

(
1

n

n−1∑
k=1

(1

2
ε2k + V [mk, χk, εk] + θrefεk +

1

2
ẇ2
k + θk+χk

)
+
n

2

n∑
k=1

(ẇk − ẇk−1)2

)
=

1

n

n−1∑
k=1

(ḟkẇk + gk). (6.10)

Estimating the right hand side of (6.10) using a discrete version of Hölder inequality, and using Hypothe-
sis 4.1 (vii) together with Gronwall’s lemma, we conclude

1

n

n−1∑
k=1

(
ẇ2
k + ε2k + θk

)
(t) + n

n∑
k=1

(ẇk − ẇk−1)2(t) ≤ C. (6.11)

In particular the approximate solutions exist globally and Tn = T.

6.3. Discrete Dafermos estimate

We test (5.4) by θ
−1/3
k and obtain for all t ∈ [0, T ], after summing up from k = 1, ..., n− 1

0 =

n−1∑
k=1

(−θ̇kθ−1/3k ) + n2
n−1∑
k=1

(θk−1 − 2θk + θk−1) θ
−1/3
k

+

n−1∑
k=1

ṁk Kk θ−1/3k +

n−1∑
k=1

Dkθ−1/3k

+

n−1∑
k=1

ε̇2k θ
−1/3
k −

n−1∑
k=1

θkε̇kθ
−1/3
k

+

n−1∑
k=1

χ̇k(Mk − L) θ
−1/3
k +

n−1∑
k=1

gk θ
−1/3
k

=: T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.
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Observe that T4 ≥ 0, hence

T1 + T2 + T3 + T5 + T6 + T7 + T8 ≤ 0. (6.12)

We estimate the remaining terms. Using the summation by parts formula (6.1) and the elementary inequality

−(θk − θk−1)(θ
−1/3
k − θ−1/3k−1 ) ≥ 3(θ

1/3
k − θ1/3k−1)2,

we deduce

T2 := n2
n−1∑
k=1

(θk−1 − 2θk + θk−1) θ
−1/3
k

= −n2
n∑
k=1

(θ
−1/3
k − θ−1/3k−1 )(θk − θk−1) + n2[θ−1/3n (θn − θn−1)− θ−1/30 (θ1 − θ0)]

≥ 3n2
n∑
k=1

(θ
1/3
k − θ1/3k−1)2,

where the term n2[θ
−1/3
n (θn − θn−1)− θ−1/30 (θ1 − θ0)] vanishes due to (5.8).

Concerning the term T3, we observe that T3 ≥ 0 if ṁk ≥ 0 while in the case ṁk < 0, by (6.5)

T3 :=

n−1∑
k=1

ṁkKkθ−1/3k ≥ − aL
2

γθref

n−1∑
k=1

θ
2/3
k .

The same happens for the term T7 noticing that, by (6.4)

γχ̇k =
L

θref
θk − L+Mk ≤

L

θref
θk,

therefore

T7 :=

n−1∑
k=1

χ̇k(Mk − L)θ
−1/3
k ≥ − 2L2

γθref

n−1∑
k=1

θ
2/3
k .

Concerning the term T8, by (6.6) we have

T8 :=

n−1∑
k=1

gkθ
−1/3
k ≥ −g1

n−1∑
k=1

θ
2/3
k .

By estimating the terms T1 and T6 from above, dividing the final inequality by n and integrating in time we
finally get ∫ t

0

(
3n

n∑
k=1

(
θ
1/3
k − θ1/3k−1

)2
+

1

n

n−1∑
k=1

ε̇2k θ
−1/3
k

)
dτ

≤
∫ t

0

1

n

n−1∑
k=1

|ε̇k|θ2/3k dτ +
3

2n

n−1∑
k=1

θ
2/3
k (t) + C

∫ t

0

1

n

n−1∑
k=1

θ
2/3
k dτ, (6.13)

where the constant C depends on L, γ,M, θref , g1 but is independent of n and where also the term T3 + T7 + T8
integrated in time, due to the minus sign, goes to the right hand side of the estimate.
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The last two terms on the right hand side are bounded by virtue of (6.11). The conclusion now comes in a
similar way as in the paper [13], by means of discrete versions of Hölder and Gagliardo-Nirenberg inequalities,
in order to estimate the first term in the right hand side of (6.13). This gives∫ t

0

1

n

n−1∑
k=1

θ
8/3
k (τ) dτ ≤ C, (6.14)

and ∫ t

0

1

n

n−1∑
k=1

ε̇2k(τ) dτ ≤ C. (6.15)

6.4. Higher order discrete estimates

Before continuing, we need to extend the validity of (5.1), (5.5), (5.6) to k = 0 and k = n. For this purpose for
k = 0 we solve the system of these three equations in the unknowns ε0, χ0,m0, and for k = n in the unknowns
εn, χn,mn. By Proposition 2.2 both systems admit Lipschitz continuous right hand sides, which implies that
ε0, χ0,m0 and εn, χn,mn are determined uniquely. In this way (5.1) makes sense for all k = 0, . . . , n; thus we
can take space increments as follows

u̇k − u̇k−1 = εk − εk−1 + P [mk, χk, εk]− P [mk−1, χk−1, εk−1] + ε̇k − ε̇k−1 − θk + θk−1, (6.16)

for all k = 1, . . . , n. The summation by parts formula (6.1) gives

n

n∑
k=1

(u̇k − u̇k−1)2 = −n
n−1∑
k=1

u̇k(u̇k+1 − 2u̇k + u̇k−1),

hence, by (5.1)–(5.2) and (6.16),

n

n∑
k=1

(εk − εk−1 + P [mk, χk, εk]− P [mk−1, χk−1, εk−1] + ε̇k − ε̇k−1 − θk + θk−1)2

=
1

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P [mk, χk, εk] + ε̇k − θk + θref). (6.17)

Using the implication (a+ b)2 = X ⇒ a2/2 ≤ 3b2 +X, ∀ a, b,X ∈ R, we estimate the first term in the left hand
side of (6.17) as follows

n

n∑
k=1

((εk − εk−1)2 + (ε̇k − ε̇k−1)2) +
d

dt

[
n

n∑
k=1

(εk − εk−1)2

]

= n

n∑
k=1

((εk − εk−1) + (ε̇k − ε̇k−1))2 ≤ 6n

n∑
k=1

(
(P [mk, χk, εk]− P [mk−1, χk−1, εk−1])2 + (θk − θk−1)2

)
+

2

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P [mk, χk, εk] + ε̇k − θk + θref). (6.18)

On the other hand we have

1

n

n−1∑
k=1

(ẅk − ε̈k − ḟk)(εk + P [mk, χk, εk] + ε̇k − θk + θref)
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=
1

n

n−1∑
k=1

(ẅk − ε̈k)ε̇k +
1

n

n−1∑
k=1

(ẅk − ε̈k)(εk + P [mk, χk, εk]− θk + θref)

− 1

n

n−1∑
k=1

ḟk(εk + P [mk, χk, εk] + ε̇k − θk + θref). (6.19)

In particular, using (5.3) we deduce

1

n

n−1∑
k=1

(ẅk − ε̈k)ε̇k =

n−1∑
k=1

ẅk n (ẇk+1 − 2ẇk + ẇk−1)− 1

2n

d

dt

[
n−1∑
k=1

ε̇2k

]

= − d

dt

(
n

2

n∑
k=1

(ẇk − ẇk−1)2 +
1

2n

n−1∑
k=1

ε̇2k

)
, (6.20)

where we exploited integration by parts and the boundary conditions for wk. Putting together all the estimates
we finally obtain

d

dt

(
n

2

n∑
k=1

(ẇk − ẇk−1)2 +
1

2n

n−1∑
k=1

ε̇2k + n

n∑
k=1

(εk − εk−1)2

)

+ n

n∑
k=1

(
(εk − εk−1)2 + (ε̇k − ε̇k−1)2

)
≤ C

(
n

n∑
k=1

(
(P [mk, χk, εk]− P [mk−1, χk−1, εk−1])2 + (θk − θk−1)2

)
+

1

n

n−1∑
k=1

|ḟk| |εk + P [mk, χk, εk] + ε̇k − θk + θref |

+
d

dt

(
1

n

n−1∑
k=1

(ẇk − ε̇k)(εk + P [mk, χk, εk]− θk + θref)

)

+
1

n

n−1∑
k=1

|ẇk − ε̇k||ε̇k + P [mk, χk, εk]t − θ̇k|

)
=: H1 +H2 +H3 +H4. (6.21)

Let us deal first with the last three terms. Note that we have

|P [mk, χk, εk]t| ≤
∣∣∣∣ṁk

∫ ∞
0

ϕm(mk, χk, r)sr[εk] dr

∣∣∣∣
+

∣∣∣∣χ̇k ∫ ∞
0

ϕχ(mk, χk, r)sr[εk] dr

∣∣∣∣+

∣∣∣∣∫ ∞
0

ϕ(mk, χk, r)(sr[εk])t dr

∣∣∣∣ .
By (2.2) we have |sr[εk]| ≤ r, and Proposition 2.2 (iv), together with (5.6), (5.5), (2.9), and Hypothesis 4.1 (i),
(iii), (vi) yield

|sr[εk]t| ≤ |ε̇k|, (6.22)

|ṁk| ≤ | − h(χ̇k) +D∗k| ≤ C

(
|χ̇k|+

1

n

n−1∑
k=1

|ε̇k|

)
, (6.23)

|χ̇k| ≤ C(1 + θk) a.e. (6.24)
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From Hypothesis 4.1 (i) we thus obtain the bound

|P [mk, χk, εk]t| ≤ C

(
1 + θk +

1

n

n−1∑
k=1

|ε̇k|

)
, (6.25)

and this enables us to obtain the following estimates for the last three terms on the right hand side of (6.21):

H2 :=

∫ t

0

1

n

n−1∑
k=1

|ḟk| |εk + P [mk, χk, εk] + ε̇k − θk + θref |dτ ≤ C, (6.26)

H3 :=
1

n

n−1∑
k=1

(ẇk − ε̇k)(εk + P [mk, χk, εk]− θk + θref)

≤ C

1 +

(
1

n

n−1∑
k=1

ε̇2k

)1/2
1 +

(
1

n

n−1∑
k=1

θ2k

)1/2
 (6.27)

≤ 1

4n

n−1∑
k=1

ε̇2k + C

(
1 +

1

n

∫ t

0

n−1∑
k=1

θ̇2k dτ

)1/2

,

where we used Hölder’s inequality together with the a priori estimates obtained before (6.11), (6.14), (6.15)
and Hypothesis 4.1 (i), (vi), and also

H4 :=

∫ t

0

1

n

n−1∑
k=1

|ẇk − ε̇k||ε̇k + P [mk, χk, εk]t − θ̇k|dτ ≤ C

(
1 +

(∫ t

0

1

n

n−1∑
k=1

θ̇2k dτ
)1/2)

, (6.28)

where we used in addition also (6.25). Here and in the sequel the constants C are independent of n.
It is a bit more complicated to deal with the term H1. First of all we have by Proposition 2.2 and Hypothesis

4.1 (i)

|P [mk, χk, εk](t)− P [mk−1, χk−1, εk−1](t)|

=

∣∣∣∣∫ ∞
0

(ϕ(mk, χk, r)sr[εk]− ϕ(mk−1, χk−1, r)sr[εk−1]) dr

∣∣∣∣
=

∣∣∣∣∣
∫ ∞
0

(
(ϕ(mk, χk, r)− ϕ(mk−1, χk, r)) sr[εk] (6.29)

+ (ϕ(mk−1, χk, r)− ϕ(mk−1, χk−1, r)) sr[εk] dr

)
+

∫ ∞
0

ϕ(mk−1, χk−1, r)(sr[εk]− sr[εk−1]) dr

∣∣∣∣∣ (6.30)

≤ C

(
|mk −mk−1|+ |χk − χk−1|+

∫ t

0

|ε̇k(τ)− ε̇k−1(τ)|dτ
)
,

where we have by (5.6), Proposition 2.2 (ii), Hypothesis 4.1 (i), (iii), (vi), (2.9), (5.5) and the discrete version of
the Hölder inequality that
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|mk −mk−1| ≤ C

∫ t

0

(
|χ̇k − χ̇k−1|+

1

n

n−1∑
k=1

|λk−j − λk−j−1|Dj(τ)

)
dτ

≤ C

∫ t

0

(
|χ̇k − χ̇k−1|+

1

n

n−1∑
k=1

|ε̇j ||λk−j − λk−j−1|

)
dτ

≤ C

(∫ t

0

|χ̇k − χ̇k−1|dτ +
1

n2

∫ t

0

n−1∑
k=1

|ε̇j |dτ

)
. (6.31)

Moreover by (5.5), Proposition 2.2 (ii) and Hypothesis 4.1 (i) we have

|χ̇k − χ̇k−1|+
d

dt
|χk − χk−1| ≤ C

(
|θk − θk−1|

+

∫ ∞
0

(
ϕχ(mk, χk, r)s

2
r[εk](τ)− ϕχ(mk−1, χk−1, r)s

2
r[εk−1](τ)

)
dr

)
≤ C

[
|θk − θk−1|+

∫ ∞
0

(
|ϕχ(mk, χk, r)− ϕχ(mk−1, χk, r) + ϕχ(mk−1, χk, r) (6.32)

−ϕχ(mk−1, χk−1, r)|s2r[εk](t) + ϕχ(mk−1, χk−1, r)(s
2
r[εk]− s2r[εk−1])(t)

)
dr

]
≤ C

(
|θk − θk−1|+ |mk −mk−1|+ |χk − χk−1|+

∫ ∞
0

ϕχ(mk−1, χk−1, r)(s
2
r[εk]− s2r[εk−1])(t) dr

)
. (6.33)

After integrating, we estimate the second term on the left hand side using Hypothesis 4.1 (i), Proposition 2.2 (iii)
and finally Gronwall’s lemma as

|χk − χk−1| ≤ |χ0
k − χ0

k−1|+ C

∫ t

0

(
|θk − θk−1|+ |mk −mk−1|+

∫ τ

0

|ε̇k(τ ′)− ε̇k−1(τ ′)|dτ ′
)

dτ.

Plugging this back into the right hand side of (6.32) we have

|χ̇k − χ̇k−1|+
d

dt
|χk − χk−1| ≤ C

(
|χ0
k − χ0

k−1|+ |θk − θk−1|+ |mk −mk−1|
)

+

∫ t

0

(|θk − θk−1|+ |mk −mk−1|+ |ε̇k − ε̇k−1|) dτ.

(6.34)

Integrating (6.34) in time and exploiting (6.15), estimate (6.31) becomes

|mk −mk−1| ≤ C

(∫ t

0

|χ̇k − χ̇k−1|dτ +
1

n2

∫ t

0

n−1∑
k=1

|ε̇j |dτ

)

≤ C

(
|χ0
k − χ0

k−1|+
∫ t

0

(|θk − θk−1|+ |mk −mk−1|+ |ε̇k − ε̇k−1|) dτ +
1

n

)
, (6.35)

We now integrate (6.21) in time. The bound for the initial condition

1

2n

n−1∑
k=1

ε̇2k(0) + n

n∑
k=1

(εk − εk−1)2(0) + n

n∑
k=1

(ẇk − ẇk−1)2(0) ≤ C,

can be derived as follows: for the last term, we use (6.11); for the second term we use the initial condition
w(x, 0) = 0 and (5.3); finally for the first one, we consider equation (5.2) for t = 0 (together with the initial
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conditions (5.7)) and test it by ε̇k(0), then we use once more (6.11). At this point, we conclude from the above
considerations that

1

2n

n−1∑
k=1

ε̇2k(t) + n

n∑
k=1

(εk − εk−1)2(t) +

∫ t

0

n

n∑
k=1

(ε̇k − ε̇k−1)2(τ) dτ

≤ C

(
1 +

1

n

n−1∑
k=1

θ2k(t) +

(∫ t

0

1

n

n−1∑
k=1

θ̇2k(τ) dτ

)1/2

+

∫ t

0

n

n∑
k=1

(θk − θk−1)2(τ) dτ

+

∫ t

0

∫ τ

0

n

n∑
k=1

(ε̇k − ε̇k−1)2(τ ′) dτ ′ dτ

)
.

Gronwall’s argument and (6.14) then yields

1

2n

n−1∑
k=1

ε̇2k(t) + n

n∑
k=1

(εk − εk−1)2(t) +

∫ t

0

n

n∑
k=1

(ε̇k − ε̇k−1)2(τ) dτ

≤ C

1 +

(∫ t

0

1

n

n−1∑
k=1

θ̇2k(τ) dτ

)1/2

+

∫ t

0

n

n∑
k=1

(θk − θk−1)2(τ) dτ

 . (6.36)

We need now more regularity for the temperature. To this aim we now test (5.4) by θk. The presence of the
additional term in (5.4) this time provides no further difficulties, due to the fact that the term (Mk − L) is
bounded (in absolute value), therefore we can use Hypothesis 2.1 (i) and (vii) and (6.22)–(6.24) together with
(2.9) to obtain

d

dt

(
1

n

n−1∑
k=1

θ2k

)
+ n

n∑
k=1

(θk − θk−1)2 ≤ C

(
1 +

1

n

n−1∑
k=1

(
ε̇2k + θk + |ε̇k|(1 + θk)

)
θk

)
.

The estimate of the right hand side of the previous inequality follows exactly as in [13], getting at the end

1

n

n−1∑
k=1

θ2k(t) +

∫ t

0

n

n∑
k=1

(θk − θk−1)2(τ) dτ ≤ C

1 +

(∫ t

0

1

n

n−1∑
k=1

ε̇4k dτ

)1/2
 . (6.37)

Finally, we test (5.4) by θ̇k and obtain from Hölder’s inequality that (also in this case the additional term brings
no major difficulties)∫ τ

0

1

n

n−1∑
k=1

θ̇2k(τ ′) dτ ′ + n

n∑
k=1

(θk − θk−1)2(τ) ≤ C1

(
1 +

∫ t

0

1

n

n−1∑
k=1

ε̇4k dτ +

∫ t

0

1

n

n−1∑
k=1

θ4k dτ

)
(6.38)

for any τ ∈ [0, t] and for some C1 > 0 that will be needed in a moment. The last term in the right hand side
can be estimated using the discrete Gagliardo-Nirenberg inequality

|v|q ≤ C
(
|v|s + |v|1−%s |Dv|%p

)
, % =

1
s −

1
q

1 + 1
s −

1
p

, v = (v0, v1, . . . , vn), (6.39)

where we set

|v|p :=

(
1

n

n∑
k=0

|vk|p
)1/p

, |Dv|p :=

(
np−1

n∑
k=1

|vk − vk−1|p
)1/p

if 1 ≤ p <∞
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and

|v|∞ := max
k=1,...,n

|vk| if p =∞.

Applying (6.39) with the choices q =∞, s = 1, p = 2, % = 2/3, we get

∫ t

0

1

n

n−1∑
k=1

θ4k dτ ≤ C max
τ∈[0,t]

max
i=1,...,n

θ
4/3
i (τ) ≤ C max

τ∈[0,t]

1 +

(
n

n∑
k=1

(θk − θk−1)2(τ)

)4/9


≤ C +
4

9C1

(
max
τ∈[0,t]

n

n∑
k=1

(θk − θk−1)2(τ)

)

with C1 as in (6.38), and where we employed also (6.11), (6.14) and Young’s inequality. Passing to the maxτ∈[0,t]
in (6.38) and absorbing the last term of the previous inequality in the left hand side, we thus obtain∫ t

0

1

n

n−1∑
k=1

θ̇2k(τ) dτ + n

n∑
k=1

(θk − θk−1)2(t) ≤ C

(
1 +

∫ t

0

1

n

n−1∑
k=1

ε̇4k dτ

)

which in turn gives, by (6.36),

1

n

n−1∑
k=1

ε̇2k(t) + n

∫ t

0

n∑
k=1

(ε̇k − ε̇k−1)2(τ) dτ ≤ C

1 +

(∫ t

0

1

n

n−1∑
k=1

ε̇4k dτ

)1/2
 .

The last term in the right hand side can be estimated using once more the Gagliardo Nirenberg inequality (6.39)
with the choices q = 4, p = s = 2, % = 1/4. Absorbing the resulting terms in the left hand side, we finally get
that there exists a constant C > 0 such that

1

n

n−1∑
k=1

ε̇2k(t) +

∫ t

0

n

n∑
k=1

(ε̇k − ε̇k−1)2(τ) dτ +

∫ t

0

1

n

n−1∑
k=1

(ε̇4k + ε4k)(τ) dτ ≤ C, (6.40)

∫ t

0

1

n

n−1∑
k=1

(θ4k + θ̇2k)(τ) dτ + n

n∑
k=1

(θk − θk−1)2(t) ≤ C, (6.41)

for t ∈ [0, T ]. From (6.41) it follows that

max
t∈[0,T ]

max
i=1,...,n

θi(t) ≤ C,

hence

max
t∈[0,T ]

max
i=1,...,n

|χ̇i(t)| ≤ C

and so finally

max
t∈[0,T ]

max
i=1,...,n

(θi(t) + |χ̇i(t)|+ |ṁi(t)|) ≤ C. (6.42)

By comparison of the terms in (5.4), we also have∫ t

0

n3
n−1∑
k=1

(θk+1 − 2θk + θk−1)2(τ) dτ ≤ C, (6.43)
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and similarly for uk by (5.2). Finally, we differentiate (5.1) once in t and test by ε̈k, (5.2) twice in t and test by
ẅk, and sum the two equations up. The dependence of P upon χk this time brings no additional problems due
to the fact that we already estimated this term in (6.25). Therefore using (6.40)–(6.41) and treating the initial
conditions as in [13], we get the final estimate

1

n

n−1∑
k=1

ẅ2
k(t) + n

n∑
k=1

(ẅk − ẅk−1)2(t) +

∫ t

0

1

n

n−1∑
k=1

ε̈2k(τ) dτ ≤ C. (6.44)

7. Passage to the limit

Let us set ∆kϕ = n(ϕk − ϕk−1) and ∆2
kϕ = n2(ϕk+1 − 2ϕk + ϕk−1), for a given sequence {ϕk : k =

0, 1, . . . , n} with the aim to define correspondingly piecewise constant, piecewise linear and piecewise quadratic
interpolations

ϕ̄(n)(x) =

{
ϕk for x ∈

[
k−1
n , kn

)
, k = 1, . . . , n− 1,

ϕn−1 for x ∈
[
n−1
n , 1

]
,

(7.1)

ϕ̂(n)(x) = ϕk−1 +
(
x− k−1

n

)
∆kϕ for x ∈

[
k−1
n , kn

)
, k = 1, . . . , n, (7.2)

ϕ̃(n)(x) =


1
2 (ϕk−1 + ϕk) +

(
x− k−1

n

)
∆kϕ+ 1

2

(
x− k−1

n

)2
∆2
kϕ

for x ∈
[
k−1
n , kn

)
, k = 1, . . . , n− 1 ,

1
2 (ϕn−1 + ϕn) +

(
x− n−1

n

)
∆nϕ+ 1

2

(
x− n−1

n

)2
∆2
n−1ϕ

for x ∈
[
n−1
n , 1

]
.

(7.3)

We also define

λ(n)(x, y) = λk−j for (x, y) ∈
[
k − 1

n
,
k

n

)
×
[
j − 1

n
,
j

n

)
. (7.4)

In the previous section we derived a priori estimates for the functions ε̄(n), θ̄(n), ū(n), w̄(n), χ̄(n), m̄(n), ε̂(n),
θ̃(n), ũ(n), w̃(n), (6.40)–(6.44) that we rewrite in the form

∣∣ε̄(n)t (t)
∣∣2
2

+

∫ t

0

∣∣ε̂(n)xt (τ)
∣∣2
2

dτ +

∫ t

0

(∣∣ε̄(n)t (τ)
∣∣4
4

+
∣∣ε̄(n)(τ)

∣∣4
4

)
dτ ≤ C, (7.5)∫ t

0

(∣∣θ̄(n)t (τ)
∣∣2
2

+
∣∣θ̄(n)(τ)

∣∣4
4

)
dτ +

∣∣θ̂(n)x (t)
∣∣2
2
≤ C, (7.6)∫ t

0

∣∣θ̃(n)xx (τ)
∣∣2
2

dτ ≤ C, (7.7)

∣∣w̄(n)
tt (t)

∣∣2
2

+
∣∣ŵ(n)
xtt (t)

∣∣2
2

+

∫ t

0

∣∣ε̄(n)tt (τ)
∣∣2
2

dτ ≤ C, (7.8)

|θ̄(t)(n)|∞ + |χ̄t(t)(n)|∞ + |m̄t(t)
(n)|∞ ≤ C; (7.9)

moreover by (5.2)–(5.3), ∫ t

0

(∣∣w̃(n)
xxt(τ)

∣∣2
2

+
∣∣ũ(n)xxt(τ)

∣∣2
2

)
dτ ≤ C, (7.10)
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and by (5.8), (6.42) ∫ t

0

∣∣ε̂tt(τ)
∣∣2
2

dτ ≤ C
(

1 +

∫ t

0

2

n

n−1∑
k=1

(
ε̈2k + θ̇2k

)
(τ) dτ

)
≤ C. (7.11)

On the other hand, the system (5.1)–(5.5) can be expressed in the form

ū
(n)
t = ε̄(n) + P [m̄(n), χ̄(n), ε̄(n)] + ε̄

(n)
t − (θ̄(n) − θref), (7.12)

w̄
(n)
t − ε̄(n)t = −ũ(n)xx + f̄ (n), (7.13)

ε̄(n) = w̃(n)
xx , (7.14)

θ̄
(n)
t = θ̃(n)xx + m̄

(n)
t K̄(n) + χ̄

(n)
t M̄(n) + D̄(n) + (ε̄

(n)
t )2 − θ̄(n)ε̄(n)t

+ ḡ(n)(θ̄(n))− Lχ̄(n)
t , (7.15)

χ̄(n)(x, t) = s[0,1][χ̄
(n)(0), Ā(n)(x, ·)](t), (7.16)

m̄(n)(x, t) = s[0,∞)[0, S̄
(n)(x, ·)](t) , (7.17)

Ā(n)(x, t) =

∫ t

0

1

γ

(
L

θref
(θ̄(n) − θref) + M̄(n)

)
(x, τ) dτ, (7.18)

M̄(n)(x, t) = −1

2

∫ ∞
0

ϕχ(m̄(n), χ̄(n), r)s2r[ε̄
(n)](x, t) dr, (7.19)

S̄(n)(x, t) =

∫ t

0

(
−h(χ̄

(n)
t (x, τ)) +

∫ 1

0

λ(n)(x, y)D̄(n)(y, τ) dy

)
(x, τ) dτ, (7.20)

D̄(n)(x, t) =

∫ ∞
0

ϕ(m̄(n), χ̄(n), r) sr[ε̄
(n)](ε̄(n) − sr[ε̄

(n)])t(x, t) dr, (7.21)

K̄(n)(x, t) = −1

2

∫ ∞
0

ϕm(m̄(n), χ̄(n), r)s2r[ε̄
(n)] dr, (7.22)

with χ̄(n)(0) chosen according to (5.7). Sobolev embedding theorems together with (7.5), (7.11) allow us to infer
the existence of a function ε ∈W 1,2(ΩT ) such that εxt, εtt ∈ L2(ΩT ), and a subsequence of {ε̂(n)}, still indexed
by n, such that

ε̂(n) → ε strongly in C(ΩT ) , ε̂
(n)
t → εt strongly in Lp(ΩT )

for all p > 1. Moreover

|ε̄(n)t − ε̂(n)t |2(x, t) ≤ |ε̇k − ε̇k−1|2(t)

for x ∈ [(k − 1)/n, k/n], so that∫ t

0

∫ 1

0

|ε̄(n)t − ε̂(n)t |2(x, τ) dx dτ ≤
∫ t

0

1

n

n∑
k=1

(ε̇k − ε̇k−1)2(τ) dτ ≤ C

n2

and

ε̄
(n)
t → εt strongly in L2(ΩT ). (7.23)

In an analogous way we can deduce that

ε̄(n) → ε strongly in L∞(ΩT ) (7.24)
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and we can also infer the existence of functions u,w, θ ∈ C(ΩT ) such that, up to subsequences when necessary,

w̃
(n)
xxt → εt = wxxt , ũ

(n)
xx → uxx strongly in L2(ΩT ),

θ̄
(n)
t → θt, θ̃

(n)
xx → θxx weakly in L2(ΩT ), θ̄(n) → θ strongly in L∞(ΩT ).

}
(7.25)

The main complications come when dealing with the phase terms. This time indeed we have by Proposition
2.2 (iii), for all n, l ∈ N

|χ̄(n) − χ̄(l)|(x, t) ≤
∫ t

0

|χ̄(n)
t − χ̄(l)

t |(x, τ) dτ

≤ C

[∫ t

0

(|θ̄(n) − θ̄(l)|+ |m̄(n) − m̄(l)|)(x, τ) dτ + max
τ∈[0,t]

|ε̄(n) − ε̄(l)|(x, τ)

]
+ |χ̄(n) − χ̄(l)|(x, 0). (7.26)

On the other hand, by Proposition 2.2 (ii) and by (7.17)–(7.21) we have, for all x ∈ (0, 1) that

|m̄(n) − m̄(l)|(x, t) ≤
∫ t

0

|m̄(n)
t − m̄(l)

t |(x, τ) dτ

≤ C

∫ t

0

|χ̄(n)
t − χ̄(l)

t |(x, τ) dτ (7.27)

+

∫ t

0

∫ 1

0

∫ ∞
0

∣∣∣∣λ(n)(x, y)ϕ(m̄(n), χ̄(n), r)δ(n)(y, t, r)

−λ(l)(x, y)ϕ(m̄(l), χ̄(l), r)δ(l)(y, t, r)

∣∣∣∣dr dy dτ,

(7.28)

where we denote

δ(n) = δ(n)(y, t, r) = sr[ε̄
(n)](ε̄(n) − sr[ε̄

(n)])t(y, t) = r|pr[ε̄(n)]t(y, t)|.

Now (7.27) implies

|m̄(n) − m̄(l)|(x, t) ≤ C
∫ t

0

|m̄(n)
t − m̄(l)

t |(x, τ) dτ

≤ C

[∫ t

0

(|θ̄(n) − θ̄(l)|+ |m̄(n) − m̄(l)|)(x, τ) dτ + max
τ∈[0,t]

|ε̄(n) − ε̄(l)|(x, τ)

]
+ |χ̄(n) − χ̄(l)|(x, 0) (7.29)

+

∫ t

0

∫ 1

0

∫ ∞
0

λ(n)(x, y)ϕ(m̄(n), χ̄(n), r)|δ(n) − δ(l)|(y, t, r) dr dy dτ

+

∫ t

0

∫ 1

0

∫ ∞
0

λ(n)(x, y)|ϕ(m̄(n), χ̄(n), r)− ϕ(m̄(l), χ̄(l), r)|δ(l)(y, t, r) dr dy dτ

+

∫ t

0

∫ 1

0

∫ ∞
0

|λ(n)(x, y)− λ(l)(x, y)|ϕ(m̄(l), χ̄(l), r)|δ(l)(y, t, r) dr dy dτ.

Proposition 2.2 (ii) allows us to conclude that∫ t

0

|δ(n) − δ(l)|(y, τ) dτ ≤ r
∫ t

0

|ε̄(n)t − ε̄(l)t |(y, τ) dτ,
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hence ∫ t

0

∫ 1

0

∫ ∞
0

λ(n)(x, y)ϕ(m̄(n), χ̄(n), r)|δ(n) − δ(l)|dr dy dτ ≤ C

∫ t

0

∫ 1

0

|ε̄(n)t − ε̄(l)t |(y, τ) dy dτ

by Hypothesis 4.1 (i), (iii). In a similar way, exploiting again Hypothesis 4.1 (i), we have∫ t

0

∫ 1

0

∫ ∞
0

δ(l)λ(n)(x, y)|ϕ(m̄(n), χ̄(n), r)− ϕ(m̄(l), χ̄(l), r)|dr dy dτ

≤ C

∫ t

0

(∫ 1

0

|ε̄(l)t (y, τ)|dy
)

max
x∈(0,1)

(
|m(n)(x, τ)−m(l)(x, τ)|+ |χ(n)(x, τ)− χ(l)(x, τ)|

)
dτ. (7.30)

Combining (7.26)–(7.31) and the pointwise bound

|λ(n)(x, y)− λ(l)(x, y)| ≤ 4Λ

min{n, l}
(7.31)

we obtain the following inequality:

max
x∈(0,1)

(
|m̄(n) − m̄(l)|(x, t) + |χ̄(n) − χ̄(l)|(x, t)

)
≤ max

x∈(0,1)

∫ t

0

(
|m̄(n)

t − m̄(l)
t |(x, τ) + |χ̄(n)

t − χ̄(l)
t |(x, τ)

)
dτ

≤ qnl + C

∫ t

0

(∫ 1

0

|ε̄(l)t (y, τ)|dy
)

max
x∈(0,1)

(
|m̄(n) − m̄(l)|(x, τ) + |χ̄(n) − χ̄(l)|(x, τ)

)
dτ, (7.32)

with

qnl = C

(
1

min{n, l}
+ |χ̄(n)(·, 0)− χ̄(l)(·, 0)|∞ + ‖θ̄(n) − θ̄(l)‖∞ + ‖ε̄(n)t − ε̄(l)t ‖1 + ‖ε̄(n) − ε̄(l)‖∞

)
.

Arguing as in [13], it is possible to prove that qnl is small if n, l are large, hence, m̄(n) and χ̄(n) are Cauchy
sequences, and this gives

m̄(n) → m strongly in L∞(ΩT ),

χ̄(n) → χ strongly in L∞(ΩT ),

and, by (7.32),

m̄
(n)
t → mt strongly in L∞(0, 1;L1(0, T ))

χ̄
(n)
t → χt strongly in L∞(0, 1;L1(0, T )).

By virtue of (6.42), m̄
(n)
t and χ̄

(n)
t are uniformly bounded in L∞(ΩT ), hence

m̄
(n)
t → mt, χ̄

(n)
t → χt in L∞(ΩT ) weakly star.

Also in this case when the Prandtl-Ishlinskii density function depends on χ, using the convergences (7.23),
(7.24), and Proposition 2.2, we are able to conclude that D̄(n)(x, ·), K̄(n)(x, ·) converge for all x ∈ [0, 1] to
D[m,χ, ε](x, ·), K[m,χ, ε](x, ·), respectively, strongly in L2(0, T ). By the Lebesgue Dominated Convergence
Theorem, passing in L2(ΩT ) to the limit in (7.12)–(7.22), we conclude that (u,w, θ,m, χ) is a strong solution to
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(4.1)–(4.4) with the regularity indicated in Theorem 4.2 and satisfying the initial conditions (4.6). The boundary
conditions (4.7) hold by arguing exactly as in [13].

8. Proof of the uniqueness

Let (u,w, θ, χ,m), (ũ, w̃, θ̃, χ̃, m̃) be two solutions to (4.1)–(4.7), with the regularity as in Theorem 4.2, and
with the same initial conditions and the same right hand sides.

We take the difference of (4.3) for θ and θ̃ obtaining

c(θt − θ̃t)− κ(θxx − θ̃xx) = (D[m,χ,wxx]−D[m̃, χ̃, w̃xx])

+ν(w2
xxt − w̃2

xxt)− β(θ wxxt − θ̃w̃xxt)

−
(

1

2
mt

∫ ∞
0

ϕm(m,χ, r) s2r[wxx] dr − 1

2
m̃t

∫ ∞
0

ϕm(m̃, χ̃, r) s2r[w̃xx] dr

)
−
(

1

2
χt

∫ ∞
0

ϕχ(m,χ, r) s2r[wxx] dr − 1

2
χ̃t

∫ ∞
0

ϕm(m̃, χ̃, r) s2r[w̃xx] dr

)
−L(χt − χ̃t) + g(θ, x, t)− g(θ̃, x, t).

We integrate the previous inequality in time and estimate the terms in the right hand side. First of all we have∫ t

0

|D[m,χ,wxx]−D[m̃, χ̃, w̃xx]| (x, τ) dτ

=

∫ t

0

∣∣∣∣∫ ∞
0

rϕ(m,χ, r)|pr[wxx]t|dr −
∫ ∞
0

rϕ(m̃, χ̃, r)|pr[w̃xx]t|dr
∣∣∣∣ dτ

=

∫ t

0

∣∣∣∣∣
∫ ∞
0

r(ϕ(m,χ, r)− ϕ(m̃, χ, r))|pr[wxx]t|dr

+

∫ ∞
0

r(ϕ(m̃, χ, r)− ϕ(m̃, χ̃, r))|pr[wxx]t|dr +

∫ ∞
0

rϕ(m̃, χ̃, r)|pr[wxx]t − pr[w̃xx]t|dr

∣∣∣∣∣dτ
≤ C

∫ t

0

(|m− m̃||wxxt|+ |χ− χ̃||wxxt|+ |wxxt − w̃xxt|) (x, τ) dτ (8.1)

where we used Hypothesis 4.1 (i) and Proposition 2.2 (ii) and (iv). Furthermore,∫ t

0

|θwxxt − θ̃w̃xxt|(x, τ) dτ

≤
∫ t

0

|wxxt| |θ − θ̃|(x, τ) dτ +

∫ t

0

|θ̃| |wxxt − w̃xxt|(x, τ) dτ

≤
(∫ t

0

|wxxt|2(x, τ) dτ

)1/2(∫ t

0

|θ − θ̃|2(x, τ) dτ

)1/2

+ ‖θ̃‖∞
∫ t

0

|wxxt − w̃xxt|(x, τ) dτ

≤ C

[∫ t

0

|wxxt − w̃xxt|(x, τ) dτ +

(∫ t

0

|θ − θ̃|2(x, τ) dτ

)1/2
]

where we used (5.3), (6.15) and the regularity part of Theorem 4.2. Similarly∫ t

0

|w2
xxt − w̃2

xxt|(x, τ) dτ =

∫ t

0

(|wxxt − w̃xxt| |wxxt + w̃xxt|)(x, τ) dτ ≤ C

(∫ t

0

|wxxt − w̃xxt|2(x, τ) dτ

)1/2

.
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On the other hand, using again Hypothesis 4.1 (i) and Proposition 2.2 (ii),

1

2

∫ t

0

∣∣∣∣mt

∫ ∞
0

ϕm(m,χ, r)s2r[wxx] dr − m̃t

∫ ∞
0

ϕm(m̃, χ̃, r) s2r[w̃xx] dr

∣∣∣∣ dτ

=
1

2

∫ t

0

∣∣∣∣∣mt

∫ ∞
0

(ϕm(m,χ, r)− ϕm(m̃, χ, r))s2r[wxx] dr +mt

∫ ∞
0

(ϕm(m̃, χ, r)− ϕm(m̃, χ̃, r))s2r[wxx] dr

+mt

∫ ∞
0

ϕm(m̃, χ̃, r)(s2r[wxx]− s2r[w̃xx]) dr + (mt − m̃t)

∫ ∞
0

ϕm(m̃, χ̃, r)s2r[w̃xx] dr

∣∣∣∣∣dτ
≤ C

∫ t

0

(
|mt|(|m− m̃|+ |χ− χ̃|+ |wxxt − w̃xxt|) + |mt − m̃t|

)
(x, τ) dτ.

Arguing in a similar way

1

2

∫ t

0

∣∣∣∣χt ∫ ∞
0

ϕχ(m,χ, r)s2r[wxx] dr − χ̃t
∫ ∞
0

ϕχ(m̃, χ̃, r) s2r[w̃xx] dr

∣∣∣∣ dτ

=
1

2

∫ t

0

∣∣∣∣∣χt
∫ ∞
0

(ϕχ(m,χ, r)− ϕχ(m̃, χ, r))s2r[wxx] dr + χt

∫ ∞
0

(ϕχ(m̃, χ, r)− ϕχ(m̃, χ̃, r))s2r[wxx] dr

+χt

∫ ∞
0

ϕχ(m̃, χ̃, r)(s2r[wxx]− s2r[w̃xx]) dr + (χt − χ̃t)
∫ ∞
0

ϕχ(m̃, χ̃, r)s2r[w̃xx] dr

∣∣∣∣∣dτ
≤ C

∫ t

0

(
|χt|(|m− m̃|+ |χ− χ̃|+ |wxxt − w̃xxt|) + |χt − χ̃t|

)
(x, τ) dτ.

Our aim is now to estimate |mt− m̃t| and |χt− χ̃t| in terms of the corresponding quantities without derivatives,
with the purpose to apply Gronwall’s lemma. Arguing in a similar way as we did in (7.26) we deduce

|χ− χ̃|(x, t) ≤
∫ t

0

|χt − χ̃t|(x, τ) dτ ≤ C

∫ t

0

(|θ − θ̃|+ |m− m̃|+ |wxxt − w̃xxt|)(x, τ) dτ, (8.2)

while, by Proposition 2.2 (ii) together with (3.12), (3.14) and (8.1),

|m− m̃|(x, t) ≤
∫ t

0

|mt − m̃t|(x, τ) dτ (8.3)

≤ C

∫ t

0

(
|χt − χ̃t|(x, τ) +

∫ 1

0

(|m− m̃||wxxt|+ |χ− χ̃||wxxt|+ |wxxt − w̃xxt|)(y, τ) dy

)
dτ.

We observe that, again by (5.3) and (6.15),

∫ t

0

∫ 1

0

|m− m̃||wxxt| dy dτ ≤ C

∫ t

0

(∫ 1

0

|m− m̃|2 dy

)1/2

dτ

and in a similar way ∫ t

0

∫ 1

0

|χ− χ̃||wxxt| dy dτ ≤ C

∫ t

0

(∫ 1

0

|χ− χ̃|2 dy

)1/2

dτ,

Plugging this back into (8.3) together with (8.2) we have
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|m− m̃|(x, t) ≤
∫ t

0

|mt − m̃t|(x, τ) dτ

≤ C

∫ t

0

(
|θ − θ̃|+ |m− m̃|(x, τ) + |wxxt − w̃xxt|)(x, τ) +

∫ 1

0

|wxxt − w̃xxt|(y, τ) dy

)
dτ

+C

∫ t

0

(∫ 1

0

|m− m̃|2 dy

)1/2

dτ + C

∫ t

0

(∫ 1

0

|χ− χ̃|2 dy

)1/2

dτ.

Then (8.2) and (8.4) imply

|m− m̃|2(x, t) + |χ− χ̃|2(x, t) ≤ C

(∫ t

0

(|θ − θ̃|2 + |m− m̃|2 + |wxxt − w̃xxt|2)(x, τ) dτ

+

∫ t

0

∫ 1

0

(|m− m̃|2 + |χ− χ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)
.

Integrating in space and exploiting Gronwall’s argument we deduce∫ 1

0

(
|m− m̃|2 + |χ− χ̃|2

)
(y, t) dy ≤ C

(∫ 1

0

∫ t

0

(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy dτ

)
. (8.4)

We now go back to (8.2) and (8.4), which together with the above estimate imply

|m− m̃|(x, t) ≤
∫ t

0

|mt − m̃t|(x, τ) dτ ≤
∫ t

0

(|mt − m̃t|+ |χt − χ̃t|)(x, τ) dτ

≤ C

(∫ t

0

(|θ − θ̃|+ |m− m̃|+ |wxxt − w̃xxt|)(x, τ) dτ

+

∫ t

0

(∫ 1

0

(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy

)1/2

dτ

)
.

A further application of Gronwall’s lemma to the term |m− m̃| produces the desired inequality∫ t

0

(|mt − m̃t|+ |χt − χ̃t|)(x, τ) dτ ≤ C

(∫ t

0

(|θ − θ̃|+ |wxxt − w̃xxt|)(x, τ) dτ +

+

∫ t

0

(∫ 1

0

(|θ − θ̃|2 + |wxxt − w̃xxt|2)(y, τ) dy

)1/2

dτ

)
.

We finally observe that, by Hypothesis 4.1 (vii),∫ t

0

|g(θ, x, τ)− g(θ̃, x, τ)|dτ ≤ C

∫ t

0

|θ − θ̃|dτ.

Now the conclusion comes arguing as in [13]: indeed we integrate in time from 0 to t the difference of (4.3) for θ
and θ̃ testing the result by θ(x, t)− θ̃(x, t), and then we integrate in x. Taking into account the above estimates
we get ∫ 1

0

|θ − θ̃|2(x, t) dx+
1

2

d

dt

∫ 1

0

(∫ t

0

(θx − θ̃x)(x, τ) dτ

)2

dx

≤ C

∫ t

0

∫ 1

0

(|wxxt − w̃xxt|2 + |θ − θ̃|2)(x, τ) dx dτ. (8.5)
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Next we test the difference of the time derivatives of (4.2) for w and w̃ by wt − w̃t, the difference of (4.1) for
u and ũ by wxxt − w̃xxt and sum up. The only difference with [13] is that now the Preisach operator depends
also on χ, thus by Hypothesis 4.1 (i) and Proposition 2.2 (ii) we get

|P [m,χ,wxx]− P [m̃, χ̃, w̃xx]|

=

∣∣∣∣∫ ∞
0

(ϕ(m,χ, r)sr[wxx]− ϕ(m̃, χ̃, r)sr[w̃xx]) dr

∣∣∣∣
=

∣∣∣∣∣
∫ ∞
0

(
(ϕ(m,χ, r)− ϕ(m̃, χ, r)) sr[wxx]

+ (ϕ(m̃, χ, r)− ϕ(m̃, χ̃, r)) sr[wxx] dr

)
+

∫ ∞
0

ϕ(m̃, χ̃, r)(sr[wxx]− sr[w̃xx]) dr

∣∣∣∣∣
≤ C

(
|m− m̃|+ |χ− χ̃|+

∫ t

0

|wxxt − w̃xxt|dτ
)
.

Arguing as above, after integration in space we obtain using (8.4)

1

2

d

dt

∫ 1

0

(
(wt − w̃t)2 + (wxt − w̃xt)2 + (wxx − w̃xx)2

)
(x, t) dx+

∫ 1

0

|wxxt − w̃xxt|2(x, t) dx

≤ C

(∫ 1

0

|θ − θ̃|2(x, t) dx+

∫ t

0

∫ 1

0

|wxxt − w̃xxt|2(x, t) dxdτ

)
. (8.6)

We now multiply (8.5) by 2C and add the result to (8.6) to get∫ 1

0

(|wxxt − w̃xxt|2 + C|θ − θ̃|2)(x, t) dx

+
1

2

d

dt

∫ 1

0

[
2C

(∫ t

0

(θx − θ̃x)(x, τ) dτ

)2

+ (wt − w̃t)2 + (wxt − w̃xt)2 + (wxx − w̃xx)2
]
(x, t) dx

≤ (C + 2C2)

∫ t

0

∫ 1

0

(|wxxt − w̃xxt|2 + |θ − θ̃|2)(x, τ) dxdτ.

Hence applying Gronwall’s lemma we infer that w = w̃, θ = θ̃, and the proof of Theorem 4.2 is complete.
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