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Exceptional Dehn Surgeries on Some
Infinite Series of Hyperbolic Knots and
Links

Alberto Cavicchioli and Fulvia Spaggiari

Abstract. We study closed connected orientable 3-manifolds obtained
by Dehn surgery along the oriented components of a link, introduced
and considered by Motegi and Song (2005) and Ichihara et al. (2008).
For such manifolds, we find a finite balanced group presentation of the
fundamental group and describe exceptional surgeries. This allows us
to construct an infinite family of tunnel number one strongly invertible
hyperbolic knots with three parameters, which admit toroidal surgeries
and Seifert fibered surgeries. Among the obtained results, we mention
that for every integer n > 5 there are infinitely many hyperbolic knots
in the 3–sphere, whose (n − 2) and (n + 1)-surgeries are toroidal, and
(n− 1) and n-surgeries are Seifert fibered.
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1. Introduction

Dehn surgery on links with rational coefficients is a basic method for con-
structing closed connected orientable 3-manifolds. In the early 1960’, Licko-
rish [17] proved that all such manifolds can be obtained by Dehn surgeries
on links in the oriented 3-sphere. Kirby [16] and Rolfsen [33] found an equiv-
alence relation on the class of all links with rational coefficients with the
property that two such links are equivalent if and only if they represent the
same surgery manifold. If the link is hyperbolic, then the Thurston–Jorgensen
theory [38] of hyperbolic surgery implies that the resulting manifolds are hy-
perbolic for almost all surgery coefficients. Non-hyperbolic surgeries are called
exceptional, as they can produce reducible manifolds, Seifert manifolds, lens
spaces (possibly, including the 3-sphere), or closed 3-manifolds which contain
incompressible tori (that is, toroidal manifolds).
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A Dehn surgery is called a Seifert fibering surgery if it yields a Seifert
fibered manifold. See [29] for a basic reference on Seifert manifolds. It has
been conjectured that nontrivial Seifert fibering surgeries on knots in the
oriented 3-sphere are integral surgeries unless the knot is a trivial knot, or a
torus knot, or a cable of a torus knot. This conjecture has been proved for
2-bridge knots by Brittenham and Wu [6], for satellite knots by Miyazaki and
Motegi [20–22] and Boyer and Zhang [5], and for hyperbolic alternating knots
by Ichihara [13]. Motegi and Song [27] proved that for each integer n, there
exists a tunnel number one hyperbolic knot Kn in the oriented 3-sphere such
that the n-surgery on Kn produces a small Seifert fibered space (with at most
three exceptional fibers). Miyazaki and Motegi [23] showed that if a periodic
knot K in the 3-sphere yields a Seifert fibered space by Dehn surgery, then
the quotient of K by the group action generated by any periodic map of K
is a torus knot (except for a special case).

A knot in the oriented 3-sphere is called an L-space knot if it admits a
nontrivial Dehn surgery yielding a lens space (possibly, including the standard
3-sphere). Concrete examples of infinitely many hyperbolic L-space knots
have been described by several authors. See, for example, [7,11,26], and [28].

A further conjecture states that a hyperbolic knot admits at most three
Dehn surgeries which yield closed toroidal 3-manifolds. Teragaito [35,36]
proved that there exist infinitely many hyperbolic knots which attain the
conjectural maximum number. Interestingly, those toroidal surgeries corre-
spond to consecutive integers. Successively, Teragaito [37] proved that for any
positive even integer m, there exists a hyperbolic knot such that its longitu-
dinal Dehn surgery yields a closed toroidal 3-manifold containing a unique
separating incompressible torus, which meets the core of the attached solid
torus in m points minimally. Ichihara et al. [14] provided a complete descrip-
tion of the exceptional surgeries on pretzel knots of type (−2, p, p) with p ≥ 5.
Such a knot admits a unique surgery yielding a toroidal 3-manifold with a
unique incompressible torus. On the other hand, all such pretzel knots have
not Seifert fibered surgeries.

Infinite family of hyperbolic (1, 1)-knots having exceptional Dehn surg-
eries has been described in [10]. Miyazaki and Motegi [27] showed that an
arbitrary knot can be deformed into a hyperbolic knot with no exceptional
surgeries by a single crossing change. Applications of Dehn surgery theory
to codimension two PL embeddings of spheres and peripheral acyclicity in
3-manifolds can be found in Cencelj et al. [12] and Repovš [31], respectively.

In this paper we study the closed orientable manifolds obtained by Dehn
surgeries on the components of a link, first considered by Motegi and Song
in [27] (see also [15]). Then we derive some applications on the exceptional
surgeries on a 3-parametrized family of hyperbolic knots. The obtained re-
sults extend and complete those given in the quoted papers. Among them, we
show that for every integer n > 5 there are infinitely many tunnel number one
hyperbolic knots in the oriented 3-sphere whose (n − 1)- and n-surgeries are
small Seifert fibered spaces and (n−2)- and (n+1)-surgeries are toroidal graph
manifolds. Furthermore, we also construct infinitely many tunnel number one
strongly invertible hyperbolic knots in the oriented 3-sphere whose −1 and
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1-surgeries give toroidal graph manifolds, and 0-surgery gives a Seifert fiber
space over S

2 with exactly three exceptional fibers. The proofs are based on
the combinatorial representations of closed manifolds by spines and surgery
on framed links. Spines and surgery descriptions of graph manifolds are dis-
cussed in a recent paper of the authors [8], which is most valuable to derive
the results presented here.

2. Dehn surgeries on the Motegi-Song link

In this section, we consider the closed connected orientable 3–manifolds M =
L(r/s; 1/k; 1/h; q/p) obtained by doing Dehn surgeries on the oriented com-
ponents of the link L = k ∪ t1 ∪ t2 ∪ c illustrated in Fig. 1.

This link was first considered by Motegi and Song in [27] and Ichihara et
al. in [15]; each component of L is a trivial knot in the standard 3–sphere. Of
course, we assume that the surgery along each component of L is not trivial
(�= ∞), and that (r, s) and (q, p) are pairs of coprime integers.

Now we determine a finite balanced presentation for the fundamental
group of M . A Wirtinger presentation of the link group π(L) ∼= π1(S3\L)
has generators x, y, z, w and relations x−1wx = zxz−1x−1w, yw = x−1wxy
and yz = zwyw−1. The meridians mi and the longitudes �i of the oriented

Figure 1. Dehn surgery description of the manifolds M =
L(r/s; 1/k; 1/h; q/p)
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components of L are:

c : m0 = x �0 = x−1w−1xz

k : m1 = y �1 = w−1z−1

t1 : m2 = z �2 = y−1x−1wxw−1x = wy−1w−1x

t2 : m3 = w �3 = y−1x−1

where [mi, �i] = 1, for every i = 0, 1, 2, 3.
A finite presentation for the fundamental group π1(M) of the surgery

manifold M = L(r/s; 1/k; 1/h; q/p) is obtained from that of π(L) by adding
the relations

mq
0�

p
0 = 1 mr

1�
s
1 = 1 m2�

k
2 = 1 m3�

h
3 = 1.

Now we improve the presentation of π1(M). Since the integers of the pairs
(q, p) and (r, s) are coprime, there are integer pairs (α, β) and (γ, δ) such that
pα − βq = 1 and sγ − rδ = 1.

Let us define

a := mα
0 �β

0 c := m2�
ξ
2

b := mγ
1�δ

1 d := m3�
η
3

where ξ = k − 1 and η = h − 1.
Then we have

ap = (mα
0 �β

0 )p = m0m
βq
0 �βp

0 = m0(m
q
0�

p
0)

β = m0 = x

bs = (mγ
1�δ

1)
s = m1mδr

1 �δs
1 = m1(mr

1�
s
1)

δ = m1 = y

ck = (m2�
ξ
2)

k = m2m
ξ
2�

ξk
2 = m2(m2�

k
2)

ξ = m2 = z

dh = (m3�
η
3)

h = m3m
η
3�

ηh
3 = m3(m3�

h
3 )η = m3 = w

a−q = (mα
0 �β

0 )−q = m−αq
0 �−αp

0 �0 = (mq
0�

p
0)

−α�0 = �0

b−r = (mγ
1�δ

1)
−r = m−γr

1 �−γs
1 �1 = (mr

1�
s
1)

−γ�1 = �1

c−1 = (m2�
ξ
2)

−1 = m−1
2 �−k

2 �2 = (m2�
k
2)

−1�2 = �2

d−1 = (m3�
η
3)

−1 = m−1
3 �−h

3 �3 = (m3�
h
3 )−1�3 = �3.

Substituting these relations into those of π(L) and using the corresponding
formulas for the longitudes �i, i = 0, 1, 2, 3, we get a finite group presenta-
tion for π1(M) with generators a, b, c, d and relations aq−pd−hapck = 1,
brd−hc−k = 1, c−1 = b−sa−pdhapd−hap and d−1 = b−sa−p. Eliminating the
generators c and d by using the last two relations yields a 2-generator group
presentation for π1(M).

Theorem 2.1. With the above notations, the fundamental group of the surgery
manifold M = L(r/s; 1/k; 1/h; q/p) admits the finite balanced group presen-
tation

π1(M) ∼= 〈a, b : aq(a−pb−s)hbr(b−sa−p)h = 1,

br(b−sa−p)h[b−s(bsap)h(b−sa−p)hap]k = 1〉.
.
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We determine conditions on the parameters for which the surgery manifolds
are Seifert fibered or toroidal. We say that a Seifert fiber space is of type
S
2((α1, β1) (α2, β2) (α3, β3)) if it has a Seifert fibration over the 2–sphere S

2

with ≤ 3 exceptional fibers of indices (αi, βi), for i = 1, 2, 3. This representa-
tion also includes lens spaces as a particular subclass. A compact orientable
3-manifold is called a graph manifold if it can be obtained by gluing several
copies of the manifolds D × S

1 and N × S
1 together by homeomorphisms of

some components of their boundaries. Here D is the 2-disk and N denotes the
2-disk with two holes. A closed connected 3-manifold is said to be toroidal if
it contains an incompressible torus.

The following result from [8,9] and [30] will be useful to classify the
homeomorphism type of exceptional surgeries.

Theorem 2.2. Let M be a closed connected prime 3–manifold whose funda-
mental group is presented by

〈x, y : (xpyq)t+1ynu = 1, (ynxm)r+1xps = 1〉
where |p|, |n| > 1, r, t ≥ 0, and the pairs (p,m), (n, q), (r+1, s) and (t+1, u)
are formed by coprime integers. Then we have

i) If r, t > 0, then M is homeomorphic to the toroidal graph manifold
defined by the invariants

(D (p,m) (r + 1, s)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (n, q) (t + 1, u)).

ii) If t = u = 0, then M is the Seifert fibered space of type

S
2((−r − 1, s) (−p,m) (q, n)).

Now we present the main results of the section.
Theorems 2.3, 2.4 and 2.5 provide a description of many exceptional surgeries
giving Seifert fibered manifolds (including lens spaces).

Theorem 2.3. Let M = L(r/s; 1/k; 1/h; q/p) be the surgery manifold obtained
from the framed link L in Fig. 1. Then we have

i) If r = s = 1, then M is the Seifert fiber space of type

S
2((−2k + 1,−k) (−2h + 1, h − 1) (q − p,−p)).

ii) If r = 0 and h = −1, then M is the Seifert fiber space of type

S
2((2, 1) (−3k + 1, 2k − 1) (q − 2p,−p)).

iii) If r = 0 and k = −1, then M is the Seifert fiber space of type

S
2((2,−1) (3h − 1, h) (q − 2p,−p)).

Remark. (1) For particular values of parameters, some manifolds, listed in
Theorem 2.3, may become lens spaces. For example, if q = p + 1 and
k = 1 − h in Theorem 2.3 (i), then M is the lens space L(ξ, η), where
ξ = |p|(2h − 1)2 and η = 2p(2h − 1) − 1. Again, if p = −1 and q = −3
in Theorem 2.3 (iii), then M is the lens space L(|7h − 3|, 7).



   88 Page 6 of 18 A. Cavicchioli, F. Spaggiari MJOM

(2) Theorem 2.3 (i) with p = 4−n, q = 3n−11, k = −2 and h = −1 gives an
alternative proof of Lemma 2.1 [27], that is, the resulting surgery man-
ifold is the Seifert fiber space of type S

2((5, 2) (3,−2) (4n − 15, n − 4)).
This result serves in [27] to show that for every n there is a hyperbolic
knot whose n–surgery is a small Seifert manifold.

(3) Theorem 2.3 (i) with p = 2n+2, q = 1−(2n+1)(2n+2), k = −n−1 and
h = −n gives an alternative proof of Lemma 2.5 from [15], that is, the
resulting surgery manifold is homeomorphic to the Seifert fiber space
of type S

2((2n + 3, n + 1) (2n + 1,−n − 1) ((2n + 1)(2n + 3), 2n + 2)).
This result serves in [15] to prove the existence of an infinite family
of hyperbolic fibered knots in S

3, each of which admits a longitudinal
Seifert fibered surgery.

Proof of Theorem 2.3. i) By Theorem 1.1, π1(M) has a balanced group pre-
sentation with generators a, b and relations

aq(a−pb−1)hb(b−1a−p)h = 1

and

b(b−1a−p)h[b−1(bap)h(b−1a−p)hap]k = 1.

Setting x = bap and y = a (with inverse relation b = xy−p), the first relation
becomes

yqx−hxy−p(ypx−1y−p)h = 1,

hence

yqx−hxx−hy−p = 1

or, equivalently,

x2h−1yp−q = 1.

This expression coincides with the relation (xpyq)t+1ynu = 1 in Theorem 2.2
with p = 2h − 1, q = p − q and t = u = 0.
The second relation becomes

xy−p(ypx−1y−p)h[ypx−1xh(ypx−1y−p)hyp]k = 1,

hence

xx−hy−p[ypxh−1ypx−h]k = 1

or, equivalently,

x1−hy−p[ypxh−1ypx−2h+1xh−1]k = 1.

From the first relation x−2h+1 commutes with x and y. Using this fact, the
second relation reduces to x1−hy−p(ypxh−1)2kxk(−2h+1) = 1, hence

(ypxh−1)2k−1xk(−2h+1) = 1.

This expression coincides with the relation (ynxm)r+1xps = 1 in Theo-
rem 2.2 with n = p, m = h − 1, r = 2k − 2, p = 2h − 1 (see above)
and s = −k. Now the result follows from Theorem 2.2 (ii). An alternative
proof can also be obtained by drawing extended Heegaard diagrams of genus
2 which induce the group presentation with generators x, y and relations
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x2h−1yp−q = 1 and xk(−2h+1)(ypxh−1)2k−1 = 1. All such diagrams are 2-
symmetric, that is, they admit an involution with six fixed points. Then by
[4,19,34] the represented manifolds are 2–fold branched coverings of S3. The
singular links of these branched coverings are equivalent to the Montesinos

links m
(

k

2k − 1
;

h − 1
−2h + 1

;
p

p − q

)
. So the result follows from [25].

ii) By Theorem 1.1, π1(M) has a balanced group presentation with
generators a, b and relations

aqba2pb = 1

and

apb[b−1a−pb−1apbap]k = 1.

Setting x = apbap and y = a (with inverse relation b = y−pxy−p), the first
relation becomes

yqy−pxy−py2py−pxy−p = 1,

hence

x2yq−2p = 1.

This expression coincides with the relation (xpyq)t+1ynu = 1 in Theorem 2.2
with p = 2, q = q − 2p and t = u = 0.
The second relation becomes

ypy−pxy−p[ypx−1ypy−pypx−1ypx]k = 1,

hence

xy−p[ypx−2xypx−2xypx]k = 1.

From the first relation x−2 commutes with y and x. So the second relation
becomes y−p(ypx)3kx−4k+1 = 1, hence (xyp)3ky−px−4k+1 = 1 or, equiva-
lently, (y−px−1)−3k+1x−4k+2 = 1. This expression coincides with the relation
(ynxm)r+1xps = 1 in Theorem 2.2 with n = −p, m = −1, r = −3k, p = 2
(see above) and s = −2k + 1.Then the result follows from Theorem 2.2 (ii).

iii) By Theorem 1.1, π1(M) has a balanced group presentation with
generators a, b and relations

aq(a−pb−1)h(b−1a−p)h = 1

and

(b−1a−p)ha−p(apb)h(a−pb−1)hb = 1.

Setting x = a and y = apb (with inverse relation b = x−py) yields a
balanced group presentation for π1(M) with generators x, y and relations
xq−2py−3h+1 = 1 and (y−hxp)2xq−2p = 1. The first relation coincides with
(xpyq)t+1ynu = 1 in Theorem 2.2 with p = q−2p, q = −3h+1 and t = u = 0.
The second relation coincides with (ynxm)r+1xps = 1 in Theorem 2.2 with
n = −h, m = p, r = 1, p = q − 2p (see above) and s = 1. Then the result
follows from Theorem 2.2 (ii). �

The next two results can be proved in the same way as done for Theo-
rem 2.3 above.
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Theorem 2.4. Let us consider the surgery manifold M = L(r/s; 1/k; 1/h; q/p)
for p = −1 and q = 1. Then we have

i) If r = 2 and s = 1, then M is the Seifert fiber space (SFS) of type

S
2((3,−1) (1 − h,−1) (k − 1, k − 2)).

If, in addition, h = 2, then M is the lens space L(|7k − 4|, 2k − 1).
ii) If r = 3 and s = 1, then M is homeomorphic to the lens space L(ξ, η),

where ξ = | − 4kh + 2(h + k) + 3| and η = 2kh − k − 2.

Theorem 2.5. Let us consider the surgery manifold M = L(r/s; 1/k; 1/h; q/p)
for p = −1 and h = 2. Then we have

i) If r = 2 and s = 1, then M is the SFS of type

S
2((2,−1) (q,−1) (−3k + 2,−k + 1)).

If, in addition, q = 1, then M is the lens space L(|7k − 4|, 2k − 1).
ii) If r = 3 and s = 1, then M is the SFS of type

S
2((2,−1) (3, 1) (q(k − 1) − k, 1 − k)).

If, in addition, q = 1, then M is the lens space L(|6k − 7|, 3k − 2).

The next result provides a description of many exceptional surgeries
along the components of the framed link L, which give toroidal graph mani-
folds

Theorem 2.6. Let M = L(r/s; 1/k; 1/h; q/p) be the surgery manifold obtained
from the framed link L in Fig. 1. Then we have

i) If r = 0 and h, k, q − 2p �= ±1, then M is the toroidal graph manifold
defined by the invariants

(D (k,−1) (−h,−2h + 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (q − 2p, p)).

ii) If r = 2, s = 1, h, k �= 0, 2 and q �= ±1, then M is the toroidal graph
manifold

(D (k − 1, 1) (1 − h, 1 − 2h)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (q,−p)).

iii) If r = −s = h = −1 and k, p �= ±1, then M is the toroidal graph
manifold

(D (2,−1) (3, 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (k, 1) (p, q − 3p)).

Proof. i) By Theorem 1.1, π1(M) has a balanced group presentation with
generators a, b and relations

aq(a−pb−1)h(b−1a−p)h = 1

and

(b−1a−p)h[b−1(bap)h(b−1a−p)hap]k = 1.
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Setting x = bap and y = a (with inverse relation b = xy−p), the first
relation becomes yqx−h(ypx−1y−p)h = 1, hence yqx−hypx−hy−p = 1 or,
equivalently, (x−hyp)2yq−2p = 1. This expression coincides with the relation
(xpyq)t+1ynu = 1 in Theorem 2.2 with p = −h, q = p, t = 1 and nu = q −2p.
The second relation becomes

(ypx−1y−p)h[ypx−1xh(ypx−1y−p)hyp]k = 1,

hence

ypx−hy−p[ypxh−1ypx−h]k = 1,

or equivalently,

x−h[xh−1ypx−hyp]k = 1.

From the first relation, we have ypx−h = xhyp−q. Substituting this expres-
sion into the second relation yields x−h(x2h−1y2p−q)k = 1. Taking the inverse
relation gives (yq−2px1−2h)kxh = 1. This expression coincides with the rela-
tion (ynxm)r+1xps = 1 in Theorem 2.2 with n = q − 2p (hence u = 1 as
nu = q − 2p), m = 1 − 2h, r = k − 1 and ps = h. Since p = −h (see above),
the last relation implies s = −1. Now the result follows from Theorem 2.2
(i).

ii) By Theorem 1.1, π1(M) has a balanced group presentation with
generators a, b and relations

aq(a−pb−1)hb2(b−1a−p)h = 1

and

b2(b−1a−p)h[b−1(bap)h(b−1a−p)hap]k = 1.

Setting x = bap and y = a (with inverse relation b = xy−p), the first relation
becomes yqx−h(xy−pxy−p)(ypx−1y−p)h = 1, hence

yqx−h+1y−px−h+1y−p = 1,

or, equivalently,

(x−h+1y−p)2yq = 1.

This expression coincides with the relation (xpyq)t+1ynu = 1 in Theorem 2.2
with p = −h + 1, q = −p, t = 1 and nu = q.
The second relation becomes

(xy−p)2(ypx−1y−p)h[ypx−1xh(ypx−1y−p)hyp]k = 1,

hence

xy−px1−hy−p[ypxh−1ypx−h]k = 1.

From the first relation, we have ypxh−1 = x1−hyq−p. Substituting this ex-
pression into the second relation gives

xy−px1−hy−p[x1−hyqx−hx1−hxh−1]k = 1,

hence

xy−px1−hy−px1−h(yqx1−2h)kxh−1 = 1,
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or, equivalently,

xhy−px1−hy−px1−h(yqx1−2h)k = 1.

From the first relation, we have y−px1−hy−p = xh−1y−q. Substituting this ex-
pression into the second relation yields x2h−1y−qx1−h(yqx1−2h)k = 1, hence

(yqx1−2h)k−1x1−h = 1.

This expression coincides with the relation (ynxm)r+1xps = 1 in Theorem 2.2
with n = q (hence u = 1 as nu = q from above), m = 1 − 2h, r = k − 2 and
ps = 1 − h. Since p = −h + 1 (see above), the last relation implies s = 1.
Now the result follows from Theorem 2.2 (i).

iii) By Theorem 1.1, π1(M) has a balanced group presentation with
generators a, b and relations

aqbapb−1apb = 1

and

b−1apb[b−1a−pb−1apbap]k = 1.

Setting x = a−qb−1 and y = a (with inverse relation b = x−1y−q), we
get a finite group presentation for π1(M) with generators x, y and rela-
tions (ypx)2x−3 = 1 and (x3yq−3p)kyp = 1. The first relation coincides with
(ynxm)r+1xps = 1 in Theorem 2.2 with n = p, m = r = 1 and ps = −3. The
second relation coincides with (xpyq)t+1ynu = 1 in Theorem 2.2 with p = 3,
q = q − 3p, t = k − 1 and nu = p. Since p = 3 and n = p, the equations
ps = −3 and nu = p imply s = −1 and u = 1, respectively. Then the result
follows from Theorem 2.2 (i). �

3. Exceptional surgeries on hyperbolic knots

Let k ∪ c be the 2–bridge link given in Fig. 2, and let Kh,k,p denote the knot
obtained from k by 1/p surgery (p �= 0) along c, that is, doing a (−p)-twist

Figure 2. The hyperbolic knots Kh,k,p with h, k < 0 and
|p| > 1 and the surgery manifolds Kh,k,p(γ)
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along c. For h = −1, k = −2 and p = −n + 4, Kh,k,p coincides with the knot
Kn considered by Motegi and Song in [27] (see also [15]), for every natural
number n. Let Kh,k,p(γ) be the 3-manifold obtained from S

3 by γ-surgery on
Kh,k,p, for every γ ∈ Q, γ �= ∞.

Lemma 3.1. With the above notations, the surgery manifold Kh,k,p(γ) is
homeomorphic to the manifold M = L(r/s; 1/k; 1/h; q/p) from Sect. 2, where
q = 1 + p(h + k) and r/s = γ + p[h − k]2 + h + k.

Proof. We use Kirby–Rolfsen calculus on links with rational coefficients (see
[16,32], and [33]) to give equivalent surgery descriptions of the closed con-
nected orientable 3-manifold Kh,k,p(γ). Since the linking number of c and k
(with the orientations chosen in Fig. 2) is exactly lk(c, k) = h−k, the manifold
Kh,k,p(γ) has a surgery description as in Fig. 2. In fact, twist p times about
the component c gives the surgery coefficient γ+p[lk(c, k)]2 = γ+p[h−k]2 for
the component (again denoted by k) arising from k. Furthermore, equivalent
surgery descriptions of the manifold Kh,k,p(γ) are given in Figs. 3 (a) and 3
(b), where r/s = γ + p[h − k]2 + h + k. Thus Kh,k,p(γ) is homeomorphic to
the surgery manifold M = L(r/s; 1/k; 1/h; q/p), where q = 1 + p(h + k) and
r/s = γ + p[h − k]2 + h + k. Of course, if γ ∈ Z, we can take the integers
r = γ + p[h − k]2 + h + k and s = 1. �

Lemma 3.2. i) For any h, k < 0 and |p| > 1, the knots Kh,k,p are hyper-
bolic;

ii) For any h, k < 0 and p �= 0, the knots Kh,k,p have tunnel number one.
In particular, they are strongly invertible.

Proof. i) We extend the proof of Lemma 2.2 in [27], where the case h =
−1, k = −2 and p = −n + 4 has been considered. The knot Kh,k,p is
obtained from the component k of the 2-bridge link k∪c = b(α, β) where
α/β = [2h − 1,−2k + 1] = 2h − 1 + 1/(2k − 1), by twisting along the
other component c. Since the above 2-bridge link is not a (2,m)-torus
link, it is a hyperbolic link by [19]. By the hypothesis |p| > 1, it follows
from [1, Theorem 1.1] (see also [3, Theorem 1.2] or [2, Theorem 2]) that
Kh,k,p is a hyperbolic knot.

ii) We can use the same argument of Lemma 2.3 in [27] (case h = −1,
k = −2 and p = −n + 4). In fact, k ∪ c is a 2-bridge link, hence it has
tunnel number one. Since c is unknotted, Claim 2.4 of [27] states that
every knot obtained from k by twisting along c has tunnel number at
most one. Since Kh,k,p, for any h, k < 0 and p �= 0, is knotted in S

3,
the tunnel number of Kh,k,p is one. So Kh,k,p is embedded in a genus 2
Heegaard surface of S3 so that it does not separate the Heegaard surface.
(In fact, if Kh,k,p is separating in the Heegaard surface, it has a cyclic
period 2 rather than the strong inversion.) This implies that Kh,k,p is
strongly invertible.

�
The following result generalizes Lemma 2.1 of [27] (h = −1, k = −2, p =
−n+4, hence γ = n) and Lemmas 2.4 and 2.5 of [15] (h = −n, k = −n−1, p =
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Figure 3. Equivalent surgery descriptions of Kh,k,p(γ)

2n + 2, hence γ = 0). From Theorem 2.3 of Sect. 2, we obtain the following
consequences

Theorem 3.3. Let Kh,k,p(γ) be the surgery manifold obtained by γ-surgery
along the knot Kh,k,p in Fig. 2. Then we have

i) If γ = −p[h − k]2 − h − k + 1, then Kh,k,p(γ) is the Seifert fiber space
of type

S
2((−2k + 1,−k) (−2h + 1, h − 1) (1 + (h + k − 1)p,−p)).

ii) If h = −1 and γ = −p[k +1]2 − k +1, then Kh,k,p(γ) is the Seifert fiber
space of type

S
2((2, 1) (−3k + 1, 2k − 1) (1 + (k − 3)p,−p)).
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iii) If k = −1 and γ = −p[h+1]2 −h+1, then Kh,k,p(γ) is the Seifert fiber
space of type

S
2((2,−1) (3h − 1, h) (1 + (h − 3)p,−p)).

.

From Theorem 2.6 of Sect. 2 we get the following consequences

Theorem 3.4. Let Kh,k,p(γ) be the surgery manifold obtained by γ-surgery
along the knot Kh,k,p in Fig. 2. Then we have

i) If h, k �= ±1, 1 + p(h + k − 2) �= ±1 and γ = −p[h − k]2 − h − k, then
Kh,k,p(γ) is the toroidal graph manifold

(D (k,−1) (−h,−2h + 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (1 + p(h + k − 2), p)).

ii) If h, k �= 0, 2, 1 + p(h + k) �= ±1 and γ = 2 − p[h − k]2 − h − k, then
Kh,k,p(γ) is the toroidal graph manifold

(D (k − 1, 1) (1 − h, 1 − 2h)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (1 + p(h + k),−p)).

iii) If h = −1, k, p �= ±1, and γ = −p[k + 1]2 − k, then Kh,k,p(γ) is the
toroidal graph manifold

(D (2,−1) (3, 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (k, 1) (p, 1 + p(k − 4))).

Let us consider the hyperbolic knots Kn in [27], that is, Kn = Kh,k,p

for h = −1, k = −2 and p = −n + 4, n �= 3, 4, 5. The following theorem
completes the result given in [27]:

Theorem 3.5. Let Kn(γ) be the surgery manifold obtained by γ-surgery γ �=
∞, γ ∈ Q along the hyperbolic knot Kn n �= 3, 4, 5. Then we have

i) If γ = n−2, then Kn(γ) is homeomorphic to the toroidal graph manifold

(D (2,−1) (3, 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (−2, 1) (n − 4,−1)).

ii) If γ = n − 1, then Kn(γ) is the SFS of type

S
2((2, 1) (7,−5) (5n − 19, n − 4)).

iii) If γ = n, then Kn(γ) is the SFS of type

S
2((5, 2) (3,−2) (4n − 15, n − 4)).

iv) If γ = n+1, then Kn(γ) is homeomorphic to the toroidal graph manifold

(D (−3, 1) (2, 3)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (3n − 11, n − 4)).
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The knots Kn, n �= 3, 4, 5, in Theorem 3.5 are hyperbolic, strongly invertible
and have tunnel number one. By the Wirtinger algorithm applied to a planar
projection of Kn, we get

Theorem 3.6. The knot Kn has the 2–generator presentation

π(Kn) ∼= 〈a, b : a3n−11(b−2ab3ab−2)4−n = 1〉
where the path m = ab−1 is a meridian of the knot.

If, for example, n = 6 in Theorem 3.5, then Kn(γ) is toroidal (TOR) for
γ = 4 and 7, and it is SFS for γ = 5 and 6. Furthermore, Kn(γ) is hyperbolic
for γ = 3 and 8 by SnapPea program.
From Theorem 3.5 we have proved the following result:

Theorem 3.7. For every integer n > 5, there are infinitely many tunnel num-
ber one strongly invertible hyperbolic knots in the 3-sphere whose (n−2)- and
(n + 1)-surgeries give toroidal graph manifolds, and (n − 1)- and n-surgeries
give Seifert fiber spaces over S

2 with exactly three exceptional fibers.

Theorem 3.7 relates with Theorem 0.1 in [18] and the results given in
[15,27] and [35].

Theorem 3.8. Let us consider the tunnel number one strongly invertible hy-
perbolic knots Kh,k,p for h, k ≤ −2 and |p| > 1, and set q = 1 + p(h + k).
Then we have

i) If γ = −p[h−k]2−h−k, then Kh,k,p(γ) is homeomorphic to the toroidal
graph manifold

(D (k,−1) (−h,−2h + 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (q − 2p, p)).

ii) If γ = −p[h − k]2 − h − k + 1, then Kh,k,p(γ) is the SFS defined by the
invariants

S
2((−2k + 1,−k) (−2h + 1, h − 1) (q − p,−p)).

iii) If γ = −p[h − k]2 − h − k + 2, then Kh,k,p(γ) is homeomorphic to the
toroidal graph manifold

(D (k − 1, 1) (1 − h, 1 − 2h)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (q,−p)).

Remark. 1) If, for example, p = −3, k = −3, h = −5, hence q = 1 +
p(h + k) = 25, then Kh,k,p(γ) in Theorem 3.8 is TOR graph manifold
for γ = 20 and 22, and it is SFS for γ = 21. Furthermore, Kh,k,p(γ) is
hyperbolic for γ = 19 and 23 from SnapPea program.

2) If h = k ≤ −2, then γ = −2h,−2h + 1, and −2h + 2 in i), ii), and iii) of
Theorem 3.8, respectively. So we get infinitely many distinct hyperbolic
knots Kh,k,p(γ) for |p| > 1, which have three exceptional surgeries for
the same values of slopes.
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Let us consider the hyperbolic knots Kn = Kh,k,p from Theorem 3.8,
where h = −n, k = −n − 1 and p = 2n + 2 for every n ≥ 2. Set q =
1 − (2n + 1)(2n + 2). This class of hyperbolic knots was considered in [15],
where it was proved that the 0-surgery on Kn gives a small Seifert fiber space
(see [15], Lemma 2.5). The following result completes that given in [15]:

Theorem 3.9. With the above notations, we have
i) If γ = −1, then Kn(γ) is homeomorphic to the toroidal graph manifold

(D (−n − 1,−1) (n, 2n + 1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D (2, 1) (1 − (2n + 2)(2n − 1), 2n + 2)).

ii) If γ = 0, then Kn(γ) is the Seifert fiber space of type

S
2((2n + 3, n + 1) (2n + 1,−n − 1) (−(2n + 1)(2n + 3),−(2n + 2)).

iii) If γ = 1, then Kn(γ) is homeomorphic to the toroidal graph manifold

(D(−n−2, 1)(n+1, 2n+1)) ∪⎛
⎝0 1
1 0

⎞
⎠

(D(2, 1)(1−(2n+1)(2n+2),−2n−2)).

If n = 3 in Theorem 3.9, hence h = −3, k = −4, p = 8 and q = −55, then
Kn(−2) and Kn(2) are hyperbolic manifolds from SnapPea program.
From Theorem 3.9 we have proved the following result:

Theorem 3.10. For every integer n ≥ 2, there are infinitely many tunnel
number one strongly invertible hyperbolic knots Kn in the 3-sphere whose −1
and 1-surgeries give toroidal graph manifolds, and 0-surgery gives a Seifert
fiber space over S

2 with exactly three exceptional fibers.
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