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The concept of Wigner paths in phase space both provides a pictorial representation of
the quantum evolution of the system of interest and constitutes a useful tool for
numerical solutions of the quantum equation describing the time evolution of the
system. A Wigner path is defined as the path followed by a "simulative particle"
carrying a 6-contribution of the Wigner function through the Wigner phase-space, and
is formed by ballistic free flights separated by scattering processes (both scattering with
phonons and with an arbitrary potential profile can be included), as for the case of
semiclassical particles. Thus, the integral transport equation can be solved by a Monte
Carlo technique by means of simulative particles following classical trajectories, in
complete analogy to the "Weighted Monte Carlo" solution of the Boltzmann equation
in the integral form.
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1. INTRODUCTION

The Wigner function (WF) was introduced as an
extension of the concept of distribution function to
the quantum case, and it constitutes the more

direct link between the quantum density matrix
and the "classical" description of the evolution of
the system in phase space through a distribution
f(r,k, t). It is known from the literature [1] that
Wigner trajectories (WT’s) in phase space can be
defined by modified Hamilton equations, which
are very useful for a pictorial representation of the
quantum evolution of the system of interest. For
quantum systems in stationary states WT’s are the

"equi-WF" curves. On the other hand, there are
several difficulties in the theory of WT’s that make
them of little utility for most cases of practical
interest. WT’s can differ from the corresponding
classical trajectories even when the classical
analogue of the quantum system exists (they do
coincide only in very few special cases [2]). The
Liouville theorem does not hold for the WF at
singularities in the effective potential entering the
WF evolution equation. At these points WT’s can
be created or destroyed. More important, the
quantum force which appears in the effective
Hamilton equations depends on the state of the
system. Thus many WT’s are defined for a single
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initial phase-space point, each of them for any
given quantum state of the system. It should be
noticed that, due to the above limitations, such
approach has produced no results for the case of
carrier-phonon coupling, which is of fundamental
importance for the study of the transport proper-
ties in many mesoscopic real structures.

In this paper we discuss the concept of Wigner
paths (WP’s), recently introduced by the authors
[3,4], which overcome the theoretical problems
discussed above, and which can be used also when
the coupling of the carrier with phonons and/or
with an arbitrary potential profile is present. WP’s
are based on the linearity of the evolution equation
for the WF and are independent of the quantum
state of the system; each WP describes the
evolution of a -like contribution to the WF, and
contains "ballistic flights" and "scattering events"
in strict analogy with carriers paths in semiclassical
transport.
The WP’s can be derived following two different

but equivalent analytical approaches. They are
both described, for a deeper understanding of the
physical meaning of the WP’s concept, in Section
2. In Section 3 the theory is applied to some
specific cases of interest. First the evolution of a
Gaussian WF in a quantum well with infinite
potential barriers is discussed. Then a Monte
Carlo (MC) solution of the WF evolution equation
is introduced and used to perform a comparison
between quantum and classical treatement of the
scattering mechanisms. The generalization of the
WP’s approach to the case of a two-time WF is
breafly presented.

where

h2
H0 2- V2,

V/(r) -eE r,

q

and

He-p Z ihF(q) (b,ei"r-
q

are, respectively, the free electron term (with rn
electron effective mass), the electric field term, the
Hamiltonian for the free phonon system and the
electron-phonon interaction term. In the above
expressions bq and b are the annihilation and
creation operators for the phonon mode q with
frequency aq and F(q) is a function depending on
the type of phonon scattering analyzed.
The generalized WF [5] for an electron-phonon

system is:

fw( , t)

J dr’e-i"e/(r / r’/Z,n,]p(t)lr- r’/2,

(2)

where p is the density operator of the electron-
phonon system. Tracing over the phonon coordi-
nates provides the WF representative of the
electron system [6].

Using this general frame WP’s can be obtained
following two different analytical approaches.

2. THEORY

The general system we are interested in is an
ensamble of independent electrons subject to a
constant and uniform accelerating field E, to a
structure potential V(r), and to the interaction
with phonons. The Hamiltonian of the system is
given by

H H0 + V(r) + V/(r) + Hp + He-p, (1)

2.1. Transfer Coefficients Approach

For any given basis {ln)} in the space of the
electron states the coefficients [7]

fnn’ (r, p) i dr’e-ip’r’/h

(r + r’/2l,)(,,lr- r’/2). (3)

they constitute a unitary transformation and
connect the generalized WF to the density matrix

’} t) and viceversa.p(n{nq},nt{nq



WIGNER PATHS 213

Using the Liouville equation for the density
matrix in the interaction picture, it is possible to
derive the equation for the corresponding WF.
After a formal integration with respect to time and
a transformation back to the Schr6dinger picture,
the following integral equation for the WF is
obtained [3]:

fw(r, p, {nq}, {n’q}, t)
1 Zfnn,(r, p)e_i((n{n.})_(n,{n,}))(,_,o
h

f,(r, ) dt’e-i(({n})-(’{;}))(-’)+
x dr’f d’{’(n{n},m{m})

=fo) +f (4)

where ’- (He_/i). In Eq. (4) the first term in
the r.h.s, describes the ballistic coherent propaga-
tion from the initial time to to the observation time
t. The second term describes the contribution of
the unknown WF to the "last" interaction vertex
at any time between to and followed by the free
propagation from to t. Eq. (4) is written for the
entire system and contains also the phonon
variables. Moreover it is foundamental to notice
that the above integral equation is linear in the
unknown WF. This guarantee that if the WF at
t- to is the sum of several contributions, then each
of them will evolve according to Eq. (4), and the
solution of the equation at any given time > to
will be given by the sum of the single contributions
evaluated at the same time.
Even though a point-like electronic WF in

phase space cannot represent a real physical sys-
tem, since it violates the uncertainty principle,
we may however start to consider the evolu-
tion in time of a -like contribution to the
WF, 3(r-ro)3 (P-Po)fp({nq}, {n’q}), inside Eq.
(4). In absence of phonon coupling the free-
electron Wigner trajectories are the same as for

semiclassical particles. In fact, for a plane-wave
basis the coefficients J}m are given by

fk,k,m(r,p)--h3ei(k’-k’m)’r3 (p-h (k, + km))2 (5)

and the ballistic evolution of the WF as given by
the first term on the r.h.s, of Eq. (4) yields:

fw(r, t)

fw (r p-- (t t)’ p’ {n"}’ {n’q}’
e-i(({n})-({n;}))(t-t) (6)

where h({nq}) is the total energy of the phonon
bath in the state {nq}. The two factors on the r.h.s.
of Eq. (6) describe the free trajectory of the
electron and the time evolution of the free-phonon
bath, respectively. The above equation can be
interpreted as follows: each 6-like contribution to
the WF, in absence of external forces, carries its
value following a classical path. This means, for
example that, if the WF has a wave-packet form,
such packet will be "deformed" during the time
evolution due to the different paths followed by its
6-like components: representative points in phase-
space corresponding to high momentum values
move faster than low-momentum representative
points [4]. The above result can be generalized to
the case of electron Hamiltonians including a
constant force or a harmonic potential. Summur-
izing, we can say that the WF evolves very much
like ensambles of semiclassical particles, except for
fast varying potentials and scattering dynamics. It is
fundamental to notice that this consideration
can be crucial for explaining the reliability of
the semiclassical model for carrier transport far
beyond the expected limits.

Concerning the scattering dynamics it should be
noticed that similar trajectories exist, as long as a
single interaction diagram is considered without
time integrations. In particular, taking into ac-
count phonon scattering, we may select the two
times of the scattering vertices and a sigle mode q
of the phonon interacting with the electron, and
each g-contribution still remains a 6. With the
potential, we have to select a scattering time and a
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transferred momentum, and again a g-like WF
keeps its 5-character. These considerations allow
us to define a WP [3] as the path followed by a
"simulative particle".

2.2. Path Variables Approach

If the time derivative of Eq. (2) is taken and the
Liouville-von Neumann equation for the evolution
of the density matrix is used, we find

-fwO (r, p, {F/q}, {F/tq}, t)

f / s
{/’/q} [8’ P(/)] II"

slib dse-(i/tOps r +
(7)

Using the Hamiltonian given in Eq. (1) the r.h.s, of
the above equation can be written as the sum of
five terms. We will consider each of them
separately in a schematic way (the full derivation
is given in Re [4]).
The term containing H0 leads to a term contain-

ing the space derivative of the distribution:

dse(-i/h)p’s r + p

-. vL(r, p, {.), (.’.), t) (8)
m

The term due to the potential profile leads to:

s
{n}l[V(r) ,p(t)]r , {n}i ds e(-i/) r+,

fv(,- ’f(, ’, {}, {’}, 0

where the transfer function Vw is defined by

Vw (r, p)----J dse(-i/h)p’s-ih - (r-s
(o)

The term due to a constant uniform electric field
leads to:

i/ { s s

i ds e(-i/h)p’s r +-, {nq}][Vf(r), p(t)]]r- , {n’q}
eE. Vpfw(l’, p, {rtq}, {//’q}, l). (11)

the same result would be obtained for a harmonic
potential.
The term describing the free evolution of the

phonon bath may be written as

where

E’({V/q}) E/’/qO,.)q (13)
q

is the energy of the phonon state {nq}.
The term due to electron-phonon interaction

gives rise to four terms"

(4)
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The matrix elements in the above equation contain
two different sets of phonon occupation numbers
{nq} and {n}. Each term in the right hand side of
Eq. (14) represents a phonon interaction event
(vertex) that changes only one set, increasing or
decreasing the phonon occupation number of
mode qt by one unity and changing the electron
momentum by (hq/2).
From the above results the following equation is

obtained:

where (r,p,{nq),{n},t) represents the right
hand side of Eq. (14).
The left hand side of Eq. (15) has the same form

as the semiclassical Boltzmann equation. Thus
path variables can be used in analogy with
Chambers formulation of transport. Then, inte-
grating over time, one obtains [8]

fw (r,p, {nq} {nlq) t)
----fw (r-P t- t +- t-t)2’p-F(t- t {nq},

e(-i/h)(e({nq})-e({n }))(t-t) q- d{e(-i/h)(e({nq})-e({n }))(t-t’)

X {fdp’vw(r " F t’)2,p’-p+F(--- t-- t’)-?m t--

( P _+_F___(t_t,)2,p,,{nq),(n,),t,)fw r--(t--t’) 2m

( P +F----(t-- t’)2 F(t--tt),{nq},{n’))}r--(t--t’) 2m ’P-- ,t’

(16)

The above equation shows that the value of the
WF in a point (r, p) at time comes from three
contributions: (a) A ballistic term, equal to the
WF’s value at time to on the trajectory of a
classical particle being in (r,p) at time and
multiplied by a phase factor corresponding to the
free evolution of the phonon bath. (b) A term
collecting, for each time and each transferred
momentum (p-p), contributions from the WF at
points of phase space that, after a scattering by the
potential V(r), are on the "right" classical trajec-
tory that reaches (r,p) at time t. This term is
multiplied by the transfer function Vw, acting as a
weight factor and by the free phonon evolution
pahase factor. (c) A term collecting for each time
the four contributions of the electron-phonon
interaction term.

Equation (16) may be iteratively substituted into
itself giving a Neumann expansion describing the
evolution of the WF by means of simulative
particles following classical trajectories and ex-
periencing scatterings with a potential V(r) that
change particle’s momentum from to p to p and
with phonons that increase (decrease) by one the
number of phonons in q phonon mode of a single
set {nq} and decrease (increase) particle’s momen-
tum by (hq/2). The series obtained may be
truncated to an arbitrary order and solved by a
Monte Carlo technique, sampling the integrals
over the scattering times and the momentum
transferred by potential or phonons, in complete
analogy to the "Weighted Monte Carlo" solution
of Boltzmann equation in its integral form [9].
Concerning this point, it should be mentioned
that, in the quantum case, different diagrams can
contribute to the same WP. Such a contribution is
accounted for weighting any specific path with an
appropriate multiplicity factor.

3. APPLICATIONS

with

F=eE. (17)

Figure shows the time evolution of the WF of a
minimum uncertainity Gaussian wave-packet in a
quantum well with infinite potential barriers.
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FIGURE Time evolution (given at 6 different instants) of the WF of a minimum uncertainity Gaussian wave-packet in a quantum
well with infinite [otential barriers. The fw describes an electron with a gaussian distribution of the initial wave-vector around the
value k0 nm-

The fw describes an electron with a gaussian traditional MC simulation technique used to
distribution of the initial wave-vector around the study semiclassical transport phenomena. In
value k0-1 nm-1. It is important to note that, Figure 2 is shown the flow-chart of the quan-
before hitting the boundary, the evolution of the tum MC program, where, for the sake of
WF follows classical trajectories and it is co- simplicity, only the scattering with the phonons
incident with the evolution of a classical distribu- is considered.
tion function. Furthermore the wave-packet is As a first application this quantum simulation
deformed in time exactly as for the free particle program has been used to perform a comparison
case. During the collision with the potential barrier with the results provided by a code based on a

interference patterns appear, and the evolution traditional weighted MC algorithm. In particular
doesn’t follow classical trajectories anymore, the effect on transport phenomena of the relaxa-
Finally, for time long enough after the scattering tion of the semiclassical assumption of energy
process, the evolution of the WF is found to conservation and point-like nature in space/time
coincide again with the one of the classical of the scattering processes have been analyzed.
distribution function. The analytical generaliza- Results obtained for different contributions to the
tion of such a result to an arbitrary form of the scattering terms of the Wigner and Boltzmann
WF is at present under development, transport equations have been compared. In

Based on the WP’s concept, we have devel- fact, our rigorous quantum approach allows
oped a MC code in strict analogy with the to analyze in detail real scatterings, virtual
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INITIAL DATA

INITIALIZATION OF STATISTICS

GENERATES INITIAL MOMENTUM Po
WITH PROBABILITY Pp(P0)

GENERATES NUMBER OF PHONON
PROCESSES WITH PROBABILITY Pn(n)

GENERATES TYPES OF PROCESSES
(RE-RA-VE-VA) WITH PROB. Ps(type)

] Wffil/Pp(P0)

] WfW/P.(n)

WfW/[Ps(1 Ps(n)]

GENERATES TWO TIMES FOR EACH
PHONON PROC. WITH PROB. Pt(t)

GENERATES A PH. MODE q FOR EACH
PHONON PROC. WITH PROB. Pq(q)

GENERATES ALL THE PARTS OF THE
’PARTICLE’ TRAJECTORY

COLLECTS STATISTICS

(

1 W=W/[Pt(t Pt(tza)]

[ WfW/[Pq(ql)"’" Pq(qn)]
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WffiW FI expi F(qi) bose

F(r’p’t)=W f(ro’Po’to)[

FIGURE 2 Flow-chart of the quantum Monte Carlo code for the case in which only phonon scattering is included.

scatterings, multiple scatterings, and the so called
"intra-collisional" field effect.
As an example, we considered the term of the

Neumann expansion of the Boltzmann equation
describing two in-scattering phonon-emission

events and the corresponding terms of the
Neumann expansion of the Wigner equation
(four-vertices terms associated with two real
emissions) [10]. The semiclassical electrons start
from a well defined initial state (z, pz) and the
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quantum calculation is performed assuming the
same initial condition for a "delta"-like Wigner
function, or "simulative particle". Integration is
performed over the possible interaction times and
phonon modes q while the observation time is
100 fs. Figure 3 (top) shows the quantum distribu-
tion as a function of energy after the two real
emissions (continuous line). Since in this case no
field is applied, in the classical picture the
distribution in Figure 3 would be a delta function
at the energy indicated on the figure by the arrow.
Contributions coming from separate (dashed line)

Oo eeeeeeee

0.05 0.1 0.15 0.2 0.25

’ (eV)

FIGURE 3 Contribution to the energy distribution of the
scattering term associated with two real phonon emissions.
Top: total contribution (solid line), separate-scattering con-
tribution (dashed-line), multiple-scattering contribution (dotted
line). Bottom: comparison between the total contribution (solid
line) and the separate-scattering contribution (dashed line)
renormalized to the same maximum value. The arrow indicates
the energy-conservation value predicted by the semiclassical
theory (See Ref. [10]).

and from multiple (dotted line) scatterings have
been independently evaluated by means of Monte
Carlo generations of the correspondind Wigner
paths. It is seen that the large energy broadening
present at the considered time in the term
associated with separate scatterings is reduced by
the contribution coming from multiple collisions.
Furthermore, this last contribution shifts the
energy value of the peak towards the classical
conservation energy. This effect can be better seen
in Figure 3 (bottom), where the total distribution
and the one for separate scatterings are plotted
together, normalized to the same maximum value.
We can conclude that the quantum correction
including multiple scatterings is closer to the
semiclassical result based on the assumption of
completed collisions with respect to the quan-
tum case where only separate scatterings are
considered.

Summarizing, our results of the analysis of
phonon scattering show that multiple collisions
reduce collisional broadening and contribute
to understand the success of the semiclassical
approximation.

Simulation have been performed also for the
case of scattering with a potential profile. At
present, due to a still low efficiency of the
numerical algorithm, it has been possible to obtain
good quality results only for the case of very weak
potentials.
Another interesting application of the method

we are working on, is the study of the transient
regime for bulk systems. Again the bottleneck is
the efficiency of the algorithm that seriously limits
the number of scatterings that can be accounted
for. To improve such efficiency, a code including
the quantum self-scattering mechanisms [11] is
under development. This method is based on the
introduction of an approximate immaginary self-
energy h/-o which plays a role analogous to that of
the maximum scattering rate in the traditional MC
method. At each perturbative order, the exact
correction to 1/-0 is evaluated.
As a last point it should be mentioned that

starting from the two-time G Green function it
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has been possible to define a general WF for one
electron interacting with phonons, which is func-
tion ofp and co separately, and which is defined as

(18)

where

g(r, {nq}, t) eiC({n"})t(r, {nq}, t) (19)

(r, {n}, t) is the wave function of the system, and
the bar means ensamble average. Equation (18)
can be generalized to states non diagonal in the
phonons variables:

fw(r, p, {//q}, {/’/’q } /, CO) J eip’r’/hdrt

l (- ,/, {,}, - -/,( + ’/, {,}, + -/-.

(20)

Performing the trace over the phonon variables of
Eq. (20), for states diagonal in the phonon
variables, the 1.h.s. of Eq. (18) is recovered. Details
and preliminary results are shown in Ref. [12].

4. PERSPECTIVES

The leading idea in developing the concept of
WP’s has been to realize a tool for studying the
transport properties of a mesoscopic semiconduc-
tor system, combining the rigorous quantum
approach provided by the WF formalism with
the high reliability, computational feasibility, and
conceptual simplicity of a traditional MC pro-
gram. At the moment, due to computational time
problems, results have been obtained for time of
the order of 100fs, including only up to two
phonon scatterings. Also the inclusion in the code
of the scattering with the potential leads to such a

computational burden that it has been impossible,
so far, to simulate realistic potential profiles.

Therefore the short term goals of the approach
described in this paper are: (i) to improve the
efficiency of the numerical algorithm to make
possible the inclusion in the simulation of a higher
number of carrier-phonon scattering events, and
(ii) the developments of analytical and numerical
methods to make possible the inclusion in the
simulation of the interaction of the carriers with
realistic potential profiles. To this aim a parallel
version of the quantum MC code will be im-
plemented, suitable to exploit the features of
modern supercomputers. Even more important,
we belive that the efficiency of the algorithm
should be strongly improved by the above men-
tioned introduction of the quantum self-scattering
mechanism.
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