UNIVERSITA DEGLI STUDI DI MODENA E
REGGIO EMILIA

Dipartimento di Scienze Chimiche e Geologiche

Dottorato di ricerca in
Models and methods for material and
environmental sciences

Ciclo XXXVI

Chemometric aided quality
assessment from lab to plant
In an Industry 4.0 context

Candidate
Alessandro D’Alessandro

Tutor
Prof. Marina Cocchi

Co-tutor
Prof. Caterina Durante

Course Coordinator
Prof. Stefano Lugli







To Lidia, Paolo, and Simona

“The illiterate of the 21° century will not be those who cannot read or write, but those who
cannot learn, unlearn, and relearn.”

Alvin Toffler (writer, businessman, futurist, 1928-2016)
(from the book «Future Shock», 1970)

1y

“Do. Or do not. There is no try.’

Yoda
(from the movie «The Empire Strikes Back», 1980)






ABSTRACT

English

Product quality is a "must" for every producer. For a food company like Barilla, where | work,
this is very relevant because food is strongly linked to our emotions, our health, and our well-
being. Regarding this, in fact, the Company's 'Mission' is: “The joy of food for a better life. Bringing
people closer to the joy of good food and making quality the choice for a better life, from each
individual to the planet”. This explains why there is a strong commitment to every quality-related
issue in the Company.

One of the tasks of the Analytical Food Science Research and Development Laboratory, where
| work, is to develop new methods and tools to assess the quality of our products, both in a
research and industrial context. The use of chemometrics in my work has grown over time
because of its great ability to extract information from large amounts of data and the ability to
present this information concisely and effectively. In some cases, the use of chemometric
techniques is essential and it is not possible to analyse the data in any other way. Whitin an
industrial context that is rapidly moving toward an Industry 4.0 context, more and more data are
being produced from all the sensors installed in production lines, data that need to be analysed
real-time and evaluated in the appropriate way.

"Pesto Genovese" is an Italian green sauce made mainly of basil and olive oil, cheese, pine
nuts and garlic, has a unique flavour known and appreciated all over the world. In this Thesis
project, Barilla's production of "Pesto alla Genovese" was used as a benchmark.

The objective of the Thesis project was to develop analytical-chemometric methods suitable
for evaluating (i) the characteristics of the main raw material, basil, and of the finished product,
pesto, in the most rapid and effective way, in a quality laboratory analysis context; and, (ii) the
characteristics of the raw material, the production intermediate and the finished product in order
to develop models for real-time quality monitoring, in a process monitoring context.

From the analytical point of view, approaches based on rapid, non-destructive techniques have
been developed, such as electron nose (based on gas chromatography), near-infrared (NIR)
spectroscopy in its various implementations including multi- and hyper-spectral imaging.
Chemometric approaches, which are essential for efficiently extracting the information obtained
through these techniques, have ranged from exploratory multivariate analysis, multivariate
variance analysis methods, image analysis methods, to the development of multivariate control
charts and predictive models, always evaluating appropriate pre- and post-processing methods.

The work done has demonstrated, through several real cases, how chemometrics is an
indispensable support for obtaining information that would otherwise not be accessible and can
provide powerful tools for real-time control of critical raw materials, process, and product.

Despite the specific topic related to pesto, the approaches developed are general and
extensible to other products/processes in the food industry. The main challenge was to transfer
the methodological know-how to this application context.

In conclusion, the original idea of this industrial PhD project to build a "statistical tool" for my
daily work was successfully realized. In addition, the cases studied in the production environment
open potential new applications with a strong impact on improving the possibility of process
control and designed quality.






[taliano

La qualita del prodotto & un “must” per ogni produttore. Per un'azienda alimentare come la
Barilla, dove lavoro, cid € molto rilevante perché il cibo & fortemente legato alle nostre emozioni,
alla nostra salute e al nostro benessere. Riguardo a cio, infatti, la ‘Mission’ dell'Azienda é: “La
gioia del cibo per una vita migliore. Avvicinare le persone al piacere del buon cibo e fare della
qualita la scelta per una vita migliore, di ogni individuo e del pianeta”. Questo spiega perché in
Azienda é presente un forte impegno verso ogni tema legato alla qualita.

Uno dei compiti del Laboratorio di Ricerca e Sviluppo di Scienze Alimentari Analitiche, dove
lavoro, & quello di sviluppare nuovi metodi e strumenti per valutare la qualita dei nostri prodotti,
sia in un contesto di ricerca che in quello industriale. L'uso della chemiometria nel mio lavoro e
cresciuto nel tempo grazie alla sua grande capacita di estrarre informazioni da grandi quantita di
dati e alla possibilita di presentare queste informazioni in modo sintetico ed efficace. In alcuni
casi, l'uso di tecniche chemiometriche & essenziale e non € possibile analizzare i dati in altro
modo. In particolare, in un mondo industriale che si muove rapidamente verso un contesto
Industria 4.0, vengono prodotti sempre piu dati da tutti i sensori installati nelle linee di produzione,
dati che necessitano di essere analizzati real-time e valutati nel modo appropriato.

Il “Pesto Genovese” € una salsa verde italiana a base principalmente di basilico, olio d'oliva,
formaggio, pinoli e aglio e ha un sapore unico conosciuto ed apprezzato in tutto il mondo. In
questo progetto di Tesi, la produzione di “Pesto alla Genovese” Barilla &€ stata utilizzata come
benchmark.

Obiettivo del progetto di tesi & stato quello di sviluppare dei metodi analitici-chemiometrici
adeguati a valutare: (i) le caratteristiche della principale materia prima, il basilico, e del prodotto
finito, il pesto, nel modo piu rapido ed efficace, in un contesto di analisi laboratorio qualita; (ii) le
caratteristiche della materia prima, dell'intermedio di produzione e del prodotto finito allo scopo
di sviluppare modelli per il monitoraggio real-time della qualita, in un contesto di monitoraggio di
processo.

Dal punto di vista analitico sono stati sviluppati approcci basati su tecniche rapide e non-
distruttive, quali il naso elettronico (basato sulla gas-cromatografia), la spettroscopia nel vicino
infrarosso (NIR) nelle sue diverse implementazioni incluso I'imaging multi e iper-spettrale. Gli
approcci chemiometrici, fondamentali per estrarre in modo efficiente le informazioni ottenute
attraverso queste tecniche, hanno spaziato dall’analisi multivariata esplorativa, metodi di analisi
di varianza multivariata, metodi di analisi di immagini, allo sviluppo di carte di controllo multivariate
e modelli predittivi, sempre valutando gli opportuni metodi di pre- e post- processing.

Il lavoro svolto ha dimostrato, attraverso diversi casi reali, come la chemiometria sia un
supporto indispensabile per ottenere informazioni che altrimenti non sarebbero accessibili e
possa fornire potenti strumenti per il controllo in tempo reale delle materie prime critiche, del
processo e del prodotto.

Nonostante il tema specifico relativo al pesto, gli approcci sviluppati sono generali ed
estensibili ad altri prodotti/processi dell'industria alimentare. La sfida principale € stata trasferire
in questo contesto applicativo il know-how metodologico.

In conclusione, l'idea originale di questo progetto di Dottorato industriale di costruire uno
“strumento statistico” per il mio lavoro quotidiano & stata realizzata con successo. Inoltre, i casi
studiati in ambito produttivo, aprono a nuove potenziali applicazioni con un forte impatto sul
miglioramento della possibilita di controllo del processo e della qualita progettata.

Vi
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1INTRODUCTION

1.1 Context

The basic aim in food industry research and development (R&D) is to create new products and
launch them successfully on the market. More specific aims, which are strategic for R&D, include:
offering a wider choice of food items to the consumers; enhancing good sensory perception that
makes food more appealing; improving nutritional value to meet dietary needs; improving food
safety; adding convenience; and finally, reducing production costs which may allow product prices
to be lowered. These beneficial outcomes can be reached either from constant gradual product
improvement or by introducing a significant product change in a single step. The latter situation
usually takes place when a new technology - crop, ingredient, process, storage — is introduced,
as well as when a new understanding of consumer needs is achieved.

R&D covers the total food system chain and needs multidisciplinary research because the
scientific base of the food system takes roots in diverse disciplines such as chemical, biological
sciences and food technologies. The objective is always consumer satisfaction, but in a broad
meaning that includes not only the individual perception but also consumer health and safety
together with the environmental sustainability and the well-being of those who produce the food.

Consumer satisfaction is strictly linked to the products quality. So, in food industrial production,
guaranteeing a constant quality of the final product is a must, especially for brands with a high
reputation. A great effort is deployed to design processes robust enough to always ensure the
desired quality, compensating for the “physiological” variability of food raw materials and
processes. The concept behind this is the Process Analytical Technology (PAT) [1,2,3,4,5,6]
linked to the Quality by Design (QbD) [7] paradigm, which is based on the concept that the quality
of the (food) products can and should be ensured by process design and control (i.e. integrated
into the process) and not only provided by post-production quality testing. Of course, this does
not eliminate the need to apply quality control protocols to continuously monitor the final product
as well as the process itself [8,9].

To set up a PAT-QbD framework two basic requirements must be met: i) the implementation
of on-line sensors and ii) the use of multivariate data analysis tools to extract, integrate and utilise
the information provided by process and analytical sensors and link it to the product quality
assessment. This framework will allow reaching process knowledge, such as what is the natural
process variability, what are the most critical factors to control, how to implement a process
monitoring/control system [10].

This reflects in food scientists and technologists facing, during the last 30 years, increasing
massive amounts of data derived from the use of different measuring devices (e.g., instrumental,
and sensory data), the integration of different analytical techniques and processes during the
analysis and production of foods. Therefore, complementary disciplines and tools, such as
statistics and chemometrics, experimental design (DOE), Multivariate data analysis (MVDA),
multivariate statistical process control (MSPC), [11,12,13] add to the more traditional ones used
in food science, and they have become essential in modern sciences and are an integral
component in the day-to-day foods analysis.

It became so clear how much is felt the need to have appropriate methods to characterize row
materials as well as production intermediates and final products. Appropriate analytical methods
should be fast, non-destructive and, possibly, easy-to-use, considering their use in industrial
context, and unavoidably they should be supported by data analysis tools.

In this context, the main aim of my thesis project was to assemble a “toolbox” of knowledge
and chemometric techniques allowing me developing proper analytical methods in my Company,
in both R&D and industrial contexts.

To do that, some cases of study related to the production chain of green sauce “Pesto alla
Genovese” were selected as benchmarks for applying chemometric tools and improve data



analysis strategies. Of course, the approaches used are extendable to any other products or
production plant.

“Pesto alla Genovese” [14] is a green sauce inspired to the “PESTO GENOVESE” [15,16]
name that associates to the original recipe of Italian traditional Basil Pesto sauce done with the
seven ingredients contemplated by the Consortium for protection and guarantee of the ancient
regional heritage, which are: PDO Genovese basil, Extra virgin olive oil, PDO Parmigiano
Reggiano (as well allowed Grana Padano variant), PDO Pecorino Sardo, Pine nuts, Garlic and
Salt. It has a unique flavour known and appreciated all over the world. Hereafter we will refer
always to “Pesto alla Genovese”.

The industrial production of “Pesto alla Genovese” requires the accurate control of the raw
materials quality. Basil is one of the main ingredients of pesto sauce, in terms of importance and
guantity. Its evaluation is nowadays still done visually inspecting a small part of the huge quantity
of incoming basil in the production plant. This could be a weakness considering how its
characteristics like aroma, plant colour, leaves to stems ratio, and defects are subject to variability
while being so relevant for the final product quality.

Analogously for the final product “Pesto alla Genovese” the aroma (in large part influenced by
the basil) is one of the key quality factors, together with the physical structure related to the
product creaminess and colour.

Therefore, there is a need to select appropriate tools, analytical and statistical, to proper
characterize basil and pesto. Moreover, in an industrial contest, to minimize the number of routine
quality analyses, it is also important together with assessing which analysis describes at best the
product quality.

1.2 State of the art

The concept of process analytics (PA) was probably born since 1940s in Germany in chemical
and petrochemical industries. In these industries the PA was implemented as chemical or physical
analysis [17] of materials carried out during the process. In the following twenty years it was also
adopted by nuclear power plants [18]. The concept of Quality by Design was [19] first proposed
by Joseph M. Juran in 1992 in some publications, mainly in Juran Quality by Design [20]. The
basic idea is that quality can be planned. It was primarily [21] adopted by the automotive industry
and then the US Food and Drug Administration (FDA) used it for the process of drug discovery,
development, and manufacturing in early 2000 [22], introducing the concept of Process Analytical
Technology (PAT).

In food industry the adoption of QbD had have a slower speed [23], probably due to the relevant
difference respect to pharma industries in terms of profit margins and consequently on invested
money in more sophisticated technologies.

In a recent paper [24] the implementation of the QdB/PAT tools in food industry has been
studied. Results indicates that “QdB/PAT bases and tool are still rarely implemented in food
industry”. There could be many causes for this, including the preference of the companies to
evaluate the quality of products with a more “classical” off-line analysis using laboratory-based
analytical methods [25,26]. So, in the Perez-Beltran paper [5 cit.] just 23 studies of QbD/PAT
application in food industry were found, and this although QbD/PAT tools have been
demonstrated their huge impact in improving process understanding and control and saving
money by reducing the number of non-compliant products that have to be discarded.

In food context the definition of quality includes more than one criterion: authenticity (food
authentic, traditional, or natural and not adulterated during production, processing, or storage)
sometimes also expressed as “integrity”; function (i.e. cooks well); biological activity (positive or
negative interaction with body’s functions); nutrition (contribution to a healthy diet); sensorial
experience (smell, taste, texture) and ethical (environmental, social, and ethical aspects).

Application of Quality by Design requires a change from the classical inferential monitoring and
controls of simple parameters in production (pH, temperature, pressure), most often done one
parameter a time, towards core parameters that requires real-time measurements during the
production process, by on-line or in-line techniques followed by multivariate data analysis [27,28]
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to consider correlation structure of the different parameters. Moreover, the advent of the Industry
4.0, the so-called fourth industrial revolution, will open new scenarios. The term “Food processing
4.0” has been proposed [24] to indicate the industrial revolution 4.0 also in the food production.
The Food processing 4.0 concept denotes processing food in a high technologized environment
in which more attention will be posed, not only to the classical quality parameter (already cited),
but also to environmental impact of the production processing in terms of consumption of water,
energy, wastes, etc.

The application of Food Processing 4.0 requires, from one side a new production environment
with an increased level of interconnections (sensors, devices, measurement systems, machinery,
data storage), and from the other side a fundamental aspect of interdisciplinary in chemical,
physical, digital, and biological fields [29]. Despite this huge re-conversion required and the fact
that food industry has typically less money to invest compared to pharma or biotech, in the last
ten years the interest in this topic is exponential increasing. In parallel, it became more and more
necessary to dispose of appropriate analytical techniques and mathematical tools to be applied.

In another study Djekic et al. [30], conducted a survey of more than 200 European industries
and they found that even if they implemented some QbD approach, their applications consisted
of rather simplified models that did not evaluate all the QbD aspects (i.e. safety conditions or
environmental impact). Further, it was pointed out that the application of mathematical models in
food companies has not yet been a matter of interest. The study also identified some reasons to
explain the absence of multivariate tools in the food companies: limited background knowledge
on modelling; software that is not user-friendly; instability of processes when introducing
experimental tests; additional cost of new experiments to be planned in the initial model building
phase (although money is saved in the long term and the balance would be favourable, there is
little awareness of it); high confidentiality of the studies already carried out, which hinders the free
publication of the results in scientific journals.

The conclusion is that it is necessary to start spreading the QbD/PAT approach in a broader
and more complete mode in the food industry context.

This could be done faster and better by improving the cooperation between Academia and
companies and a PhD Thesis like mine is a promising first step.

1.3 Thesis aims and outlines

During the PhD Thesis project different analytical methods and modelling strategies were
applied to evaluate the characteristics of basil and pesto in the fastest and most effective way.
Despite the specific benchmark, the developed approaches are general and extendable to other
product/processes in the food industry.

The need for proper analytical methodologies embraces two main areas: the R&D area in
which the characterization and evaluation of new basil chemotypes or new pesto prototypes has
been exploited, and the Production area, where the focus has mainly been on controlling the
homogeneity of the production in time (possibly real-time).

In both cases chemometrics is fundamental to efficiently extract proper information from
analytical data.



In the scheme below (Figure 1-1) is shown a synthesis of the work undertaken during the three
years.

‘ R&D Laboratorv ‘ l Production Plant ‘

, l

L J L J
| Basil | Pesto Basil Semifinished
pesto
i - o v
! ! : ' . :
Analytical methods Chemometrics Analytical methods Chemometrics Characterization Characterization
*  E-nose [Aroma) *+ Preprocessing +  E-nose, GC-IMS [Aroma) -+ preprocessing * In-line RGB +  NIRS at line & in-line
= Multispectral *  Assessing variability * NIRS {Fingerprinting) +  Assessing variability (PCA, images
imaging sources (PCA, ASCA) *  Hyperspectral imaging ASCA) Chemometrics
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Figure 1-1. Summary of the global pathway

The Thesis organization follows from this scheme; below a brief description of the content of
the different chapters is illustrated.

In the studies reported in Chapters 4 the focus has been on aroma characterisation of both
basil and pesto since flavour is a very important food quality attribute for consumers. Several
analytical techniques have been evaluated coupled with the application of proper data elaboration
strategies and tools. In particular, two analytical techniques, such as Head Space Fast Gas
Chromatography electronic-nose (HS-FGC-e-nose) and Head Space Gas Chromatography-lon
Mobility Spectrometry (HS-GC-IMS), were esteemed promising and applied to evaluate basil
chemotypes in agronomical studies with the main aim of selecting the basil chemotypes holding
the best aroma profile. The multivariate data elaboration was essential in both cases.

In the studies reported in Chapter 5, several analytical techniques have been evaluated to
assess the most effective one for discriminating pesto samples obtained with different basil types.
In this case, data curation, pre-processing, and exploration prior to classification were
fundamental. Moreover, data fusion at low level permitted to better understand which of the
evaluated techniques were more effective.

Chapter 6 was dedicated to imaging methodologies applied to both basil and pesto. Different
imaging system were evaluated, from the simpler and common RGB imaging to hyperspectral
imaging systems in the Vis and Near Infrared ranges. These technigues require a pool of
chemometric techniques and image analysis tools to extract the diverse and relevant information
aiming at interpretable results.

Finally, Chapter 7 was dedicated to a feasibility study for real-time on-line quality assessment
in the production plant. Here, chemometric tools for Multivariate Statistical Process Monitoring
(MSPC) and predictive modelling were applied. The main practical issues to be faced were
exploited and discussed. While, the on-line monitoring system needs to be improved, it has been
possible to demonstrate, as proof of concept, the possibility to predict in advance final product
chemical parameters from NIR on-line on a semi-finished basis.
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2ANALYTICAL METHODS

2.1 E-nose (HS-Ultra Fast GC-FID)

The e-nose technology simulates the human olfactory system. Typically, an electronic nose
consists of an array of electronic chemical sensors (most often inorganic oxides) with partial
specificity for some classes of volatile molecules. An appropriate pattern recognition system
elaborates the overall signal and recognize the odour without any specific information on the
perceived molecules [1]. In 2010 a breakthrough was made by Alpha MOS (Toulouse, France)
that propose an e-nose based on the ultra-fast gas chromatography (UF-GC) technique [2]. This
GC based e-nose (GC-FID e-nose) is spreading due to its use in a similar way to a classical e-
nose, but with the possibility to obtain putative identification of the molecules present in the odour
[3,4,5].

In particular, we used the instrumentation Heracles Il ®, by Alpha MOS, Toulouse, France,
implemented with an autosampler for headspace injection (PAL-RSI), a double-columns ultra-
fast-chromatography system with two Flame lonization Detectors (FID). The autosampler can
condition the samples at controlled temperature before the head space collection to allow the
concentration of the volatile molecules between sample and headspace to equilibrate. After
injection, volatile molecules are collected in a Tenax trap and then released into the two
chromatographic columns.

2.1.1 Basil aroma analysis

For basil analysis about 30 g of the whole basil plants, including leaves and stems, were
exactly weighted at 0.1 g and hashed in a blender (Oster, Sunbeam Products Inc., Boca Raton,
FL, USA) for 30 s in 300 mL of extraction solution at room temperature. The extraction solution
was prepared with NaCl at a concentration of 100 g L™, to increase the volatiles release in the
headspace (next step of the analysis), and 6 mg kg? of ethyl iso-butyrate to serve as internal
standard for the CG analysis. After 30 s of resting time, 20 pL of the solution was collected and
transferred in 20 mL amber vials that were immediately sealed and sent for analysis. Each extract
was sampled at least three times in different vials. Samples vials were incubated for 20 minutes
at 40°C, before injection with 500 rpm agitation (5 s on, 2 s off). Then 1 mL of air headspace was
injected with a syringe temperature of 50°C.

2.1.2 Pesto aroma analysis

For the pesto analysis 2 grams were collected, transferred in a 20 mL vials and immediately
crimped. Samples were then incubated at 50°C for 15 minutes with 500 rpm agitation (5 s on, 2
s off), then 5 mL of the headspace were collected and injected in the GC-FID e-nose.

In both cases, trap loading conditions were 18 s at 40°C, then flashed to 250°C for the release
into the two columns at split ratio 1:1.

Columns have both length of 10 m, internal diameter 0.18 mm, film thickness 0.40 micron and
are respectively MXT-5 (non-polar) and MXT-1701 (slightly polar).

For both analysis the temperature ramp for the two columns was 50°C for 2 s, then to 80°C at
1°C/s, then to 250°C at 3°C/s. The total time was 110 s. The carrier gas was hydrogen.

To calculate areas and concentrations of the volatile molecules AlphaSoft v16.0 software
(Alpha MOS, Toulouse, France) was used.



For further chemometric data elaboration the raw chromatograms were exported in a suitable
format for importing them in Matlab environment. In Figure 2-1 an example of an GC-FID e-nose
chromatogram of pesto acquired with the XT-5 column is shown.

L0t Heracles MXT5 pesto

pesto basilico 127540|field
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Figure 2-1. Chromatogram of a pesto sample on Heracles || MXT5 column.

2.2 Head-Space-Gas-Chromatography-lon-Mobility-Spectrometry (HS-GC-IMS)

The IMS (lon Mobility Spectrometry) technique [6] measures the time employed by a soft
ionized molecule, accelerated by a uniform electric field, to reach the detector moving through an
inert gas flow (nitrogen) at ambient pressure. This time depends on the ion mobility, that is
characteristic of each molecule and depends on its mass and its steric hindrance. Molecules with
different ion mobility can thus be separated and detected [7].

IMS instruments are extremely sensitive devices commonly used to detect drugs or explosive
(i.e., at airport security checks). Due to the fast separation timescale (milliseconds) they are often
used coupled to other techniques like mass spectrometry, gas chromatography or high-
performance liquid chromatography to obtain a multi-dimensional separation [8].

In our case the analyses were performed by a FlavourSpec ® (G.A.S. mbH, Germany) GC-
IMS instrument that use a GC column FS-SE-54-CB-0.5 (length 30 m, internal diameter 0.32 mm,
film thickness 0.5 micron) for the first separation dimension. After the chromatographical
separation the volatile molecules enter the drift tube where they are ionized reacting with reactant
ions (water molecules naturally present in the drift tube charged by a -radiation source of tritium).
lons are then accelerated towards the detector and the drift time is recorded.

Drift tube was maintained at ambient pressure and constant temperature of 80°C.

For the analysis of pesto 2 grams were transferred in a 20 ml glass vial and immediately
crimped. The samples were equilibrated for 20 minutes at 60°C before the headspace collection
by the autosampler. After that 1 mL of headspace was injected. The output is a landscape for
each sample that reports on the x-axis the retention time, on the y-axis the drift time (related to
the ion mobility) and on z-axis the signal intensity (Figure 2-2).
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Figure 2-2. Upper part: 2D HS-GC-IMS chromatogram (pre-processed data). Lower part: peak map with the 2-
dimension projected as sum on the relative axes, respectively on X axes the retention time, and on the Y axes the drift
time.



2.3 Near InfraRed Spectroscopy (NIRS)

Spectroscopy study the absorption or emission of electromagnetic waves by matter. The
measure of such radiations is a way to obtain information about the systems and its components
and is called spectrometry. There are several spectroscopic techniques based on the different
ways the electromagnetic radiation interacts with matter, depending on the energy of the radiation
[9].

Literature reports numerous studies that present applications of spectroscopy in research as
well as in industrial environment [10]. Low energy techniques are particularly useful in food
analysis, because they are fast, non-destructive, not dangerous for the operators, easy to use
and often do not require any sample preparation.

We will focus just on one of the techniques widely applied in food analysis that is the infrared
spectroscopy, in mid or near infrared ranges. This technique uses the interaction of
electromagnetic radiation with the vibrational states of covalent bonds and rotational states of
molecules. For this reason, it is very powerful to measure foods that are composed by organic
material containing covalent bonds between atoms like carbon, nitrogen, oxygen, sulphur,
hydrogen.

Some characteristic regions in the NIR spectra which are linked to food components are
reported in Table 2-1.

Table 2-1. Principal types of NIR absorption bands and their location in the spectrum

Wavelength interval Absorption bands

N-H 2nd overtone
800 — 1100 nm OH 2 gvertone
CH 3 overtone

CH 2 overtone

1100 - 1300 nm

OH combination

1300 — 1420 nm

CH combinations

1420 — 1600 nm

OH 1st overtone
NH 1st overtone

1600 — 1800 nm

CH 1st overtone

OH combinations

1800 — 2200 nm NH combinations

2200 — 2500 nm CH combinations

In food analysis NIR spectroscopy is largely used to measure concentrations of some
parameters after the calculation of proper calibration curves by multivariate techniques, for its
rapidity and easiness of use. Moreover, the NIR instrumentation is becoming more and more
small and cheaper opening to new possible applications [11,12] in situ and in-line. It is also
possible to use the VIS-NIR spectra to have a qualitative description of the sample analysed in
an untargeted approach, when the aim is to discriminate samples having some differences.

For the NIRS laboratory analysis undertaken for the work presented in this Thesis a benchtop
DS-2500 (FOSS, Denmark) instrument was used.
Spectra acquisition of “Pesto alla Genovese” samples were done just transferring about 100
ml of pesto into the large cup of the instrument without any other preparation step.
Spectra were collected in the range from 400 to 2500 nm (8 replicates for each sample) and
the raw spectra were exported for further statistical analysis.
10



In Figure 2-3 an example of spectra acquired on pesto samples is reported.

Original spectra
22 T T T T T T

1400 1600 1800 2000 2200 2400
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Figure 2-3. NIR raw spectra of pesto samples.

For the NIR analysis conducted on-line in the pesto production plant a Pro-Foss spectrometer
(Foss, Hillerod, Denmark) was used with a spectral range from 1100 to 1650 nm with a resolution
of 0.5 nm and 64 scans per sample. The instrument was equipped with an optical fibre that
connect the spectrometer to the acquisition probe located on the process pipe.

2.4 Pesto stability analysis

"Pesto alla Genovese” is a complex multiphase system with an emulsion of oil in water, mixed
with a watery cheese phase in which are suspended solid pieced like basil leaves and cashews
pieces. Its equilibrium depends on the proper ingredient combinations and is stabilized by the
emulsifying effect of the milk proteins. When this equilibrium is not stable the oil separation after
some time is one of the effects that could be observed. Despite this oil release does not change
the nature of the product it is not appreciated by consumers. Became so important to measure
the physical stability of the “Pesto” system.

Stability has been evaluated by the LUMiSizer® (LUM, Berlin, Germany). It is basically a
centrifuge equipped with a device for measuring the extinction of the transmitted light (NIR 856
nm and blue 470 nm) across the entire length of the cuvette sample in real time during the
centrifugation process. It uses the STEP-Technology that permits to obtain Space- and Time-
resolved Extinction Profiles over the entire cuvette holding the sample. Up to 12 different samples
can be analysed simultaneously. Parallel light (Lo) illuminates the entire sample cell, and the
transmitted light (L) is detected by two-thousands CCD sensors arranged linearly across whole
sample cuvette from top to bottom, with a microscale resolution. Transmission is converted into
extinction by taking the log(L/Lo) and the particle concentration can be estimated in each point of
the cuvette. The speed of the centrifuge can be changed from 200 to 4000 rpm (corresponding in
the middle of the cuvette to 5 to 2300 g). It allows to measure drops and particles velocity
distribution for phenomena like creaming or sedimentation and so it is possible to have an
estimation of a product stability and make shelf-life prediction.

The instrument can control the temperature from 4 to 60 °C.
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In the present work the method used for the pesto characterisation used temperature 30°C,
rotor speed 4000 rpm, light 865 nm, cuvette PA 10 mm optical path.

2.5 Spectral Imaging

2.5.1 Visible Red Green Blue (Vis-RGB) imaging

The digital image processing was born in the 1960s on satellite images, mainly with the
contribution of the Bell Laboratories, Massachusetts Institute of Technology, and the Maryland
University [13].

Initially image processing consisted of methods dedicated to improving the image quality, in
fact the first digital images had very poor quality. The Jet Propulsion Laboratory (JPL) used image
processing tools to improve image quality and to extract information from the images sent back
by the Space Detector Ranger 7 in 1964. From then on, the increased quality of photographic
sensor joined to the elaboration power has started a new discipline that extend its application to
many fields, from medicine to food analysis [14,15,16]. An idea of how much these applications
are spreading is given by the number of reviews published in 2023, just on “image processing
and food”, that overcome the 600.

In food analysis, despite its simplicity, colour analysis plays a big role, since colour change can
be the results of oxidation and decomposition processes thus capturing, albeit indirectly the
“chemistry“ of food. Moreover, texture and appearance are important sensory attributes.

In this work a Red Green Blue (RGB) camera has been used for basil characterisation, and a
hyperspectral camera for pesto characterisation as will be shown in paragraph 6.1 and 6.2
respectively.

A vision system produced by SENSURE (SENSURE SRL, Bergamo, Italy) was used to acquire
RGB images (24-bit, resolution 1280x1020 pixels). In Figure 2-4 it is shown as example of one of
the basil images acquired in-line.

The vision system software automatically extracts few features from the images and store
them.

-

¢ o palie e e

Figure 2-4 Example of a basil image acquired by the on-line RGB camera.
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2.5.2 Hyper Spectral Imaging (HSI)

Whereas the human eye sees colour in the visible part of electromagnetic spectrum, mainly in
three bands (around red, green, and blue), hyperspectral imaging collects for each pixel of an
image a large electromagnetic spectrum with fine wavelength resolution, covering often a spectral
range from ultraviolet to near infrared. In this way, it is possible to obtain much more information.

Hyperspectral imaging [17,18] (HSI) was first applied in the mining and geology field for its
ability to identify minerals or soils characteristics, but rapidly HSI applications spread to many
other fields, mainly with the development of instruments installed on board of artificial satellites.
Some of the fields range from agriculture to ambient protection, to biomedical to astronomy. In
recent years also to food analysis, processing and controlling.

Its powerfulness derives from the possibility to give simultaneously morphological and
chemical information.

In my period spent at the INRAN facilities in Montpellier (France) [19] pesto images acquisition
was done using two separate hyperspectral cameras (see Figure 2-5):
e Vis-NIR HSNRO3 camera (wavelength 409 - 987 nm)
¢ NIR HSNRO5 camera (wavelength 964 - 2494 nm).
Both cameras acquire the image in line scan (one row at time) modality.
Pesto samples were acquired in small aluminium cup sampling from the middle of the jar,
including in each image as reference a white plate (see Figure 2-6).

—

Figure 2-5. Hyperspectral cameras at INRAn facilities.
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Figure 2-6. Pesto sample acquisition with reference white plate.
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3CHEMOMETRICS
METHODS

3.1 Few words about Chemometrics

Chemometrics is an interdisciplinary science that combines statistics and chemistry. It is
practically oriented to solve analytical chemistry problems (and not only) using advanced
statistical tools [1,2,3,4].

Called an “art” [5] by Svante Wold, one of the founders of this discipline, chemometrics helps
to extract relevant information from chemical data. In fact, in analytical chemistry is quite common
to have, as results of experiments, a large quantity of data in which noise and useful information
are mixed.

Born in the early 1970s and facilitated on one hand by the increase in the computer power
and, on the other hand, by the analytical instruments’ development its use has been largely
spread for more than one reason. The most relevant is the augmented consciousness that
chemometrics is not a "facultative” appendix, but a fundamental everyday tool [6,7,8,9,10].

Jus to mention an example, chemometrics give a relevant contribution on the design of the
experimental trials, where it overcomes the old (but still strongly rooted) idea of changing "one
variable at time”. Nature is a multivariate system and so it is crucial to have proper tools able to
manage this complexity. Chemometrics does that using a multivariate approach to data analysis.

Possibilities are a lot and some of them have been explored in this Thesis.

Examples of classification techniques will be reported, useful when like in our case, a
comparison between some classes of samples is pursued. In our cases, we had some additional
information on the systems we were studying (i.e. the different recipes of a food product) and
typically “supervised” models were applied. In other cases, we did not have additional information
and so “unsupervised” methods will be required.

3.2 Data pre-processing

Data pre-processing [11,12,13,14] is a fundamental step needed to remove noise or sources
of variability which are not inherent to the sought information, e.g. related to the physical
characteristic of samples when compositional profile is of interest, variability due to ambient
conditions, variation in instrumental settings, etc. In general, it can be distinguished signal pre-
processing (applied in the row direction sample by sample) from pre-processing such as centring
and scaling (applied in the columns directions of the dataset) [15]. Here, are concisely reported
the signal pre-processing applied per type of signal.

Imaging pre-processing is described in the paragraph 3.6.

3.2.1 Chromatographic data

Chromatographic data may be affected by retention time shift from run to run and when the
chromatograms are analysed as such, i.e. without peak recognition and integration, this
represents an issue for further multivariate data analysis, as well it does baseline disturbance. In
addition, normalization may be needed to compensate run to run intensity variability, and the
presence of major and minor components may require scaling to let all of them to contribute fairly
to the modelling phases.

In the GC-FID e-nose analysis an Internal Standard (IS) was used in each chromatographic
run and thus normalization was applied by dividing data by the IS signal.

Also, the gas chromatograms acquired by the Heracles Il instrument, despite their high
reproducibility and stability, showed both baseline and retention times shift.
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Thus, retention time samples alignment was done by using the Interval Correlation Optimised
Shifting algorithm (icoshift) applied by intervals, which were manually defined.

The icoshift algorithm was initially proposed in 2010 by Tomasi et al. [16] for NMR spectral
data, and then extended in 2011 to chromatographic data [17]. It is based on COrrelation
SHIFTing of spectral intervals and employs an FFT engine that aligns all spectra simultaneously.
The algorithm is demonstrated to be faster than similar methods found in the literature making
full-resolution alignment of large datasets feasible.

Baseline subtraction was operated by using the weighted least squares algorithm (2" order
polynomial) [18, pages 173-174].

Finally, since the peaks’ intensity and variance reflect the presence of major and minor
constituents, it was important to use a procedure able to make the different chromatographic
regions influence on the developed statistical models comparable. To this aim block scaling to
equal block variance (defining the blocks to be the same as the intervals used for the alignment
with icoshift) was used, including column mean centring.

3.2.2 Spectroscopic data

The name spectroscopy encompasses many techniques depending on the wavelength, and
so the energy, used. In fact, the energy of the light that interacts with the matter causes
phenomena related to absorption of energy at atomic level causing changes in electronic state
(X-ray and UltraViolet Visible absorption), or molecular level, with changes in rotational and
vibrational states (InfraRed and Raman) or in rotational states (microwaves and Nuclear Magnetic
Resonance).

We will focus just on Near Infrared Spectroscopy (NIRS). This technique, despite the infrared
radiation was discovered in 1800, show its first practical applications starting just in late 1960s,
mainly for moisture determination [19,20,21,22]. This late spread could be attributable to the lack
of instruments, but also to the absence of proper mathematical tools to extract analytical
information from the spectra. In fact, in the NIR range the Lambert-Beer law (that relates linearly
the light absorption of an absorbing analyte with its concentration) is not applicable.

Moreover, in the NIR spectroscopy there are several ‘disturbing’ factors, like light scattering
phenomena, overlapped signals, background effects, bands overtones (with internal correlations
of signals) and the absorption of water (almost ubiquitarian in food systems) in a wide part of the
spectrum.

All these considerations explain why is necessary to pre-process NIRS data before extracting
relevant information.

Spectral (or signal more in general) preprocessing is itself a field of research, and detailing it
is beyond my aim. In general, in NIRS preprocessing may be divided into three main categories
smoothing, baseline correction, and normalization [13,23]

The preprocessing applied in my Thesis work is reported below:

e Smoothing by Savitzky-Golay filter (SG). This filter removes the high frequency noise by
polynomial interpolation (codified in specific filter) applied by spectral window (a zero-
degree polynomial corresponds to moving average)

¢ Transforming the signal to its first or second Derivate, applied on a smoothed signal so to
remove noise. First derivative can remove constant background. Second derivative
removes constant and additive background. In addition, implicitly they can deconvolute to
some extent overlapped band by highlighting the presence of shoulders, etc.

e Normalization by the SNV (Standard Normal Variate) method. This is done to make all
spectra comparable, passing to relative intensities (or absorbance level). It can be useful
to correct spectra for changes in optical path length and light scattering (it is assumed that
the standard deviation of the spectra represents well these changes). SNV is, for example,
frequently used to compensate for changes in surface roughness of the material [23].
Mathematically, SNV consists in subtracting each spectrum by its own mean and dividing
it by its own standard deviation, so after SNV each spectrum will have a mean of zero and
a standard deviation of one.
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e Multiplicative Scatter Correction (MSC). In this case, it is assumed that chemical variation
is small compared to physical variation (i.e. variation introducing a constant
(additive)/proportional (multiplicative) baseline effect) and thus the true ‘signal’ may be
replaced by a constant reference signal, usually the mean (or median) spectrum, m (it
may also be a specific spectrum of the data set).

3.3 Exploratory data analysis and modelling methods

3.3.1 Principal Component Analysis (PCA)

Principal Component Analysis [24,25,26] is an important and powerful method used for
explorative analysis of dataset containing high number of dimensions for each observation.

It increases the interpretability and visualization of multidimensional data while preserving the
maximum amount of information.

Originally proposed by Pearson in 1901 and subsequently improved by Hotelling in 1933, it
became computationally feasible to use on larger dataset after the availability of computers.

Fundamentally PCA reduce the dimensionality of a dataset linearly transforming the data into
a new orthogonal coordinate systems (Principal Components) where most of variation in the data
can be described.

PCA works finding a new reference space (hyperspace) in which the centre is the average
value of the original data; then the first principal component direction is calculated from the centre
in the direction that maximize the data variance. The second component is calculated in the
direction, orthogonal to the first, that again maximize the data (residual) variance. The process is
repeated for each principal component.

Mathematically PCA is represented as (Figure 3-1)

X=TPT+E (Eq. 3-1)

where:

X is the original dataset

T is the score matrix

P is the loadings matrix

E is the matrix of the residuals.

The scores matrix T describes how the different rows in X (observations) relate to each other.
Scores are the coordinates of samples in the PCA space (i.e. each scores vector is a linear
combination of original variables). The scores plot is a powerful tool to display patterns in
multivariate data.

The loading matrix P holds the weights of the linear combination and thus reflect the influence
of the variables in X in defining the PCA model. In other words, loadings indicate which variables
are responsible for the pattern found in scores T.

The loadings plot shows graphically how the variables are related.

Discussing the scores and loadings plots jointly allows linking pattern observed in scores plot to
the variables responsible for them.

The residual matrix E is the noise part of the data. It represents the part of X not explained by
the model TP'. Plotting the changes in residual variance vs the number of PCs is one of the
criteria which can be used to establish the best number of PCs (scree plot, introduced by Cattel
in 1966 [27]).
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Figure 3-1. Principal Component Analysis scheme: t1 and p1 are respectively the scores and the loadings of the first
PC, and so on. E is the residual matrix.

3.3.2 Multivariate Curve Resolution — Alternating Least Squares (MCR-ALS)

In the cases in which the measured data are the results of a combination of different
contributions and the interest is recovering them distinctly, then resolution/spectral unmixing
methods can be applied. For examples in spectroscopy where a spectrum is the combination of
the spectra of the pure components of a mixture, or in chromatography where the signal intensity
of a chromatogram is the combination of the signals (partially overlapped) of singles molecules,
or in hyperspectral imaging where to each pixel correspond a spectrum resulting from the
combination of the pure spectra of the individual components present in the system.

Among the different methods, in this Thesis works we applied Multivariate Curve Resolution
Alternating Least Squares [28,29,30], which is a curve resolution method assuming the data follow
a bilinear model, that is the observed signal (spectrum or chromatogram or other) is a linear
combination of the pure components in the system.

MCR-ALS decomposes the D data matrix into the product of matrices C (the concentrations of
each resolved component in the samples) and ST (the spectra profile of each resolved “pure”
component).

The bilinear model could be written as (Figure 3-2):

D=CS"+E Eq. 3-2

where:

D is the original dataset

C holds the relative concentrations of the “pure” components
ST holds the spectral profile of each “pure” component.

E is the unmodeled part of the data D

wavelengths wavelengths

cl cn

pixels
+
m

D C

Figure 3-2. MCR-ALS example of application for a hyperspectral image. In matrix C, c1 to cn are the components in
which D has been decomposed and s1 to sn are the correspondent pure spectra.
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To apply MCR some constrains need to be imposed to give unique results, in fact the ALS
solution suffers from rotational ambiguity. Constrains to give proper results should be consistent
with the nature/behaviour of the studied systems. Typically for spectral systems non-negativity
constrains are applied on both concentration and spectra dimensions, within the assumption that
a concentration as well as spectral signal should not be negative. Other possible constraints that
could be applied are unimodality, that forces a “pure” component to be constituted of just one
peak (it can apply to chromatographic signals), or closure (i.e. the concentration of the resolved
components in each sample should close to 1 or 100 %) in the case of mixture data. Other useful
constraints, which can be applied in a flexible way to just one or all the components, are selectivity
constraints, which use a priori knowledge on the spectral profile of pure species, e.g. imposing
zero in region where they do not absorb.

The number of components to be used in the decomposition should be chosen carefully.
Typically, a knowledge of the chemistry of the system could help, otherwise several MCR models
with different numbers of components could be tried and for each of them the interpretability of
its resolved spectral profile, based on the pure spectrum to which could be associated, or the
presence of bands that are meaningful with respect to the composition of the studied system,
should be evaluated. A suggested rule of thumb is that if two models provide equally plausible
solutions the solution with least components will be chosen [30].

3.3.3 ANOVA-simultaneous component analysis (ASCA)

Analysis of variance (ANOVA) is a method applied to designed data (i.e. data acquired by
systematic varying one or more conditions at specified levels) to assess the effect of the
experimental factors, e.g. different samples categories, treatments, etc., on each dependent
variable. However, ANOVA does not suffice to analyse multivariate data since it does not take
the interrelation between variables into account. The classical extension of ANOVA to multivariate
data is multivariate-ANOVA (MANOVA) [31]. However, MANOVA is not able to analyse data when
the number of variables exceed the number of measured samples (example in the case of a
spectra) also, multinormal distribution of the data is assumed, which is rarely fulfilled in complex
dataset.

One of the methods proposed to overcome this limitation is ANOVA-simultaneous component
analysis (ASCA) [32,33]. In the ASCA methodology ANOVA is merged with PCA, removing in this
way the drawbacks of both methods.

The formulation, in case of two studied factors, e.g. in agronomic studies plant variety and
harvesting season, is as in equations 3.3 and 3.4. At first step, as in ANOVA, the data matrix X is
partitioned into the contribution of each factor and their interactions:

Xe=X-1m" = X1 + Xz + Xixz + Xres Eq 3-3

where X. is the centred data matrix, m' is the vector of column averages, X; and X are the
main effect matrices holding the levels average for factor 1 and 2 respectively, X is the
interaction effect matrix and X:es is the residuals matrix.

Then, at a second step a Simultaneous Component Analysis (SCA) is performed, obtaining a
scores matrix T and a loadings matrix P for each effect and interaction matrix:

Xe = T1P1 + T2Pz + T1x2P1xz + Xres Eq. 3-4

where T holds the scores and P the loadings of each PCA model; the maximum number of
PCs for each model is equal to the number of levels minus one. In Figure 3-3a schematic
representation of ASCA is shown
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Figure 3-3. Scheme of ASCA.

To better inspect the ASCA results, i.e., to highlight how the samples are dispersed around the
mean of each effect level, could be useful to project the single sample on the ASCA scores plot.
This can be achieved by adding the residuals to the estimated x; values and then obtaining the
single sample scores form the SCA model. For example, for each factor or interaction (f) the
computation of the score vector ti+res(f) is carried out through the following equation:

ti+res(f) = (Xi(f) + Xres)pres(f) Eq. 3-5

where X;(f) is the effect matrix for a specific factor or interaction and X..s is the residuals matrix,
whereas pres(f) represents the loadings vector of the SCA model for the effect of that factor or
interaction.

3.3.4 Partial Least Squares regression (PLSR)

Partial Least Squares Regression (PLSR) [34] is a widely used method for calibration and
regression tasks.

The aim of PLS is to relate two sets of data, X and Y, building a multivariate model based on
maximization of XY covariance, and then use this model for prediction.

PLS overcome the limitations (collinearity issue and requirement of number of samples larger
than number of variables) of multilinear regression by a first step of data compression by latent
variables.

Two main algorithms can be used for the calculation of the PLS models, the NIPALS [35] and
the SIMPLS [36] algorithms.

NIPALS, developed by H. Wold, calculates scores T and loadings P for the X block, and scores
U and loadings Q for the Y block in a PCA-like way:

X=TP +E Eq. 3-6
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Y=UQ' +F Eq. 3-7

Where T and P are the scores and loadings, respectively for the X block while U and Q are the
score and loadings for the Y block. E and F are the residual for X and Y blocks, respectively.

Specific to PLS is a weight matrix W that ensures maximization of the covariance between T
and U. In NIPALS algorithm the following calculation is repeated iteratively until convergence
(component wise):

T=XW' Eq. 3-8

W=UX Eq. 3-9

After the significant PLS components are calculated, by post processing the “pseudo-
regression” coefficients matrix B, which relates the predictors X with the responses Y is calculated
as:

B = W(PTW)1QT Eq. 3-10

In this way, the model can be, finally, re-expressed in term of the original variables (which is
useful for prediction):

Y=BX Eq. 3-12

The second algorithm, SIMPLS, differs from the first one mainly in the way the X matrix is
deflated after the first component. In this case a non-iterative approach uses Singular Value
Decomposition of the covariance matrix X'Y to calculate loadings and scores.

3.4 Discriminant analysis

The possibility to understand if a certain sample is a part of one or more known categories falls
under the general topic of classification. In terms of data analysis, it means that some
mathematical/statistical rules will be defined as to assign each sample to one or more categories,
based on the variables that describe the sample.

In this case, differently to exploratory analysis, is necessary to know a priori information about
the categories, and this information is used to build the model (supervised method).

There are many multivariate classification methodologies, and to go into details for all of them
is out of the scope of this Thesis. It is important to underline that they are divided into two main
groups: aimed at discrimination and aimed at class modelling. In the first case the classification
rules are defined to finds differences between sample categories (classes). This means to find
directions in the geometrical space (hypersurface) of variables which allow assigning the samples
of a given class to a specific region of the variables space. So, there will be defined as many
regions as the number of classes. In class modelling instead the objective is on modelling
similarity between samples that belong to the same class, and not to differentiate the classes. In
this case the class modelling rules define the space of the class (hypervolume) without
considering if there are other classes, and in an independent way from each other.
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To resume, the main difference between discriminant classification and class-modelling, is that
in the first case a sample is always assigned to one of the defined categories, while in the second
case a sample could be assigned to one, more than one, or none of them.

In the case of discriminant classification, the decision rules to assign a sample to a given
category are based on probability criteria (Baye’s rule says that a sample is assigned to the class
where it has the maximum probability to belong). However, under this general framework are
comprised several methods. Among them, the most used are Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), and Partial Least Squares Discriminant Analysis (PLS-
DA). The first two share the limitations that they can be applied only when the number of samples
is larger than the number of variables, and when variables have low correlation with each other.
Both issues could be overcome by applying before discrimination a data reduction methodology
providing an orthogonal subspace, like PCA and PLS-DA.

Hereafters are briefly recalled the discriminant techniques used in this thesis work, which are
based on extension of PLS regression to discriminant classification task.

3.4.1 Partial Least Square — Discriminant Analysis (PLS-DA)

PLS-DA is a variant of partial least squares regression (PLS-R) that is used when the matrix
of response variables Y is categorical (with discrete values) [37,38,39,40].

In Partial Least Squares Discriminant Analysis (PLS-DA) the discriminant classification
problem is reformulated as a regression problem in which the responses matrix Y contains the
class membership information in a binary coded form, i.e. each Y-column refers to a given
category and each sample will have a value of 1 in the Y-column corresponding to its true class
and zeros, or -1, elsewhere. Accordingly, the classification problem can be reformulated as finding
the best regression model (by using the PLS algorithm) linking the experimental data measured
on the samples (X) to the binary-coded dummy matrix Y.

It has been demonstrated that PLS-DA converge to linear discriminant analysis if the number
of PLS latent variables is equal to the number of variables in X. The regression coefficients matrix
(B, see eq. 3-13 above) allows prediction of the Y values for unknown samples Xnew; as the
predicted values (Ynew) Can assume real values, and not only ones and zeros, in this case a
classification rule to assign the samples to a given category must be defined. In general, there
are two approaches a “true” discriminant one where classification is accomplished by assigning
the samples to the category corresponding to the highest value of the predicted dummy response,
e.g. if the classification problem regards three classes, a sample whose predicted Y values are
[0.98 0.5 0.1] will be assigned to class one. This approach when modelling more than two
categories may be sub-optimal and it is suggested to apply LDA (or QDA) on the Y scores or on
the Y predicted values [39], instead.

A second approach is based on the choice of a class threshold for each category [18], i.e. a
value for each dummy vy, if the predicted y for a sample is above it, then the sample is assigned
to the class and viceversa if it is under. The threshold is usually chosen based on classification
performance estimated in cross-validation.

3.4.2 Sequential and Orthogonalized - Principal Least Square (SO-PLS) and
Sequential and Orthogonalized - Principal Least Square — Linear Discriminant
Analysis (SO-PLS-DA)

SO-PLS is a multiblock extension of the PLS regression [41,42] in which the information is
extracted sequentially from each predictor block and where the subsequent blocks are
orthogonalized to the previously selected components. Unlike multiblock PLS where block scaling
is essential because blocks are used altogether, block scaling is of no concern in SO-PLS.
However, the order in which the blocks are presented to the algorithm can influence the results.
The significance of the addition of any predictor block can be tested.

Considering, e.g. two blocks of predictors the SO-PLS steps are:

a. starts by one of the blocks, e.g. X, and fit a standard PLS model. Thus obtaining

24



X-scores (Tx), the X-weights (Wx), the X and Y loadings (Px and Qx respectively) and Y-
residuals (E = Y - TxQx")

b. The second block Z is orthogonalized with respect to the scores of the previous PLS model:

Zorth =Z -Tx (T Tx J1TWTZ Eq.3-11

C. Zomn is then selected to calculate a PLS model with the Y-residuals (E). Thus, obtaining the
Zorh-scores (Tzorn), the Zown -loadings (Pzorn), the Zomn-weights (Wzornn), and the Y-loadings

(QZorth)-

In this way, further information is extracted from Z that explains the remaining variance in Y,
but which is orthogonal to the information previously contributed by block X (i.e. SO-PLS focus
on the distinctive information each block carries).

d. In the last step the full predictive model is obtained adding the two models:

Y = T«Q% + Tg,,,0QZ,... Eq. 3-12

As in any PLS model this can be rearranged to be expressed in terms of regression
coefficients:

Y= XByx+Z,n Bsoren Eq. 3-13
Where:

B, =W,(PiW,)™1Q; Eq. 3-14
BZorth = WZorth (Pgorthwzorth)_ngorth Eq 3-15

The number of latent variables is decided independently for each block, usually by cross-
validation.

Adding more blocks than two can easily be done by repeating orthogonalization with respect
to the scores of the previous PLS regression and fitting the orthogonalized block with the
preceding residual matrices.

Extending SO-PLS to the discriminant case (SO-PLS-DA or SO-PLS-LDA depending on the
classification rule adopted [41]) can be done by using a dummy Y matrix containing the
information about the class membership, as when passing from PLS to PLS-DA.

The CovSel features selection method [see section 3.5.1] has been also implemented in the
SO-PLS framework, considering the multiblock nature of the method. Hereafter are reported the
algorithm steps in the case of two predictor blocks X and Z and a dummy vector y (codifying two
classes):

1. Variables are selected by Cov-Sel from X (as in standard Cov-Sel) and stored in matrix Xse
2. vy is fitted to Xsel by Ordinary Least Square (OLS): Y = XseB,+ Ey

(since only few variables are selected)

Zonh is obtained by orthogonalizing Z with respect to Xsel

Cov-Sel is applied to select variables in Zown

Y residuals (from step 2) are fitted t0 Zormn set by OLS: Ey = ZorthsetBz,,,4 s T Evnew

The full model is calculated merging steps 2 and 5: ¥ = XseiBy+ Zorn selBz,,,,, .., * Evnew

o ko
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In case of classification, analogously to PLS-DA the responses matrix is dummy coded and
the classification rules may be based on predicted responses or on applying LDA on the
selected variables ([Xsel Zorth sel]).

The optimal number of variables to be retained in each block can be carried out as explained
below for Cov-Sel.

3.5 Variables selection

Variables selection is a research field per-se very rich in available methods. The main reasons
for aiming at pruning the initial set of collected variables/descriptors to be used in multivariate
regression or classification tasks, when using latent variables based methods, are enhancing
interpretability, remove extremely noisy variables when these are a huge number, and selecting
few informative ones, e.g. to reduce the experimental analyses cost or to build cheaper
spectroscopic devices by using only some spectral bands (i.e. using LEDS).

Among the available methods in this Thesis, we evaluated CovSel.

3.5.1 Covariance Selection (CovSel)

CovSel [43] is a variable selection method dedicated to the cases where there is a huge
number of variables (yielding a very large solution space), the variables are highly correlated, like
in case of spectral signals, and the aim is to obtain very few selected features. CovSel performs
variable selection iteratively up to a maximum number decided by the user (falling in the wrapper
methods for feature selection). At each selection step the global covariance between single
dependent variables with all the responses is evaluated, and the variable showing the highest
covariance is selected first; then follow a projection of the data orthogonally to the selected
variable before the next selection step. The maximum number of variables to be selected is given
in input by the user (i.e. there is not an optimization of a performance criterion to stop the
selection) which a posteriori can graphically inspect the explained X and Y variance vs. number
of selected features (ordered by selection). In addition, or alternatively, the cross validation
prediction error as function of number of included selected features can also be evaluated, to
decide how many to retain.

CovSel can be applied in exploratory analysis (in this case the selection criterion is based
solely on X-variance), in regression, and discrimination tasks.

In regression, Y consists of continuous responses, and CovSel could be used to make a
variable selection based on all responses and then this global selection can be refined for each
individual response, e.g. in a second step the ordered selected variables can be evaluated by
stepwise addition to see which number will give the minimum cross validation error for each single
response.

For discrimination, Y contains dummy variables codifying class membership, and CovSel is
used on this multi-response Y. In this case, to decide the final number of selected variables to
retain LDA can be performed on the selected features by stepwise addition (see paragraph 3.4.2).

3.6 Image analysis

The image analysis field is very broad [44], and duly illustration of it is outside the scope of this
Thesis. Here, only the basic of the used approaches, and the motivation for using them, are
presented.

Two kinds of images have been analysed RGB (i.e. three Vis channels) and hyperspectral
acquiring a whole spectrum in the Vis (400- 800 nm) and NIR ranges (800 -2500 nm).

In the RGB case the aim was to detect objects, such as basil stems and leaves from
elaboration of basil images taken by the vision system installed in-line (see 2.5.1). However, due
to varying illumination conditions a segmentation approach [45] did not gave satisfactory results,
then we evaluated pixel-based approaches. One combined wavelet transforms filter (WT) (section
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3.7.1), as features enhancement step [46,47], with PLS-DA, for pixel classification; a second one
used a deep learning net.

Hyperspectral images (HSI) of pesto were acquired and evaluated with the objective of
assessing homogeneity of distribution of the different components. To this aim first, HSI were
unfolded then MCR-ALS was applied to resolve the purest components profiles. Finally, to inspect
the resolved components distribution features extraction, by different methods, was applied to the
refolded concentration matrix (section 3.7.1).

3.6.1 MCR-ALS in image analysis

MCR-ALS could also be used in hyperspectral image analysis [48] to separate the different
contributions of the constituent components, i.e. by spectral unmixing, and to study their
distribution in the image.

In this case, the HSI (a 3D data array of dimensions pixels_x * pixels_y * wavelengths) is first
unfolded pixelwise to obtain a 2D matrix of dimensions pixels_xy (rows) * wavelengths (columns).

On the assumption that each pixel's spectrum is a linear combination of “pure” components
spectra, then MCR-ALS can resolve them. When more than one image must be analysed (several
samples altogether) a multiset MCR model can be applied by merging the single sample unfolded
matrices to obtain a unique matrix of dimensions (samples x pixel_xy) * wavelengths, as shown
in Figure 3-4. In this case, a single set of spectral profiles is recovered (same S for all samples)
and a distinct concentration matrix for each sample (Cs). The latter can be refolded (pixel_x *
pixel_y) obtaining a concentration map for each resolved component (i.e. an image showing the
spatial distribution of that component), see Figure 3-5 top. Figure 3-5 bottom shows the
corresponding “pure components” spectra.
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Figure 3-4. Example of 3 unfolded images (corresponding to three distinct samples). HSI arrays are unfolded pixelwise
creating 2D matrices of dimensions (d1 x d2) x lambda for each sample s. All the matrices were then merged obtaining
a unique matrix of dimension (s x d1 x d2) x lambda that is used in MCR-ALS (multiset option).
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Figure 3-5. Upper part, images of the concentration maps corresponding to each resolved component when analysing
by MCR-ALS the NIR hyperspectral image of sample 1. In the lower part the correspondent resolved spectra.
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3.6.2 Image features extraction (applied to concentration map)

Different methods have been developed to characterize the spatial distribution of the pixel
intensities in images, aiming at obtaining statistical parameters that can differentiate images
containing the same elements but in different spatial disposition (texture features) [49].

Texture features extraction methods can be classified in four main categories: (i) statistical,
i.e. describing the texture of image regions, by means of high order moments on the pixel
frequency histograms; (ii) structural, i.e. defining texture as well-defined compositional elements
(spatial regularity of parallel lines); (iii) model based, i.e. which creates an empirical model of the
image; and (iv) transform-based, that converts an image in other forms, using filters (e.g. wavelet
transform) [50].

In this work, two main approaches were evaluated to assess the concentration map obtained
by MCR-ALS (after hyperspectral images decomposition): the well-established Haralick approach
[51], and a more recent proposal [52] to evaluate image homogeneity based on comparison of
the actual image with one where the same pixels are totally randomly distributed.

3.6.2.1 Haralick features

One of the most used approaches to study image texture (spatial correlation) is the one
postulated by Haralick et al. in 1973, known as Gray-Level Co-occurrence-Matrix (GLCM) [51]. It
consists of two steps: in the first one from the original grayscale image, it is generated a GLCM
matrix by considering: one pixel, its grey level, and the level of the surrounding pixels. Each entry
(1j) in a GLCM corresponds to the number of occurrences of the pair of grey levels 7and jwhich
are a distance d apart in the original image; in the second step is carried on the calculation of a
set of statistical features (angular second moment, contrast, correlation, variance, inverse
difference moment, sum average, entropy, energy, etc.) from the GLCM. Haralick proposed 14
statistical features, here only eight of them (which were the less correlated among them) were
selected and used (Table 3-1).
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Table 3-1. Haralick features formulae. The number of the function in the formula refers to the original Haralick paper.

Feature Formula

Energy (angular second moment)
fi= ) D Y
U

p(i,) is the (i,))th pixel in image normalized matrix

Contrast
Ng-1 N, N ..
z , {Zi;"l Y2 P(b])}
f2= n ..
IL—jl=n
! li —Jl
Correlation
_ 2 2@ ) — px py
fz =
Ox 0y
Uy Ky 050, are the means and standard deviations of px and py
Variance

fo= ) ) (- wpG))
J
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Inverse Different Moment (IDM)
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Sum entropy
2Ng
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Information measure of correlation
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e = X Y
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HXY1 = —Zisz(i.j)log{px(i)z?y(i)}

HXand HYare respectively entropies of pxrand py

Maximal Correlation Coefficient
. 1
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3.6.2.2 Homogeneity index

This method is based on the Macropixel analysis (MA) introduced by Hamad et al. [53]. MA is
a method that splits the image in smaller sub-images and study the different properties of those
sub-images and their correlations.

Two possible ways may be used to scan the original image in MA: the Discrete Level tiling
(DLT) which uses non overlapping tiles, and the Continuous-Level Moving Block (CLMB) that
scans in all possible dimensions the macropixels in the image. CLMB method was used in this
work.

For an image of dimensions L x L (squared for simplicity of explanation), considering a Sm
windows of m x m (where m < L) pixels, the total number of sub-images will be:

TOTALsm = (L-(m-1)) (L-(m-1)) Eq 3-16
With a sub-image (Sm) dimension of
PlXm=m *m Eq. 3-17

For each S, used, the pooled standard deviation is calculated as

STDg = |FEGRmn= Eq. 3-18

Where 5 is the average of the pixel intensity of the whole image. The standard deviation of
each sub-sample windows m will be:

_ ZSTDSm -
Swin = TorALer Eq. 3-19

Plotting the Swm Vs r, the normalized windows dimension (pixel size/image pixel size) a so-
called homogeneity curve is obtained.

In other words, we can say that homogeneity curve is the results of the application of CLMB
analysis to evaluate the mean standard deviation of the macro-pixels in an image.

Homogeneity curves were calculated with an algorithm in MATLAB supplied by courtesy of
Prof. Jose Amigo, University of Basque Country (Spain).

The results provide a comparison of the homogeneity calculated for: (i) the actual image; (ii)
the Homo image, calculated on the randomized image (where the pixels intensities are the same,
as in the original one, but uniformly distributed); (iii) the Inhomo image, calculated on an image
obtained by arranging the pixels in an ordered pattern.

Inhomo image represents the maximum level of possible inhomogeneity for the studied image,
while the Homo image the maximum possible homogeneity level. The algorithm calculates the
relative homogeneity (%H) of the image, as percentage of the difference of homogeneity between
the actual and the Inhomo, divided by the difference between the Homo and Inhomo.

An example of results is reported in Figure 3-6.
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Figure 3-6. Example of Homogeneity results.

3.7 Analysis of RGB images

3.7.1 Wavelet (WT) + PLS-DA approach

Wavelet transform (WT) is a very powerful mathematical tool used to extract information form
many kinds of data, included images [54].

Wavelet is categorized into continuous wavelet tools and discrete wavelet tools [55]. The first
are used for signal analysis or time-frequency analysis, while the seconds are most used for
compressing data [56]

The basic idea of the wavelet transform is to decompose a signal or an image into distinct
subspaces capturing different frequency contents of the raw signal/images, namely high
frequencies are collected in the so-called details blocks (holding sharp, oriented changes, etc)
while low frequencies in approximation (holding smooth changes like tones) block.

In the case of images, to do that 2D-WT applies recursively high and lowpass filters to obtain
four sub-images: 1) approximation (A): a low-pass filter is applied both row- and column-wise; 2)
horizontal details (H): a low-pass filter is applied row-wise, then a high-pass filter, column-wise;
3) vertical details (V): a high-pass filter is applied row-wise, then a low-pass filter, column-wise;
4) diagonal details (D): a high-pass filter is applied both row- and column-wise.

This decomposition can be then applied to the obtained approximation block, obtaining A, H,
V and D at second decomposition level, and so on until the maximum decomposition level
compatible with the image size is reached.

This decomposition is applied distinctly to each spectral channel.

The four sub-images for each channel are then unfolded pixel-wise and concatenated to obtain
a final matrix of dimensions: (pixel x pixel), on rows, and (n° of channels x n° of levels x 4) on
columns dimension.

This matrix is used in a PLS-DA model where the Y is a dummy matrix with class membership
of each pixel, e.g. 1 in the pixels representing the characteristic of interest to predict in the image
(i.e. the background) and 0 in the other pixels.

The obtained PLS-DA model is then applied on new images to predict the class to which their
pixels belong (i.e. showing the spatial features of the new images), applying the same sequence
of steps: wavelet decomposition and unfolding. More details are reported in the chapter 6.
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3.7.2 DeeplL approach

For the application of the deep learning approach [57,58,59,60] three main steps must be done:
in the first, the images have been split in sub images of size 256x256xRGB; then convolution
filters have been applied to extract features containing relevant information in the learning phase.
The extracted features have been used to recreate pixelwise label space.

The architecture giving the best classification results, among the three tested, consists of a
two-layer CNN (convolutional neural networks), where the first layer is the largest (32 units), and
the second layer serves to condense the information. These first two convolutional layers encode
the information, and the transposed convolution operation serves to decode the information going
back to pixel space. The last convolution layer uses the decoded information to learn
classification.

3.8 SOFTWARE

Data elaboration was performed within MATLAB (The Mathworks Inc., Natick, MA, USA, 2007)
environment. PLS Toolbox 9.1 (Eigenvector Research, Inc., Manson, WA, USA) has been used
for PCA, PLS and PLS-DA. The MATLAB Wavelet Toolbox has been used for image
decomposition, while the Image Processing MATALAB Toolbox has been used for GLCM image
analysis.

For MCR-ALS the MCR-ALS GUI 2.0 [61] has been used, which can be freely downloaded
from the website www.mcrals.info.

The CovSel code (in Matlab) has been implemented and kindly provided by courtesy of Prof.
Jean Michel Roger (French National Institute for Agriculture, Food, and Environment (INRAE).

The Homogeneity code (in Matlab) performing Continuous Level Moving Block method has
been implemented and kindly provided by courtesy of Prof. José Amigo (University of Basque
Country, Spain).

The SO-PLS and SO-PLS-DA codes (Matlab) have been implemented and kindly provided by
the Rome Chemometrics group (Prof. Federico Marini and Prof. Alessandra Biancolillo) of
University La Sapienza (Rome, Italy).

Several auxiliary routines have been implemented in Matlab by me or by the Modena
chemometrics research group.
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4BASIL AROMA
CHARACTERISATION

Basil aroma is one of the main traits that confers ageable sensory features to the pesto sauce.
Its characterization is of utmost importance, both in the search for new basil chemotypes (also
called varieties in common language and in the paper 1) and in the control of the basil used. To
this aim a fast and sensible analytical technique (GC-FID based e-nose) was used and two
different analysis approaches were evaluated: i) target analysis (implying use of analytical
standards and quantification), which required prior to GC-FID e-nose analysis the use of reference
techniques (GC-MS and olfactometry) to assess the key odorant molecules present and
perceivable; and ii) untargeted analysis, i.e. direct application of GC-FID e-nose and elaboration
of the whole chromatographic profile. Untargeted approach is advantageous in terms of analysis
cost/time and for recovering the entire information since the whole aroma fingerprint is
considered. However, it requires proper chemometric tools. Within my Thesis objective this is an
example of how a deeper chemometric knowledge in R&D may aid developing faster approaches
in routine analysis.

4.1 Targeted analysis of basil aroma

Here the study context and results are summarized, for more details, please refer to published
paper number 1 in appendix 1.

The basil aroma is composed of many molecules, mainly terpenoids, alcohols, aldehydes,
ketones, and esters [1,2]. Totally, there are more than one hundred molecules, of which the most
representatives in sweet basil are considered linalool, estragole, eugenol and eucalyptol (1,8-
cineole) [3,4]. The content of these molecules could give a preliminary evaluation of different basil
flavour profiles, while a more accurate evaluation of the final aroma will also consider the
concentrations of other minor components, mainly the molecules that have a low odour threshold
[5,6]. The odour threshold is defined as the lowest concentration of a molecule that could be
perceived by olfaction. Thus, in the evaluation of the flavour patterns, it is necessary to consider
not only the concentration of a given molecule but also its capacity to be perceived.

Despite there are many different methods to identify and quantify volatile organic compounds
(VOCs), the basil aroma pattern, to the best of my knowledge, has been characterized only by
gas chromatography (GC) based techniques like for instance, headspace solid phase
microextraction gas chromatography—mass spectrometry (HS-SPME-GC-MS) [7], headspace
sorptive ex-traction gas chromatography—mass spectrometry (HSSE GC-MS) [8], as well as gas
chromatography as such (GC and GC-MS) [4] indirectly measuring the total phenolic compounds
[9] or using flow-injection mass spectrometry [10].

As basil is a very delicate plant, which is difficult to store after cutting [11,12], it would be
extremely useful to have a fast analytical method, being at the same time suitable to discriminate
the different chemotypes and furnishing information on the compositional profile of the aroma
fraction.

To this aim, in my work an GC-FID electronic nose device (Heracles Il, Alpha MOS, Toulouse,
France) was tested since it can provide a rapid and sensitive system.

The basil key odorant molecules were selected combining information from sensory evaluation
and gas-chromatography olfactometry (see published paper number 1) Then the nine key
molecules individuated were quantified, in a fast way by using GC-FID e-nose and calibration by
external standards, with an internal standard to normalize every single injection.

Several basil chemotypes were analysed, grown on open fields in different years and
considering more cuts each year. The aim was obtaining a preliminary over-view by multivariate
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exploratory data analysis of the aroma variation due to both chemotypes and period of harvesting.
To deepen understanding of these effects and to assess their statistical significance ANOVA—
Simultaneous Component Analysis (ASCA) was used [13]. ASCA generalizes classical analysis
of variance (ANOVA) to multivariate data, over-coming the main limitations (number of samples
higher than number of variables, breakdown in case of variables collinearity) and multinormal
distribution assumption of multivariate ANOVA (MANOVA).

First, a classic ANOVA was carried out to split the data matrix into the effect matrices for each
experimental factor and their interactions. Then, simultaneous component analysis was carried
out on the effect matrices to identify and visualize the contribution of the measured variables to
each of the effects that introduced systematic variation [14].

Because ASCA requires data coming from an experimental design, and sampling was not
programmed beforehand having ANOVA analysis in mind, a balanced reduced set (to meet a
balanced design) of basil samples was selected, to investigate the effects of cutting period (cut),
basil chemotypes and harvesting year on the basil aroma pattern.

4.1.1 Results and Discussion

4.1.1.1 Basil aroma analysis for molecules identification

The pattern of volatile compounds of basil highlighted by the fast-CG analysis comprises
eighteen molecules that were tentatively identified by using the Kovats relative retention indexes.
The Heracles software compares the retention indexes of the two columns which have different
polarities to improve the tentative identification. In Figure 4-1, the identified molecules are shown.
Among them, there are the nine ones that were identified as relevant in terms of persistent
perceived odour by applying olfactometry analysis (GC-O) with an expert panel. Thus, this is an
indication that the fast-CG technique is suitable to characterise basil aroma.

The identification of these nine molecules was confirmed by comparison with the elution time
of injected standards, once peaks were identified, calibration curves for quantification were
obtained by using an internal standard. The resulting concentration values were consistent with
a typical “eucalypt” basil volatile pattern [6,8] with the prevalence of linalool, followed by eucalyptol
(1,8-cineole) and then by eugenol. Other molecules are typical of essential oils of basil such as
hexanal, a-pinene, myrcene and B-caryophyllene [12].

As previously reported, the flavour profile is strictly related to the presence or the prevalence
of key odorant molecules, with a consequent impact on the final perceived bouquet. Four main
basil chemotypes have been described by Lawrence et al. [15] depending on the prevalence of
odorant molecules: estragole rich, linalool rich, methyl-eugenol rich and methyl cinnamate rich.
Chemotypes used in the present study held predominantly in the linalool rich chemotype, but with
some diversity. Chemotype 8, for example, was characterized for its lower level of linalool
compared to other varieties, whereas on the contrary, chemotype 9 had the highest content. In a
similar way, estragole was relatively more present in chemotypes 8 and 9 with respect to other
chemotypes.
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Figure 4-1. As example it is shown the chromatogram obtained by elution on column MXT-5 of Heracles Il for one of
the samples. Peak 4 is the internal standard.

4.1.1.2 Multivariate Exploratory Data Analysis

PCA analysis was applied to the autoscaled data matrix composed by the nine volatile
molecules (variables, in column) obtained for the 267 samples (rows) characterized by different
varieties, cuts, and harvested years. Autoscaling was selected as the most appropriate data pre-
processing method as the different volatile compounds had different variances due to their
different concentration ranges.

In this first exploratory analysis, two principal components seemed appropriate considering
their explained variance (Figure 4-2).
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Figure 4-2. PCA of all basil samples. PC1 vs. PC2 scores (a—c) and loadings (d) plots. Basil samples are coloured
according to: (a) year; (b) cut; (c) chemotype.

In Figure 4-2, the PC1 vs PC2 scores plot (PCA conducted on species concentrations) is
reported and the different basil samples are represented with different symbols and colour
according to year (Figure 4-2a), cut (Figure 4-2b) and basil chemotype (Figure 4-2c).

From the PCA results some information could be obtained. Figure 4-2a shows that slight
differences could be observed among the three harvesting years, more in 2018 than in 2019 and
2020. The main contribution to this separation seems to be due to a higher concentration of almost
all the investigated volatile molecules, since they lie on the same side of the respective loadings
plot, all at positive values (Figure 4-2d). This difference is within the expected yearly variability,
due to the different weather conditions. As an example, the year 2018 was probably characterized
by less rainfall than the years 2019 and 2020.

As far as different basil cuts are concerned, Figure 4-2b points out that well defined clusters
are not observable with respect to different basil cuts. Cut number 4, located on the left of the
scores plot, is more homogeneous, at first it seems that the average level of all the flavour
molecules is lower than in the other cuts; however, this information overlaps with that of the year.

In Figure 4-2c, the different chemotypes are rather overlapped, and it is evident a “spread” of
“Italiano Classico” basil chemotype samples, which are uniformly distributed along the variability
range of the scores space. Notwithstanding, PC2 highlights the difference of basil chemotype 8,
which has the most negative scores on PC2 and thus presents a higher value of estragole and a-
pinene (negative loadings values on PC2). A few samples harvested in 2020 of chemotypes 1, 4
and 9, and of “Italiano Classico” harvested in 2018, show high positive scores value on PC2,
corresponding to higher amount of hexanal (most positive loadings value on PC2), whose odour
is described as “green grass”, and could give, depending on its concentration, an unwanted “hay”
note.

Finally, it can be observed that chemotypes 1, 2, 4, 6 and 7, which were cultivated only in
2020, are mostly located in the first quadrant (negative PC1 and positive PC2 score values) this
indicates a lower amount of estragole, a-pinene, myrcene, 3-caryophyllene, and eugenol, which
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fall in the opposite quadrant in the loadings space (positive PC1 and negative PC2 loading values)
and thus less fruity/floral and spicy odours.

In general, the interpretation of the overall PCA results is hampered due to the combined
effects of all the investigated factors.

For these reasons ASCA was applied on the balanced reduced dataset with the aim to assess
if the considered experimental factors and their interactions could have a significant effect on
basil’'s aromatic profile. The effects/interactions partition by ASCA is reported in Table 4-1 (first
column) together with the significance (p-value, second column) of each term effect as assessed
by means of a permutation test (i.e. by comparing the experimental sum of squares for each effect
matrix with its corresponding distribution under the null hypothesis).. All the considered factors
and interactions were statistically significant (p < 0.05), even though the effects of the factors
“‘chemotype” and “year” presented a higher explained variance than other effects. On the other
hand, the effect of factor “cut” explained just 3% of the total variance, suggesting a lower influence
on basil's aromatic profile compared with the other two main factors. This can also be seen in the
fact that the second order interactions in which factor “cut” is involved explain less than the 4% of
the total variance, whereas the interaction “year x chemotype” explains about the 12%.

Table 4-1 Explained variance and probability values for main factors and their second order interactions.

Factor Explained Variance % p
Chemotype 36.41 <0.001
Year 22.31 <0.001
Year x Chemotype 11.95 <0.001
Year x Cut 3.74 <0.001
Cut x Chemotype 3.1 0.003
Cut 3 <0.001

After the assessment of the significance of each factor and interaction, a component analysis
(SCA) was performed on each effect matrix separately to interpret the observed variation. In
Figure 4-3a, the scores plot of the effect for factor “year”, with projected residuals, is shown. Since
the year effect matrix contains just two rows, one for each considered year, the SCA model is
described by only one component (SC1), which explains 100% of the variance.

From the scores plot, it was possible to confirm the significant difference between the two
levels of the factor “year”: all samples collected in 2019 have negative scores, whereas almost all
the samples collected in 2020 have positive scores, highlighting the high difference between the
two levels of this factor. To explain this difference, in Figure 4-3b the corresponding loadings plot
is reported, where it can be observed that the year 2020 samples present higher contents of
almost all the molecules investigated in the study, except for 2-hexenal and myrcene, which do
not contribute to explain the difference between the two years.
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Figure 4-3. SCA of the effect matrix “year”. (a) Scores plot (SC1) with projected residuals; (b) variable loadings (SC1).

Figure 4-4 a,b shows the scores and loadings plots for the effect of factor “cut’, respectively.
They are represented in the same way as for the factor “year”. In this case, the scores plot
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confirms that there is a significant difference between the second and fourth cuts, even if it is not
as marked as for the other main factors. Scores of samples from 10 to 18 (4™ cut, year 2019)
present both positive and negative values in an irregular pattern. From the loadings plot, it is
possible to observe that samples collected at the fourth cut present mainly a higher content of
myrcene, eugenol and linalool, with respect to the second cut samples. 3-caryophyllene and 2-
hexenal contribute to the same direction but to a lesser extent. A slightly lower content of estragole
characterizes the second cut. In general, for the factor “cut”, not all the samples characterized by
the same conditions behave similarly, as the effect of “cut” is of the same entity of its interactions
with year and chemotype. However, the general trend suggests that the influence of this factor
on basil’'s aromatic profile cannot be neglected.
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Figure 4-4. SCA of the effect matrix “cut”. (a) Scores plot (SC1); (b) variable loadings (SC1).

Results of SCA for the factor “chemotype” are represented in Figure 4-5. In this case, since
the factor “chemotype” was varied at three levels, two components (SCs) were necessary to
describe its effect. The first SC clearly describes the difference between Var. 9 with respect to
Var. 5 and “Italiano Classico” chemotypes. Var. 9 presented a higher content of almost all the
molecules considered in this study, especially eucalyptol, estragole, and a-pinene, which gave a
balsamic connotation to the odour. On the other hand, the second SC shows the difference
between Var. 5 and “ltaliano Classico” chemotypes, less marked than the difference described
by SC1. In this case, the compounds mainly responsible for this difference are hexanal and 2-
hexenal, which are in greater quantity in the “ltaliano Classico” chemotype, whereas Var. 5 is
characterized by slightly higher quantities of eugenol, 3-caryophyllene, a-pinene, estragole and
eucalyptol.
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Figure 4-5. SCA of the effect matrix “chemotype”. (a) SC1 vs. SC2 scores plot with projected residuals (empty symbols);
(b) variable loadings (SC1 vs. SC2).

To deeply investigate the effect of considered factors on basil’'s aromatic profile, their second
order interactions were also examined. Figure 4-6 shows the effect of the interaction between the

44



factor’s “year” and “chemotype”. It is possible to observe how Var. 9 is extremely different from
the other two chemotypes, as it shows the opposite behaviour in SC1, i.e., Var. 9 samples
collected in 2020 (negative SC1 values) have a higher content of almost all the considered
molecules (negative SC1 loadings, except for 2-hexenal and hexanal close to zero) with respect
to samples of the same chemotype collected in 2019. At variance, the other two chemotypes are
richer in flavours in 2019 than in 2020. “Italiano Classico” and Var. 5 show the opposite behaviour
with respect to year in SC2: the first is richer in flower/fruity aroma (higher myrcene and linalool)
and lower in a-pinene and hexanal in 2019 with respect to 2020, and the opposite holds for Var.
5. Thus, it is worth noting how the variation of the factor “year” changes the chemical composition
of samples of the same chemotype.
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Figure 4-6. SCA of the effect matrix interaction “year x chemotype”. (a) SC1 vs. SC2 scores plot with projected residuals
(empty symbols); (b) variable loadings (SC1 vs. SC2).

The same pattern can be observed in Figure 4-7, which describes the effect of the interaction
between the factors “cut” and “chemotype”. In this case, the variation of factor “cut” is the one that
strongly changes the chemical composition of samples characterized by the same chemotype,
even if it does it to a lesser extent than the factor “year”. High SC1 values correspond to a high
2-hexenal content, whereas low SC2 values are linked to high eugenol values.
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Figure 4-7. SCA of the effect matrix interaction “cut x chemotype”. (a) SC1 vs. SC2 scores plot with projected residuals
(empty symbols); (b) variable loadings (SC1 vs. SC2).

Considering the projected residuals, the differences are appreciable mainly in SC1, where

Italiano Classico and Var. 9 show the same behaviour, being richer in floral/fruity flavours in cut
4 with respect to 2, while the opposite holds for Var. 5
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4.1.2 Conclusion

The results obtained support the use of a fast-GC based electronic nose for rapid assessment
of basil aroma; in fact, the main molecules perceived as persistent by olfactometry (GC/O) are
identifiable and quantifiable. In agreement with previous literature, it has been observed that the
aroma composition is not only a distinctive trait of chemotype, but the content of each specific
molecule varies with agronomic year and cut period. On the one hand, this renders more
problematic the choice of a specific chemotype to be cultivated to achieve a desired flavour profile;
on the other hand, it may help focus on the chemotypes showing more stability with respect to
the agronomic variability. In terms of percentage of variance, the cut affects the aroma less with
respect to year and chemotype. The effect of year seems to be a bulk effect affecting the content
more than the type of molecules found in the aroma.

4.2 Untargeted analysis of basil aroma

Here the study context and results are summarized, for more details, please refer to published
paper number 2 in appendix 1.

The possibility to observe the complete chromatogram in an unsupervised way was the natural
progression to fully benefit from the potential of the fast GC method. To this aim, the raw
chromatographic signals, acquired in a very short time (110 s) were analysed together, after
concatenation of the respective data matrices, according to a low-level data fusion approach [16,
17]. Furthermore, a higher number of basil samples collected from 2019 to 2021 (this year was
not previously considered) were measured, while the number of chemotypes (chemotypes)
studied was increased.

As pointed out, in this second study, the focus was on the extraction of reliable chemical
information from the raw signals aided by proper data analysis and preprocessing tools. In this
way, without the need and the effort of identifying and quantifying the specific markers, was
nonetheless possible to study the different factors linked to production aspects and their influence
on the product quality. This kind of approach could be easily and rapidly exported to other
products where to acquire the knowledge of which individual molecules are present is more
challenging or time consuming.

Multivariate data analysis pipeline included: proper preprocessing, exploratory analysis by
Principal Component Analysis (PCA), and ANOVA Simultaneous Component Analysis (ASCA)
[14] to assess the effect of chemotypes, cuts period and harvesting years (2019, 2020 and 2021)
on basil aroma.

4.2.1 Results and Discussion

4.2.1.1 PCA Exploratory Analysis

In this first exploratory analysis, the aim was to obtain a general overview of the variation of
the basil aroma. Punctual considerations of the influence of harvested year, chemotype and cut
could not be conducted, since it was not possible to plain a systematic sampling beforehand, due
to company and producer constrains. Three principal components were considered according to
their explained variances (58%). In Figure 4-8, the PC1 vs. PC2 score plot is reported,
representing the different basil samples with different symbols and colour as function of harvesting
year and basil chemotype (Figure 4-8a) or cut and basil chemotype (Figure 4-8b).
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Figure 4-8. PC1 vs PC2 score plots of basil samples. (a) Different symbols were used for each harvesting year (2019:
circles; 2020: squares; 2021.: triangles) and distinct colours for each basil chemotype. (b) Different symbols were used
for each cut (first: diamonds; second: squares; third and fourth: upwards and downwards triangles, respectively; fifth:
stars) and distinct colours for each basil chemotype.

From the score plot of the first two components, it is difficult to highlight a clear separation of
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samples according to chemotypes, due to the slight differences in the flavour pattern among
commercial chemotypes that belong to the same species (O. basilicum). However, interesting
information can be pointed out. In particular, the VAR 1 (harvested only in 2019) and VAR 11
(harvested only in 2021) samples have the highest PC2 score values and leads to their separation
from the other samples (Figure 4-8a). These chemotypes also present a trend, from higher to
lower score values, according to their different cut (Figure 4-8b). Another peculiar chemotype



seems to be VAR 4 (harvested only in 2021), with positive scores for both PC1 and PC2. This
chemotype shows differences in aroma according to different basil cuts as well.

As far as the other samples are concerned, they are distributed along the first principal
component, which seems to be the most responsible for the differences in the separation between
the VAR 14 samples (higher positive PC1 score values) and first cut of VAR 7, VAR 18 and
Italiano Classico (negative PC1 score values).

Furthermore, the in-depth analysis of the figure shows that two samples belonging to the third
cut of VAR 16 (higher PC1 score values) seem to have quite a similar aroma profile to VAR 14.

No further observations to assess any pattern can be performed considering the different basil
cuts, years, and chemotypes, since it is not certain what the real cause is as some chemotypes
were measured only in one year. The score plot of the third component (Figure 4-10) highlights
the differences among the first basil cut of the VAR 8 and VAR 17 samples (higher positive score
values) with respect to all the others.

From the PC1 loading plot (Figure 4-9a), for both MXT5 and MXT17 columns, it is possible to
point out that, with almost all the loadings values being positive (from 40 to 110 s), the separation
between the VAR 14 samples and the other basil chemotypes is mainly due to a global higher
concentration of aroma compounds in these samples, and roughly speaking, most of the samples
harvested in 2021 (positive PC1 score values) seem to present a similar trend.
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Figure 4-9. PC1, (b) PC2 and (c) PC3 loading plots. Numbered peaks correspond to the volatile compounds putatively
identified on the basis of Kovats’s relative retention indices: (1) hexanal, (2) 2-hexanal, (3) 5-methylfurfural, (4)
myrcene, (5) eucalyptol, (6) linalool, (7) B-caryophyllene, and (8) eugenol (9) not identified.
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Figure 4-10. PC3 scores vs number of samples.

Notwithstanding the aim of the present study, which is to make a fast model to discriminate
basil samples with an untargeted approach, some considerations on the presence of some
chemical compounds can be presented based on our previous study. Regarding the second
principal component Figure 4-9b), which is mainly responsible for the separation of VAR 1 and
VAR 11 from the others, the same chromatographic regions (Rt, retention time: 76.8 s and 85.3
s for MXT-5 and 79.9 s and 90.4 s for MXT-17), for both the MXT-5 and MXT-17 columns, with
the same trend (loadings value and sign), are relevant. Thus, both the estragole (Rt: 76.8 s and
79.9 s in MXT-5 and MXT-1701, respectively) and eugenol compounds (Rt: 85.3 s and 90.4 s in
MXT-5 and MXT-1701, respectively), with high positive and negative loading values, respectively,
are important to characterize VAR 1 and VAR 11. However, the samples belonging to these two
chemotypes, presented a particular aroma, probably due to the presence of anethole, which co-
elutes with estragole in both column separations.

As regards the third principal component (Figure 4-9c), unassigned compounds (in the first 40
s of both columns), which have positive loadings, seem more abundant in the VAR 8 and VAR 17
samples (located at positive scores values). Hence, further investigation will be conducted for the
identification of these volatile compounds.

Notwithstanding the overall interpretation of PCA results, which offered some insights, more
specific information is difficult to gain, since the contributions to variance of all the investigated
factors (i.e., year, chemotype and cut) overlap. Therefore, after this preliminary investigation, the
ASCA methodology was used to systematically assess the influence of each factor and their
interaction on the basil aroma profile.

4.2.1.2 ASCA results

The first ASCA model was computed according to the regular experimental design that could
be obtained limiting the analysis to only three chemotypes. The original data matrix variation was
split in eight submatrices: three corresponding to the main effect of each experimental factor,
three accounting for the effect of each second-order interaction, one describing the effect of the
third-order interaction and one holding the residuals. The significance of all these effects was
assessed by performing a permutation test, whose results are shown in Table 4-2. The p-value
of all the inspected factors and interactions was lower than 0.001. However, the factors
“‘chemotype” and “year” explained most of the data variance (39.9% and 24.8%, respectively),
suggesting their higher influence on the aromatic profile of basil compared to the factor “cut’. This
can also be observed by the fact that explained variance values of interactions including “cut” are
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systematically lower than values related to interactions in which “cut” is not involved. Additionally,
the third-order interaction effect explains less than 3% variance.

Table 4-2 - Explained variance and p-values for main factors and their second and third order interactions.

Factor Explained Variance (%) p
Chemotype 39.9 <0,001
Year 24.8 <0,001
Year x Chemotype 8.5 <0,001
Year x Cut 7.2 <0,001
Cut 2.9 <0,001
Chemotype x Cut 2.5 <0,001
Year x Chemotype x cut 2.8 <0,001

Afterwards, the ASCA algorithm performed a SCA on each effect matrix individually, with the
aim of interpreting the observed variation.

Figure 4-11a shows the score plot for the factor “year”. The first component (SC1), which
explains 67.7% of the total variance, describes the difference between the samples harvested in
2019 and the samples harvested in 2020 and 2021. The loadings plot of the first component,
shown in Figure 4-11b, explains this difference. In fact, the 2020 and 2021 samples have a richer
aroma profile, as the concentration of the compounds between 40 and 110 s, associated with
statistically significant loadings, are higher compared to 2019 samples. On the other hand, 2019
samples present higher concentrations of unassigned peaks before 40 s highlighted by the MXT-
1701 column, confirming the need of further investigation for their identification.
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Figure 4-11. SCA for the effect of the factor “year”. (a) SC1 vs. SC2 score plot. Empty symbols represent the projected
residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines indicate statistically significant regions,
whereas blue lines indicate regions associated with loadings statistically indistinguishable from zero.

The second component (SC2) and the related loadings plot (Figure 4-11c) show how the 2021
samples (positive scores values) present lower peaks in MXT-1701 that can be ascribed to 2-
hexanal and B-caryophyllene (negative loadings values), but higher peaks assigned to all other
compounds.
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Figure 4-12a shows the score plot for the factor “chemotype”. It can be observed that most of
the explained variance (96.3%) describes how VAR 14 is different compared to Italiano Classico
and VAR 9. Indeed, as shown by the loadings plot in Figure 4-12b, VAR 14 presents higher
concentrations of all the chromatographic peaks, suggesting a richer aroma profile with respect
to the other two chemotypes. SC2, even though the related explained variance is extremely low
(3.7%), mainly shows how VAR 9 has more B-caryophyllene than Italiano Classico (Figure 4-12c),
as their peaks are basically the only ones that had statistically significant results.

The results of the SCA for the effect of the interaction “year x chemotype” were reported in
Figure 4-13. In the score plot (Figure 4-13a), it can be observed that SC1 describes the difference
among VAR 14 samples throughout the years. In detail, the VAR 14 samples collected in 2020
presented a higher concentration of all aroma compounds compared to the ones collected in 2019
and 2021, as assumed by the loadings plot shown in Figure 4-13b. As regards Italiano Classico,
the best year in terms of intensity of aroma profile is 2019, whereas for VAR 9, the years 2019
and 2021 were better than 2020.
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Figure 4-12. SCA for the effect of the factor “chemotype”. (a) SC1 vs. SC2 score plot. Empty symbols represent the
projected residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines indicate statistically significant
regions, whereas blue lines indicate regions associated with loadings statistically indistinguishable from zero.

It can also be observed how VAR 14 appears to change more over time, having a higher
variation through the years than the other two chemotypes.

Moreover, Italiano Classico is the basil chemotype that presents the lowest variability among
its replicates. In fact, red and green samples in the score plot (VAR 9 and VAR 14, respectively)
are more spread and farther apart, especially along SC2. This limits further comments about the
difference between the years 2020 and 2021 with respect to the Italiano Classico samples (blue
triangles and diamonds in Figure 4-13a, respectively), which is due to the statistically significant
peaks between 50 and 70 s, linked to most of the aromatic compounds.

Regarding the factor “cut”, the SCA showed how samples collected during cut 2 detain a richer
aroma profile than samples acquired during cut 4. However, according to the authors, since this
factor explained less than 3% of the total variance, these results are not relevant compared to the
ones described above. Both for this reason and for the sake of brevity, plots related to the factor
“cut” were not shown.

The second ASCA model was computed considering only samples collected in 2021. In this
case, it was possible to build a balanced design, including nine chemotypes and three cuts (see
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paper 1) The data matrix was partitioned in four submatrices: two corresponding to the main effect
of each experimental factor, one describing the effect of the second-order interactions and the
residuals matrix. The results of the permutation test for the significance of the effects are shown
in Table 4-3. As for the first ASCA model, also in this case, all the factors and their interactions
were significant (p < 0.001). Furthermore, the explained variance for the factor “cut” (6.9%) was
significantly lower than the variance explained by the factor “chemotype” (63.5%), suggesting,
once again, the small impact of plant age on the basil aroma profile.
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Figure 4-13. SCA for the effect of interaction “year x chemotype”. (a) SC1 vs SC2 Score plot. Empty symbols represent
the projected residuals; (b) SC1 and (c) SC2 loadings plot. In (a) distinct colours refer to different chemotypes (blue -
Italiano classico; red - VAR 9; green - VAR 14), whereas different symbols refer to different harvesting years (circles -
2019; triangles - 2020; diamonds - 2021). In loading plots, red lines indicate statistically significant regions, whereas
blue lines indicate regions associated to loadings statistically indistinguishable from zero.

Table 4-3. Explained variance and p-values for main factors and their second order interactions related to the ASCA
model.

Factor Explained Variance (%) p
Chemotype 63.5 <0,001
Chemotype x Cut 20.3 <0,001
Cut 6.9 <0,001

The results related to SCA on the “chemotype” effect matrix are shown in Figure 4-14.

From the score plot (Figure 4-14a), it is clear how the first principal component shows the
difference between VAR 4 and all the other chemotypes. In the loadings plot (Figure 4-14b), it is
shown that the peak that is responsible for this difference can be ascribed to myrcene, of which
VAR 4 is particularly rich. Observing SC2 scores and loadings (Figure 4-14c), it can be concluded
that VAR 14 and VAR 16 present the richest aroma profiles, whereas Italiano Classico and VAR
15 have the poorest profiles.

Figure 4-15a shows the frequency histogram of the SC1 scores values for the distinct levels
of the factor “cut’. Eucalyptol and B-caryophyllene are less present in cut 4 samples, and in
general, they are the compounds responsible for describing the difference between cut 4 samples
and cut 1 and 2 samples, as shown in Figure 4-15b.
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The ASCA results show how the entire aromatic profile has a significant influence in the
discrimination of samples according to the investigated factors (i.e., years, chemotype and cut),
highlighting the presence of new potential biomarkers (for instance the species with retention time
in the first 30 s of the chromatogram or the ones falling in the area between the retention of 2-
hexanal and 5-methylfurfural), which have not been quantified in this study, but that could be
relevant in further investigations. For the sake of clarity, an example signal fingerprint with all the
chemical analytes, putatively identified for both the chromatographic separations, is reported in
Figure 4-16.
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Figure 4-16. Chromatograms of Italiano Classico chemotype obtained by elution on columns MXT-5 and MXT-1701 of
Heracles .

4.2.2 Conclusions

In this second study, the development of a fast analytical screening strategy based on ultra-
fast chromatography e-nose and multivariate analysis was proposed as a useful tool for quality
control of food. The proposed approach, relying on the simultaneous analysis of the
chromatographic profiles coming from two GC-columns of different polarity, permits to fully
explore the volatile profile of foodstuff and may represent a fast and simpler alternative to other
chromatographic techniques. The chemical identification and quantification of the single chemical
species, responsible for differentiation of the studied food products, can be undertaken on a few
samples at a second time if necessary. In fact, once the main chromatographic peaks, most
responsible for the differentiation between samples, have been underlined, their respective
chemical species can be identified with a considerable reduction in costs and analysis time.

This approach was applied on the analysis of basil samples involved in the production of Italian
pesto sauce, where the whole GC-FID e-nose signals, coming from two columns with different
polarity, were fused and used as a fingerprint of the aroma profile. The obtained results
highlighted the possibility to differentiate basil samples based on the three investigated factors,
years, cut and chemotype, taking also into account the interactions among them. The low-level
data fusion approach allowed computing a single ASCA model, which effectively pointed out the
different significant peaks between the two columns considered, thus underlining that enhanced
information may be gained.

The knowledge of the influence of the investigated factors on the quality of basil is very
important, since it may allow a company to achieve useful information both to plan future
campaign strategies for the acquisition of the raw materials and to improve the quality of the final
pesto sauce.
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SEXPLOITING PESTO
SAUCE: A DATA FUSION
APPROACH

In R&D an important aspect is to assess which analytical technique to adopt in routine analysis
reaching the best compromise among costs, time and personnel expertise required. The main
aim is to dispose of fast and easy to operate methods to afford a larger number of samples to be
routinely analysed.

In this study, three analytical techniques were considered: GC-FID e-nose (successfully
applied to inspect basil aroma), head space gas chromatography ion mobility spectroscopy (HS-
GC-IMS) and near infrared spectroscopy (NIRS).

HS-GC-IMS [1] is very sensitive but requires complex and time-consuming data elaboration
routines. The GC-FID e-nose [2] is enough fast but requires trained people and a laboratory
context. The NIRS [3] is a very rapid and easy-to-use technigue with high potential to application
in an industrial context. In fact, it allows quick evaluation of the product characteristics also in-
situ/on-line, but its capability to “see” different aromas needs to be verified.

The objective here was to evaluate the capacity of each technique to differentiate the classes
of pesto, accordingly the data analysis pipeline included exploratory analysis, and applying
discriminant analysis (also coupled to variable selection) on each data set. Then, it was also
evaluated the discriminant capacity of all the technigues used together with a low-level multi-block
data fusion approach.

The obtained results indicates that GC-FID e-nose was more efficient in separating the pesto
classes, followed by NIRS that was shown to be promising in differentiating the pesto categories.
A variable selection applied to each single analytical technique helped to interpret the causes of
the differences between pesto samples.

The combined data from GC-FID e-nose, the HS-GC-IMS and NIRS did not give a significant
increase in discrimination performance, also after the variable selection application. However, it
gave useful information to understand which analytical technique could be useful in pesto
characterisation.

An important take home message was the confirmation of the ability of the tested methods
that measure the aroma profile, to characterize pesto classes but, more interestingly, that also
NIRS can successfully be used to distinguish pesto classes, with potential future applications in
industrial environment.

5.1 Materials and methods

5.1.1 Sampling

Twenty-six samples of “Pesto alla Genovese” produced by Barilla in Rubbiano plant facility,
were selected from the whole 2021-year production period and analysed. They covered the use
of three different basil categories. For confidentiality reasons the three basil categories will be just
reported as classl, class2 and class3.

The analytical methods details have been reported respectively: for GC-FID e-nose in
paragraph 4.5.2, for HS-GC-IMS in paragraph 4.6 and for NIRS in paragraph 4.7.
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5.2 Results and discussion

Results will be presented first per single techniques also describing the data preprocessing
and issues posed by each type of data, and afterwards the data fusion results will be presented.

5.2.1 HS-GC-IMS data

The raw data from HS-GC-IMS, are per single sample a landscape reporting signal intensity
as function of the two distinct separation dimensions, retention time (chromatographic dimension)
and drift time (ion mobility dimension). The data size is huge, and several issues must be faced
such as shift in drift time dimension.

5.2.1.1 Preprocessing steps

In lon Mobility Spectrometry [4], that works at ambient pressure, the ionization of the analytes
molecules passes through the ionization of water molecules naturally present in the ionization
chamber. The water ions, (H20)"(H30)*, then exchange charge with the analyte molecules
coming from the gas chromatographic column. So typically, it is visible a peak of the charged
water (called Reactant lon Peak, RIP) in the first part of the chromatogram, that decreases in
intensity depending on the given charge. Because it is not useful in the elaboration, the RIP zone
has been cut and removed from the chromatograms.

For computational reasons it was necessary to preliminary reduce the dataset size before
further elaboration. The first step has been to retain just the informative part of the mass direction
and remove empty regions: the final retained range in the drift time was from 8.5 to 18 ms. In the
chromatographic direction the full period window was maintained, but the number of points was
reduced collecting one point every ten. This was possible because the sampling frequency was
enough high and the chromatographical profile was not altered after the downsizing. In this way
the sample landscape dimensions were reduced from the original 6285 (Rt) x4500 (ms) to 629
(Rt) x1427 (ms) (Figure 5-1).
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Figure 5-1 GC-IMS landscape for sample 1, after data reduction. The x-y axes are the two separative dimensions,
chromatographical retention time and drift time, while the z axis reports the signal intensity.
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After data reduction preprocessing was applied, this was decided based on inspection of the
raw data as shown in Figure 5-2.
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Figure 5-2. Top) drift time profile, obtained by taking the sum at each single drift time along the Rt dimension; day to
day shift observed on RIP in mass (drift time) direction. Bottom) chromatographic profile, obtained by taking the sum
at each single retention time along the drift time dimension; no shift is observable, but signals are noisy, in
chromatographic direction.

In particular, day to day shift is present in mass direction (drift time) while noise and baseline
are observable in chromatographic direction (retention time). In addition, normalization is required
because absolute intensity is run dependent so to compare the different samples is better to
switch to relative intensity profiles.

Misalignment in chromatographic direction seems not to be present, anyhow since MCR-ALS
will be applied on the data unfolded along retention time dimension (in multiset modality, i.e. to
each sample will correspond its own resolved chromatographic profiles one for each resolved
component) shift in this dimension is of no concern.

Thus, samples were first aligned on drift time direction to compensate small shifts due to
fluctuation in the ambient pressure between days. In fact, the ions mobility into the drift tube
depends on the ambient pressure [5]. Alignment was done using the icoshift algorithm (see
paragraph 3.2.1). Data were then smoothed with Savitzky-Golay filter, baseline corrected
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(Whittaker filter [6] 0.001, lambda 100) and then normalized (dividing by Euclidean norm). In
Figure 5-3 the applied preprocessing steps are illustrated.

Original 3D matrix
samples x 6285 x 4500

Size reduction in chromatographic direction and cuts in drift time direction

Size reduction
samples x 629 x 1427
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shifts are observable in drift time direction.
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Shift correction matrix
calculated on 2D Drift
time matrix

Shift correction applied to the
original 3D matrix in Drift Time
direction
samples x 629 x 1427

Normalisation by norm(X,2)
629 x 1427

On the Retention Time direction
Smooting (SavGol)
Baseline subtraction (Whittaker filter
0,001 — lambda 100)
IMS _array _nrs (629 x 1427)

Figure 5-3. scheme of data processing for GC-IMS data.

5.2.1.2 Decomposition/Resolution by MCR

Multivariate Curve Resolution — Alternating Least Squares (MCR-ALS) (see chapter 3) was
applied to the pre-processed HS-GC-IMS data. Typically, a peak peeking is done on the GC-IMS
landscape for a representative sample to select manually the peaks present [7,8] then these are
sought by the instrument software in all acquired samples and integrated. More recently, several
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multivariate approaches were proposed in the literature [9,10,11]. Among them MCR-ALS [12,13]
is appealing since it can resolve overlapped signals in “pure” components contributions
considering the information of the second dimension, in our case the drift time related to ion
mobility. In this way, it become possible to separate the single chemical components contribution
present in the samples.

A preliminary MCR application on the whole multiset, i.e. all 26 samples (data not reported),
showed sub-optimal, thus, to improve the separation performances, the chromatograms were
divided in six intervals (interval one was discarded because do not contain any peaks). This is
quite common to do when MCR is applied to hyphenated chromatographic techniques as well as
to GC-IMS [14,15,16]. Thus, five matrices were prepared one for each interval, unfolding for all
the samples the GC-IMS landscape row-wise with the drift time in columns and the retention time
of all the samples concatenated in rows. These matrices were then decomposed by MCR-ALS.
Non-negativity was imposed as constrain on both C and S matrices during ALS iterations.

For each interval have been retained only the MCR components that showed a clear peak
profile as reported in Table 5-1, discarding components ascribable to baseline contributions. In
Figure 5-4 it is shown an example of components resolved in one of the intervals.
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Figure 5-4. As an example, it is shown for one of the samples: in the upper figure are superimposed all the
chromatograms, at the different drift times, for the retention time region corresponding to the interval 4; in the lower
figure the chromatographic profiles of the resolved components selected in the same interval.
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After the application of MCR-ALS routine, the peak areas of all the selected components were
calculated and joined in a single data set, which was then input to further multivariate analysis.

Table 5-1. MCR components selected for each interval.

e S o o
INT2 20 8
INT3 9 4
INT4 86 4
INTS 88 4
INT6 55 3

Firstly, an explorative PCA was done (data not reported) to have an overview on the sample’s
similarity/differences.

Then, data was split respectively in 31 calibration samples and 12 validation samples, and
PLS-DA was applied (Figure 5-5).

To estimate the correct number of latent variables to be used in the PLS-DA models, cross-
validation was performed with a venetian blind scheme using 10 splits. Six latent variables were
selected.

The results are shown in Figure 5-5, where it can be observed that class 2 is well separated,
while classes 1 and 3 are overlapped.

The confusion matrix in cross validation and in prediction are reported respectively in Table
5-2 and Table 5-3 Samples belonging to Class 2 are always correctly predicted, while the other
classes have some misclassified especially none of the class 1 test samples is recognized as
belonging to it. In Figure 5-6, are reported the predicted Y-value vs. N° of samples (test samples
are separated by a vertical line) and the class threshold (horizontal red line). It is possible to
observe that PLS-DA model can correctly allocate the test samples only for classes 2 and 3. Off
course the low number of samples prevent any assessment of predictive performance, but as
feasibility of the technique to reflect pesto type 2 and 3 results seem encouraging.
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Figure 5-5. PLS-DA (model based on HS-GC-IMS) scores plot of all samples, coloured by classes; test set samples
are indicated whita T.

Table 5-2. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA
model obtained by HS-GC-IMS data)

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 2 0 5
Predicted as 2 0 7 0
Predicted as 3 2 0 5
unassigned 0 0 0

Table 5-3. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by HS-GC-IMS data)

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 0 0 0
Predicted as 2 0 3 0
Predicted as 3 2 0 7
unassigned 0 0 0

The VIP scores are reported in Figure 5-7 and indicate that to class 2 separation contribute
most of the resolved components, indicating how this samples have quite different compositional
profile respect to the other two classes. The components important for prediction of Class1 and 3
memberships are almost the same and this could explain the lower capability of the model to
discriminate class 1 from 3.
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5.2.2 GC-FID e-nose data

The whole chromatogram obtained with the MXT5 column was considered. The
chromatograms were normalized for the respective internal standard, then aligned on retention
time using icoshift algorithm (see chapter 3). The resulting chromatograms were used in an
explorative PCA (data not reported for sake of brevity) to have an overview on the distribution of
samples.

Again PLS-DA, after calibration and validation samples splitting, was used to inspect pesto
distinction by classes. To estimate the correct number of Latent Variables of PLS-DA, cross-
validation was performed with a venetian blind scheme using 10 splits. Four Latent Variables
were selected.

In Figure 5-8 is reported the scores plot for the first two LVSs. It is possible to observe a good
separation of the samples, especially for class 2, but also for classes 1 and 3. Moreover, it is
possible to observe how the test samples (indicated by a T) are close to the respective classes.
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Figure 5-8. PLS-DA for GC-FID e-nose data. Samples are coloured by classes, while the test set samples are indicated
with the letter T.

The confusion matrix in cross validation and in prediction, reported in Table 5-4 and Table 5-5
respectively indicates that all classes are correctly predicted. The same could be observed in
Figure 5-9, where are reported the values of the predicted Y-values vs. N° of samples with the
respective thresholds.
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Table 5-4. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA

model obtained by GC-FID e-nose data)

Actual class 1

Actual class 2

Actual class 3

Predicted as 1 2 0 0
Predicted as 2 0 4 0
Predicted as 3 1 0 11
unassigned 0 0 0

Table 5-5. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-

DA model obtained by GC-FID e-nose data)

Actual class 1

Actual class 2

Actual class 3

Predicted as 1 2 0 0
Predicted as 2 0 2 0
Predicted as 3 0 0 4
unassigned 0 0 0

The VIP scores for each class, reported in Figure 5-10, give information

chromatogram is relevant in separating the pesto classes.
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Figure 5-10. PLS_DA for GC-FID e-nose. VIP scores for the three predicted classes.
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By looking at the VIP scores for each class, is not so easy to depict which peaks are
responsible for the classes’ differences, so to see which are the most discriminant feature, and to
highlight which can be worth of quantification through analysis with standards. Thus, a
parsimonious variable selection routine, i.e. CovSel, was applied to recover the most discriminant
peaks.

The maximum number of variables to select was set to 20 and after inspecting the plot of
explained Y-variance vs. number of selected variables, 8 variables were retained, that correspond
to the peaks reported in Figure 5-11. It is interesting to observe that these variables, selected by
CovSel correspond to peaks which were putatively identified (name reported in the figure) as
molecules that for the majority were already known as important for the pesto aroma. The other
peaks indicated by CovSel will be further investigated and could be related with other ingredients
present in pesto.

Selected variables by CovSel:
8

| f
L
IR LAV YR TN YR W O P

| |
00 2000 4000 6000 8000 10000 12000

Figure 5-11. Heracles Il (HS-GC-FID). Chromatogram of MXT5 column. In red the 8 variables selected by CovSel.
Some of them correspond to peaks of already identified as pesto aroma molecules: hexanal (5), 2-butenal (4), 2-
hexenal (7), myrcene (8), eucalyptol (3), linalool (6). The other molecules will be identified.

Using just the 8 variables selected with CovSel a new PLS-DA model was recalculated (Figure
5-12). A three LVs modelin this case, was estimated according to cross-validation (venetian blind,
10 splits).

As observed the class separation is equivalent to what obtained using the whole
chromatogram. This indicates also that in future investigation just the selected peaks can be used,
without loss of information.

The confusion matrix confirms that the model with just 8 selected variables give the same
performance in prediction (see Table 5-6 and Table 5-7).

In this case studying the VIP scores, combined with the information of the variable on the
chromatogram, is possible to understand that: variable 6 and 4 (linalool and 2-butenal) are more
relevant for identify class 1, variable 1, 2 (unidentified) and 7 (2-hexenal) are relevant for class 2
and variable 6 (linalool) is relevant for class 3.

This is a good example on how the chemometrics approach could give important information
on the real system under study.
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Figure 5-12. HS-GC-FID Heracles Il — PLS-DA score plots with the 8 variables selected by CovSel. Different color
represents the three classes.

Table 5-6. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA
model obtained by GC-FID e-nose with selected variables

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 1 0 1
Predicted as 2 1 4 0
Predicted as 3 1 0 10
unassigned 0 0 0

Table 5-7. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by GC-FID e-nose with selected variables

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 1 0 0
Predicted as 2 0 2 0
Predicted as 3 1 0 4
unassigned 0 0 0
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Figure 5-13. PLS-DA on GC-FID e-nose with selected variables. The colours represent the pesti classes, while test set
samples are on the right of the vertical line in each figure.
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Figure 5-14. PLS_DA for GC-FID e-nose with selected variables. VIP scores for the three predicted classes.
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5.2.3 NIRS Data

NIRS data (in the range 400-2500 nm) were pre-treated by Savitzky-Golay smoothing, second
derivative and mean centering.

For each sample eight spectra were collected automatically by the instrument rotating the cup
containing the sample, to acquire the replicates in different portion of the sample. In the
preparation of the calibration and validation sets all replicates of the same sample were
maintained in the same set.

The whole pre-treated spectra were used for an explorative PCA (data not reported) and then
a PLS-DA was calculated. Four Latent Variables were selected according to cross validation
(venetian blind, 10 splits). As in the other cases, samples were split into calibration set and
validation set (144 spectra corresponding to 18 samples and 64 spectra corresponding to 8
samples respectively). As observed in Figure 5-15 PLS-DA indicated again a separation of the
class 2 from the other two, that on the other hand are quite overlapped, as already observed with
the other techniques.
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Figure 5-15. NIRS data. PLS-LDA scores plot of whole pre-treated spectra. Different color represents the three classes:
Letter T indicates test set samples.

Here, the overlap between class 1 and 3 is more pronounced, as to be expected being the
difference among pesto types mainly due to the aroma which can be more difficult to catch by
NIRS. Anyhow some other characteristics of pesto composition may vary among classes, that
could be correlated to what the other technique observes in terms of pesto aroma.

In tables Table 5-8 and Table 5-9 the confusion matrices are reported, confirming a predictive
capability quite similar to the chromatographic techniques. In fact in terms of samples only one is
misclassified (belonging to class 1 but predicted as class 3) and a single replicate of class 3
predicted as 1. Figure 5-16 reports the predicted Y-values for each class.
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Table 5-8. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA
model obtained by NIR

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 18 0 4
Predicted as 2 0 32 0
Predicted as 3 6 0 84
unassigned 0 0 0

Table 5-9. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by NIR

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 10 0 1
Predicted as 2 0 16 0
Predicted as 3 6 0 31
unassigned 0 0 0

In this case the study of the VIPs indicates that the class 1 is more different in the visible range
from 400 to 800 nm and in the NIR range from 1800 to 2000 nm, a zone that could be related to
the water signals.

Also in this case, like for the GC-FID e-nose, the complexity of the original spectrum does not
allow a clear interpretation.
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Figure 5-16. PLS-DA on NIR data. Samples predicted for the three classes from top to bottom respectively. Samples
on the right of the vertical line are test set samples.
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Thus, CovSel was applied to highlight the most relevant spectral features. The results indicate
that the discriminant spectral regions are related to colour and chlorophylls in the visible part of
the spectrum, and water content and lipids in the last part of the spectrum, in NIR region (Figure

5-18).
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Figure 5-18. NIRS pesto spectrum. Red circles are the 60 variables indicates by CovSel to better separate the three
pesti classes.

Again, a PLS-DA (5 LVs according to venetian blind CV, 10 splits) was calculated with just the

variables selected by CovSel.
The results are slightly worse than the one obtained by the whole spectrum model, however

coherent with them.
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Figure 5-19. PLS-DA on NIR with selected 60 variables. Latent Variable 1 and 2 are reported. Samples with le letter T

are the test set.

Observing the confusion matrixes is possible to observe that also in this case the classes
membership prediction is still quite good, as could be already observed in Figure 5-20 that reports
the predicted samples for each class.

The observation of the VIP scores for each class suggest that the main differences are in the
visible part of the NIR spectrum (the colour of the pesto), but also in the zone of the water and

lipids.

Table 5-10. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA
model obtained by NIR with selected variables

Actual class 1

Actual class 2 Actual class 3

Predicted as 1 21 0 6
Predicted as 2 0 32 0
Predicted as 3 3 0 82
unassigned 0 0 0

Table 5-11. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-

DA model obtained by NIR

Actual class 1

Actual class 2 Actual class 3

Predicted as 1 7 0 0
Predicted as 2 0 16 0
Predicted as 3 9 0 32
unassigned 0 0 0
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Figure 5-20. PLS-DA for NIR with 60 selected variables with CovSel. Predicted samples for each class are reported.
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5.2.4 Data fusion

To combine all the three datasets a multiblock approach was considered. The NIRS block
holds the whole spectra (averaged by replicates), pre-processed as described in section 3.2.2.
Analogously the GC-FID e-nose data blocks hold the whole chromatograms pre-processed as
described in section 3.2.1.

The GC-IMS data block was assembled by considering the peaks areas of the 31 MCR
components.

Prior to multiblock data analysis samples were split into 18 calibration samples and 8 validation
samples, to gather the model performance in prediction. Then block scaling and mean centring
was applied to have fair contribution from each block when applying multiblock PLS-DA.

Six Latent Variables were selected (according to CV, venetian blind, 6 splits).

As observed in Figure 5-21 the class 2 continue to be separated properly form the other two.
Respect to the single elaborations for each technique in this case also classes 1 and 3 seems to
be less overlapped.
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Figure 5-21. PLS-DA score plots on Low Level Data Fusion dataset without variable selection. Different colors represent
the three classes, while samples with letter T represents the test set samples.
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The confusion matrix reported in Table 5-12 and Table 5-13 confirm the good prediction of the
three classes.

Same consideration cold be done observing the Figure 5-22 where are reported the predicted
Y-values for each class.

Table 5-12. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA
model obtained by low level data fusion

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 3 0 2
Predicted as 2 0 4 0
Predicted as 3 0 0 9
unassigned 0 0 0

Table 5-13. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by low level data fusion

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 2 0 1
Predicted as 2 0 2 0
Predicted as 3 0 0 3
unassigned 0 0 0
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Figure 5-22. PLS-DA on low level data fusion. Samples predicted for the three classes from top to bottom respectively.
Samples on the left of the vertical line are calibration set samples, while samples on the right of the vertical line are test
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The VIP scores reported in Figure 5-23, coloured by block shows that the GC-IMS seems to
be more relevant in order to separate the pesto classes.

30 T T T T
¢ NIR
5 e-nose
25 A |MS
— — — Significance Threshold

VIP Scores for Y 1
& S

-
o

0
2000 4000 6000 8000 10000 12000 14000
Variable Class Set: blocks

25 T T T T

¢ NR

3 e-nose
20k A |MS

— — — Significance Threshold

VIP Scores forY 2

2000 4000 6000 8000 10000 12000 14000
Variable Class Set: blocks
30 T T T T T T T
¢ NR
5 e-nose
251 A |MS
— — — Significance Threshold

VIP Scores forY 3

2000 4000 6000 8000 10000 12000 14000
Variable Class Set: blocks

Figure 5-23. VIP scores of PLS-DA for low level data fusion. Different colours indicated the three blocks of data.
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Also in this case to further interpret the role of the different blocks/variables the CovSel
algorithm has been applied on the low-level fused dataset. The initial number of selected variables
was set to 20, then, observing the cumulative variance plot (Figure 5-24) the variable number
chosen was 10.

cumulative variance X red Y blue - selected variables = 20

09

06

0.5

04

0.2

01F

O 1 1 | | 1 1 1 |
0 2 4 6 8 10 12 14 16 18

Figure 5-24. Cumulative variance for X and Y for CovSel applied on low-level data fusion.

The selected variable, belong: three to the NIR block, one to the GC-FID e-nose block and six
to the GC-IMS block. With these ten variables a new PLS-DA model was built with four latent
variables (selected by cross validation with a venetian blind scheme with 10 splits). However, this
reduced model performs poorly, maintaining some predictive capability just for the class 2 (see
Figure 5-25 and confusion matrixes in Table 5-14 and Table 5-15).
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Figure 5-25. PLS-DA with variables selected by CovSel on the low-level fused dataset. Letter T indicates test set
samples.

Table 5-14. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA
model obtained by low level data fusion, after CovSel with 10 variables.

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 2 1 0
Predicted as 2 1 3 1
Predicted as 3 0 0 10
unassigned 0 0 0

Table 5-15. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by low level data fusion after CovSel with 10 variables.

Actual class 1 Actual class 2 Actual class 3
Predicted as 1 0 0 0
Predicted as 2 0 2 0
Predicted as 3 2 0 4
unassigned 0 0 0
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Figure 5-26. Sampe prediction done with model on CovSel selected variables on low-level fused dataset.
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5.3 Conclusions

All the three techniques, HS-GC-IMS, GC-FID e-nose and NIRS, singularly evaluated were
able to perfectly discriminate class 2 from the others two, and satisfactorily class 1 and 3.

In the first two cases the separation could be attributed to the aromatic pattern, while in the
case of NIRS, differences were due to pesto colour, chlorophyll, water, and lipids contents.

The GC-FID e-nose shows the better performances in separating the three pesto classes.
Class 2 is very well separated, but also the other two classes are quite distinguished.

The use of the whole chromatogram by the GC-FID e-nose is appealing since it catches all the
information of volatile molecules, while being rapid and easy to operate. The same good
performance remains after the variable selection done with CovSel, with just a moderate loss.

HS-GC-IMS, that similarly to GC-FID e-nose works on volatile molecules, separates in a proper
way the class two but less well the other two. In this case the more complex routine to extract
information from the 3D chromatogram could have influenced the final performances. For this
technique, due to the low number of variables obtained from the MCR-ALS variable selection has
not been tested.

The NIR, also gave a satisfactory performance in this case not only the volatile molecule
profile, but also colour, chlorophylls, water, and lipids content contribute to classes separation.

Thus, the NIRS technique could be also used to characterise the pesto classes, instead of
more complex and time-consuming techniques.

After variable selection the performance decreased, while remaining acceptable, suggesting
that the main differences lie in the chlorophyll, water and lipids content. This could be an indication
for eventually adopting this simpler and cheaper analytical technique for fast screening.

The combination of the information of the three techniques did not give in this case a significant
increase in discrimination performance, nonetheless, providing reduced classes overlap, contrary
to single techniqgue models, here when using only the Covsel selected features the predictive
performance decreased.

However, the data fusion approach gives the possibility to better understand which analytical
technique is more useful for the class characterization of pesto samples. In this specific case the
relevant information is that NIRS, more easy, flexible, and exportable technique, can successfully
characterize pesto, with a potential application in an industrial environment.
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6IMAGING APPLICATIONS
FROM RGB TO
HYPERSPECTRAL
IMAGES

It has been already underlined how the basil characteristics may impact on the quality of the
final product pesto. In particular, the basil characteristics, in terms of flavour, colour, fibre and
water content, have a heavy impact on the finished product quality. Moreover, different chemotype
of Genovese basil and its method of cultivation could give differences in term of flavour or colour.

One of the critical characteristics of the “Pesto alla Genovese” is its smooth structure due to
the emulsion of oil in agueous phase. A consistent oil release could indicate a loss of stability in
the emulsion structure. The differences in the basil could affect the final structure of pesto for
several reasons: the colour of the basil affects the colour of the final pesto; the water content and
the “fibrousness” of the basil stems affects the oil:water ratio and consequently the emulsion
equilibrium [1].

For these reasons the proper characterisation of basil is a crucial step.

In order to continuously monitor the incoming basil a classical RGB vision system has been
installed in the very preliminary step of the pesto production line, where the basil plants enter the
process. The proper elaboration of basil images will do the differences between taking just a photo
and disposing of a set of precious information. Information related to the colour and the
morphology of the basil plants in terms of leaves and stems, is considered highly relevant.

Hyperspectral imaging (HSI) [2] is a powerful methodology joining the possibility of describing
the morphological characteristics of the sample (i.e. the image of the sample surface) to the
acquisition of detailed chemical information (i.e. captured by the spectrum taken in a given
wavelengths range for each single pixel of the image). In fact, with respect to classical digital
images where only three (red, green, and blue) channels are acquired (RGB images),
hyperspectral imaging acquires for each pixel a whole spectrum, where visible and/or near
infrared range are the most common for food applications. HSI data coupled with proper data
elaboration is potentially capable to give information about the chemical components and their
distribution on the imaged surface. In the case of pesto, it could be very relevant to observe the
different recipe ingredients/constituents distribution and to evaluate if the differences in basil
origin on it.

In this Thesis, the two typologies of images were touched either on basil or pesto for evaluating
different aspects and possible employment in the quality control at the plant.

6.1 RGB Vision System for on-line Basil analysis

As pointed out in the introduction to this chapter, the quality of the basil affects the quality of
the pesto sauce, so in addition to the laboratory analyses, which provide an extended
characterization but on fewer samples, a vision system has been implemented, at the very first
step of the production line, for in-line monitoring of the basil. The system acquires RGB images
while the basil is loaded on a conveyor belt, and from them some standard features are calculated
by the vision system proprietary software. These are average and standard deviation of the
registered intensity in small time intervals at each colour channel, plus an overall estimation of
the belt area covered by basil plants.
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However, there can be further refined information to extract. One issue is due to the varying
illumination at the location where images are taken, which is not automatically compensated by
the vision system and would require frequent recalibration of the software parameters, the
conveyor belt is also covered to very different extent during production, hence giving sometimes
images with very few basil plants. In addition, it would be of interest to gather an estimation of the
fibrous part amount, i.e. basil stems, distinctly from the leaves amount, as well as to estimate the
defects, such as black or darker spots.

With, respect to these general aims, in this study we explored different computational
approaches to calculate the ratio between the leaves and the stems of the basil plants from the
RGB images.

As a first attempt, we applied methods of image segmentation, by using the Otsu method [3],
and different tools, present in the image analysis toolbox in Matlab, for objects detection.
However, the very different illumination prevented to obtain segmentation thresholds that could
satisfactorily work for all the images. The segmentation methodology was thus, only preliminary
applied to annotate the ground truth for a set of calibration images, followed by manual
refinement. This calibration set was then used to build classification models at pixel levels, by
developing and testing three main strategies: 1) feature enhancement by applying wavelet filters
+ PLS-DA, 2) calculation of textural features + PLS-DA, and 3) Deep learning, by CNN net, for
pixels classification.

At present, only the results of the first approach are available, while work is still in progress
concerning the other two strategies, as it will be presented in the following.

6.1.1 Sampling

A prototype RGB Vision System (Sensure, Orio Al Serio, BG, Italy) [4] was installed in the
Pedrignano plant to characterize the basil plants. The acquired images are usually not stored for
memory constraints, however with the aim of improving the amount and significance of the
extracted information some hundreds of images were manually saved during the 2021 summer
production and imported in Matalb for further image processing. These RGB images have size of
1280x1020 pixels.

An example of an acquired images is shown in Figure 6-1.

: y
Figure 6-1. RGB basil image acquired by the Vision System at the conveyor belt.
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6.1.2 Feature enhancements step by WT and PLS-DA.

In the first strategy described here, the segmentation of the three main part of the image
(stems, leaves, and background) was done applying the wavelet filters, then a pixel-based
classification by using PLS-DA.

The wavelet transform (WT) [5] allows capturing the different frequency contributions of a
signal (1D-WT) or an image (2D-WT). In the case of images WT is a good tool, not only for
denoising, but as well to analyse the texture, or in other word to recover the spatial features. In
short, the WT decomposes the raw image in four sub-images called Approximation (holding
smooth changes, e.g. tones) and Horizontal, Vertical and Diagonal details (holding sharp,
oriented changes, e.g. stripes in specific spatial direction). In this way an RGB image is
decomposed in four sub-images CA, CH, CV and CD for each spectral channel (Figure 6-2). The
obtained Approximation image (CA;) can then be decomposed in turn, increasing the
decomposition level, to obtain smoother and smother version of the raw image in the
Approximation image at further levels. The high frequency contributions are filtered in the details
sub-images (this is also referred to as multiresolution). This decomposition process is applied
distinctly to each colour channel. In order, to compensate low-level distortion we used the
stationary wavelet transform (SWT) implementation [6, 7, 8].

Decompose by 2D-SWT separately each channel

o

Figure 6-2. As an example, the wavelet decomposition of a four spectral channels image at the first decomposition
level is shown.

From the data analysis point of view, collecting the decomposition sub-images at different
levels allows setting up a multivariate data set containing enhanced information and exploiting
the spatial features. For a single image, each decomposition sub-image of dimensions nl per n2,
is unfolded pixel-wise, obtaining a matrix of size n1*n2 rows x 4 columns. Then, the matrices
corresponding to the different colour/spectral channels and decomposition levels are
concatenated column-wise (Figure 6-3 left).

channels * 4* levels

L

A, CH, CV, CD,CA,CH, CV, CD/CA,CH, C CH, CV, CD, CA, CH, CV, CD,

CA CA, CH, o CA -
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Ny Ny I

X Y (ground truth)

Figure 6-3. PLS-DA model 1 to predict background vs stems + leaves.
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Different wavelet filters are available, for our purposes we selected the simplest, i.e. the Haar
(or db1l) filter and used the maximum decomposition level (namely 9) compatible with the image
size.
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The unfolded data set can be analysed by any multivariate method. In our case, since we
wanted to achieve pixels classification PLS-DA has been applied (data was autoscaled to
compensate the different scales of WT coefficients at different decomposition levels).

In particular, we used a sequential strategy: a first PLS-DA model was calculated to separate
background (conveyor belt) from the rest (basil leaves + stems). Thus, the corresponding Y1
dummy matrix (Figure 6.3 Y block) was coded 1 for pixels belonging to background and 0 for the
rest (basil plant, both stems and leaves); then by considering only pixels belonging to the basil
plants a second PLS model is built to discriminate stems from leaves.

The calibration models have been built by using as calibration set four different images (whose
ground truth has been annotated as explained before) with varying degree of conveyor belt
covering and varying illumination. Because the pixels belonging to leaves are generally much
more numerous than those belonging to stems, when building the second PLS-DA model the
leaves class has been randomly subsampled (it is well known that any discriminant method
suffers from class imbalance).

The number of PLS-DA components for both models has been selected according to minimum
classification error in cross-validation (venetian blind, five splits). The classification rule adopted
is to assign a pixel to the class for which the predicted Y probability is maximal.

Once the two PLS-DA models were obtained, an external set of images was predicted.

The prediction step is very fast, compatible with the on-line implementation, and is done on a
new image by applying the wavelet decomposition, unfolding and concatenation to obtain the
data matrix, and then applying the model 1 and model 2 in sequence:

m,ackground KJred_StemsHeaves ] = Bmodel] *zYtest_all 6-1

/KJred _Stems Ypred_Leaves ] = Bmodeiz *Xtest_ stems+leaves 6-2

Refolding the predicted class membership vector, the location of the corrected predicted pixels
can be visualized (Figure 6-4).
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Figure 6-4. PLS-DA predictions for one of the test images, i.e. number 9. The plots show the refolded predicted class
membership and the ground truth image (bottom right). Top left stems image, top right leaves, bottom left, background.
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6.1.2.1 Results

In Table 6.1 are shown the results obtained for the test images, while for the calibration set
considering the four images altogether the following percentages of corrected classified pixels
were obtained: 69%, 86%, and 90% for stems, leaves, and background, respectively.

Table 6.1. Percent of correct pixels classification in prediction for the test set images.

Image Stems Leaves Background
number % correct pixels % correct pixels % correct pixels classification
classification classification
9 51,4 75,7 90,4
10 55,0 66,5 94,5
11 74,5 48,3 98,7
12 54,2 83,0 32,8
13 51,2 89,1 68,1
14 48,7 88,8 25,5
15 45,5 88,5 28,1
16 53,5 81,2 62,0
42 31,8 82,7 82,9
43 51,9 75,5 92,4
44 42,4 74,5 911
45 45,3 72,4 96,9
46 54,2 69,6 92,4
97 55,1 74,5 91,9
98 57,8 67,9 98,2
99 72,2 63,0 95,0

As it is possible to observe, the percentage of correct prediction is good for most of the
samples, with very few exceptions. The worst predictions obtained in the case of background
(images number 12, 14, 15) correspond to images where the background pixels are a minority,
and it must be considered that for PLS-DA model 1, since in general background was proportional
to leaves, correction for imbalance was not applied. Stems in general show lower correct
predictions percentage, the reason could be that they are often of the same colour of the nerves
of the leaves and thus share some similarity with leaves and can be confused. Nonetheless most
of them are depicted, e.g. see Figure 6-5 where predictions for image number 44 (one of the
lowest correct %) are shown.
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Figure 6-5. Predicted pixels memberships for test image of sample 44. Top left stems image, top right leaves, bottom
left, background, and bottom right the ground truth image.

Work is in progress to refine the obtained model and to compare with the other strategies.

In Table 6.3, a preliminary classification obtained by Deep Learning architecture, described in
the chapter 3 is reported. The calibration images used for the learning phase were 104 in this
case.
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Table 6.3. Percent of correct pixels classification in prediction for the test set images obtained by a DeepL architecture.

Image Stems Leaves Background
number % correct pixels % correct pixels % correct pixels classification
classification classification
9 19,66 83,81 98,84
10 2,01 41,60 51,95
11 0,00 13,36 83,34
12 1,91 66,31 33,45
13 571 88,10 13,44
14 6,63 86,14 7,36
15 3,57 91,39 6,61
16 6,10 76,63 9,37
42 2,71 71,33 45,42
43 6,56 49,47 45,97
44 0,95 29,90 83,94
45 6,51 41,57 90,98
46 5,78 44,02 70,41
97 3,64 24,13 83,65
98 3,28 55,52 82,10
99 19,66 83,81 98,84

The Deepl results, albeit preliminary are worst especially for the stems class, of course other
architectures need to be tested and optimized, however some cons of this methodology are the
higher number of training images required and the much demanding computational effort in the
learning phase.

Overall, these results highlight that the adopted WT + PLS-DA approach could potentially be
useful to measure the ratio between leaves and stems in the basil plants controlled by the in-line
RGB Vision System.

The possibility to characterize basil plant when they arrive at the production plant could give a
relevant increase in the quality of the final product. To do that it is very important to have the
capability to proper elaborate the RGB images acquired by the Vision System already installed in
the plant. The chemometric approach gave a promising way to solve this topic.

6.2 Hyperspectral imaging (HSI)

6.2.1 Introduction

In the food industry there is an increasing need of fast and non-destructive analytical methods
to evaluate the characteristics of products, especially for in-line or on-line monitoring in production
plants. Hyperspectral imaging (HSI) is a powerful methodology both fast and non-destructive, as
well as being possible to implement in/on-line. Moreover, from Hyperspectral images it is possible
to obtain both morphological and chemical information.

In this work, a preliminary study has been done on the feasibility of applying Visible (Vis-HSI)
and Near Infrared Hyperspectral imaging (NIR-HSI) for the characterization of Italian “Pesto alla
Genovese” sauces.

Pesto samples obtained by basil coming from three different origins giving rice to pesto sauce
with different characteristics, were studied. The aim was twofold: on one hand to set up a data
analysis strategy to fully exploit the information carried out by HSI, and on the other one, to
distinguish the different categories of pesto.

The multivariate image analysis pipeline, applied to Vis an NIR HSI, comprises a Region Of
Interest (ROI) extraction from each image, a proper spectral pre-processing step, then
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Multivariate Curve Resolution — Alternating Least Squares (MCR-ALS) multiset analysis was used
to obtain the purest components spectral profiles and their respective relative concentration map.

Post elaboration of concentration maps of the resolved components has been applied to study
their spatial distribution. In particular, a homogeneity index has been estimated for each resolved
component by implementing the “homogeneity curve” method. In addition, global textural features
were extracted by Gray-Level Co-Occurrence Matrix. Exploratory Principal Component Analysis
(PCA) was then applied on the extracted features, allow distinguishing the different pesto
categories.

As mentioned in the introduction to this chapter the smooth structure of pesto obtained by a
balanced oil-water emulsion is fundamental for a good quality product, in this respect
hyperspectral imaging has the potential to be used to monitor this characteristic. In fact, it joins
the possibility to inspect the distribution (it can be obtained by the image of the sample) of the
ingredients/phases (the chemical information come from the spectra available for each single
pixel of the image). So, the use of a hyperspectral system coupled with proper data elaboration,
can extract information about the chemical components and their distribution on the surface of
pesto, which may be due to the different basil used in the recipe, or other processing steps. In
particular, the eventual oil release can be monitored.

6.2.2 Material and Methods

6.2.2.1 Sampling

Twenty-three commercial samples of Italian sauce “Pesto alla Genovese” were collected
directly at the production plant during the whole productive season, ranging from May to October
2021. The collected pesto samples were obtained by basil plants of three different origins called
1, 2 and 3 for confidentiality reasons. This prior information about basil was used as class label
for the pesto samples, resulting in three classes into which can be potentially distinguished. The
collected samples, their month of production and basil origin are reported in Table 6.2.

Table 6.2. Samples collection scheme, classes and numerosity

Month Number of samples
May 3 (class 1)

June 3 (classes 1, 2 and 3)
July 5 (class 3)

August 4 (classes 2 and 3)
September 4 (class 2)

October 4 (classes 1, 2 and 3)

6.2.2.2 Instrumentation and images sampling

In the present study were used two hyperspectral cameras assembled at INRAe facilities. They
cover the spectral ranges from 409 to 987 nm (24450 to 10132 cm™?) and from 964 to 2494 nm
(10373 to 4009 cm™), respectively (see 2.5.2). Images were acquired by pouring an aliquot of
pesto onto a disposable aluminium vessel. Together with pesto as white reference a white tile
was imaged to correct illumination differences, from sample to sample, and to normalize each
image. Acquisition was done in reflectance mode. Then the acquired images were normalized
dividing every pixel by the average signal of the white tile to compensate the eventual illumination
changes between acquisitions. Subsequently images were converted in absorbance using the
formula:

Image Absorbance = - log10 (Image Reflectance) Eq. 6-3

For instrumental reasons the images in the Vis and NIR range were collected in subsequent
sessions. In a preliminary session (data not reported) were tested three different possible sample
presentations to the hyperspectral cameras: 1) through the glass on the bottom of the jar; 2) on
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the sample contained in the jar previous removal of the first superficial layer; 3) on the sample
collected and transferred to an aluminium vessel. These preliminary trials highlighted in the first
case some problems of unwanted reflection on the jar glass, and in the second case some
problem of unwanted shadows and non-homogeneous illumination. So, the third presentation
mode was chosen to collect the images.

The Vis camera had a resolution of 1167x1600 pixels and in the range 408-987 nm, 160
spectral wavelengths were sampled. This, for each image sample a 3D array of dimensions
1167x1600x160 was obtained.

Before further elaboration a region of interest (ROI) (Figure 6-6) of dimensions 400x400 pixels
from the centre of the sample was selected for each image, obtaining a 400x400x160 array,
which for computational reasons, was further resized to 100x100x160.

The NIR camera had a resolution of 320x260 pixels with 256 spectral wavelengths from 964
to 2494 nm. Analogously to the Vis case, a square region of interest (ROI) of 91x91 pixels was
selected, giving for each sample a data array of dimensions 91x91x256-
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Figure 6-6 Steps to prepare image for analysis, used for both Vis and NIR cameras: from the left: original sample in
aluminium box, with reference white tile, the raw image, the image normalized vs reference and transformed to
absorbances, Region Of Interest selection, ROI image ready for analysis.

6.2.3 Data analysis

6.2.3.1 Spectral preprocessing

For each single image, after pixels-wise unfolding, the spectra were preprocesssed by applying
SG smoothing (polynomial order 2 and window 9), baseline correction (Whittaker lambda=100
sigma 0.001) and normalization by Multiplicative Scatter Correction (MSC, see ref. 13 in chapter
bibliography) using as reference spectrum the average one.

6.2.3.1 MCR-ALS decomposition

The use of MCR-ALS in image analysis has been introduced in paragraph 3.6.1. In this case,
for computational constraints due to the image dimensions, the MCR-ALS model was calculated
on six representative images, i.e. corresponding to samples number 2, 4, 5, 8, 12 and 16, by
using the multiset modality (Figure 6-7 top). The Vis images were not pre-processed and a three
components MCR model was calculated (applying non-negativity constrains on both C and S
matrices).

For the NIR images to better resolve the spectral profile of purest components we proceeded
as follow:

i) as a first step a single pre-processed unfolded image was decomposed in principal

components (by singular value decomposition), then the pixels carrying essential
information [9] were individuated by applying the convex-hull in the normalized (dividing
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by the first component to make the PC space convex) scores space (component 2 vs.
component 3). Eight pixels belonged to the convex-hull;

ii) The spectra corresponding to the eight pixels were decomposed by MCR-ALS
imposing non-negativity constrains on both C and S matrices, retaining three
components;

iii) The Sopt matrix, obtained in step ii) was then used as spectral initial guess in the MCR-
ALS of the multiset composed by concatenation row-wise of the six unfolded and pre-
processed representative images. In addition to non-negativity, for one of the three
component a selectivity constrain was also imposed (trying to recover an aqueous
phase component, we imposed zero values in spectral wavelengths where water does
not absorb). In this way new Copt and Sopt matrices were obtained,;

iv) The C matrices for all the other images (the other samples) have been calculated (after
applying unfolding and preprocessing) by inverting the MCR equation and by using the
Sopt obtained in iii) (Figure 6-7 bottom).

X4V pixels

D1 CiiiCys C 5

D2

Dn

C = DS(STS)

Lamda (256)

XY pixel:
X*Y pixels

C D S ST S

Figure 6-7. Scheme of application of MCR-ALS to the multiset (top) composed by the images of six representative
samples. Bottom) obtaining the concentration matrix C for the remaining samples by MCR model inversion.

The images of the refolded concentration matrix (concentration maps) of the purest components,
for both Vis and NIR MCR-ALS models, and their relative spectra are reported in Figure 6-8.
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Sample 2 - Images vs spectra
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Figure 6-8. Images of the purest resolved components and their correspondent spectra for sample 2, one of the samples
used to build the MRC-ALS model. In the upper image the Vis model (concentration map and resolved spectra) and in
the lower image the NIR model (concentration map and resolved spectra). In both cases, the components are reported
in order from one to three respectively from left to right.

In the Vis the spectral profile of the first pure component shows two bands that can be ascribed
to the absorption of the chlorophylls, respectively “chlorophyll a” at around 662 nm, and
“chlorophyll b” at 642 nm. The spectral profiles of the second and the third components could be
attributed to the absorption of oil [10]. The distribution is rather homogeneous and similar for
component 1 and 2, while specular for component 3 (i.e. where components 1 and 2 show the
higher intensity component 3 show the lower).
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In the NIR, the spectral profiles of the three purest components remind to absorption bands of
water, proteins, and oil (as described in the method chapter 2). In details, the first component
presents the two typical absorption bands of water, the second component present the most
intense band in the spectral region where proteins absorb, and some less intense bands in the
spectral regions where water and lipids absorb. This could suggest that the second component
may be representative of the emulsion phase. The third component shows bands mainly in the
spectral regions where lipids absorb (thus could represent oil). The spatial distribution of the three
components is rather similar, but there is aregion in which aqueous phase prevails (intense yellow
colour in concentration map of component one) and the blue spots represent regions where all
components have low concentration values.

6.2.3.1 Post Processing of concentration maps

To characterize and differentiate the pesto samples disposing of global features for each
sample is useful. To this aim, some features were calculated by the concentration maps of the
purest components treating them by image analysis tools. In particular, the two approaches
described in chapter 3 were applied on the six concentration maps for each sample obtained by
MCR-ALS of NIR and Vis imaging data, respectively (three for each).

The first approach was the calculation of image features by using the Haralick method on the
Gray-Level Co-Occurrence Matrix (GLCM) [11)]. The features were calculated as detailed in
Table 3-1 of chapter 3 exploring different pixel neighbours’ distances, namely 1, 2, 4 and 8, and
different grey levels, such as 8, 16, 32 and 64. At the end, merging Vis and NIR data, a matrix of
23 samples x 768 columns (features) was obtained and was used for further PCA explorative
analysis.

The second approach was the Homogeneity calculation by Continuous — Level Moving Block
(CLMB) method by using the methodology proposed in [12], which is based on the Macropixel
analysis methodology, already presented in chapter 3.

The formula was applied to all the 6 images i.e. concentrations maps of the purest components
of each sample, giving as result a matrix holding the homogeneity index in percentage of
dimensions of 23x6. On this matrix an explorative PCA was done.

6.2.4 Results and discussion

The spectra of the pure components decomposed by MCR gave some chemical information
on the images. In fact, observing the spectra in the visible range (Figure 6-9) was possible to note
that component 1 cover the absorbance of chlorophylls a and b, relative to basil, while component
2 and 3 could be relative to the olive oil pigments (including chlorophylls).
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Figure 6-9. Spectra of pure components in the VIS hyperspectral images decomposed by MCR-ALS.

Observing the results obtained for the NIR range, the three pure components (Figure 6-10)
could be ascribed to water (absorption bands at about 1450 and 1940 nm), lipids (absorption
bands at about 1200, 1700 and 2300 nm) and proteins (absorption bands from 2050 to 2180 nm).
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Figure 6-10. Spectra of pure components in the NIR hyperspectral images decomposed by MCR-ALS.

The respective concentration maps, obtained for each sample are shown on Figure 6-9 and
Figure 6-10. The general observations drawn for the six samples on which the MCR models were
built (see 6.2.3.2) still holds. In addition, it can be seen some differences from sample to sample
with respect to the spatial distribution of one or more components, e.g. a different degree of
homogeneity for component 3 of NIR (attributed to lipids).

The features calculated on these concentration maps by the two approaches described in the
chapter 3 were used for two distinct explorative PCAs.

106



The PCA on the Haralick features (Figure 6-11) shows in both PC1 vs PC2 and PC3 vs PC4
scores plots a poor separation between the three classes. The highest PCs have been also
inspected but not reported because did not add more information. Samples number 18 and 23
appear to be very different from the other samples. For sample 18 in fact, looking at its
concentration maps, a different distribution for components 1 and 2 could be observed, especially
for the Vis (pointing to different distribution of chlorophyll pigments and eventually in segregation
of basil plant residues) and to a less extent for the NIR components as well, with respect to the
other samples. For sample 23 differences with respect to other samples are more evident in NIR
images, especially for components 1 and 3, related to chlorophylls and oil.

The reason explaining this behaviour need further investigation.
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Figure 6-11. Haralick’s classical features calculated on both Vis and NIR images of pure components. Score plot of
PC1 and PC2 (top) and PC3 and PC4 (bottom) of explorative PCA. The different colours indicate the three pesto
classes related to the basil origin.
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VIS - All samples - Component 3
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Figure 6-12. Reconstructed images of MCR-ALS pure components of all VIS hyperspectral images of all samples:

respectively from top to down the three components.
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NIR - All samples - Component 1
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NIR - All samples - Component 3
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Figure 6-13. Reconstructed images of MCR-ALS pure components of all NIR hyperspectral images of all samples.
The explorative PCA calculated on the homogeneity index data (Figure 6-14), showed more

overlap among different pesto classes; only class 1 samples (except one) are localized at most
negative PC1 values with respect to the other two classes.
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Figure 6-14. Score plot of explorative PCA done on homogeneity feature data of VIS and NIR images. The three colours
indicate the pesto classes.

6.3 Conclusions

Hyperspectral imaging (HSI) is a very powerful tool to collect simultaneously morphological
and chemical information of a sample. Its use is increasingly spreading due to the camera’s
affordability in terms of costs and performances and the augmented computing power and
methodologies.

In the case of pesto characterisation their very complex matrix was a challenging topic to solve.
The use of more sophisticated elaboration technigue like MCR-ALS helped to extract information
from the images giving as result images of pure components, which were putatively attributed
based on their resolved spectra. Inspection of this distribution maps, sample by sample, provide
a depth insight on how smooth the structure of pesto is. However, the global features extraction,
either by the Haralick method or by the homogeneity index, did not brin to a clear separation in
the three pesto classes. It could be that the differences in basil origin is not so crucial for the final
pesto structure, and the pesto processing is successful in providing a stable product. On the other
hand, some differences emerged for some few peculiar samples, such as number 18 and 23
where highlighted.
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/A FEASIBILITY STUDY
TOWARDS THE ON-LINE
QUALITY ASSESSMENT
OF PESTO SAUCE
PRODUCTION BY NIR
AND CHEMOMETRICS

This work has been done in collaboration with Daniele Tanzilli, a PhD student of Professor
Marina Cocchi and it is the object of Publication n°3 (reported in Chapter 8), to which the reader
is referred for more details. | was responsible of data acquisition, curation, exploratory analysis.
Equal contribution was given to results presentation, validation and discussion, writing, editing.
Daniele, was responsible of methods development in particular for data synchronization,
preprocessing and predictive modelling.

In the following, | will report just a part of the whole work done, such as the preliminary
feasibility analysis (which is not present in the published paper) and the multivariate control charts,
while for the on-line prediction only a Table summarizing the obtained models (including some
which are not present in the publication) is shown.

7.1 Introduction

The texture of pesto is a delicate equilibrium of an emulsion of oil in water, protein matrix,
pieces of basil (leaves and stems) and of cashew nuts [1]. Its stability depends on proper raw
materials characteristics and proportion, and preparation process (cutting, mixing and thermal
treatment). The control of the process in its crucial steps became so an important part of the
production, from one hand to maintain the designed quality, to the other hand to detect potential
critical conditions with the aim of minimize wastes or production stops. The process control could
be achieved with on-line monitoring systems and models, and NIR spectroscopy is widely used
in food processes with appropriate chemometric models developed.

A preliminary part of this part of the study was done to evaluate the feasibility of NIRS to gather
compositional/structural information which will then allow, aided by chemometrics modelling,
predicting the pesto sauce characteristics, and particularly its emulsion stability. In fact, the
reference method used in R&D Lab to measure of the emulsion stability of the pesto structure,
during the development of new recipes or technologies, is based on analysis with a dedicated
type of centrifuge (LUMiSizer®, see Chapter 2). This centrifuge is able, during the centrifugation
process, to measure the speed and the amount of the pesto phases separation thus allowing to
determine the emulsion stability. However, it is not appropriate in a production context because
each measure requires several hours and trained personnel. So, the need to evaluate a more
rapid and “easy to use” technique like NIRS. The evaluation study was done in Lab with an off-
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line bench instrument, but a future step could be to exploit the methodology in the plant by using
on-line NIR instrument.

In the published work, indeed a feasibility study was done to establish how an on-line NIRS
system (already installed in pesto production plant) could help to real-time monitor the
intermediate/final product quality during production by using Multivariate Statistical Process
Control (MSPC) methodology. To this aim, data from one pesto production campaign was
analysed by applying both multivariate control chart (MCC) based on Principal Component
Analysis (PCA), and PLS regression-based models to calibrate specific properties of finished
product, i.e. pesto. Since NIR spectra are collected on-line, once models are developed, they can
be applied real-time in prediction and monitoring for early estimation of product quality and for
early detection of any departure from normal operating condition during processing.

7.2 Materials ad methods

7.2.1 NIR feasibility study at R&D Lab scale

During the 2022 pesto production campaign 182 samples of “Pesto alla Genovese” were
collected over three months, just after the production, in Rubbiano plant. Their emulsion stability,
expressed as instability index, was measured by the reference method in the R&D Lab in Parma.

Samples were collected in three distinct production phases: 1) at the start of a production lot;
2) in the middle of a production lot; and 3) at the re-start after a production stop due to some
issues and maintenance operations. In this last case, part of the product lasted in a tank for some
time (variable duration depending on the type of issue to be solved) at higher temperature under
continuous mixing, conditions that could affect the stability of the emulsion in the final product.

To be representative, for each sample eight NIR spectra (in eight distinct positions by rotating
the sampling cup) were recorded in the range 400-2500 nm, by the benchtop instrument. The
average spectrum of the eight acquired spectra was used to assemble the spectral data set.

The spectral dataset was divided in two blocks, by splitting the wavelengths regions, related
to the two detectors of the NIR instrument. Respectively from 400 to 1100 nm the silicon detector
and from 1100.5 to 2500 nm the lead sulphide detector (Figure 7.1). The part of the spectra from
2360,5 to 2500 nm was removed because it is affected by high noise.
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Figure 7.1. VIS-NIR spectrum example with the colours that indicates the separation into two blocks based on the two
instrument detectors (red silicon detector, green lead sulphide detector).

Several spectral preprocessing was tested on both blocks (i.e. SNV and Savitsky-Golay first
and second derivatives and their combinations) and at the end the first derivative (2" polynomial,
15 points) was selected, for both of them, showing a better distinction in PCA space of the three
production phases.

Samples were then divided in a calibration set (127 samples) and a validation set (55 samples)
by using the DUPLEX algorithm.

Multiblock PCA was applied after block-scaling to unit variance (including mean centring).

7.2.2 Monitoring of semifinished product by on-line NIR

Semifinished pesto is a mix of oil, salt and cut basil, produced in the first part of the production
process before the addition of the other ingredients. The NIR on-line probe recorded the spectra
of semifinished product in a spectral range from 1100 to 1650 nm.

NIR spectra were pre-processed to remove effects, such as scattering, introducing variability
not linked with information to be retrieved, and/or to enhance extractable information. In particular,
Savitzky—Golay 2" derivative and mean centering were applied prior to exploratory Principal
Component Analysis and multivariate control charts building.

The dataset had been split in calibration and test sets manually, considering Normal Operative
Conditions (NOC) observations, subdividing each period without production stops, as follows: the
first part (about 65%) consisted of temporally contiguous points in the calibration set; and the
second part (about 35%) was in the test set. In this way, we mimicked the real situation of
continuous monitoring where samples to be predicted came after in time for each period.
Observations not in NOC, as highlighted by exploratory PCA, were all included in the test set.

To estimate the correct number of PCs, cross-validation was performed with a venetian blind
scheme with ten splits. The MSPC charts were based on two parameters: Hotelling T2, which
described the distance of a sample in the model space, and Q, which defined the distance of a
sample from the model space. In other words, if a sample had high T? values, the model was able
to describe it, but the distance between the sample and the centre of the model was high, i.e., it
showed an extreme behaviour. On the other hand, if a sample was characterized by high Q
values, the model was not able to describe the sample properly, hence the correlation structure
of variables was different from the other samples. To assess if a sample was extreme or
anomalous, signifying a departure from normal operative conditions for both control charts, the
acceptance limits had to be estimated. The T2 limit was obtained based on Hotelling’'s T?
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distribution, whereas the Q limit was based on x? distribution and was calculated either with
Jackson and Mudholkar approximation or the Box method [2, 3]

7.3 Results and discussions

7.3.1 Results of NIR feasibility study

The graph of the instability index (Figure 7.2) indicates that most of the un-stable samples
(higher instability index) refer to samples collected after a stop of the production line (represented
by blue triangles in Figure 7.2). The samples at the production start (shown as red diamonds) had
all an extremely low instability index during all the production periods, thus good structure of the
emulsion. The samples collected in the middle of the production period (green squares) showed
just few unstable samples.
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Figure 7.2. Instability index of all the samples analysed. Top plot (a): samples have different symbols and colour
depending on the production phases: production start) red diamonds; middle of production) green squares; after
production stops) blue triangles. Bottom plot (b): samples are coloured by instability index values (see colour bar) and
different symbols are used basing on production phases as in (a) with diamond, squares and triangles indicating start,
middle and after stops, respectively.

Observing the score plot of PC1 vs PC2 of the explorative PCA done on NIR spectra (Figure
7.3) is possible to note that part of the samples collected after a stop and re-start in production
(blue triangles) had very negative values of PC1 and are so clearly separated from the others.
These samples had higher values of instability index (Figure 7.3). On the other hand, most of the
samples collected at the start (red diamonds) and in the middle of production (green squares) had
positive or slightly negative values of PC1. An interpretation on the differences between these
samples could be made evaluating the spectral wavelengths in the loading plot of PC1 and PC2
(Figure 7.4). Samples with negative values of PC1, so in the left part of the score plot, had lower
levels of chlorophyll (band at 730 nm), higher level of water (spectral region around 1400 nm and
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2000 nm where water absorption take place) and lower level of lipids (bands around 1900 nm and

2300 nm). The differences observed in PC2 was more related to the chlorophyll and proteins
content.
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Figure 7.3. Explorative PCA of VIS-NIR spectra. Score plot of PC1 vs PC2. Red diamonds (middle of production), green

squares (start of production) and blue triangles (restart after production stop) represent respectively samples collected
at start, middle, and re-start of production.
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Figure 7.4. Loading plot of PC1 (top) and PC2 (bottom).

The Hoteling T? (Figure 7.5) plot, which show how extreme are samples in the overall PCA
model, was also inspected As it can be observed in the figure, the samples having higher
instability index fall over the T2 critical limit and are so indicated as very extreme samples and
most of them were collected after productions stops/re-starts. Most of these samples were the
ones located at negative PC1 vs PC2 PCA scores plot (far from the others, e.g. 26, 31 and 35.
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Figure 7.5. Multivariate control chart. Top samples coloured for pesto classes; bottom samples coloured for instability
index.

An attempt was also made to estimate the instability index by the NIR spectra. To build the
multivariate calibration model between the VIS-NIR spectra and the instability index a PLS
regression model by using three latent variables (according to minimum error in cross validation
with venetian blind with ten steps) was selected. The results (Figure 7.6) indicated a quite good
prediction model, with a RMSECV 0.0521 and RMSEP 0.0538 indicating that NIRS could be an
acceptable alternative to quicky evaluate the stability at least at pre-screening level.

This results, are especially interesting because two NIRS are already installed on-line in the
Rubbiano plant in two points of the production line, and thus the predictive model could be in
future implemented as real-time measure.

122



09 T T T T T T T T

0.7 i

=
WN o
»
>

0.6 i
05 B A -

0.4 r m B 8

Y Predicted 1
u

0.3

017

O | | | | 1 1 | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Y Measured 1

Figure 7.6. Instability index prediction by NIRS reporting the measured Instability index on x axes vs the predicted
Instability index in y axes. The green line indicates the ideal prediction. Calibration and test samples are reported.

7.3.2 Results on NIR on-line on semifinished product

PCA analysis carried out on NIR spectra (acquired for 459 time points) had highlighted the
presence of a cluster of samples at the negative value of PC1 and positive value of PC2, as
shown in Figure 7.7a, as very far and different from all the other samples. Observing the PC1
versus time plot (Figure 7.7b), it was evident that these samples always corresponded to re-starts,
where production started after a period of inactivity. In Figure 7.7c, the loadings line plots for PC1
and PC2 are shown as the blue and red lines, respectively, where it is possible to see the
absorption bands as mainly responsible for this difference. However, to jointly interpret scores
and loadings plots, a PC1 vs PC2 loadings scatter plot was also generated (Figure 7.7d). In the
two figures d and c, highlighted in purple, the wavelengths that describe the separation between
the NOC and anomalous samples are shown. It can be observed that the band in PC1 at 1400
nm, despite being the most intense, is not involved in the description of anomalous samples but
just in extreme NOC samples with high values of PC1 scores in Figure 7.7a. On the other hand,
the bands at 1170, 1213, 1236, and 1410 nm describe the behaviour of the anomalous samples,
as they fell in the separation direction, meaning that these samples had quite different absorptions
at these wavelengths. In detail, the bands at 1178 and 1410 nm can be ascribable to lignin,
namely, the second overtone of C-H bond stretching of CHs, and to the first overtone of the O-H
bond stretching of the ROH group, respectively. Whereas the band at 1213 and 1236 nm are
related to the first and second overtone of CH bond stretching of oleic and linoleic acid in olive oil
CH: (4, 5, 6).
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Since these samples show outliers behaviour, as they clearly do not represent the Normal
Operative Condition (NOC), were removed and a new PCA model was built to obtain a better
visualization of differences among NOC samples.

The first PC (79.36% of variance explained) did not show any interesting trend, so PC2 and
PC3 were inspected. In Figure 7.8a and Figure 7.8b are reported the scores plot of PC2 vs PC3
where samples are coloured according to the different additional information available i.e.,
suppliers and different cuts, respectively. The suppliers’ names have not been disclosed because
of confidential agreement restrictions. PC2 discriminates samples according to suppliers, as
almost all samples of supplier number 2 have positive PC2 values and samples of supplier’s
number 3 and 4 have negative PC values, suggesting that they are more similar to each other
with respect to number 2. Only the samples coming from supplier number 5 does not clearly
differentiates from the others, whereas the number of samples of supplier number 1 is too low to
judge. Furthermore, PC2 and PC3 can distinguish between samples related to cut 1 and 2
(negative values of PC2 and positive values of PC3) with respect to samples related to cut 3 and
4. The possibility to discriminate different cuts is relevant for the company, as younger basil plants
generally give a higher quality product. However, observing the two plots simultaneously, it is
evident that only certain suppliers, namely number 3 and 4, have delivered samples characterized
by low cuts. In Figure 7.9a and Figure 7.9b are reported the loadings plots of PC2 and PC3,
respectively, that show the NIR bands responsible of these differences. Even if it is not possible
to assess if suppliers or cuts influence them, PCA resulted to be a valuable tool to assess if
incoming information about raw material could be linked to the intermediate product
characteristics, obviously a more systematic planning of the next harvesting campaigns could
clarify if cut or supplier is the influential factor.
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7.3.3 On-line NIR monitoring (MSPC charts and predictive models).

As pointed out in the introduction for details refer to publication number 3.

The PCA model to build the MSPC charts, which explains 93% of the data variance with 4
Principal components, was calculated inserting in the calibration set (294 samples) only the
samples that are considered in NOC according to plant experts, whereas test set (165 samples)
comprised both NOC and anomalous samples. The T2chart, reported in Figure 7.10a, describes
the distance of each sample from the origin within the model space. Black circles represent the
calibration samples used to build the PCA model, whereas red diamonds represent the test
samples projected on the model. This chart detected five groups of samples with high T2 value,
which again correspond to the NIR spectra acquired at the different restarts of the production. No
other test sample exceeds the T?limit. Regarding the Q chart (Figure 7.10b), which describes the
distance of each sample from the model space, the same samples corresponding to the restart
are seen anomalous as for T2 chart, meaning that the model does not describe properly these
samples. Few not consecutive samples and inside the nominal 5% of the total are above the
charts’ limits.

Samples were also coloured according to cut, supplier, consistency, and lipids values to
observe if their behaviour was related to these distinctive features, but no specific trends were
detected.

Nonetheless, the results obtained show how these charts are efficient in detecting possible
departure from NOC, which translate to differences in intermediate products, accelerating the
identification of possible plant issues or, as in this case, the adaptation of the process while
returning to NOC conditions after a stop period. NIR is a very sensible technique to signal any
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variability occurring in intermediate production samples that can be due to process resetting
(actual case), to process drift, or also to variation of NIR instrumentation setting/performance.
Interpretation of loadings and analysis of previous production campaigns data may help
discerning the different situations.
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Figure 7.10. T?- (a) and Q-(b) based MSPC charts.

NIR spectra acquired on-line can also be used to obtain multivariate calibration models to
predict the quality pesto parameters, to then implement real-time prediction to get an early
estimation of the pesto quality before process is finished. A main issue to take care in this case
is to match the intermediate product sample (at a given production time), on which the NIR
spectrum is acquired, with the correct finished pesto product at the end of production line (on
which quality parameters are assessed by reference methods off-line), i.e. considering the
residence time as explained in section 2.1 of paper 3.

Another, critical issue is spectral preprocessing for which the reader is referred to the section
2.4.1 of paper 3.

The main results are reported in Table 7-1.

The models for Consistency and Lipids are discussed in detail in the published paper.

The pH model shows close value of RMSECV and RMSEP, analysing the residuals plot (not
shown for sake of brevity) it was possible to check the absence of bias and their random
distribution, apart from 2 samples, all other samples are within a range of + 0.15, an acceptable
error for estimating the on-line quality of an intermediate product. The model commits an average
percentage error of 1.1 %. The most influential bands for predicting the pH of pesto were identified
through the analysis of the regression coefficients and VIP four main spectral regions were
important: 1210 nm first overtone of the stretching of the C-H bond of the CH2 group of oleic and
linoleic acid in olive oil and cheese; 1407 nm first overtone of the O-H bond stretching of the ROH
group of lignin; 1444 nm C-H bond combination bands of the aromatic compounds in basil;1527
nm first overtone of the N-H bond stretching.

In the water activity model, the test set samples are predicted with a much higher error than
the calibration set samples (RMSECV 0.001 while RMSEP 0.004). However, when analysing the
residuals, a random distribution is evident and most of the samples show residue values between
+0.01, an acceptable range for the company to consider the product in specification. The model
commits an average percentage error of 0.37%. Again, regression coefficients and VIPs were
used to identify the most influential bands for water activity, pointing coherently to the first
overtone of the O-H bond stretching (region around 1450 nm).

Finally, the dry residue model shows comparable RMSECV and RMSEP values and commits
an average percentage error of 0.63%, while this is considered acceptable by the company to
check whether the product is in specification for this parameter. The prediction residuals, in this
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case showed a tendency to a linear trend, as if the model suffered by underfitting. The most
influential bands are located at 1200 nm, 1350nm (linked to C-H bond stretching of the CH2 and
CH3) and 1577 nm (first overtone of the N-H stretching of the CONH group).

Table 7-1 PLS regression results for multivariate calibration of pesto quality parameters by using on-line NIR (70/30 %
calibration/validation split by duplex)

Quality parameters LVs RMSECV RMSEP % average error
Consistency (cm) 9 0.64 0.68 9.88

pH 8 0.056 0.065 11

Lipids (w/w%) 5 1.6 2.0 25

Water activity 4 0.001 0.0044 0.37

Dry residue (w/w %) 4 0.4254 0.5745 0.63

These preliminary prediction models were built as a first attempt to evaluate the possibility of
predicting the properties of the final product in real time from on-line analysis of the intermediate
product, showing promising results despite the limited usable data. These prediction models,
being constructed with NIR spectra placed at an intermediate stage of production do not "see"
the variability introduced with the addition of the final ingredients, therefore, they may not be
effective when these have a strong influence on the finished product, on the other hand having a
prediction albeit with a fairly significant % error but well in advance allows timely intervention in
the event of estimates deviating from the required specifications. A limitation in the construction
of these models is the limited range of variability of the responses which is obviously bound to the
specification conditions, on the other hand there is no possibility of extending the calibration
domain. Thus, these models should be viewed not so much with a view to correctly estimating
the value of the property, but as tools capable of providing a preliminary assessment as to whether
the tolerated ranges around the product specification are met. With this in mind, the predictive
models obtained showed very good capabilities for each property, committing a percentage error
acceptable to the company to consider if the product is inside specification range.

7.4 Conclusions
This part of the study presents two feasibility studies.

The first was related to the possibility to predict the pesto emulsion stability by a NIR system
and demonstrate that NIR is capable to predict pesto structure instability. Its application in a
production plant should be further tested.

The second part was related towards the real-time monitoring of an industrial food process line
(pesto production). Since historical data were not available, the obtained results referred to a
single basil harvesting campaign. The modelling effort concerned both latent variables based
multivariate control charts, aimed at monitoring the stability of process conditions and the eventual
detecting of fluctuations exceeding the natural variability of the process. Even though the collected
data were limited, the results gave interesting insights, which are summarized below.

NIR-based multivariate control charts could detect restarts after temporary production
stoppages, underlining that some changes occur in the intermediate product. On one hand, this
is an indication of how sensible NIR spectroscopy is to monitor any changes, and, on the other
hand, a monitoring system can clearly indication of how sensible NIR spectroscopy is to monitor
any changes, and, on the other hand, a monitoring system can clearly indicate when process
fluctuations return to natural process variabilities and to the constancy of the product.

The preliminary predictive models obtained showed good capabilities for each property,
committing a percentage error acceptable to the company to consider the product in specification
in each parameter. Their application and implementation on the line would allow in the future the
early identification of intermediates that would give products that are not in specification, giving
the operator the possibility of planning a verification analysis in the product laboratory (in advance
of the routine scheduled time), carrying it out on specific target samples and if necessary, stopping
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production or correcting it by varying the quantities of ingredients. To strengthen and validate the
prediction models, it would be necessary to increase the number of samples, monitoring
campaigns over few years and consider to calibrate with a mixed data set of plant and laboratory
samples in order to enlarge the response variability in the calibration set. Anyhow, results show
the feasibility of real-time quality monitoring to complement off-line laboratory analyses, thus
reducing costs and performing quality control on all jars of pesto and not only on some samples.
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SFINAL CONCLUSIONS

8.1 Final remarks

The main objective of this PhD thesis was to improve and increase the possibility of evaluating
the quality of crucial raw material and the correlated finished products. The “Pesto alla Genovese”
has been a good benchmark to try several analytical and statistical approaches both in the lab
and the industrial plant contexts.

Starting from the basil, (chapter 4) a crucial raw material for the pesto quality, a deep focus
has been posed on the flavour characterization in an R&D context where is necessary to evaluate
new basil chemotypes. The classical analytical methods used to evaluate the flavour found in the
support of chemometrics a new faster, easier, and more effective way to evaluate if a flavour
bouquet of a new basil chemotype is similar to a well-known basil bouquet and why it is different.
It is understandable how this could help in the agronomic research.

Moreover, the study has been carried out in two modalities: with target analysis where the
molecules to be measured are known, and with untargeted analysis, where no information on the
expected molecules is available. The first modality is useful to control well established products,
just to check their behaviour. The second modality instead is more dedicated to research situation
where very new products are under exploration, as happens in R&D context.

The basil has been also evaluated for other characteristics (chapter 6) like its colour or the
ratio between the leaves and the stems at the industrial production plants. This in related to the
availability of a vision system that has been installed in the pesto industrial plant aiming in
perspective at achieving real-time raw materials monitoring. In fact, the Quality by Desing, that is
increasing in its application also in food industry contemplate that raw material should have
precise characteristics. Not always easy to be sure of that with “live” row materials like basil. So,
an image analysis strategy has been studied. Promising preliminary results were obtained.

In the industrial context another challenging topic has been the study undertaken to evaluate
if the on-line NIR probe installed at the pesto plant monitoring a semifinished product could be,
coupled to chemometrics, used to develop predictive models of the quality characteristics of the
final product “Pesto alla Genovese”.

This is a very important possibility because in an industrial process having information that the
final quality is not going to be the expected one, in an early stage of the process, permits to quickly
intervene to correct the process.

This task has been very challenging because the production process is not as fixed as we
might think, and there are pauses, stops, and restarts, minor changes in flows or in times that
introduces variability difficult to control and which render the building of predictive models very
challenging. Nonetheless, there are pre-processing tools which can help to study and remove the
effect introduced by unwanted variability sources. On the other side, an improvement in process
data storage and retrieval and automatic registration of additional information is needed.

Another relevant part of the thesis verted around the final product “Pesto alla Genovese” quality
characteristics, in terms of flavour and structure.

In chapters 5 and 7 some methods have been tested with chemometrics support to evaluate
both the aroma and the structure stability. Results indicate promising possibilities for techniques
like NIR that has more potentiality respect to the other techniques used to be exported in a routine
quality control context for its easiness of use.

Innovative analytical approaches like hyperspectral imaging (chapter 6) have been tested on
Pesto to evaluate new possible tools to be exported from a research environment to a quality
control lab. Also in this case, the chemometrics is essential to manage the complexity of this data.
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8.2 Future perspectives

The future of the quality design is in the direction on what the Industry 4.0 expect, with the
number of sensors increasing along all the production processes, connected to huge databases
where big data will be then properly managed and elaborated to properly drive the production
process.

On the other hand, in the Laboratories, the develop of more sophisticated techniques (i.e.
GCxXGC-MS or the multi-sensors hyphenated techniques), will require more and more
sophisticated way to analyse the data.

This is a challenging and uphill path that will be done step by step. The explored possibilities
of evaluation quality parameters done in this thesis are steps in this complex path.

8.3 To conclude

The initial idea to develop a “chemometric toolbox” to be applied in my everyday job as chemist
and researcher has been successfully reached. All the studied cases have been approached with
chemometric mindset and tools, that increased, or in some cases made possible, the extraction
of information, the elaboration of complex data and at the end a clearer understanding of the
studied topic.

It has been interesting to me to observe how wide are the possible applications of the
chemometric tools: from the classical laboratory data obtained by largely used gas-
chromatographs, that increase their descriptive capabilities when enhanced by chemometric, to
techniques like the hyperspectral imaging, more and more used for its powerful capacity to join
the morphology description of the image to punctual chemical information.

And leaving the R&D laboratory to move to the production plant, the power of chemometrics
became more relevant considering the huge quantity of collected data in a context rapidly moving
towards the Industry 4.0, with the spread of sensors and measure instruments.

| know that for me this journey into the chemometrics world is just started, but | have now more
awareness of the huge possibilities of its use and of the pitfalls that are always round the corner.
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Abstract: Basil is a plant known worldwide for its culinary and health attributes. It counts more
than a hundred and fifty species and many more chemo-types due to its easy cross-breeds. Each
species and each chemo-type have a typical aroma pattern and selecting the proper one is crucial
for the food industry. Twelve basil varieties have been studied over three years (2018-2020), as have
four different cuts. To characterize the aroma profile, nine typical basil flavour molecules have been
selected using a gas chromatography-mass spectrometry coupled with an olfactometer (GC-MS/O).
The concentrations of the nine selected molecules were measured by an ultra-fast CG e-nose and
Principal Component Analysis (PCA) was applied to detect possible differences among the samples.
The PCA results highlighted differences between harvesting years, mainly for 2018, whereas no
observable clusters were found concerning varieties and cuts, probably due to the combined effects
of the investigated factors. For this reason, the ANOVA Simultaneous Component Analysis (ASCA)
methodology was applied on a balanced a posteriori designed dataset. All the considered factors
and interactions were statistically significant (p < 0.05) in explaining differences between the basil
aroma profiles, with more relevant effects of variety and year.
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1. Introduction

Basil (Ocimum basilicum L.) is an annual plant of the Lamiaceae family, known world-
wide as a culinary and healthy herb [1]. Basil’s essential oils have been used in many fields
for medicinal treatments, perfumery and cooking spices. Originating from India, Africa
and Asia, its cultivation is now spread worldwide [2].

It is estimated that basil counts from fifty to one hundred fifty species, of which
the most commonly used in the culinary field is sweet basil [3,4]. It is present in many
different chemo-types due to its characteristic to easily cross-breeds [4,5]. For that reason,
it can sometimes be challenging to determine the species or the variety of a basil plant. Its
characteristics in terms of morphology, agronomy performances and aroma pattern are
normally determined [6-8]. These characteristics are influenced not only by the chemo-
type/species/ variety, but also by agronomic practices, climatic conditions and age of the
plant [1,3].

The basil aroma is composed of a large number of molecules, mainly terpenoids,
alcohols, aldehydes, ketones and esters [3,9]. Totally, there are more than one hundred
molecules, of which the most representatives in sweet basil are considered linalool, es-
tragole, eugenol and eucalyptol (1,8-cineole) [7,10]. The content of these molecules could
give a preliminary evaluation of different basil flavour profiles, while a more accurate
evaluation of the final aroma will also consider the concentrations of other minor compo-
nents, mainly the molecules that have a low odour threshold [11,12]. The odour threshold
is defined as the lowest concentration of a molecule that could be perceived by olfaction.
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Thus, in the evaluation of the flavour patterns, it is necessary to consider not only the
concentration of a given molecule but also its capacity to be perceived.

Basil is one of the main components of the “Pesto Genovese” sauce, a typical and well
appreciated Italian green sauce. The basil aroma pattern is crucial for the organoleptic
features of pesto sauce and consequently its analytical characterization is relevant [13] in
terms of selecting the preferred profile or to search for new patterns.

There are many different methods to identify and quantify volatile organic compounds
(VOCs) based on gas chromatography (GC) and mass spectrometry (MS), either coupled or
not, and using different systems of sampling. Among coupled GC-MS methods, different
systems are available to collect, trap and concentrate the VOCs, such as headspace solid
phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) [6],
headspace sorptive extraction gas chromatography-mass spectrometry (HSSE GC-MS) [13],
dynamic headspace-thermal desorption—gas chromatography/mass spectrometry (DH-
TDU-GC-MS) [14]. Direct-injection mass spectrometry (DIMS) [15], without a separation
step, is also very diffuse in food analysis [16-18]. In particular, the development of an
ambient ionization mass spectrometer (AMS) [19-23] is very important, especially coupled
with the development of miniature and portable mass spectrometers [21-23] and inno-
vative introduction systems, such as membrane inlet mass spectrometers (MIMS) [21,24].
AMS, while opening up very interesting perspectives for in situ food analysis and control,
has still to become an established reference for quantitative analysis, especially for solid
samples [19].

The basil aroma pattern, to the best of our knowledge, has been characterized only by GC
based techniques, for instance, headspace solid phase microextraction gas chromatography—
mass spectrometry (HS-SPME-GC-MS) [6], headspace sorptive extraction gas chromatography—
mass spectrometry (HSSE GC-MS) [13], as well as gas chromatography as such (GC and
GC-MS) [10], indirectly measuring the total phenolic compounds [25] or using flow-injection
mass spectrometry [18].

As basil is a very delicate plant, which is difficult to store after cutting [26,27], it would
be extremely useful to have a fast analytical method, being at the same time suitable to
discriminate the different varieties and furnishing information on the compositional profile
of the aroma fraction.

To this aim, in this paper, we tested an electronic nose system based on ultrafast
gas chromatography (fast-GC) since it can provide a non-invasive, rapid, sensitive and
relatively low-cost system. Moreover, it allows direct comparison with sensory evaluation
that is usually carried out by gas chromatography-olfactometry (GC/O) [28] analysis. In
particular, the Heracles II e-nose device [29] was tested, which has been previously applied
to characterize the volatile fraction of different food commodities [30-33], while there is,
to the best of authors’ knowledge, no study concerning basil or other spices. The aroma
profile gathered by fast-GC was matched with sensory evaluation from GC/O, and the
detected molecules, mainly perceived in the basil flavour pattern and persistent in GC/O,
were quantified.

The developed methodology was applied to evaluate several basil varieties, grown
on open fields in different years considering more cuts, to obtain a preliminary overview
by multivariate exploratory data analysis of the aroma variation due to both varieties
and period of harvesting. A deepest insight and a better understanding of these effects
can be gathered by ANOVA-Simultaneous Component Analysis (ASCA) [34], which
generalizes classical analysis of variance (ANOVA) to multivariate data, overcoming the
main limitations (number of samples higher than number of variables, breakdown in
case of variables collinearity) and multinormal distribution assumption of multivariate
ANOVA (MANOVA). First, a classic ANOVA was carried out to split the data matrix into
the effect matrices for each experimental factor and their interactions. Then, simultaneous
component analysis was carried out on the effect matrices to identify and visualize the
contribution of the measured variables to each of the effects that introduced systematic
variation [35]. One of the main advantages of ASCA is the interpretation of the factor
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levels in terms of the measured variables through loadings inspection. ASCA has been
successfully applied in metabolomics [34,35], as well as in food analysis [36-38].

ASCA requires data coming from an experimental design, and thus we applied it to a
balanced reduced set of varieties, in order to investigate the effects of cutting period, basil
variety and harvesting year on the basil aroma pattern.

2. Materials and Methods
2.1. Basil Plants

The plants of basil (Ocimum basilicum) of twelve different commercial varieties of
“genovese” type were supplied, for all the samples, by local producers (Parma Vivai). The
varieties name is indicated with a code for confidentiality reasons. Only the “Italiano
Classico” has been indicated because it is largely commercially used. All plants have been
grown in open fields following standard agricultural practices. Each basil variety was
collected at different plant ages: in most cases two cuts were collected and sometimes up
to four cuts were taken (Table 1). Plants were cut leaving about 5-6 cm from soils, allowing
the plant to regrow for the next cut. The first cut was carried out when the plants were
aged 40 days, while the subsequent cuts were carried out at time intervals of about 20 days
each. Finally, in order to have a preliminary idea on the variation of the investigated aroma
fraction as a function of the harvest, different basil varieties were collected for three years
(2018-2020). In Table 1, the number of samples per year, variety and cut are reported.

Table 1. Samples analysed in the three years of experiment with the indication of the samples
undertaken for each cut.

Crop Year Basil Variety Cut in Bold (No. of Samples)
italiano classico 1st (11), 2nd (12), 3rd (3)
variety 3 1st (1), 2nd (1)
2018 variety 5 1st (1), 2nd (1)
variety 8 1st (1), 2nd (1)
variety 10 1st (1), 2nd (1)
variety 11 1st (1), 2nd (1)
italiano classico 1st (4), 2nd (2), 3rd (2), 4th (2)
variety 5 1st (2), 2nd (1), 3rd (1), 4th (1)
2019 variety 8 1st (2)
variety 9 2nd (1), 3rd (1), 4th (1)
variety 10 1st (2), 2nd (1), 3rd (1), 4th (1)
variety 11 1st (2), 2nd (1), 3rd (1), 4th (1)
italiano classico 2nd (2), 3rd (1), 4th (2)
variety 1 2nd (1), 3rd (1), 4th (1)
variety 2 2nd (1), 3rd (1), 4th (1)
2020 variety 4 2nd (1), 3rd (1), 4th (1)
variety 5 2nd (1), 4th (1)
variety 6 3rd (1), 4th (1)
variety 7 2nd (1), 3rd (1), 4th (1)
variety 9 2nd (1), 4th (1)

2.2. Sample Preparation

Basil plants were collected early in the morning, typically from 4 to 8 a.m., and were
immediately sent to the lab for the evaluations. Plants were analysed within 6-8 h from the
cut. About 30 g was exactly weighted at 0.1 g of the whole basil plant, including leaves
and stems, and was hashed in a blender (Oster, Sunbeam Products Inc., Boca Raton, FL,
USA) for 30 s in 300 mL of extraction solution at room temperature. The extraction solution
was prepared with NaCl at a concentration of 100 g L™}, to increase the volatiles release
in the headspace (next step of the analysis), and 6 mg kg~ of ethyl iso-butyrate to serve
as internal standard for the CG analysis. After 30 s of resting time, 20 uL of the solution
was collected and transferred in 20 mL amber vials that were immediately sealed and sent
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for analysis. Each extract was sampled at least three times in different vials. All reagents,
standard and solvents were analytical grade (Sigma Aldrich, Inc., Saint Louis, MO, USA).

2.3. Heracles e-Nose Analysis

The analysis of the volatile molecules in the sample headspace was carried out using
a Heracles II (Alpha MOS, Tuluse, France) ultra-fast chromatography electronic nose [18].
The instrument consists of a double-columns ultra-fast-chromatography system, with FID
detectors, interfaced with a PAL-RSI automatic headspace autosampler, after injection a
Tenax TA polymer trap is employed. The two columns were mounted in parallel in the
oven; they had different polarities, namely, an MXT-5 (non-polar) and MXT-1701 (slightly
polar) were employed, both 10 m in length, with internal diameters of 0.18 mm and phase
thicknesses of 0.40 pm. A temperature ramp was employed, starting from 50 °C for 2 s,
then going to 80 °C at 1 °C:s™! and finally reaching 250 °C at 3 °C s~ L. The total fast GC
analysis time was 110 s. The carrier gas was hydrogen.

The different replicates of each extracted sample were loaded in the instrument
autosampler and incubated for 20 min at 40 °C before injection with 500 rpm agitation (5 s
on, 2 s off). Then, 1 mL of air headspace was injected with a syringe temperature of 50 °C.
Trap loading conditions were 18 s at 40 °C, then flashed to 250 °C for the release in the two
columns at split ratio 1:1.

The AlphaSoft v 16.0 software was used to process the data. Volatile compounds
were identified on the basis of Kovats’ relative retention indices (KI) and can be linked
to specific molecules that are collected in the AroChemBase v 7.0 database (Alpha MOS.,
Tuluse, France). In this way, eighteen compounds were tentatively identified as further
discussed in Section 3.

2.4. Gas Chromatography-Mass Spectrometry Olfactometry Analysis (GC-MS/O)

To select the key molecules perceived in basil aroma, a preliminary analysis on the
Italiano Classic variety was conducted by gas chromatography-mass spectrometry coupled
with a Gerstel ODP3 sniffing port olfactometer (GC-MS/O). Among the about one hundred
and fifty molecules observed in GC-MS (data not shown), only thirty-two were perceived
by GC/O sniffing trained panellists in terms of odour, and just nine of these had shown
a persistent odour after three dilution steps. Matching these molecules with the eighteen
molecules observed in the Heracles chromatograms, nine key marker molecules were
selected as the most representative of the basil flavour pattern, as reported in Table 2.

Table 2. Persistent molecules found in basil aroma, selected by GC/O, with CAS Number and the
descriptions assigned by the CC-O panelists.

Molecules CAS Number Aroma Description
hexanal 66-25-1 green grass, rancid
2-hexenal 63449-41-2 spices /herbal
a-pinene 80-56-8 herbal, woody
b-myrcene 123-35-3 flower, cytrus
eucalyptol 470-82-6 balsamic, eucalyptus, menthol
linalool 78-70-6 flower, cytrus, vinegar
estragole 140-67-0 anis, liquorice, fennel
eugenol 97-53-0 cloves, spices
b-caryophyllene 87-44-5 spices

2.5. Quantification of Key Molecules

For each of the key nine molecules of interest, a calibration curve was obtained (Table 3)
by preparing standard solutions at six concentration levels, using ethyl iso-butyrate as
internal standard. Two mother solutions were prepared. First, a solution of ethyl iso-
butyrate (internal standard) was prepared by diluting about 100 mg in ethanol, exactly
weighed, in a 100 mL volumetric flask to obtain a final concentration of about 1000 mg kg~ '.
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The second solution of multistandards was prepared by diluting, in 100 mL of ethanol,
quantities of each standard exactly weighed from 60 to 150 mg, depending on the respective
standard volatility, to obtain final concentrations ranging from 600 to 1200 mg kg ~'. The
six calibration solutions at different level concentrations were prepared by diluting with
ethanol to 5 mL final volume, 0.5 mL of the IS solution and, respectively 0.25, 0.5, 1.0,
1.5, 2.0 and 3.0 mL of the multistandards solution. From each calibration solution, 1 uL
was collected and loaded into the 20 mL vials for the analysis. The calibration curve was
obtained normalizing the area of each analyte with respect to the internal standard area
and quantity. A representative chromatogram for one of the multistandards solutions used
for calibration is shown in Figure 1.

Table 3. Coefficient of determination (R2), slope of the calibration curves, and limit of detection for

the investigated compounds.

Compounds R? Slope + SD LOD (ugkg~1)
hexanal 0.9997 0.96 + 0.01 47
2-hexenal 0.9998 0.79 £ 0.01 23
a-pinene 0.9998 1.73 £0.01 28
b-myrcene 0.9999 1.61 +0.01 1
eucalyptol 0.9999 1.88 £ 0.01 22
linalool 0.9995 0.394 + 0.004 60
estragole 0.9994 1.33 £ 0.02 52
eugenol 0.9999 0.453 + 0.002 32
b-caryophyllene 0.9968 1.22 £ 0.03 22
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Figure 1. Chromatogram of multistandards solution. The peaks of the nine molecules with their retention times are
shown, together with the peak of internal standard (IS) and solvent. Peak just before 30 s and other minor peaks are

solvent impurities.

As far as the nine investigated compounds are concerned, the calibration curves were
linear over the examined concentration range. In Table 3, the coefficient of determination,
the slope and the limit of detection (LOD) for each calibration curve are reported.

At the start of a new analytical batch, three empty vials were injected as blanks to clean
the system and one empty vial was run between each group of replicates of the samples to
assure the system was clean and prevent cross-contaminations between different samples.
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The concentration of each molecule was calculated with respect to the exact weight of
the plant basil extracted. As a result, a dataset of the concentration in pug kg1 of all the
nine marker molecules of the basil samples was obtained.

In order to evaluate the short-term (intra-day) and long-term (inter-day) reproducibil-
ity, nine replicates of the same basil sample were prepared from scratch and analysed in the
same day at different times, and in three different days, respectively. The relative standard
deviation (RSD) was then computed for both reproducibility conditions. In particular,
intra-day RSD ranged between 4 and 9%, while inter-day RSD ranged between 8 and 10%,
showing good reproducibility values.

2.6. Data Analysis

Principal Component Analysis (PCA) was performed on the obtained concentration
dataset (267 x 9), composed of the samples reported in Table 1, including the three replicate
extracts (Section 2.2) for each sample. The samples varied according to three factors: year
of cultivation (2018-2020), cut (1st, 2nd, 3rd and 4th) and basil variety (12 varieties).

Data were autoscaled to allow each of the nine molecules to contribute to the model
independently of being a major or minor component.

ANOVA-Simultaneous Component Analysis (ASCA) method [24] was used to evalu-
ate the potential significance of the effect of the three above-mentioned factors and their
interactions. ASCA performs a classical ANOVA, partitioning the variability of the data
into the contribution of each factor and interaction:

Xe=X—1m" = X1+ X + X3 + X1u2 + X133 + X013 + X1a2x3 + Xres m

where X is the scaled data matrix, m! is the mean profile of the samples, X (1, 2 and 3) are
the matrices related to the main effects, and X (1 x 2,1 x 3,2 x 3and 1 x 2 x 3) are the
matrices linked to the interaction effects. The rows of these matrices are highly structured,
e.g., all rows related to one level (as an example 2019, for the factor year) are equal in X,
and analogously all rows of X, and X3 are equal for each cut and type of variety. Interaction
matrices also have equal rows for the same level of interaction. X, hold the residuals.

Then, each matrix was analysed by a distinct PCA model and Equation (1) can be
reformulated as:

X =T1Py + ToPr + T3P3 + TioPryo + - - + Xpes @

where T holds the scores and P the loadings of each PCA model, the maximum number of
PCs for each model is equal to the number of levels minus one.

In order to better inspect the ASCA results, i.e., to highlight how the samples are
dispersed around the mean of each effect level, it is useful to project the single samples
on the ASCA scores plot. This can be achieved by adding the residuals to the estimated x;
values and then calculating the single sample scores, i.e., for each factor or interaction (f), a
computation of the score vector t;.(f) has been carried out through the following equation:

Fitres (f) = (Xi(f) + Xres) pres(f) ®

where X;(f) is the effect matrix for a specific factor or interaction and and X, is the residuals
matrix, whereas py.(f) represents the loadings vector of the SCA model for the effect of
that factor or interaction.

Since ASCA requires a balanced design of experiments to work properly, just 12
different conditions were selected from the whole dataset, leading to a total of 36 experi-
ments as shown in Table 4. In fact, at the beginning of experimentation, a balanced design
was not undertaken, also due to the limited availability of varieties which could be culti-
vated by the single producers; thus, it was not possible to study all levels for each of the
experimental factors.
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Table 4. Design of experiments structure for ASCA.

Year Cut Variety
2019 2 Variety 5
2019 2 Italiano Classico
2019 2 Variety 9
2019 4 Variety 5
2019 4 Italiano Classico
2019 4 Variety 9
2020 2 Variety 5
2020 2 Italiano Classico
2020 2 Variety 9
2020 4 Variety 5
2020 4 Italiano Classico
2020 4 Variety 9

Therefore, a balanced a posteriori design was built considering two levels for the
factors “year of cultivation” (2019 and 2020) and “cut” (second and fourth) and three levels
for the factor “variety” (Italiano Classico, Variety 5 and Variety 9). The significance of the
etfect of each design factor or interaction was assessed by means of permutation tests with
1000 randomizations [39,40].

Software

Data analysis was performed using routines and toolboxes developed in the Matlab
2020b environment (the Mathworks Inc., Natick, MA, USA). Principal component analysis
has been carried out by PLS-Toolbox v. 8.9 (Eigenvector Inc., Manson, WA, USA). ASCA
has been carried out by using routines developed and kindly made available by Dr. F.
Marini, University of Roma La Sapienza (Italy).

3. Results and Discussion
3.1. Aroma Analysis

The pattern of volatile compounds of basil highlighted by the fast-CG analysis com-
prises eighteen molecules that were tentatively identified by using the Kovats relative re-
tention indexes. The Heracles software compares the retention indexes of the two columns
of different polarities to improve the tentative identification. In Figure 2, the identified
molecules are shown. Among them, there are the nine ones that were identified as relevant
in terms of persistent perceived odour, thus indicating that the fast-CG technique is suitable
to characterise basil aroma.

Column MTX-5

camo . acelaldehyde
2-propanol 14
dimethyl-sulphide

ethyl isobutyrate
hexanal
dimethy! sulfoxide
2-hexenal

8 2-(5H)-furanone
w00 9. a-pinene

10. 2-methylnonane
11. 5-methylfurfural
12. myrcene

13. eucalyptol

14. linalool

15. a-terpineol

16. estragole

17. eugenol

18. p-caryophyllene 17

S @ N

~

Signal intensity (a.u.)
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1o " 1012
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3 \ | sf 8 9 /| |
hll JU O e )
B B © »
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Figure 2. An example chromatogram obtained by elution on column MXT-5 of Heracles II. Peak 4 is
the internal standard.
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The identification of these nine molecules was confirmed by comparison with the
elution time of injected standards and, once quantified, their concentrations were consistent
with a typical “eucalypt” basil volatile pattern [6,8] with the prevalence of linalool, followed
by eucalyptol (1,8-cineole) and then by eugenol. Other molecules are typical of essential
oils of basil such as hexanal, a-pinene, myrcene and caryophyllene [41].

As previously reported [7], the flavour profile is strictly related to the presence or the
prevalence of key odorant molecules, with a consequent impact on the final perceived bou-
quet. Four main basil chemotypes have been described by Lawernce et al. [42] depending
on the prevalence of odorant molecules: estragole rich, linalool rich, methyl-eugenol rich
and methyl cinnamate rich. Varieties used in the present study held predominantly in the
linalool rich chemotype, but with some diversity. Variety 8, for example, was characterized
for its lower level of linalool compared to other varieties, whereas on the contrary, variety
9 had the higher value. In a similar way, estragole was relatively more present in varieties
8 and 9 with respect to other varieties.

3.2. Multivariate Exploratory Analysis

PCA analysis was applied to the autoscaled data matrix composed by the nine volatile
molecules obtained for the 267 samples characterized by different varieties, cuts and
harvested years. Autoscaling was selected as the most appropriate data preprocessing
method as the different volatile compounds had different variances due to their different
concentration ranges. In this first exploratory analysis, two principal components seemed
appropriate considering their explained variance (Figure 3).

b g
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Figure 3. PCA of all basil samples (Table 1). PC1 vs. PC2 scores (a—c) and loadings (d) plots. Basil samples are coloured
according to: (a) year; (b) cut; (c) variety.

In Figure 3, the PC1 vs. PC2 scores plot is reported and the different basil samples are
represented with different symbols and colour according to year (Figure 3a), cut (Figure 3b)
and basil variety (Figure 3c).

From the PCA results some information could be obtained. In particular, Figure 3a
shows that slight differences could be observed among the three harvesting years, more in
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2018 than in 2019 and 2020. The main contribution to this separation seems to be given by a
higher concentration of almost all the investigated volatile molecules, since they lie on the
same side of the respective loadings plot, all at positive values (Figure 3d). This difference
is within the expected yearly variability, due to the different weather conditions. As an
example, the year 2018 was probably characterized by less rainfall than in the years 2019
and 2020. As far as different basil cuts are concerned, Figure 3b points out that well defined
clusters are not observable with respect to different basil cuts. Cut number 4, located on
the left of the scores plot, is more homogeneous, at first it seems that the average level of all
the flavour molecules is lower than in the other cuts; however, this information overlaps
with that of the year.

In Figure 3¢, the different varieties are rather overlapped, and it is evident a “spread”
of Italiano Classico basil variety samples, which are uniformly distributed along the
variability range of the scores space. Notwithstanding, PC2 highlights the difference of
basil variety 8, which has the most negative scores on PC2 and thus presents a higher value
of estragole and alfa-pinene (negative loadings values on PC2). A few samples harvested
in 2020 of varieties 1, 4 and 9, and of Italiano Classico harvested in 2018, show high positive
scores value on PC2, corresponding to higher amount of hexanal (most positive loadings
value on PC2), whose odour is described as “green grass”, and could give, depending on
its concentration, an unwanted “hay” note.

Finally, it can be observed that varieties 1, 2, 4, 6 and 7, which were cultivated only
in 2020, are mostly located in the first quadrant (negative PC1 and positive PC2 score
values) this indicates a lower amount of estragole, alfa-pinene, myrcene, b-caryophyllene,
and eugenol, which fall in the opposite quadrant in the loadings space (positive PC1 and
negative PC2 loading values) and thus less fruity /floral and spicy odours.

In general, the interpretation of the overall PCA results is hampered due to the
combined effects of all the investigated factors.

For these reasons, after this preliminary investigation, ASCA methodology was ap-
plied on the balanced reduced dataset (Table 4) with the aim to assess if the considered
experimental factors and their interactions could have a significant effect on basil’s aro-
matic profile. As a first step, ASCA performs a partition of the data variability into the
contribution of each factor and interaction. In this case, the variation of the original data
matrix was partitioned in eight different submatrices: three describing the main effect of
each experimental factor—year, cuts and variety; three corresponding to the effect of each
second order interaction (any possible combination of levels for each couple of factors);
one accounting for the three-way interaction effect (not considered in this study), and one
holding the residuals. The significance of the factors or interactions’ effects was assessed
by means of a permutation test, which compares the experimental sum of squares for each
effect matrix with its corresponding distribution under the null hypothesis. Results of
the test are shown in Table 5, where the explained variance and probability p-value are
reported for each factor and their second order interaction. All the considered factors and
interactions were statistically significant (p < 0.05), even though the effect of the factors
“variety” and “year” presented a higher explained variance than other effects. On the other
hand, the effect of factor “cut” explained just 3% of the total variance, suggesting a lower
influence on basil’s aromatic profile compared with the other two main factors. This can
also be seen in the fact that the second order interactions in which factor “cut” is involved
explain less than the 4% of the total variance, whereas the interaction “year x variety”
explains almost 12%.

143



Molecules 2021, 26, 3842

10 of 14

Scores on SC1

Table 5. Explained variance and probability values for main factors and their second order interactions.

Factor Expl. Var. % p
Variety 36.41 <0.001
Year 2231 <0.001
Year x Variety 11.95 <0.001
Year x Cut 3.74 <0.001
Cut x Variety 3.1 0.003
Cut 3 <0.001

After the assessment of the significance of each factor and interaction, a component
analysis (SCA) was performed on each effect matrix separately in order to interpret the
observed variation. In Figure 4a, the scores plot of the effect for factor “year”, with projected
residuals, is shown. This plot was obtained according to Equation (3). Since the year effect
matrix contains just two rows, one for each considered year, the SCA model is described by
only one component (SC1), which explains 100% of the variance.

b
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Figure 4. SCA of the effect matrix “year”. (a) Scores plot (SC1) with projected residuals; (b) variable loadings (SC1).

From the scores plot, it was possible to confirm the significant difference between
the two levels of the factor “year”: all samples collected in 2019 have negative scores,
whereas almost all the samples collected in 2020 have positive scores, highlighting the high
difference between the two levels of this factor. To explain this difference, in Figure 4b
the corresponding loadings plot is reported, where it can be observed that the year 2020
samples present higher contents of almost all the molecules investigated in the study, except
for 2-hexenal and myrcene, which do not contribute to explain the difference between the
two years.

Figure 5a,b shows the scores and loadings plots for the effect of factor “cut”, respec-
tively. They are represented in the same way as for the factor “year”. In this case, the
scores plot confirms that there is a significant difference between the second and fourth
cuts, even if it is not as marked as for the other main factors. In particular, scores of samples
from 10 to 18 (4th cut, year 2019) present both positive and negative values in an irregular
pattern. From the loadings plot, it is possible to observe that samples collected at the
fourth cut present mainly a higher content of myrcene, eugenol and linalool, with respect
to the second cut samples. B-caryophyllene and 2-hexenal contribute in the same direction
but to a lesser extent. A slightly lower content of estragole characterizes the second cut.
In general, for the factor “cut”, not all the samples characterized by the same conditions
behave similarly, as the effect of “cut” is of the same entity of its interactions with year and
variety, as highlighted in Table 4. However, the general trend suggests that the influence of
this factor on basil’s aromatic profile cannot be neglected.
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Figure 5. SCA of the effect matrix “cut”. (a) Scores plot (SC1); (b) variable loadings (SC1).

Results of SCA for the factor “variety” are represented in Figure 6. In this case, since
the factor “variety” was varied at three levels, two components (SCs) were necessary
to describe its effect. The first SC clearly describes the difference between Var. 9 with
respect to Var. 5 and Italiano Classico varieties. Var. 9 presented a higher content of
almost all the molecules considered in this study, especially eucalyptol, estragole, and
a-pinene, which gave a balsamic connotation to the odour (Table 2). On the other hand, the
second SC shows the difference between Var. 5 and Italiano Classico varieties, less marked
than the difference described by SC1. In this case, the compounds mainly responsible for
this difference are hexanal and 2-hexenal, which are in greater quantity in the Italiano
Classico variety, whereas Var. 5 is characterized by slightly higher quantities of eugenol,
B-caryophyllene, x-pinene, estragole and eucalyptol.
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Figure 6. SCA of the effect matrix “variety”. (a) SC1 vs. SC2 scores plot with projected residuals (empty symbols);
(b) variable loadings (SC1 vs. SC2).

To deeply investigate the effect of considered factors on basil’s aromatic profile, their
second order interactions were also examined. Figure 7 shows the effect of the interaction
between the factors “year” and “variety”. It is possible to observe how Var. 9 is extremely
different from the other two varieties, as it shows the opposite behaviour in SC1, i.e., Var.
9 samples collected in 2020 (negative SC1 values) have a higher content of almost all the
considered molecules (negative SC1 loadings, except for 2-hexenal and hexanal close to
zero) with respect to samples of the same variety collected in 2019. At variance, the other
two varieties are richer in flavours in 2019 than in 2020. Italiano Classico and Var. 5 show
the opposite behaviour with respect to year in SC2: the first is richer in flower/ fruity aroma
(higher myrcene and linalool) and lower in a-pinene and hexanal in 2019 with respect to
2020, and the opposite holds for Var. 5. Thus, it is worth noting how the variation of the
factor “year” changes the chemical composition of samples of the same variety.
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The same pattern can be observed in Figure 8, which describes the effect of the
interaction between the factors “cut” and “variety”. In this case, the variation of factor
“cut” is the one that strongly changes the chemical composition of samples characterized
by the same variety, even if it does it to a lesser extent than the factor “year”. High SC1
values correspond to a high 2-hexenal content, whereas low SC2 values are linked to high
eugenol values.
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Figure 8. SCA of the effect matrix interaction “cut x variety”. (a) SC1 vs. SC2 scores plot with projected residuals (empty
symbols); (b) variable loadings (SC1 vs. SC2).

Considering the projected residuals, the differences are appreciable mainly in SC1,
where Italiano Classico and Var. 9 show the same behaviour, being richer in floral/fruity
flavours in cut 4 with respect to 2, while the opposite holds for Var. 5.

4. Conclusions

The results obtained support the use of a fast-GC based electronic nose for rapid as-
sessment of basil aroma; in fact, the main molecules perceived as persistent by olfactometry
(GC/O0) are identifiable and quantifiable. In agreement with previous literature, it has
been observed that the aroma composition is not only a distinctive trait of variety, but
the content of each specific molecule varies with agronomic year and cut period. On the
one hand, this renders more problematic the choice of a specific variety to be cultivated
to achieve a desired flavor profile; on the other hand, it may help focus on the varieties
showing more stability with respect to the agronomic variability. In terms of percentage of
variance, the cut affects the aroma less with respect to year and variety. The effect of year
seems to be a bulk effect affecting the content more than the type of molecules found in
the aroma.
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Abstract: The aim of this work is to assess the potentialities of the synergistic combination of an
ultra-fast chromatography-based electronic nose as a fingerprinting technique and multivariate
data analysis in the context of food quality control and to investigate the influence of some factors,
i.e., basil variety, cut, and year of crop, in the final aroma of the samples. A low = level data
fusion approach coupled with Principal Component Analysis (PCA) and ANOVA—Simultaneous
Component Analysis (ASCA) was used in order to analyze the chromatographic signals acquired
with two different columns (MXT-5 and MXT-1701). While the PCA analysis results highlighted the
peculiarity of some basil varieties, differing either by a higher concentration of some of the detected
chemical compounds or by the presence of different compounds, the ASCA analysis pointed out that
variety and year are the most relevant effects, and also confirmed the results of previous investigations.

Keywords: basil; aroma; fast GC; electronic nose; untargeted fingerprint; PCA; ASCA; cut; variety

1. Introduction

Aromatic herbs of the Laminacae family are largely employed worldwide in culinary
and health-related uses [1]. Among them, basil is largely used and very appreciated for
its distinctive flavour, and its essential oils possess numerous health properties. Basil’s
origin dates back to over thousands of years; its name seems to derive from the ancient
Greek “basilikon” (plant of the king), seemingly given for its peculiar characteristics [2].
There is a large number of basil cultivars and, for this reason, a standardized descriptor
list, based on morphological characteristics, was developed by the International Union
of Protection of New Varieties Plants (UPOV) [3]. In this list, O. basilicum is divided into
six distinct morphotypes: 1. purple A, 2. purple B, 3. purple C, 4. lettuce, 5. small
leaves, and 6. true basil [4]. Basil flavor is composed of different classes of molecules,
such as ketones, alcohols, terpenoids, and esters [5], and for these reasons, a further
classification scheme was proposed considering the different chemotypes: 1. high-linalool,
2. linalool/trans-«-bergamotene, 3. linalool/estragole, 4. linalool/trans-methyl cinnamate,
and 5. high-estragole [6,7].

Basil has a relevant place in the Italian culinary culture, in the context of which it
is largely used and appreciated [8]. There are different basil varieties [9] and are used,
for example, in “pesto”, a typical green sauce of the Italian region Liguria, in which a
linalool/estragole basil chemotype prevails. In the last few years, in Italy, basil demand
has increased: from 2015 to 2020, the harvested surface was more than doubled as was
the produced quantity [10]. In this context, the selection of new varieties with improved
agronomic characteristics and richer in appreciated flavor notes also became a relevant
aspect. Traditionally, basil for food industry use has been cultivated on open fields, but
greenhouses are sometimes used in early or late crops for productivity reasons. Normally,
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in warmer climates, such as Italy, three-to-five cuts per harvesting year can be carried out;
the first cut usually begins in late spring or early summer and the following cuts after
about 20 days, depending on the weather conditions, and just before or at the start of
flowering [11,12].

The development of ‘artificial senses’ for the evaluation of food quality and consumer
preferences is nowadays well established [13]. In fact, on the one hand, they mimic food
perceptions, and, on the other hand, they may furnish a quick evaluation and characteriza-
tion of specific food attributes. In particular, under the general term electronic nose (e-nose)
are comprised all types of sensors capable of detecting volatile organic compounds (VOCs),
and include optical, electrical, electrochemical and mass-based detection [14,15]. Despite
their different mechanisms, most of these sensors show non-specific recognition since they
interact non-selectively with volatile molecules. In recent years, a new generation of e-nose
instruments, based on ultra-fast gas chromatography with flame ionization detection (FID),
i.e., fast GC-enose, has emerged as an appealing technology for VOC detection [16,17]. In
fact, it shares the fast-screening capability of other types of e-noses, while allowing, at the
same time, specificity and the putative identification of the detected molecules, which can
be afterward confirmed by using a chromatographic run with standards or by GC-MS.

In order to characterize the basil flavor pattern, many analytical methods have been
developed [18], such as the solvent extraction of the essential oil, or the direct sampling
of the released volatile molecules by means of different analytical tools [19]. In fact, the
more common tools are based on the direct collection of the headspace, or the trapping of
the volatile molecules by Solid-Phase Micro Extraction (SPME) or by Head-Space Sorptive
Extraction (HSSE) [20], while for the determination of the essential oil, gas chromatogra-
phy (GC) is mainly employed, either coupled with mass spectrometry (MS) to have an
identification, or just using flame ionization detection (FID), if identification is not the
main concern.

In a previous study [21], our team developed an analytical method, based on e-nose
ultrafast GC-FID, to characterize the basil flavor profile of some of the varieties currently
employed in the production of Italian pesto sauce. Among the more than thirty peaks
detected, only eighteen were tentatively identified on the basis of Kovats relative retention
indices, and finally nine were confirmed by the analysis of the pure molecules. For these
nine molecules, quantification was performed, constructing, for each one, a calibration
curve with internal standards. These chemical markers allowed a partial chemical charac-
terization of basil aroma profiles, and a differentiation of basil samples according to the
studied agronomic factors.

The possibility to observe the complete chromatogram in an unsupervised way was
the natural progression to fully benefit from the potential of the fast GC method. To
this aim, in the present paper, the raw chromatographic signals, acquired in a very short
time (110 s) by two different GC columns, are integrated according to a low-level data
fusion approach [22,23], instead of considering (and quantifying) only the nine a priori
known markers and the outcome of a single column. In addition, a higher number of basil
samples collected from 2019 to 2021 (this year has not been previously considered) are
measured, at the same time that the number of varieties studied is increased. Finally, the
focus is the extraction of reliable chemical information from the raw signals aided by proper
data analysis and preprocessing tools. In this way, without the need and the effort of the
identification and quantification of specific markers, it is possible to study the different
factors linked to production aspects and their influence on the product quality. This kind of
approach could be easily and rapidly exported to other products where the knowledge of
the individual molecules is more challenging or time consuming.

Multivariate data analysis pipeline included proper preprocessing, exploratory anal-
ysis by Principal Component Analysis (PCA), and ANOVA Simultaneous Component
Analysis (ASCA) [24] to assess the effect of varieties, cuts period and harvesting years (2019,
2020 and 2021) on basil aroma. These are very critical aspects to consider when planning
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the basil agronomic campaign in order to control the quality of pesto sauce, which is the
product of interest.

2. Materials and Methods
2.1. Basil Plants

Plants of basil (Ocimum basilicum) of 20 commercial varieties of the “Genovese” type
have been supplied by local producers over three different harvest years from 2019 to
2021. The varieties name was declared as code for confidentiality reasons and only the
“Italiano Classico” variety was clearly indicated due to its largely commercial use. A total
of 253 samples were collected and analysed.

Each basil variety was collected at different plant ages indicated as “cut”. The plants
were cut leaving about 5-6 cm from the soil, to allow the plants to regrow before the next
cut. Typically, the first cut (labeled as 1 in Table 1) is performed after about 40 days from
sowing and, then, the following cuts (numbered in time order from 2 to 5 in Table 1) after
about 20 days each, depending on the weather and the agronomic conditions. Details of all
samples (352 in total) are reported in Table 1. Varieties and cuts were not regularly varied
during the three years because of company and producer constraints.

Table 1. Samples analyzed during the three years with the indication of the number of samples
considered for each cut and, in italics, the number of replicates for each sample.

Harvesting Year Basil Variety Cut in Bold (n° of Samples; Total Replicates)
Ttaliano Classico 1(5;18) 2(2;6) 3(2,6) 4(2,6)
variety 5 1(1;3)
variety 7 1(2;9)
variety 9 1(1;5) 2(1,3) 3(1,3) 4(1;3)
2019 variety 13 1(2;3)
variety 14 2(1;3) 3(1;2) 4(1,3)
variety 17 1(2;5) 2(1,3) 3(1;3) 4(1;3)
variety 18 1(2;33)
variety 19 1(2;6) 2(1,3) 3(1,3) 4(1,3)
Ttaliano Classico 2(2;6) 3(1;3) 4(2;6)
vatiety 1 2(1,3) 3(1;3) 4(1;3)
variety 3 2(1,3) 3(1,3) 4(1;3)
variety 5 2(1;3) 3(1;3) 4(1,3)
2020 variety 6 4(1;3)
variety 9 4(1;3)
variety 10 3(L;3)
variety 12 2(1,3) 3(1;3) 4(1;3)
variety 14 2(1,3) 4(1;3)
Italiano Classico 1(1;3) 2(1;3) 3(1;3) 4(1,3)
variety 2 1(1;3) 2(1;3) 3(1;3) 4(1,3)
variety 4 1(1;3) 2(1;3) 3(1;3) 4(1;3)
variety 8 1(1;3) 2(1,3) 3(1;3) 4(1;3)
variety 9 1(1;3) 2(1;3) 3(1;3) 4(1;3) 5(1;3)
2021 variety 11 1(1;3) 2(1,3) 3(1;3) 4(1,3)
variety 12 1(1;3) 2(1;3) 3(1;3) 4(1;3)
variety 14 1(1;3) 2(1;3) 3(1;3) 4(1;3) 5(1;3)
variety 15 1(1;3) 2(1,3) 3(1;3) 4(1;3)
variety 16 1(1;3) 2(1,3) 3(1,3) 4(1;3)
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2.2. Sample Preparation and VOC Sampling

Samples of the basil plants were collected in the early morning, typically from 4 to
8 a.m., and rapidly sent to the lab for characterization. All samples were analyzed within
6-8 h from the cut to minimize deterioration. For the analysis, about 30 g of the whole
basil plant (leaves and stems), exactly weighted with a precision of 0.1 g, were hashed
in a blender (Oster, Sunbeam Products Inc., Boca Raton, FL, USA) for 30 s in 300 mL of
extraction solution at room temperature. The extraction solution was 100 g L= of NaCl
and 6 mg kg~ ! of ethyl iso-butyrate in water. NaCl was added to increase the volatile
molecules release in the extraction headspace and ethyl iso-butyrate was added as an
internal standard for the fast GC analysis. After the 30 s blending step, the suspension
was left for 30 s, then 20 uL was collected and transferred in 20 mL amber vials that were
immediately sealed and sent to analysis. Each extract was sampled at least three times in
different vials. All reagents, standard and solvents were of analytical grade (Sigma Aldrich,
St. Louis, MO, USA).

2.3. Heracles E-Nose Fast-GC Analysis

The analysis of the volatile molecules in the sample headspace was carried out using a
Heracles I (Alpha MOS, Tuluse, France) ultra-fast chromatography electronic nose [25].
The e-nose consists of a double-columns ultra-fast-chromatography system, with FID
detectors, interfaced with a PAL-RSI automatic headspace autosampler. Sample headspace
air was collected and injected in the e-nose. The injected air was trapped on a Tenax TA
polymer trap positioned before the columns. The two columns are mounted in parallel in
the oven and have different polarities, MXT-5 (non-polar) and MXT-1701 (slightly polar);
both have a length of 10 m, internal diameter of 0.18 mm and a phase thickness of 0.40 pm.
A temperature ramp was employed, starting from 50 °C for 2 s, then increasing to 80 °C at
1°C/s and finally reaching 250 °C at 3 °C/s. The total fast GC analysis time was 110 s. The
carrier gas was hydrogen.

Each replicate of the extracted samples was loaded in the instrument auto sampler and
incubated for 20 min at 40 °C before injection with 500 rpm agitation (5 s on, 2 s off). Then,
1 mL of air headspace was injected with a syringe at the temperature of 50 °C. Trap loading
conditions were 18 s at 40 °C, then flashed to 250 °C for the release in the two columns at a
split ratio 1:1.

The AlphaSoft v 16.0 software was used for a preliminary process of the data that
were subsequently exported for further elaborations.

Volatile compounds were putatively identified on the basis of Kovats’ relative retention
indices (KI) and can be related to specific aromas that are collected in the AroChemBase v 7.0
database (Alpha MOS, Tuluse, France) built-in software. In this way, eighteen compounds
were tentatively identified, as reported in a previous work [21].

2.4. Data Analysis
2.4.1. Data Preprocessing

Since the proper preprocessing of the different instrumental signals is very impor-
tant to achieve trustworthy results, a preprocessing strategy was implemented to align
the chromatograms.

The raw chromatograms, resulting from each of the two columns, were separately
preprocessed as follows:

- First, they were normalized for the respective internal standard;

- Then, they were aligned by using the icoshift algorithm [26] applied by intervals,
taking as reference the average signal. The intervals were manually defined, holding
a single peak or small groups of peaks, as reported in Figure la. Alignment was
necessary to compensate for the peaks shift, along retention time, among different
chromatographic runs, which could introduce variability among samples not due to
actual differences;
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- Thealigned chromatograms were baseline corrected by using the automatic weighted
least squares algorithm (2nd order polynomial) [27];

- Considering that, in the analyzed chromatograms, the peaks’ intensity and variance
reflect the presence of major and minor constituents, it was important to use a proce-
dure able to make the different chromatographic regions comparable in influence on
the developed statistical models. In particular, block scaling to equal block variance
(defining the blocks to be the same as the intervals used for the alignment with icoshift)
was used, including column mean centering.
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Figure 1. Collected chromatograms of basil samples (a) before and (b) after the different data
pretreatments. (a) Dotted lines mark the limits of the different intervals used for the alignment and

the scaling of the signals.

The preprocessed chromatograms are shown in Figure 1b.

A low-level data fusion approach was applied in order to simultaneously capture
information coming from the analysis of samples through the two columns as well as to
combine two potentially different sources of information. Indeed, from a chemical point
of view, the slightly different polarity between the columns could highlight the presence
of different analytes or obtain a better resolution, avoiding the loss of information due to
possible co-elution issues. To this aim, the two singularly preprocessed chromatographic
data sets were then concatenated in a single matrix of 352 (samples including replicates)
x 20,002 (retention time points) dimensions. The MXT-5 and MXT-1701 chromatographic
signals have a retention time ranging from 0 to 110 s sampled at 100 Hz, giving each
10,001 data points.

Prior to PCA, the concatenated data sets were block-scaled by considering as distinct data
block each GC column (each data block comprises 10,001 variables, which are the respective
sampled retention times), in order to let them equally contribute in PCA modelling.

2.42. ASCA

After data pretreatment (as detailed above in Section 2.4.1), the low-level fused chro-
matographic data (352 x 20,002 matrix dimensions) were subject to multivariate data
analysis. As described in Table 1, samples varied according to three factors: harvesting
year, variety and cut.
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Principal Component Analysis (PCA) was applied on the entire data matrix to obtain
a global overview of the trend, similarity and differences among the investigated samples
according to the entire aroma profiles.

Furthermore, in order to assess the significance of the three factors (year, variety
and cut) and their interactions, the ANOVA-Simultaneous Component Analysis (ASCA)
method was used [24]. As a first step, ASCA performs an ANOVA, partitioning the data
matrix X into the contribution of each factor or interaction, as shown in Equation (1):

Xe=X—1m" =Xg + Xz + X3 + Xix2 + Xox3 + X153 + X13253 + Xres 1)

where X, is the centered data matrix, m' is the mean profile of the samples, X (1, 2 and 3)
is the main effect matrices, X (1 x 2,2 x 3,1 x 3and 1 x 2 x 3) is the interaction effect
matrices and X is the residuals matrix. Then, a Simultaneous Component Analysis
(SCA) is performed, obtaining a scores matrix T and a loadings matrix P for each effect or
interaction matrix, as described by Equation (2):

X; = TiP;T 2

ASCA needs balanced designs to provide reliable results. In order to avoid the
construction of a design where the number of combinations per factor level is not equal,
18 conditions were selected from the original dataset for a total of 54 experiments, as shown
in Table 2. Thus, in this model, three levels for factor “year” (2019, 2020 and 2021), three
for factor “variety” (Italiano Classico, VAR 9 and VAR 14) and two levels for factor “cut”
(2 and 4) were considered.

Table 2. Structure of the experimental design for ASCA for the years 2019, 2020 and 2021.

Year Variety Cut
2019 Italiano Classico 2
2019 Italiano Classico 4
2019 VAR 9 2
2019 VAR 9 4
2019 VAR 14 2
2019 VAR 14 4
2020 Italiano Classico 2
2020 Italiano Classico 4
2020 VAR 9 2
2020 VAR 9 4
2020 VAR 14 2
2020 VAR 14 4
2021 Italiano Classico 2
2021 Italiano Classico 4
2021 VAR 9 2
2021 VAR 9 4
2021 VAR 14 2
2021 VAR 14 4

Moreover, in order to further investigate the influence of varieties and cuts on basil
aromatic profiles, another ASCA model was computed considering the year 2021 (where a
higher number of varieties was cultivated), giving the sub-set of experiments described
in Table 3. In this case, 9 basil varieties and 3 different cuts were inspected, for a total of
27 conditions and 81 experiments. It was not possible to investigate all levels for each
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experimental factor, due to the limited varieties available that could be cultivated by a
single producer.

Table 3. Structure of the experimental design for ASCA for the year 2021.

0
£

Variety

Italiano Classico

Italiano Classico

Italiano Classico
VAR 2
VAR 2
VAR 2
VAR 4
VAR 4
VAR 4
VAR 8
VAR 8
VAR 8
VAR 9
VAR 9
VAR 9
VAR 12
VAR 12
VAR 12
VAR 14
VAR 14
VAR 14
VAR 15
VAR 15
VAR 15
VAR 16
VAR 16
VAR 16

[ N B N I N I I I O S R S I ST I (TG Y N QS VN I O Ry N I N I I I O e R S

The significance of the effect of each design factor or interaction was evaluated through
permutation tests (1000 randomizations), which compared the experimental sum of squares
of each effect matrix with its related distribution under the null hypothesis [28].

2.4.3. Software

The raw chromatograms were imported and processed under a MATLAB 2020a
(The MathWorks, Inc., Natick, MA, USA) environment. Chromatogram alignment was
performed by using the icoshift 3.0, freely available on www.models kvl.dk (last access on
7 March 2021). PCA and preprocessing were performed by PLS-Toolbox v. 8.9 (Eigenvector
Inc., Manson, WA, USA). ASCA was carried out by using routines developed and kindly
made available by Dr. E. Marini, University of Roma La Sapienza (Italy).
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3. Results and Discussions
3.1. PCA Exploratory Analysis

In this first exploratory analysis, the aim was to obtain a general overview of the
variation of the aroma volatile fraction of basil samples. Punctual considerations of the
influence of harvested year, variety and cut could not be conducted, since it was not possible
to plain a systematic sampling beforehand, due to company and producer constrains. Three
principal components were considered according to their explained variances (58%). In
Figure 2, the PC1 vs. PC2 score plot is reported, representing the different basil samples
with different symbols and color as function of harvesting year and basil variety (Figure 2a)
or cut and basil variety (Figure 2b).
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Figure 2. PC1 vs. PC2 score plots of basil samples. (a) Different symbols are used for each har-
vesting year (2019: circles; 2020: squares; 2021: triangles) and different colors for each basil variety.
(b) Different symbols are used for each cut (first: diamonds; second: squares; third and fourth: up-
wards and downwards triangles, respectively; fifth: stars) and different colors for each basil variety.
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From the score plot of the first two components, it is difficult to highlight a clear sepa-
ration of samples according to all the different basil varieties, due to the slight differences in
the flavor pattern among commercial varieties that belong to the same species (O. basilicum).
However, interesting information can be pointed out. In particular, the VAR 1 (harvested
only in 2019) and VAR 11 (harvested only in 2021) samples have the highest PC2 score
values and leads to their separation from the other samples (Figure 2a). These varieties
also present a trend, from higher to lower score values, according to their different cut
(Figure 2b). Another peculiar variety seems to be VAR 4 (harvested only in 2021), with
positive scores for both PC1 and PC2. This variety shows differences in aroma according to
different basil cuts as well.

As far as the other samples are concerned, they are distributed along the first principal
component, which seems to be the most responsible for the differences in the separation
between the VAR 14 samples (higher positive PC1 score values) and first cut of VAR 7, VAR
18 and Italiano Classico (negative PC1 score values).

Furthermore, the in-depth analysis of the figure shows that two samples belonging
to the third cut of VAR 16 (higher PC1 score values) seem to have quite a similar aroma
profile to VAR 14.

No further observations to assess any pattern can be performed considering the
different basil cuts, years and varieties, since it is not certain what the real cause is as some
varieties were measured only in one year.

The score plot of the third component (Figure S1 reported in Supplementary Material)
highlights the differences among the first basil cut of the VAR 8 and VAR 17 samples (higher
positive score values) with respect to all the others.

From the PC1 loading plot (Figure 3a), for both MXT5 and MXT17 columns, it is
possible to point out that, with almost all the loadings values being positive (from 40 to
110 s), the separation between the VAR 14 samples and the other basil varieties is mainly
due to a global higher concentration of aroma compounds in these samples, and roughly
speaking, most of the samples harvested in 2021 (positive PC1 score values) seem to present
a similar trend.
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Figure 3. (a) PC1, (b) PC2 and (c) PC3 loading plots. Numbered peaks correspond to the volatile
compounds putatively identified on the basis of Kovats’s relative retention indices: (1) hexanal,

(2) 2-hexanal, (3) 5-methylfurfural, (4) myrcene, (5) eucalyptol, (6) linalool, (7) B-caryophyllene, and
(8) eugenol (9) not identified.
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Notwithstanding the aim of the present study, which is to make a fast model to
discriminate basil samples with an untargeted approach, some considerations on the
presence of some chemical compounds can be presented on the basis of our previous study.
Regarding the second principal component (Figure 3b), which is mainly responsible for the
separation of VAR 1 and VAR 11 from the others, the same chromatographic regions (Rt,
retention time: 76.8 s and 85.3 s for MXT-5 and 79.9 s and 90.4 s for MXT-17), for both the
MXT-5 and MXT-17 columns, with the same trend (loadings value and sign), are relevant.
Thus, both the estragole (Rt: 76.8 s and 79.9 s in MXT-5 and MXT-1701, respectively) and
eugenol compounds (Rt: 85.3 s and 90.4 s in MXT-5 and MXT-1701, respectively), with high
positive and negative loading values, respectively, are important to characterize VAR 1 and
VAR 11. However, the samples belonging to these two varieties, presented a particular
aroma, probably due to the presence of anethole, which co-elutes with estragole in both
column separations.

As regards the third principal component (Figure 3¢), unassigned compounds (in the
first 40 s of both columns), which have positive loadings, seem more abundant in the VAR 8
and VAR 17 samples (located at positive scores values). Hence, further investigation will
be conducted for the identification of these volatile compounds.

Notwithstanding the overall interpretation of PCA results, which offered some insights,
more specific information is difficult to gain, since the contributions to variance of all the
investigated factors (i.e., year, variety and cut) overlap. Therefore, after this preliminary
investigation, the ASCA methodology was used in order to systematically assess the
influence of each factor and their interaction on the basil aroma profile.

3.2. ASCA Results

The first ASCA model was computed according to the experimental design scheme
shown in Table 2 (Section 2.4.2). The original data matrix variation was split in eight
submatrices: three corresponding to the main effect of each experimental factor, three
accounting for the effect of each second-order interaction, one describing the effect of
the third-order interaction and one holding the residuals. The significance of all these
effects was assessed by performing a permutation test, whose results are shown in Table 4.
The p-value of all the inspected factors and interactions was lower than 0.001. However,
the factors “variety” and “year” explained most of the data variance (39.9% and 24.8%,
respectively), suggesting their higher influence on the aromatic profile of basil compared to
the factor “cut”. This can also be observed by the fact that explained variance values of
interactions including “cut” are systematically lower than values related to interactions in
which “cut” is not involved. Additionally, the third-order interaction effect explains less
than 3% variance.

Table 4. Explained variance and p-values for main factors and their second and third order interactions.

Factor Explained Variance (%) r
Variety 39.9 <0.001
Year 24.8 <0.001
Year x Variety 8.5 <0.001
Year x Cut 72 <0.001
Cut 29 <0.001
Variety x Cut 25 <0.001
Year x Variety x cut 2.8 <0.001

Afterwards, the ASCA algorithm performed a SCA on each effect matrix individually,
with the aim of interpreting the observed variation.

Figure 4a shows the score plot for the factor “year”. The first component (SC1),
which explains 67.7% of the total variance, describes the difference between the samples
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harvested in 2019 and the samples harvested in 2020 and 2021. The loadings plot of the first
component, shown in Figure 4b, explains this difference. In fact, the 2020 and 2021 samples
appear to have a richer aroma profile, as the concentration of the compounds between 40
and 110 s, associated with statistically significant loadings, are higher compared to 2019
samples. On the other hand, 2019 samples present higher concentrations of unassigned
peaks before 40 s mainly highlighted by the MXT-1701 column, confirming the need of
further investigation for their identification.
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Figure 4. SCA for the effect of the factor “year”. (a) SC1 vs. SC2 score plot. Empty symbols
represent the projected residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines
indicate statistically significant regions, whereas blue lines indicate regions associated with loadings
statistically indistinguishable from zero.

The second component (SC2) and the related loadings plot (Figure 4c) show how the
2021 samples (positive scores values) present lower peaks in MXT-1701 that can be ascribed
to 2-hexanal and 3-caryophyllene (negative loadings values), but higher peaks assigned to
all other compounds.

Figure 5a shows the score plot for the factor “variety”. It can be observed that most
of the explained variance (96.3%) describes how VAR 14 is different compared to Italiano
Classico and VAR 9. Indeed, as shown by the loadings plot in Figure 5b, VAR 14 presents
higher concentrations of all the chromatographic peaks, suggesting a richer aroma profile
with respect to the other two varieties. SC2, even though the related explained variance is
very low (3.7%), mainly shows how VAR 9 has more (3-caryophyllene than Italiano Classico
(Figure 5¢), as their peaks are basically the only ones that had statistically significant results.

The results of the SCA for the effect of the interaction “year x variety” are reported in
Figure 6. In the score plot (Figure 6a), it can be observed that SC1 describes the difference
among VAR 14 samples throughout the years. In detail, the VAR 14 samples collected
in 2020 presented a higher concentration of all aroma compounds compared to the ones
collected in 2019 and 2021, as assumed by the loadings plot shown in Figure 6b. As regards
Italiano Classico, the best year in terms of intensity of aroma profile is 2019, whereas for
VAR 9, the years 2019 and 2021 were better than 2020.
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Figure 5. SCA for the effect of the factor “variety”. (a) SC1 vs. SC2 score plot. Empty symbols
represent the projected residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines
indicate statistically significant regions, whereas blue lines indicate regions associated with loadings
statistically indistinguishable from zero.

It can also be observed how VAR 14 appears to change more over time, having a higher
variation through the years than the other two varieties.

Moreover, Italiano Classico is the basil variety that presents the lowest variability
among its replicates. In fact, red and green samples in the score plot (VAR 9 and VAR 14,
respectively) are more spread and farther apart, especially along SC2. This limits further
comments about the difference between the years 2020 and 2021 with respect to the Italiano
Classico samples (blue triangles and diamonds in Figure 6a, respectively), which is due
to the statistically significant peaks between 50 and 70 s, linked to the majority of the
aromatic compounds.

Regarding the factor “cut”, the SCA showed how samples collected during cut 2 detain
a richer aroma profile than samples acquired during cut 4. However, according to the
authors, since this factor explained less than 3% of the total variance, these results are not
relevant compared to the ones described above. Both for this reason and for the sake of
brevity, plots related to the factor “cut” were not shown.

The second ASCA model was computed taking into account only samples collected in
2021. In this case, it was possible to build a balanced design, including nine varieties and
three cuts, according to the scheme shown in Table 3 (Section 2.4.2). The data matrix was
partitioned in four submatrices: two corresponding to the main effect of each experimental
factor, one describing the effect of the second-order interactions and the residuals matrix.
The results of the permutation test for the significance of the effects are shown in Table 5.
As for the first ASCA model, also in this case, all the factors and their interactions were
significant (p < 0.001). Furthermore, the explained variance for the factor “cut” (6.9%) was
significantly lower than the variance explained by the factor “variety” (63.5%), suggesting,
once again, the small impact of plant age on the basil aroma profile.
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Figure 6. SCA for the effect of the interaction “year x variety”. (a) SC1 vs. SC2 Score plot. Empty
symbols represent the projected residuals; (b) SC1 and (c) SC2 loadings plot. In (a), the different
colors refer to the different varieties (blue—lItaliano Classico; red—VAR 9; green—VAR 14), whereas
different symbols refer to different harvesting years (circles—2019; triangles—2020; diamonds—2021).
In loading plots, red lines indicate statistically significant regions, whereas blue lines indicate regions
associated with loadings statistically indistinguishable from zero.

Table 5. Explained variance and p-values for main factors and their second order interactions related

to the ASCA model.
Factor Explained Variance (%) r
Variety 63.5 <0.001
Variety x Cut 20.3 <0.001
Cut 6.9 <0.001

The results related to the SCA on the “variety” effect matrix are shown in Figure 7.

From the score plot (Figure 7a), it is clear how the first principal component shows
the difference between VAR 4 and all the other varieties. In the loadings plot (Figure 7b),
it is shown that the peak that is mainly responsible for this difference can be ascribed to
myrcene, of which VAR 4is particularly rich. Observing SC2 scores and loadings (Figure 7c),
it can be concluded that VAR 14 and VAR 16 present the richest aroma profiles, whereas
Italiano Classico and VAR 15 have the poorest profiles.

Figure 8a shows the frequency histogram of the SC1 scores values for the different
levels of the factor “cut”. Eucalyptol and -caryophyllene are less present in cut 4 samples,
and in general, they are the compounds responsible for describing the difference between
cut 4 samples and cut 1 and 2 samples, as shown in Figure Sb.
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Figure 7. Results of ASCA performed on the 2021 samples. The SCA for the effect of the factor
“variety”. (a) SC1 vs. SC2 score plot. Empty symbols represent the projected residuals; (b) SC1 and
(¢) SC2 loadings plot. In loading plots, red lines indicate statistically significant regions, whereas blue
lines indicate regions associated with loadings statistically indistinguishable from zero.
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Figure 8. Results of ASCA performed on 2021 samples. The SCA for the effect of the factor “cut”.
(a) histograms of ASCA score frequency (with projected residuals) on SC1 for the different levels of
factor “cut”; (b) SC1 Loadings plot. In loading plots, red lines indicate statistically significant regions,
whereas blue lines indicate regions associated with loadings statistically indistinguishable from zero.

The ASCA results show how the entire aromatic profile has a significant influence
in the discrimination of samples according to the investigated factors (i.e., years, variety
and cut), highlighting the presence of new potential biomarkers (for instance the species
with retention time in the first 30 s of the chromatogram or the ones falling in the area
between the retention of 2-hexanal and 5-methylfurfural), which have not been quantified
in this study, but that could be relevant in further investigations. For the sake of clarity, an
example signal fingerprint with all the chemical analytes, putatively identified for both the
chromatographic separations, is reported in Figure 9.
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Figure 9. Chromatograms of the Italiano Classico variety obtained by elution on columns MXT-5 and
MXT-1701 of Heracles II.

4. Conclusions

In this study, the development of a fast analytical screening strategy based on an
ultra-fast chromatography e-nose and multivariate analysis was proposed as a useful
tool for quality control of food. The proposed approach, relying on the simultaneous
analysis of the chromatographic profiles coming from two GC-columns of different polarity,
permits to explore fully the volatile profile of foodstuff and may represent a fast and
simpler alternative to other chromatographic techniques. The chemical identification and
quantification of the single chemical species, responsible for differentiation of the studied
food products, can be undertaken on a few samples for a second time. In fact, once the main
chromatographic peaks, mostly responsible for the differentiation between samples, have
been underlined, their respective chemical species can be identified with a considerable
reduction in costs and analysis time.

In particular, this approach was applied on the analysis of the basil samples involved
in the production of Italian pesto sauce, where the entire e-nose signals, coming from two
columns with different polarity, were fused and used as a fingerprint of the aroma profile.
The obtained results highlighted the possibility of differentiating basil samples on the
basis of the three investigated factors, years, cut and variety, taking also into account the
interactions among them. The low-level data fusion approach allowed the computing of a
single ASCA model, which effectively pointed out the different significant peaks between
the two columns taken into account, thus underlining that enhanced information may
be gained.

The knowledge of the influence of the investigated factors on the quality of basil is
very important, since it may allow a company to achieve useful information both to plan
future campaign strategies for the acquisition of the raw materials and to improve the
quality of the final pesto sauce.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors10030105/s1, Figure S1: PC3 scores vs. n° of sample.
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Abstract: The food industry needs tools to improve the efficiency of their production processes by
minimizing waste, detecting timely potential process issues, as well as reducing the efforts and
workforce devoted to laboratory analysis while, at the same time, maintaining high-quality standards
of products. This can be achieved by developing on-line monitoring systems and models. The
present work presents a feasibility study toward establishing the on-line monitoring of a pesto
sauce production process by means of NIR spectroscopy and chemometric tools. The spectra of an
intermediate product were acquired on-line and continuously by a NIR probe installed directly on
the process line. Principal Component Analysis (PCA) was used both to perform an exploratory data
analysis and to build Multivariate Statistical Process Control (MSPC) charts. Moreover, Partial Least
Squares (PLS) regression was employed to compute real time prediction models for two different
pesto quality parameters, namely, consistency and total lipids content. PCA highlighted some
differences related to the origin of basil plants, the main pesto ingredient, such as plant age and
supplier. MSPC charts were able to detect production stops/restarts. Finally, it was possible to obtain
a rough estimation of the quality of some properties in the early production stage through PLS.

Keywords: MSPC charts; on-line; process monitoring; NIR; Basil; pesto production; PCA; PLS

1. Introduction

One of the most important aspects in food industrial production, in addition to basic
safety and compliance requirements, is the capability to guarantee a constant quality of
the final product, including all aspects from composition to appearance and taste. To
achieve this aim, a lot of effort is spent monitoring the process, usually through univariate
control charts and focusing most of the effort on monitoring the quality of the final product.
However, operating in this way is not optimal when the food processing is complex, and
production is massive. In fact, it may be difficult in this way to understand which are the
Normal Operative Conditions (NOC) of the process. Since many parameters can change
simultaneously and can be correlated, it is not easy for plant operators to detect the problem
in a fast way in case anomalies or deviations occur [1]. In addition, although reference
analyses are reliable and efficient in assessing the final product’s quality, they provide
slow responses as the sample must be collected, brought into the laboratory, and analyzed,
being, at the same time, expensive in terms of money, operators’ effort, and waste. For this
reason, different types of sensors that can provide timely information are becoming more
and more used for on-line quality probing from raw materials to the semi-finished and final
products. It has been widely demonstrated that NIR spectroscopy has a powerful potential
in monitoring food production processes [2-11], due to its ability to detect both chemical
and physical changes in the samples. To cite a few applications: NIR has been used for
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process monitoring in the dairy industry, from the prediction of raw milk composition
to milk coagulation in cheese production and yogurt fermentation [11]; the fermentation
processes in the wine and brewery industries; and the powdered ingredients mixing stage
in different food matrices [10]. Thus, the on-line implementation of a NIR monitoring
system is desired for several reasons: the timely handling of any possible faults, reducing
products out of specification, thus reducing waste and economical loss. Moreover, if in
addition to the data coming from process sensors controlling the machinery settings (such
as the temperature, mixing rate, pressure, etc.) fused with NIR, it could become feasible to
achieving a better understanding of processes, which could aid in designing more efficient
and environmentally friendly processes [12,13]. However, it is still not so common in food
production to have implemented systems for the data storage of retrieval process sensors.
Nonetheless, companies are becoming increasingly interested in developing models that
can achieve real-time monitoring and improve industrial processes.

However, it is difficult to handle, fuse, and interpret sensor data, as it is not possible
to rapidly extract useful information from spectra and images without proper statistical
tools. Thus, developing multivariate control charts based on latent variables and real-time
prediction models, benefitting from the chemometric development in this area, is starting
to be a recognized advantage in the industry.

It has been extensively demonstrated how Multivariate Statistical Process Monitor-
ing/Control based on Latent Variables (MSPC-LVs) can lead to an efficient process moni-
toring [14-22].

The present work concerns a feasibility study to set up a model for the on-line mon-
itoring of the pesto production process in the company Barilla, where, at the moment, a
vision system (RGB camera) is monitoring the main raw material, i.e., basil, and a NIR
probe installed in-line is monitoring the initial semi-finished product. The main aim of this
preliminary feasibility study is the evaluation of the possible advantages that MSPC-LVs
based on in-line acquired data can furnish both in terms of the possibility of estimating
the quality of the finite product in real time and capturing the process evolution and the
eventual departure from NOC. In this context, PCA models have been used to explore the
data structure and the information they furnish. Furthermore, multivariate control charts
for process monitoring based on NOC data were built. Lastly, a first attempt to obtain
predictive models for the real-time prediction of main pesto quality parameters has been
also carried out.

The focus has been on discussing the steps that were more critical for the models’
development. Although the results are very preliminary, some interesting indications and
directions for improvement could be formulated.

2. Materials and Methods
2.1. Process Description

The analyzed data were collected from the pesto sauce line during the 2020 harvesting
season in a production plant owned by the company Barilla G. e R. Fratelli S.p.A., located
near Parma, Italy. In this campaign, two different varieties of basil (Ocimum basilicuni), the
main ingredient of the sauce, have been provided by five local suppliers and continuously
delivered to the process line. Each basil variety was harvested four times at different plant
ages: the first cut was performed at 40 days, whereas the successive cuts were each carried
out every 20 days.

At the beginning of the process line, a vision system (RGB camera) was installed that
acquired images of basil plants while passing on the conveyor belt. The system was set to
deliver some parameters in real time, such as the average and standard deviation values
(every 15 s) of the R, G, and B channels and a rough estimation of the basil leaves’ area
in the acquired image (not always available at the same time intervals); however, the raw
images were not always stored. Thus, in this work, only the R, G, and B parameters could
be considered.
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After this step, basil was mixed with salt and oil, forming an intermediate product,
which was monitored on-line by a NIR probe. Then, all the other ingredients of the
sauce were added to the intermediate product to complete the production and obtain the
final product, whose quality was assessed by off-line laboratory analyses. A schematic
representation of the process is reported in Figure 1. A critical issue when modeling on-line
data for a continuous process is to establish the process timeline to match the sensors data
acquired at different time steps with the same material; in other words, the considered
variables should refer to the same sample to assemble a row of the data matrix. In this case,
this step revealed particularly challenging, since the mixing of the intermediate product
with the other ingredients (taking place after the NIR probe) was achieved in three distinct
mixers that were emptied, transferring the crude pesto to the following processing steps
sequentially, ensuring a continuous material flux. Thus, the residence time was established
with the experts at the plant in order to correctly match the NIR spectra, corresponding
to the intermediate material with the finished pesto at the end of the line, on which the
quality parameters were acquired.

Vision System NIR Probe
RGB Camera

®WLE
Basil |:> Basil + Oil + Salt |:> Crude Pesto |:> Pesto

Other ingredients

Figure 1. Schematic representation of pesto sauce production process.

In this study, data collected from May to August 2020 were analyzed, but not all the
data recorded during this period were considered for model building, due to production
pauses, instrument maintenance, and unreliable acquisitions. Finally, 459 data points
were considered.

This is a second critical issue when assembling the data matrix since interruptions
could be quite frequent. Since the on-line RGB continue to acquire the image of the
same basil when a stop occurs at the raw material conveyor belt, an inspection of the
RGB parameters’ time trends with the identification of constant values as the indication
of the stopping period was used. Moreover, the activation of the pump transferring
the intermediate to the NIR probe was registered and was also used as an indication of
stopping periods.

Finally, a data cleaning based on anomalous RGB values of the spectra was also
accomplished.

2.2. Reference Analysis

Consistency parameters and lipids content have been considered for the assessment
of pesto sauce quality. These parameters were assessed off-line by collecting pesto samples
right after their production was complete.

The Consistency of pesto is evaluated measuring the flow of a standard volume of
sample (100 cm?) under its own weight. The flow could be related to the sample viscosity.
To perform the measure, a Bostwick consistometer was used (ASTM F1080-93). This is a
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stainless-steel slide with a reservoir of 5 x 5 x 4 cm, a mobile gate, two adjusting screws
for planarity, and a track with ruler markings. The sample, conditioned to the temperature
of 20 °C, was loaded into the reservoir. Then, the gate was opened, the timer was started,
and sample flowed on the track. The consistency of the pesto was evaluated, measuring the
distance in centimeters flowed in 30 s. Before the measure, the dedicated adjusting screws
leveled the consistometer.

The total lipids content was determined by solvent extraction on a weighed sample
aliquot (5 to 10 g). The extraction was conducted with an ethyl ether in a Soxhlet apparatus
for 4 h. The sample was placed in a rotary evaporator and placed in an oven at 105 °C for
2 h to remove the solvent. The fat extracted was weighed at room temperature, and its
content was expressed in a percentage, divided by the initial weight of the sample.

2.3. On-Line Instrumentation

A Sensure prototype camera (Sensure, Bergamo, Italy) was installed above the con-
veyor belt right after the basil plants were supplied, acquiring RGB images every 15s. R, G,
and B values were extracted by images and treated as separate variables.

A ProFoss spectrometer (Foss, Hillerad, Denmark) was used to collect the spectra of the
basil, salt and oil mixture, namely, the intermediate product. The instrument was equipped
with an optical fiber, whose probe was installed at the acquisition site on the process pipe. The
spectra were acquired over the 1100-1650 nm spectral range in the transmission mode, with a
nominal resolution of 0-5 nm and 64 scans per sample.

2.4. Data Analysis

The data analysis objectives were twofold: on the one hand, we evaluated the po-
tentiality of establishing an on-line monitoring model (Section 2.4.3: Multivariate Control
Charts; the results discussed in Section 3.2) capable of describing the natural variability
inherent to the process and of capturing any eventual anomalous fluctuation, and, on the
other hand, we aimed at establishing predictive models (Section 2.4.4: PLS Regression;
the results discussed in Section 3.3) to evaluate the feasibility of the prediction of quality
properties of the pesto sauce in real time.

However, prior to the model building, multivariate data exploration (Section 2.4.2:
Principal Component Analysis; the results discussed in Section 3.1) has been a mandatory
step to inspect the data structure and presence of deviating samples and to establish the
time points corresponding to the normal operating conditions for the plant.

To ease readability, the applied preprocessing has been enclosed and detailed in
Section 2.4.1: Preprocessing.

2.4.1. Preprocessing
The applied preprocessing is listed per the type of data and modelling phase:
e  Vision System Data

The RGB data were preprocessed with autoscaling to uniformly model the variance
among the different color channels.

e  NIR spectra prior to PCA and MSPC

NIR spectra were pre-processed to remove effects, such as scattering, introducing
variability not linked with information to be retrieved, and/or to enhance extractable
information. In particular, Savitzky-Golay 2nd derivative and mean centering were applied
prior to exploratory Principal Component Analysis and multivariate control charts building.

e  NIR spectra prior to PLS regression

Savitzky-Golay 2nd derivative and mean centering were also used as preprocessing
to compute the Partial Least Squares (PLS) regression model for the lipids content.

A different preprocessing strategy was needed to obtain the PLS model for consis-
tency. This property was not directly linked to a chemical component, as the lipids show
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specific absorption bands that can guide the modeling; thus, it was more difficult to model,
especially considering how many registered on-line spectra were influenced by any process
fluctuations. Thus, in order to remove spectral variability hindering the possibility of
obtaining a satisfactory calibration model, a Dynamic Orthogonal Projection (DOP) [23]
algorithm was applied, using the average spectra corresponding to the same consistency
values (in the calibration set) as the source data (Xspurce) and the raw calibration spectra
(Xtar) as the target. The main concept in DOP is that samples showing the same (or very
close) y values should show the same spectral profile; thus, the “virtual” target spectra
(X*wr), unaffected by the influence of uncontrolled conditions, could be estimated based on
a distance or association matrix (M), calculated based on the y values of the source (ys) and
the target (y¢) domain. The singular value decomposition (SVD) of the difference matrix
among measured and virtual target spectra was then used to determine the components
(A) for orthogonalization:

X*tar = M*x Xsource 0

D= Xtar — X*tar @

[Ua Sa Val=svd(D, A) 3)
Xsource_corrected = Xsource I=VAVAT) @

In our specific case, A = 4 was used after testing using from 1 to 5.

Once the average spectra were corrected, orthogonal projection could be directly used
to predict the validation set, since the correction was embedded in the model. In this case,
only mean centering (of both X and y) was applied prior to PLS.

2.4.2. Principal Component Analysis

Principal Component Analysis (PCA) is a method that by decomposition of the original
data X into two matrices T and P, [24] according to Equation (5), allow reducing the
dimensionality of the data set with a large set of variables, simplifying the exploration
phase and the data visualization. PCA performs a projection of data from the original
variables into new variables orthogonal to each other, the Principal Components (PCs),
which are a linear combination of the original ones.

X=TPT+E 5)

If the X matrix was composed of # rows (samples) and m columns (variables), the
T matrix, called the scores matrix, which allowed us to understand the structure of the
data, was composed by 1 rows and a number of columns equal to the number of PCs, and
the loadings matrix P was composed by a number of rows equal to m and columns equal
to the number of PCs. The loadings values corresponded to the weights by which each
original variable entered the linear combination, thus defining the PCs, representing the
contribution of each variable to each PC. The analysis of loadings matrix allowed us to
understand the correlation structure of the variables [25]. The residual matrix E, which
represented the unmodeled information, had the same dimension of X, and it was obtained
by the subtraction of recalculated data from the PCA model (TPT) from X.

2.4.3. Multivariate Control Charts

PCA was also used to build multivariate control charts for MSPC. The dataset had been
split in each calibration and test set manually, considering NOC observations, subdividing
each period without production stops, as follows: the first part (about 65%) consisted of
temporally contiguous points in the calibration set; and the second part (about 35%) was in
the test set. In this way, we mimicked the real situation of continuous monitoring where
samples to be predicted came after in time for each period. Observations not in NOC, as
highlighted by exploratory PCA, were all included in the test set.
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To estimate the correct number of PCs, cross-validation was performed with a venetian
blind scheme with ten splits. The MSPC charts were based on two parameters: Hotelling
T2, which described the distance of a sample in the model space, and Q, which defined the
distance of a sample from the model space. In other words, if a sample had high T2 values,
the model was able to describe it, but the distance between the sample and the center of the
model was high, i.e., it showed an extreme behavior. On the other hand, if a sample was
characterized by high Q values, the model was not able to describe the sample properly,
hence the correlation structure of variables was different from the other samples. To assess
if a sample was extreme or anomalous, signifying a departure from normal operative
conditions for both control charts, the acceptance limits had to be estimated. The T2 limit
was obtained based on Hotelling’s T2 distribution, whereas the Q limit was based on x2
distribution and was calculated either with Jackson and Mudholkar approximation or the
Box method [26,27].

2.44. PLS Regression

PLS is a linear regression method that allows predicting one or more response variables

(Y block) from a predictor matrix (X block), establishing a multivariate linear relationship.

It operates in a low-dimensional space defined by the Latent Variables (LVs), obtained

from the simultaneous decomposition of X and Y, which are oriented on directions of

maximum covariance between X and Y [28]. A PCA-like decomposition of X and Y is
achieved (outer relation):

X=TP' +E (6)

Y:UQT+F (7)

where an inner relation links the outer relation:
U=Db*T 8)
Hence, re-expressing this as a regression model:
Y=XB )

where T and U are X and Y scores, P and Q are X and Y loadings, and E and F are the
residual matrices, respectively. B holds the regression coefficients that allow the prediction
of Y from X directly.

Data were partitioned into calibration (70%) and validation (30%) sets by the means of a
Duplex algorithm [29]. The PLS model dimensionality, i.e., the number of PLS components,
was assessed by the Root Mean Square Error in Cross-Validation (RMSECV), while the Root
Mean Square Error in Prediction (RMSEP) was used to evaluate the models’ predictive
capability. Residual plots were also inspected.

3. Results and Discussion
3.1. Exploratory Data Analysis

Each type of data, RGB parameters, and NIR spectra were analyzed separately to
visualize and explore the data structure. PCA analysis carried out on NIR spectra (acquired
for 459 time points) had highlighted the presence of a cluster of samples at the negative
value of PC1 and positive value of PC2, as shown in Figure 2a, as very far and different
from all the other samples. Observing the PC1 versus time plot (Figure 2b), it was evident
that these samples always corresponded to restarts, where production started after a period
of inactivity. In Figure 2c, the loadings line plots for PC1 and PC2 are shown as the blue and
red lines, respectively, where it is possible to see the absorption bands as mainly responsible
for this difference. However, to jointly interpret scores and loadings plots, a PC1 vs. PC2
loadings scatter plot was also generated (Figure 2d). In the two figures, highlighted in
purple, the wavelengths that describe the separation between the NOC and anomalous
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samples are shown. It can be observed that the band in PC1 at 1400 nm, despite being the
most intense, is not involved in the description of anomalous samples but just in extreme
NOC samples with high values of PC1 scores in Figure 2a. On the other hand, the bands
at 1170, 1213, 1236, and 1410 nm describe the behavior of the anomalous samples, as they
fell in the separation direction, meaning that these samples had very different absorptions
at these wavelengths. In detail, the bands at 1178 and 1410 nm can be ascribable to lignin,
namely, the second overtone of C-H bond stretching of CHj3, and to the first overtone of
the O-H bond stretching of the ROH group, respectively. Whereas, the band at 1213 and
1236 nm are related to the first and second overtone of C-H bond stretching of oleic and
linoleic acid in olive oil CHj [30,31].
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Figure 2. Results of the Exploratory Data Analysis performed on NIR data. PC1 vs. PC2 Scores
plot (a), Scores on PC1 as a function of time (b), Loadings on PC1 and PC2 as a function of time
(c), and Loadings on PC1 vs. PC2 (d). In (a,b), purple points represent anomalous samples; in (c,d),
purple points represent wavelengths that mainly depict the difference of anomalous samples from

the other ones.

Since these samples show the outliers’ behavior, as they clearly do not represent the
Normal Operative Conditions (NOCs), they were removed, and a new PCA model was built
in order to obtain a better visualization of the possible differences among NOC samples.

The first PC (79.36% of variance explained) did not show any interesting trend, thus
PC2 and PC3 were inspected. In Figure 3a,b, the scores plot of PC2 vs. PC3 is reported,
where samples are colored according to the different additional information available, i.e.,
suppliers and different cuts, respectively. The suppliers’ names have not been disclosed
because of confidential agreement restrictions with the company. PC2 discriminated
samples according to suppliers, as almost all samples of supplier number two had positive
PC2 values, and the samples of suppliers three and four had negative PC values, suggesting
that they were more similar to each other, with respect to number two. Only the samples
coming from supplier five did not clearly differentiate from the others, whereas the number
of samples from supplier one were too low to judge. Furthermore, PC2 and PC3 could
distinguish between samples related to cut one and two (negative values of PC2 and positive
values of PC3), with respect to samples related to cut three and four. The possibility to
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discriminate against different cuts is relevant for the company, as younger basil plants
generally give a higher quality product. However, observing the two plots simultaneously,
it is evident that only certain suppliers, namely, number three and four, had delivered
samples characterized by low cuts. In Figure Sla,b, the loadings plots of PC2 and PC3
are reported, respectively, which show the NIR bands responsible for these differences.
Even if it is not possible to assess if suppliers or cuts influence them, the PCA resulted in
a valuable tool to assess if incoming information about raw materials could be linked to
the intermediate product characteristics; evidently, a more systematic planning of the next
harvesting campaigns could clarify if a cut or supplier were the influential factors.
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Figure 3. Results of the Exploratory Data Analysis performed on NIR data. PC2 vs. PC3 scores plots
colored by different suppliers (a) and cuts (b).

PCA analysis carried out on data collected by an RGB camera was not able to detect
the anomalous behavior of the samples highlighted in Figure 1. A possible explanation is
that the process needed time to return to NOCs after a stop when the production restarted,
and it could happen that the NIR spectra referred to material that was probably a residue
of the old process (before the restart), and thus the acquired spectra did not depict the
intermediate product newly produced at the beginning. Moreover, the observation of the
samples’ separation due to different cuts or suppliers was less efficient than the respective
analysis performed on the NIR spectra. Thus, these differences were not linked to color
variation but mostly to the basil’s “chemical” profile.

3.2. MSPC Charts

The most interesting results related to the MSPC charts based on PCA were obtained by
using the NIR data only (inclusion of RGB parameters did not provide additional insights).
The PCA model, which explains 93% of the data variance with 4 Principal components, was
calculated by inserting only the samples that were considered in NOCs according to plant
experts in the calibration set (294 samples), whereas the test set (165 samples) comprised
both NOCs and anomalous samples. The T2 chart, reported in Figure 4a, describes the
distance of each sample from the origin within the model space. Black circles represent
the calibration samples used to build the PCA model, whereas red diamonds represent
the test samples projected on the model. This chart detected five groups of samples with
high T? values, which, again, corresponded to the NIR spectra acquired at the different
restarts of the production. No other test sample exceeded the T? limit. Regarding the Q
chart (Figure 4b), which describes the distance of each sample from the model space, the
same samples corresponding to the restart are seen anomalous as for the T? chart, meaning
that the model did not properly describe these samples. The charts’ limits include few
non-consecutive samples and inside of the nominal 5% of the total.
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Figure 4. T2-(a) and Q-(b) based MSPC charts.

Samples were also colored according to cut, supplier, consistency, and lipids values to
observe if their behavior was related to these different features, but no particular trends
were detected.

Nonetheless, the results obtained show how these charts are efficient in detecting
possible departure from NOC, which translate to differences in intermediate products,
accelerating the identification of possible plant issues or, as in this case, the adaptation of
the process while returning to NOCs after a stop period. NIR is a very sensible technique
to signal any variability occurring in intermediate production samples that can be due to
process resetting (actual case), process drift, or variation in the NIR instrumentation set-
ting /performance. The interpretation of the loadings and analysis of previous production
campaigns data may help in discerning the different situations.

3.3. Predictive Models

An attempt to obtain predictive models, which can then be possibly used to estimate
the consistency and lipids content of the final product in real time, was undertaken. Since
RGB data were not able to provide reliable prediction models for both parameters, only
results obtained by NIR data are presented, as summarized in Table 1.

Table 1. Results obtained by PLS Regression.

Method LVs RMSECV RMSEP
Consistency (cm) 9 0.64 0.68
Lipids (%) 5 159 2

Before model computation, data were split by using a duplex algorithm with a 70/30%
proportion in the calibration and test sets, giving 142(cal) /61(test) and 33(cal) /12(test) for
consistency and lipids, respectively. Afterwards, four samples belonging to the anomalous
group of observations, detected by using the T? and Q distances, were removed from the
test set for consistency.

The prediction model for consistency was built using 9 LVs, corresponding to the min-
imum RMSECV (venetian blind, 10 splits) value. The RMSEP value was close to RMSECV
(Table 1) and corresponded to an average relative percentage error of 10% in prediction,
which was considered acceptable by the company for an early (intermediate product)
on-line quality estimation. The samples in the test set showed a rather high variability com-
pared to the ones in the calibration (Figure 5a,b). Nonetheless, the residuals vs. measured
values of the consistency plot (Figure 5b) highlighted that the errors on both the calibration
and test samples were randomly distributed, not showing any visible trend, excluding
any bias.
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Figure 5. PLS results on NIR data for consistency. Predicted vs. measured values plot (a), residuals

vs. measured values plot (b).

The prediction model of total lipids content was built using a lower number of samples
than the previous model, as this parameter was assessed less frequently than consistency. In
this case, 5 LVs were selected according to the minimum RMSECV (venetian blind, 10 splits)
for the model’s construction. As shown in Figure 6a, the majority of the samples had a lipid
content included in the range 46-49%, and only a few samples presented higher values.
This is a quite common situation in real time production, where a consistent quality of
the product is pursued. In this case, a couple of samples in the test set were predicted
with a higher error but, in general, the error values comprised the 2% range, which the
company considered acceptable for controlling if the product was within specification
for this parameter. One of the two samples with a high lipid content in the test set was
predicted accurately, whereas the other one was underestimated (Figure 6b).
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Figure 6. PLS results on NIR data for lipids content. Predicted vs. measured values plot (a), residuals
vs. measured values plot (b).

In Figure 7, the Variable Influence in Projection (VIP) scores are shown [32], which
highlight that the band at 1166 nm, ascribable to the olive oil’s second overtone of the
CH stretching of CHj [30,31], is the most influent for the prediction of total lipids con-
tent. Moreover, other bands linked to lipids in olive oil [30,31] can be found at 1422 and
1461 nm, typical of the CH stretching and deformation of CHj, both above the significance
threshold [32].
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Figure 7. VIP scores of PLS on NIR data for lipids content.

4. Conclusions

This study presents a feasibility study towards the real-time monitoring of an industrial
food process line (pesto production). Since historical data were not available, the obtained
results referred to a single basil harvesting campaign. The modeling effort concerned
both latent variables based multivariate control charts, aimed at monitoring the stability
of process conditions and the eventual detecting of fluctuations exceeding the natural
variability of the process as well as the quality properties’ prediction in real time. Despite
the fact that the collected data were limited, the results gave interesting insights, which are
summarized in the following.

4.1. MISPC Results

(i) the RGB parameters obtained by the vision system, albeit potentially very useful,
were not increasing information retrieved from NIR. We think this is due to the limited
number of features extracted by the image, which could otherwise provide a good charac-
terization of raw material; further work is in progress in this direction (e.g., detecting the
percentage areas of damaged leaves, branches, and stems by an image analysis tool);

(ii) NIR-based multivariate control charts could detect restarts after temporary pro-
duction stoppages, underlining that some changes occur in the intermediate product. On
one hand, this is an indication of how sensible NIR spectroscopy is to monitor any changes,
and, on the other hand, a monitoring system can clearly indicate when process fluctuations
return to natural process variabilities and to the constancy of the product.

4.2. On-Line Predictive Models

(iii) The predictive model to estimate the pesto’s consistency and total lipids content,
based on the NIR spectra of the intermediate product, gave errors in the external predictions,
which are considered acceptable by the company for on-line quality estimation.

(iv) It is worth noting that while building predictive models of final product quality
parameters based on on-line sensors data is highly desirable, they suffer from the limited
response variability (which, evidently, should be confined in the in-specific ranges). When,
as in this case, it is not possible to expand the calibration range by pilot studies, the models
can be, nonetheless, used as a timely rough indication of the property’s value. In this respect,
more than an estimation of the quality values, they may give a preliminary check about
respecting specifications Within this framework, the obtained models seem promising.
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Finally, it is worth mentioning the main issues encountered, such as the lack of
systematic recording of acquired on-line data, the difficulties in recovering a sound syn-
chronization scheme, and the critical role of spectral preprocessing to cope with the many
sources of variabilities intrinsic in a process framework.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/foods12081679 /51, Figure S1: Results of the Exploratory Data
Analysis performed on NIR data. Loadings Plot (a) PC1 vs. wavelengths; (b) PC2 vs. wavelengths.
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Abstract: This work tested near-infrared (NIR) and UV-visible (UV-Vis) spectroscopy coupled with
chemometrics to characterize flours from different starch origins. In particular, eighteen starch-
containing flours (e.g., type 00 flour, rye, barley, soybean, chestnut, potato, spelt, buckwheat, oat,
millet, rice, durum wheat, amaranth, chickpea, sesame, corn, hemp and sunflower flours) were
analyzed with a twofold objective: chemically characterizing the investigated flours and laying the
groundwork for the development of a fast and suitable method that can identify the botanical source
of starch in food. This could ensure ingredient traceability and aid in preventing/detecting food
fraud. Untargeted approaches were used for this study, involving the simultaneous acquisition of a
large amount of chemical information (UV-Vis on extracted starch and NIR signals on raw flours)
coupled with chemometric techniques. UV-VIS spectra were acquired between 225 and 800 nm after
sample pretreatment to extract starch. NIR spectra were acquired between 900 and 1700 nm using
a poliSPEC NIRe portable instrument on the flours without any kind of pretreatments. An initial
exploratory investigation was conducted using principal component analysis and cluster analysis,
obtaining interesting preliminary information on patterns among the investigated flours. In particular,
the UV-Vis model successfully discerned samples such as potato, chestnut, sunflower, durum wheat,
sesame, buckwheat, rice, corn, spelt and 00-type flours. PCA model results obtained from the analysis
of NIR spectra also provided comparable results with the UV-Vis model, particularly highlighting the
differences observed between hemp and potato flours with soybean flour. Some similarities were
identified between other flours, such as barley and millet, rye and oats, and chickpea and amaranth.
Therefore, some flour samples underwent surface analysis via scanning electron microscope (SEM)
using the Nova NanoSEM 450 to detect distinctive morphology.

Keywords: starch; UV-Vis spectroscopy; NIR spectroscopy; principal component analysis; cluster
analysis

1. Introduction

Starch is one of the major natural polysaccharides and is widely used in many areas of
industry [1-6]. Annually, approximately 60 million tons of starch are extracted worldwide
from various cereal, tuber, and root crops. It finds widespread use across industries,
with 60 percent utilized in the food sector (including baked goods, sauces, soups, and
confectionery) and the remaining 40 percent in pharmaceuticals and non-edible products
like fertilizers, paper, cardboard, and packaging [7].

The botanical origin of the starch used as a raw material is a pivotal determinant of
the processing and overall quality of the final product [7-10], confirming the need for a
rapid, inexpensive, and reliable method for its determination [10-12].
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Chemically, starch consists of two glucose polymers, amylose and amylopectin, both
of which differ in structure and size. Amylose is a predominantly linear polymer with x-
(1,4) glycosidic bonds and has a relatively small structure (up to 106 Da). On the other hand,
amylopectin is a highly branched polymer formed by linear chains with different degrees
of polymerization and has a much higher degree of «-(1,6) glycosidic bonds [10,12,13].
The botanical origin determines the ratio and association of amylose and amylopectin as
well as their morphological structure as granules with variable size (1-100 um) and shape.
Amylose and amylopectin molecules exhibit distinct structures, which are influenced by
the botanical source of the starch. Factors such as the molecular size, inner chain length,
and presence of side chains contribute to these characteristic differences. For instance,
amylose derived from wheat is composed of a limited quantity of expansive, branched
molecules. In contrast, sweet potato amylose consists of a small number of relatively large,
unbranched molecules [7,8,11].

There are several methodologies in the literature for starch analysis and its quantifi-
cation [10-16]. Most studies involve pretreatment of the sample by gelatinizing starch at
elevated temperatures in the presence of a thermostable x-amylase enzyme to produce a
series of linear and branched dextrins, which are subsequently hydrolyzed into glucose. In
addition, there are two alternatives to the enzymatic conversion of starch to glucose: (i) the
dissolution of starch with hydrochloric acid and (ii) the dissolution of starch with a boiling
solution of calcium chloride.

The analytical methodologies commonly employed for ascertaining the botanical
origin of starch typically encompass indirect techniques, including optical and electron
microscopy, as well as analytical methods reliant on (i) enzymatic reactions, (ii) chromatog-
raphy, (iii) X-ray diffraction, and various spectroscopic techniques [10-18]. Nonetheless,
these approaches are time-consuming and necessitate specific pretreatments of the sample,
such as starch extraction and subsequent analysis.

In this context, UV-Vis spectroscopy can also be used due to the ability of amylose
and amylopectin to form blue-colored helical inclusion complexes with the triiodide ion.
Consequently, UV-Vis spectroscopy leverages the unique absorption spectrum of amylose
and amylopectin-triiodide complexes, acting as a sample fingerprint [11].

Among the fast and non-invasive analytical techniques, near-infrared (NIR) spec-
troscopy can be particularly suitable for determining the chemical composition of compo-
nents in a variety of complex organic samples [18-21]. Recent advancements in instrumen-
tation, miniaturization, wireless communication systems, and sophisticated algorithms
dedicated to statistical data processing have facilitated the development of numerous appli-
cations in various research fields, enabling an at-line, on-line, and in-line non-destructive
analysis of a wide array of food products.

NIR spectra can exhibit several bands, including those attributed to the O-H stretch
first overtone, which is characterized by absorbance peaks at 1450 nm and 1540 nm,
respectively [19,21]. Owing to the presence of these distinctive bands, NIR spectroscopy
has been successfully employed as a rapid and non-destructive technique for quantifying
the starch content in various types of flours [19].

The aim of the present study was to assess the feasibility of NIR and UV-Vis spec-
troscopy in combination with chemometrics for distinguishing different botanical origins of
starch. These methods proved to be particularly suitable for implementation in laboratories
equipped with basic UV-Vis or NIR spectrophotometers. Additionally, the NIR-based
method can be directly applied in situ by portable NIR devices, such as the one used in this
study. Utilizing a portable NIR instrument at flour delivery would enable the analysis of
all batches entering production in a more representative and efficient manner.

Among the flours chosen, corn starch accounts for 80% of the worldwide market [1].
Barley, corn, potato and rice flour are considered conventional sources of starch. On
the other hand, amaranth, buckwheat, chestnut, chickpea and millet are considered non-
conventional and emerging sources of starch. In particular, chestnut starch presents a
pasting profile similar to corn one, making it a potential alternative to corn starch [1].
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In pursuit of the objectives of this research, an untargeted approach was adopted,
utilizing the entire acquired signals from the different used analytical techniques, namely
spectroscopic techniques, as a fingerprint of the investigated samples. The advantage
of this approach lies in its ability to provide a broad spectrum of information for data
processing and mining without a predefined set of compounds. The obtained spectroscopic
signals served as a comprehensive fingerprint of the investigated samples and coupled
with chemometrics analysis could allow the identification of patterns among the investi-
gated flours based on their starch origin. For UV-Vis spectroscopy, the complete recorded
spectrum (190 to 800 nm) was considered, encompassing not only the signals associated
with the triiodide-starch complex (bands between 400 and 800 nm). In the case of NIR, no
pre-treatment was applied, resulting in a spectrum influenced not solely by starch but also
by water, lipids, and proteins.

An exploratory analysis was performed on all the obtained signals using principal
component analysis (PCA) [22]. PCA was employed to process all acquired signals and
provide insights into the presence of similarities and differences among the examined
samples. Furthermore, UV-Vis and a selected region of NIR spectra were separately used as
a unique fingerprint and elaborated by cluster analysis [23] in order to verify if it is possible
to distinguish starches of different botanical origin.

Additionally, a subset of flour samples, identified as similar by chemometric analysis,
underwent surface analysis through scanning electron microscopy (SEM) using the Nova
NanoSEM 450 microscope to identify potential distinctive morphological features. This
choice was made to support the proposed methods when the objective is to be more
selective in the identification of similar starches with different botanical origin.

The physical and chemical properties of starch have been discussed in detail in the
literature [13], but as far as the botanical origin of starch is concerned, only a few studies are
present where were explored the use of spectrophotometric techniques, specifically UV-Vis.
The present approach allows for a more thorough and complete characterization of flours,
marking the first case where both UV-Vis and NIR spectroscopy have been employed on
a diverse and large range of flour types. The incorporation of chemometric techniques
improves the interpretability and depth of the analysis, allowing a thorough understanding
of spectral information and its implications for flour characterization. Furthermore, the
study integrates the developed models with data related to the morphology of certain flours,
acquiring SEM images on raw flours that exhibited similarities in the chemometric analysis.
This multidimensional integration of spectroscopic data and morphological information
offers a more holistic and comprehensive perspective on flour characterization.

The ability to determine the botanical origin of starch is crucial for the food industry,
especially in the quality verification of raw materials for baked goods. It ensures ingredient
traceability and aids in preventing food adulteration and fraud.

2. Materials and Methods
2.1. Samples and Reagents

Eighteen flours samples, type 00 flour, rye, barley, soybean, chestnut, potato, spelt,
buckwheat, oat, millet, rice, durum wheat, amaranth, chickpea, sesame, corn, hemp and
sunflower flours, were purchased from the market and were stored inside sealed polyethy-
lene containers to preserve them from possible contamination.

Potassium triiodide solution was prepared using iodine and potassium iodide, which
were both purchased from Sigma-Aldrich, Merck, Darmstadt, Germany.

2.2. Starch Sample Preparation for UV Analysis

In order to acquire the starch fingerprint spectrum by the UV-Vis technique, a pre-
liminary treatment of the flour sample was necessary to extract the starch. Based on the
literature [11], the following analytical procedure was developed and subsequently applied
to all the investigated samples. A sample aliquot of 1.25 g of flour was dispersed in 50 mL
of deionized water and heated to boiling for 15 min. Then, 10 mL of supernatant was taken
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with a sterilized syringe and transferred inside a 25 mL volumetric flask. Afterwards, 2 mL
of a potassium triiodide solution 0.03 M was added under stirring, and the volumetric flask
was filled to the mark with deionized water.

The blank sample, used as a reference for spectroscopic measurements, was obtained
by diluting 2 mL of potassium triiodide solution inside a 25 mL volumetric flask with
deionized water.

For each starch type, three independent solutions were prepared obtaining three UV-
Vis spectra for each sample. Chickpea flour was selected as a control sample to monitor
the reproducibility of the analytical method and was analyzed five times. The decision to
include a control sample was driven by the intention to closely monitor the performance
of the portable NIR device over the different experimental sessions. It is of utmost of
importance to select a control sample that shares similar characteristics with the diverse
range of samples under investigation and possesses the ability to maintain consistent
chemical and physical properties over time. This ensures that any observed differences
among control samples can be attributed solely to variations in measurements and not to
inherent sample instability. In this case, the choice of any sample as a control would have
been suitable given that all the samples in the present study exhibited stable chemical and
physical properties. Therefore, the selection of chickpea flour as the control was influenced
by the practical consideration of sample availability, since its quantity at our disposal
exceeded that of other potential control samples.

2.3. Spectrophotometric Measurements

UV-Vis spectra were recorded with a JASCO V-750 UV /Vis/NIR spectrophotometer
(JASCO, Tokyo, Japan) at 298 K in a 225-800 nm spectral range employing quartz cells
(1 cm optical path) with a resolution of 1 nm.

2.4. Near-Infrared (NIR) Spectroscopy

Approximately 100 mg of flour was inserted into a sample holder (plastic vessel) with
almost the same thickness (less than 4 mm) to avoid any scattering in the acquisition. Next,
three NIR spectra were acquired for each vessel by placing the instrument at three different
points: at the top, middle and bottom of the vessel.

While powder samples are generally assumed to be homogeneous, the decision to
conduct measurements at multiple points within the vessel stems from the common practice
of acquiring replicate measurements. This approach is employed not only to enhance the
representativeness of the measurements but also to address specific challenges associated
with the use of portable or miniaturized NIR instruments [24]. In the context of our research,
a portable NIR instrument has also been utilized, as it offers the advantage of developing
an analytical method that can be directly applied in situ. This is particularly valuable, for
example, in a commercial setting where monitoring different batches of flour deliveries
is essential. It is well documented in the literature that while miniaturized instruments
yield satisfactory results, they may exhibit lower performance compared to benchtop
instruments [24]. Factors such as lower representative transmission spectra and spectral
resolution contribute to these differences [24]. Furthermore, when dealing with powder
samples, a container is often necessary for measurements. It is crucial to ensure that the
chosen container does not introduce any artifacts or affect the sample spectra. Given these
considerations and the use of plastic vessels in conjunction with a portable NIR instrument
in our study, acquiring replicates at different points within the samples inside the holder
was deemed necessary to ensure the representativeness of the sampling.

In order to investigate the reproducibility of the analytical method and check for any
systematic errors, a sample of flour (chickpea flour) was selected as a control sample, and
it was analyzed three times per measurement session (at the beginning, at the middle
and at the end of the session) following the procedure previously described, obtaining
27 replicates.
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The NIR spectra were collected using a portable NIR spectrometer, poliSPEC NIRe
(ITPhotonics S.rl., Fara Vicentino, Italy). Due to its diffraction grating and the double
chip InGaAs 512 pixels sensor with a controlled cooling system, poliSPEC NIRe covers
the spectral range of 9301700 nm with an average numerical resolution of 3.2 nm and an
average optical resolution HWHM of 3.25 nm.

2.5. Scanning Electron Microscopy

Small amounts of sample were sufficient to acquire images, which were attached to
a circular holder (stub) using double-sided adhesive tape. Prior to SEM investigation, a
metallization process was carried out, during which the sample surface was coated with a
thin layer of gold (20 nm/min for 45 s) to improve the electrical conductivity of the sample
and to preserve the sample morphology. Observation of the samples was performed using
the Nova NanoSEM 450 (Fei Company-Bruker corporation) scanning electron microscope.
The scanning electron microscope was operated at an accelerating voltage (high voltage,
HV) of 20 kV, and images were obtained using the directional backscatter detector.

2.6. Data Analysis

UV-Vis and NIR spectral data were imported and processed under MATLAB 2020a
(The MathWorks, Inc., Natick, MA, USA) environment. Signal preprocessing, PCA and clus-
ter analysis were performed by PLS-Toolbox v. 8.9 (Eigenvector Inc., Manson, WA, USA).

The assignment of NIR flour signals involved a comparative analysis with existing
literature [19,20,25]. Prior to the development of chemometric models, UV-Vis spectra
underwent mean centering, while NIR spectral data were pre-processed using a standard
normal variate (SNV) [26] to mitigate the baseline shift, noise, and the impact of light
scatter. Initially, principal component analysis (PCA) [22] was conducted on the pre-
processed spectra to explore the data and identify potential similarities and differences
among flour samples.

Subsequently, cluster analysis [23] was employed to attempt the identification of
groups without relying on pre-established class memberships. Most cluster analysis meth-
ods assume that samples close together in the measurement space are similar and likely
belong to the same class. Various ways exist to define the distance between samples with
the Euclidean distance being the most common. It is calculated as the square root of the
sum of squared differences between the samples. In this paper, considering the multivariate
nature of the data, the Euclidean distance was computed by taking into account the scores
on all the principal components (PCs) of the model. Specifically, the distance (d;)) between
samples x; and x; with scores ; and t; was defined as follows:

dij =/ (ti—t) (ti— 1) 1)

The use of PCA scores can provide collinearity and noise-reduction benefits, but it
requires the specification of the appropriate number of principal components (PCs). In this
paper, two and three principal components were used for the UV-Vis (explained variance,
R?, equal to 97%) and NIR (R?: 94%) spectra cluster analysis, respectively.

Furthermore, the nearest neighbor method was used to define a cluster [23]. Specifi-
cally, the distance between any two clusters was defined as the minimum of all pair-wise
distances between object of each cluster; the two clusters with the minimum distance were
then merged.

3. Results
3.1. Spectrophotometric Characterization of Starch-Triiodide Complex

Eighteen distinct flour samples were characterized through the measurement of ab-
sorption spectra of their starch—triiodide complex, and the obtained spectra are reported in
Figure 1. These spectra show several bands within the investigated UV-Vis region.
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Figure 1. UV-Vis spectra of the eighteen investigated starch samples treated with a potassium
triiodide solution 0.03 M to form the corresponding iodine complexes. T = 298 K, pH = 7.0. For each
flour type, the different replicates, with different color lines, are reported.

In the UV region, three bands are observed at about 240 nm, 270 nm (broad shoulder)
and 320 nm. Amylose and amylopectin do not show any signal in this spectral region; there-
fore, the signals observed are due to impurities or degradation products. In particular, the
observed bands could be attributed, at least partly, to the presence in the flour of proteins or
hydrolyzed amino acids which give well-defined signals in the spectral regions 220-240 nm
(backbone) and 260-280 nm (aromatic amino acid residues). Phenolic compounds and
ferulic acid were observed, respectively, at 280 nm and 320 nm in flour extracts [1] and
might also be present in our samples. Specifically, the first peak at around 240 nm exhibits
lower intensities in the corn and potato flours, while the second peak at approximately
320 nm is nearly absent in the amaranth flour.

Two additional peaks are observable in the range between 400 and 800 nm; they are
evident for almost all flour samples except for amaranth, chestnut, sunflower, sesame, hemp
and buckwheat flours. In particular, the first peak could be considered a shoulder peak of
the second one with lower intensities between 400 and 500 nm. These two bands could be
attributed to the absorption of amylopectin-iodide and amylose-iodide complexes [2,3].
The differences in their intensity may be due to the preliminary sample treatment, where
starch is extracted in water, and amylose is indeed more soluble compared to amylopectin
as well as to the botanical origin of the starch, which influences the ratio of amylose to
amylopectin and their specific affinities for triiodide ion binding [3,4]. Upon visually
inspecting the UV-Vis spectra obtained for various types of starch, differences are evident
not only in the intensity of the bands but also in the wavelength values corresponding to
the maximum absorbance of the amylose—iodide complex. Specifically, for 00 flour, the
maximum peak occurs at 605 nm; for rye flour, it is at 595 nm; for rice flour, it is at 577 nm;
for spelt flour, it is at 598 nm; for corn flour, it is at 609 nm; for potato flour, it is at 624 nm;
for oat flour, it is at 599 nm; for millet flour, it is at 566 nm; for durum wheat flour, it
is at 614 nm; and for barley flour, it is at 600 nm. As regards the intensity of the bands,
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potato, spelt and durum wheat samples show the highest absorbance, while amaranth,
sunflower, chickpea and buckwheat have the lowest ones. These observed variations could
be attributed to several factors, such as inherent starch concentration, matrix effects from
proteins and lipids, and variations in amylose/amylopectin ratios. In particular, the higher
absorbance in potato, for instance, may be linked to its substantial starch content. Potato
flour is essentially composed of starch, and a higher starch concentration can result in
increased absorbance in the spectral measurements. The presence of proteins and lipids
in flours, such as those in sunflower with a significant lipid fraction, can influence the
extraction process. Therefore, this matrix effect may lead to variations in absorbance
as different components in the flour matrix interact with the analytical method. Finally,
differences in the amylose/amylopectin ratios among flours can impact the quantity of
starch available for extraction. Flours with varying ratios may exhibit different interactions
with the extraction process, affecting the measured absorbance.

Considering the richness of information held in the whole signals, all the obtained
UV-Vis spectra were analyzed by principal component analysis. The UV-Vis spectra were
organized into a dataset of 55 x 576 dimensions (samples and replicates on the raw x UV-
Vis variables on the column) and mean centered. In particular, 576 columns correspond
to the data points in each UV signal. In detail, the UV spectra were acquired over a
wavelength range from 200 to 800 nm with a resolution of 1 nm. Each point in the UV
signal represents the absorbance value at a specific wavelength, and the entire UV signal
is constituted by these 576 absorbance values. The PCA model was developed using
two principal components, according to their explained variance (R?: 97%).

In Figure 2, the PC1 vs. PC2 scores plot is reported, representing the different flour
samples with different symbols and colors. In the first principal component (PC1), the most
significant differences emerge between sunflower, chickpea, and amaranth flours, which
have positive PC1 values, and potato flour, which displays negative PC1 values. On the
other hand, along the second principal component (PC2), spelt and potato with positive
PC2 values are opposed to soy and hemp with negative values. From a comprehensive
analysis of the figure, similarities emerge among the following groups: (i) soy and hemp
(with negative scores for both components), (ii) corn, durum wheat, and rice, (iii) oat and
rye, (iv) barley, millet, buckwheat, and Type 00 flour, and (v) amaranth and chickpeas.

10 F i L i i g
E Type 00

Spelt
Rye
Cornflour
Amaranth
Potato
Chestnut
Oat
Sunflower
Millet
Rice
Wheat
Sesame
Hemp
Buckwheat
Barley
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b ue

8 | ]
|

tqpune

Scores on PC 2 (43.67%)

| IS 2

Scores on PC 1 (53.12%)

Figure 2. PC1 vs. PC2 scores plot obtained by the PCA analysis of UV-Vis spectra.
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From the PC1 loadings figure (Figure 3a), it can be possible to point out the following
significant regions in differentiating the samples on PC1: the range between 250 and 400 nm
with positive values and the region corresponding to the absorption of the starch-triiodide
complex between 500 and 700 nm with negative values. Specifically, flour samples with
positive PC1 values (sunflower, chickpea and amaranth) seem to present higher intensities
in the first part of the spectrum and lower intensities in the latter part.
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Figure 3. Loadings plot of PC1 (a) and PC2 (b) of PCA applied on UV-Vis dataset.

In the second principal component (Figure 3b), the most influential area relates to
the absorption of the starch—iodide complex (range from 400 to 700 nm) with positive
values. Consequently, the samples of potatoes, spelt, oats, and rye exhibit higher intensities
compared to soy and hemp.

In addition to the visual inspection of starch spectra and the rough differentiation
from the scores plot of principal component analysis, all the UV-Vis spectra were examined
by cluster analysis.

Figure 4 shows a dendrogram of hierarchical clustering of k-nearest neighbor distances
(Section 2.6). In particular, it was obtained considering the UV spectra coming from all
18 samples (Session 2.2). Each flour was analyzed in triplicate except for chickpea flour,
which featured five replicates. It is worth noting the uniqueness of many samples, namely
potato, chestnut, sunflower, durum wheat, sesame, buckwheat, rice, corn, spelt and Type
00, that cannot be associated at any clusters when the distance values are lower than two.
These differences can be due to several reasons such as the different amylose—-amylopectin
ratios, degrees of polymerization, helical structures, granule sizes and other physical and
chemical properties of starch.
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Figure 4. A dendrogram of cluster analysis of UV-Vis spectra of investigated starch samples.

On the other hand, it is possible to highlight a significant similarity among other
samples, such as millet and barley, chickpea and amaranth, oat and rye, or soybean and
hemp starches, which underscores the need to employ additional techniques, such as
scanning electron microscopy, for a more selective differentiation among them.

3.2. Near Infrared Spectral Analysis

Although UV-Vis spectra have yielded valuable insights into assessing the similarities
and differences between the samples, this method requires sample pre-treatment. To
seek a simpler and faster alternative, the same flour samples were analyzed using NIR
spectroscopy without any prior preparation.

The overall raw NIR spectra are graphically shown in Figure 5. All samples showed
almost a similar trend in the shape of spectra except for hemp flour, presenting a different
trend in the beginning and at the end of the respective baseline.

The spectra revealed prominent absorbance regions, particularly around 1200 nm,
1470 nm, 1580 nm, and 1665 nm. The absorption band at 1200 nm corresponded to the
second overtone of C-H stretch associated with lipids. The substantial absorbance peaks
at 1470 nm were linked to the first overtone of O-H stretching, which is indicative of
the moisture content or starch [19,20,25]. The absorbance at 1580 nm was attributed to
the first overtone of O-H stretching and was associated with starches, while the peak
around 1665 nm was associated with the first overtone of C-H stretching and aromatic
compounds [19]. These significant absorbance regions align with findings reported in the
literature [19,20,25]. Taking into consideration the aims of this research, it was decided
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to focus attention on spectral regions mainly influenced by the presence of water, since
it could be potentially related to the different structures of starches of different botanical
origin. In particular, the amount of water absorbed varies depending on the botanical
species, genotype, and the degree of organization of the starch granules [27]. Furthermore,
the characteristics of starch granules are highly influenced by the moisture content of the
medium [27].
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Figure 5. NIR spectra of the entire set of flour samples. For each flour type, the different replicates,
with different color lines, are reported.

The spectra revealed prominent absorbance regions, particularly around 1200 nm,
1470 nm, 1580 nm, and 1665 nm. The absorption band at 1200 nm corresponded to the
second overtone of C—H stretch associated with lipids. The substantial absorbance peaks
at 1470 nm were linked to the first overtone of O-H stretching, which is indicative of
the moisture content or starch [19,20,25]. The absorbance at 1580 nm was attributed to
the first overtone of O-H stretching and was associated with starches, while the peak
around 1665 nm was associated with the first overtone of C-H stretching and aromatic
compounds [19]. These significant absorbance regions align with findings reported in the
literature [19,20,25]. Taking into consideration the aims of this research, it was decided
to focus attention on spectral regions mainly influenced by the presence of water, since
it could be potentially related to the different structures of starches of different botanical
origin. In particular, the amount of water absorbed varies depending on the botanical
species, genotype, and the degree of organization of the starch granules [27]. Furthermore,
the characteristics of starch granules are highly influenced by the moisture content of the
medium [27].
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Consequently, to consider the range between 1275 and 1600 nm could be an attempt to
obtain information about the presence of a pattern among the different investigated starches
according to their botanical origin. Therefore, PCA analysis was carried out only on this
region; in particular, the spectral data were pre-treated using SNV before PCA analysis
to reduce the multiplicative interferences of scatter and particle size of raw spectra [16]
and mean centered. A PCA model was built considering three PCs explaining 98% of the
total variance.

Separation between samples was clearly observed in the PCA scores plot of PC1 and
PC2 (Figure 6).
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Figure 6. PC1 vs. PC2 scores plot obtained by the PCA analysis of NIR spectra in the range between
1275 and 1600 nm.

In particular, a distinct behavior is observed for sunflower and sesame flours (with
positive values on PC1 and negative values on PC2), potato flours (with higher values on
PC2) and chestnut flours (with more negative values on PC1). Furthermore, the second
principal component distinguishes the samples of chickpea, amaranth, and soy, with
negative values on PC2, from the other samples, which have positive values on PC2. These
observations partially align with the results obtained from the UV-Vis analysis, especially
concerning the differences observed between hemp and potato flours with soybean flour.

The PC1 and PC2 loadings plot gives information about the wavelengths that con-
tributed to sample separation (Figures 7a and 7b, respectively).

The highest loadings observed at around 1400 and 1450 nm for PC1 and PC2 were
related to water or starch as the first O-H stretching overtone. Upon a comprehensive
analysis of both Figures 6 and 7, it is evident that sunflower and sesame flour, with positive
PC1 and negative PC2 scores (fourth quadrant in Figure 6), are characterized by a notable
increase in the intensity of the 1400 nm peak and a corresponding decrease in the intensity
of the 1450 nm peak. Notably, the band around 1450 nm, as indicated in the literature,
is associated with water or starch as the first O-H stretching overtone, while the peak at
1400 nm corresponds to the CH; stretching of lipids. Moreover, the positioning of potato
flour, characterized by the highest PC2 score values, appears to be significantly influenced
by elevated absorbance around 1450 nm. In contrast, chestnut flour, with negative PC2
scores, exhibits the opposite trend.
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Figure 7. Loadings plot of PC1 (a) and PC2 (b) of PCA applied on NIR dataset.

The third principal component mainly distinguishes hemp and soybean flour mainly
due to the contribution of the NIR band around 1500-1550 nm. The respective score and
loading figures are reported as Figures S1 and S2 in Supplementary Materials.

The result of cluster analysis on NIR spectra in the region between 1275 and 1600 nm
is reported in Figure 8. In this case, four replicates were acquired for each sample except for
the control sample, chickpea flour, which presented 27 replicates (Session 2.4). The results
display a significant consistency with what was found in the UV-Vis analysis.

In fact, a substantial similarity is observed between amaranth and chickpea flour, as
well as between rye flour and oat flour, and between barley and millet flour. Furthermore,
it can be observed that according to UV-Vis results, there are samples that are different
from the others, such as sunflower, sesame, chestnut and potato flours.

3.3. Starch Morphology

Both UV-Vis and NIR spectroscopic analysis coupled with chemometrics show sim-
ilarities among some investigated samples, such as barley and millet, rye and oats, and
chickpeas and amaranth. This similarity complicates their differentiation based on botanic
origin. Consequently, in these cases, the support of commonly used analytical techniques
such as scanning electron microscopy is essential to obtain additional information.

Starch granules are microscopic in size, and their morphology varies between different
shapes such as oval, ellipsoidal, spherical, smooth, angular, and lenticular, depending
on their botanical origin. In amyloplasts, starch granules are present singly or in groups.
Common cereals such as wheat, barley and rye contain two types of starch granules: type
A, with lenticular shape and large size; type B with spherical shape and small size [28,29].

For obtaining a clear visualization of starch granules, their isolation from flour is
essential due to the presence of fiber and starch protein cluster. However, in the present
work, the aim was to investigate the possibility of obtaining information reducing as much
as possible any pretreatment of sample. Therefore, the SEM images were directly acquired
on raw flour after the coating of the sample surface with a thin layer of gold (Section 2.5)
with the aim of characterizing the morphology of certain flours that appeared to be similar
to others in statistical analysis.
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Dendrogram of NIR Data with Preprocessing: SNV + Mean Center
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Figure 8. A dendrogram of cluster analysis of NIR spectra of investigated flour samples.

For instance, in Figure 9a,b, SEM images obtained on the samples of rye and oat flour
were reported. The starch granules of rye flour (Figure 9a) have a lenticular shape (white
circles in the figure) with a wrinkled surface and medium size (about 30 um). On the surface
of the starch granules, it can be also possible to see other smaller granules, which is probably
due to the presence of associated proteins. In the case of oat flour (Figure 9b), a different
structure is observed than in the previous samples. In this case, there are granules (white
circles in the figure) with irregular shapes and sizes and rough surfaces, agglomerates
consisting of small granules and irregular shapes, as well as the presence of proteins and
cell walls.
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(@) (b)

Figure 9. SEM image of (a) rye (highlighted with white circles) and (b) oat (highlighted with white
circles) flours at HV 20.0 kV, Mag 1000 <, Spot 4.5, HWF 0.27 mm.

The previous statistical analysis revealed that among the various flours, potato, rice,
Type 00, and corn flours were found to be distinctive. These differences can be found in the
structure of starch, as can be seen in Figures 10-13, respectively.

Figure 11. SEM image of rice flour at HV 20.0 kV, Mag 1000 x, Spot 4.5, HWF 0.27 mm.
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Figure 13. SEM image of Type 00 flour at HV 20.0 kV, Mag 1000 x, Spot 4.5, HWF 0.27 mm.

The starch granules of potato flour (Figure 10) have smooth, polished surfaces with an
oval shape. The smallest granules have a diameter of about 25 um; larger granules reach up
to about 60 um. The starch granules of rice flour (Figure 11) are in the form of agglomerates
consisting of granules of irregular shapes and sizes and smooth surfaces.

Examining the SEM image for Type 00 flour (Figure 12), an agglomerate consisting
of starch granules with a lenticular shape of varying size and smooth surface is observed
as well as protein. The starch granules of corn flour (Figure 13) are characterized by an
angular shape, smooth surface and regular size of about 14 pm, and they associate to
form agglomerates.

4. Conclusions

In this research, eighteen commercial flours, intended for food use, were chemically
characterized by an untargeted approach, evaluating the possibility of developing rapid
and alternative methods for identifying the botanical origin of starch. In particular, the used
approach allowed exploring and analyzing a multitude of signals simultaneously, providing
a more holistic and informative perspective on the characteristics of the examined samples.
Specifically, all investigated samples were analyzed by two spectroscopic techniques,
UV-Visible and near-infrared (NIR) spectroscopy; the signals obtained were considered
as fingerprints of the investigated samples and analyzed by chemometric techniques.
Considering the limited number of examined samples for each type of flour, it was not
possible to develop classification models (which would have required a representative
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sampling in terms of the number for each type of investigated flours). However, an initial
exploratory investigation was carried out using principal component analysis and cluster
analysis, which provided interesting preliminary information on the similarities and/or
differences between starches of different botanical origins based on both UV-Vis and NIR
acquired spectra.

In particular, the UV-Vis obtained model shows an interesting pattern among samples
according to their botanical origin, distinguishing samples such as potato, chestnut, sun-
flower, durum wheat, sesame, buckwheat, rice, corn, spelt and Type 00 flours. However,
some similarities were found for other flours, barley and millet, rye and oats, and chickpeas
and amaranth, highlighting the need to use other techniques such as Scanning Electron
Microscopy (SEM) to obtain supporting information.

Although this study is still a preliminary investigation and far from leading to the
development of a classification model, the results obtained provide a solid premise for
the development of an analytical approach based on the use of UV-Vis spectroscopy as a
fingerprint technique for the identification of the botanical origin of starches. Regarding
NIR spectroscopy, promising outcomes have emerged from the analysis of NIR regions,
which are predominantly attributed to the presence of water and starch, suggesting its
potential as an alternative methodology for distinguishing starches from various botanical
sources without any sample pre-treatment.

Some remarks can be highlighted from the results obtained. The choice between NIR
and UV-Vis spectroscopy for characterizing different flours depends on the challenges
and goals of the research, as each technique offers distinct advantages and disadvantages.
UV-Vis spectroscopy is particularly effective for starch analysis, as it provides specificity
to differentiate starches from different botanical sources. However, one limitation is that
UV-Vis often requires pretreatment of the sample, making it unusable after analysis. On
the other hand, NIR spectroscopy has the advantage of not requiring pretreatment of the
sample, allowing it to be recovered. However, NIR spectra can be affected by various
compounds, such as the presence of water, which can overlap with the starch signal,
leading to a non-selective technique. In future practical applications, the combination of
both techniques could offer a powerful approach for characterizing flour. Leveraging the
strengths of UV-Vis in starch specificity and NIR in non-destructive analysis will certainly
provide a more complete and comprehensive characterization of flour. In fact, future
research could be addressed in the use of mathematical-statistical models based on a data
fusion approach [30] as well as in the increasing the number of investigated samples for
each type of studied starch. However, investigation by scanning electron microscopy is
certainly useful in supplementing the model results in case of overlapping information.

Supplementary Materials: The following supporting information can be downloaded at
https:/ /www.mdpi.com/article/10.3390/chemosensors12010001/s1; Figure 51: Scores plot of PC3
of PCA applied on NIR dataset; Figure S2: Loadings plot of PC3 of PCA applied on NIR dataset.
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Abstract: Adulteration and fraud are amongst the wrong practices followed nowadays due to the attitude
of some people to gain more money or their tendency to mislead consumers. Obviously, the industry
follows stringent controls and methodologies in order to protect consumers as well as the origin of
the food products, and investment in these technologies is highly critical. In this context, chemometric
techniques proved to be very efficient in detecting and even quantifying the number of substances used
as adulterants. The extraction of relevant information from different kinds of data is a crucial feature to
achieve this aim. However, these techniques are not always used properly. In fact, training is important
along with investment in these technologies in order to cope effectively and not only reduce fraud but
also advertise the geographical origin of the various food and drink products. The aim of this paper is
to present an overview of the different chemometric techniques (from clustering to classification and
regression applied to several analytical data) along with spectroscopy, chromatography, electrochemical
sensors, and other on-site detection devices in the battle against milk adulteration. Moreover, the steps
which should be followed to develop a chemometric model to face adulteration issues are carefully
presented with the required critical discussion.

Keywords: fraud; authentication; dairy; clustering; classification; regression; validation

1. Introduction

Milk and milk products provide the human body with valuable nutritional compo-
nents such as proteins, carbohydrates, vitamins, minerals, organic acids, and fat [1,2].
Milk’s high protein content has attracted many consumers, making it a popular nutri-
tional commodity [3]. The increasing consumption of milk and dairy products leads to
many cases of adulteration [4,5]. A range of possible milk adulterants is described by
Nascimento et al. [4].

The prices of milk differ primarily depending on the type of animal from which they
come, whereas its availability is significantly affected by the season. These two factors are
enough to cause problems in its market, as practices of replacing it with cheaper milk are
common [6]. Goat’s milk shows a nutritional profile superior to that of cows, as a result of
which itis a priority for consumers not only in traditional dairy products such as cheese and
yogurt, but also in liquid form. Its low production combined with its beneficial nutritional
content makes this category of milk an attractive target for adulteration. Goat’s milk is
easily mixed with water, whey as well as cow’s milk which is much cheaper. The latest
fraud is increasingly worrying people because of their sensitivity to lactose and the allergic
disorders that can be caused by cow’s milk proteins [7]. An equally important adulteration
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is related to the substitution of goat’s milk with sheep’s milk. In this case, the lower price
of goat’s milk compared to sheep’s milk pushes the producers to this adulteration [6].

Fraud in milk production is carried out by admixture or substitution of inferior
substances and sometimes dangerous products. The economically motivated adulteration
(EMA) is the most important, aiming to gain profit by the addition of extraneous water,
glucose or other sugars, non-dairy proteins such as soybean and pea protein isolates [8],
various substances such as melamine, urea, maltodextrin, cheese whey (a byproduct of
cheese production) [9], hypochlorite, dichromate, salicylic acid [10], and reconstituted milk
powders to correct protein and/or density values [11]. A famous case of adulteration was
recorded in China in 2013 when the substance melamine was detected in milk powder
in infant milk products, which was added to increase the apparent protein content, with
dramatic consequences for public health [12].

The deliberate addition of formaldehyde to raw milk is also illegal and considered a
major adulteration, which aims to increase the shelf life of milk at room temperature. High
moisture content is responsible for the rapid spoilage of milk. Therefore, formaldehyde
provides preservative and antiseptic properties, and the ability to improve the appearance
including the smell of milk. Furthermore, formaldehyde is toxic at low concentrations and
is classified as a human carcinogen by the International Agency for Research on Cancer
(IARC) [12,13].

Another form of adulteration is the replacement of milk fat with vegetable fats of lower
economic value [14]. Among others, soybean oil has been mentioned in the adulteration of
milk [15]. In addition, the recent EU regulations for foods designated as PDO (protected
designation of origin), PGI (protected geographical indication), and TSG (traditional spe-
cialty guaranteed) require the inclusion on the label of the geographical origin of food.
In the case of dairy products such as cheeses produced in a defined area with specific
physicochemical and sensorial features, their geographical origin is put forward as an
important indication [16].

Chemometrics plays a dominant role in the field of food adulteration as it relates
a multitude of chemical analytical characteristics to the qualitative and quantitative
analysis of food [17]. Deriving a fingerprint of each sample and reflecting its complex
chemical composition could be a way to solve such difficult analytical tasks. Then,
chemometric techniques can be used to develop classification models to classify samples
into authentic/adulterated ones, or regression models aiming at quantifying a specific
adulterant [8,18-21]. In this direction, both specific and non-specific fingerprinting can
be implemented. Specific chemical analysis is based on the detection of organic species,
mainly achieved by chromatographic techniques.

The non-specific fingerprinting approach relies on the implementation of instrumental
methods to obtain a multivariate description of the chemical composition of the sam-
ple. These non-specific fingerprints can be obtained by different methodologies such as
Fourier transform infrared spectroscopy (FI-IR), mid-infrared spectroscopy (MIR), Raman
spectrometry, nuclear magnetic resonance (NMR), or mass spectrometry [22]. All these
methodologies have been used in studies, which are relevant to authenticity and chemo-
metrics in milk and dairy products [23-25]. In addition, near-infrared (NIR) spectroscopy
has been used by several researchers to detect various forms of adulteration in both cow’s
milk and cow’s milk products [26-28].

Vibrational spectroscopic techniques are rapid, low-cost, and non-destructive tests
that require only limited training for processing. Results are evaluated using chemometric
models to extract meaningful information that distinguishes different and significant groups
by removing redundant data [29].

Data processing can be completed by principal component analysis (PCA) since it
is amongst the most fundamental methods for multivariate data exploration [18]. PCA
has been used along with other methodologies to help to differentiate fresh milk and
reconstituted skim milk powder samples [11].
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KNN (k-nearest neighbor), PLS-DA (partial least squares-discriminant analysis), and
SIMCA (soft independent modeling of class analogy) are the most popular classification
methods [30]. kNN and PLS-DA have been used for the detection of various types of
adulteration, such as water, urea, cow’s whey, and cow’s milk in goat’s milk samples [31].
SIMCA could also be employed to model the class of fresh types of milk. When address-
ing a specific adulterant quantification, the goal could be achieved by means of partial
least squares (PLS) regression analysis, as demonstrated for the prediction of fresh milk
adulteration with reconstituted skim milk powders [11].

Finally, in order to validate a chemometric approach, a sampling strategy should be
followed taking into account the size and the representativeness of the sample along with
intrinsic variability [32]. Sampling is closely associated with robustness and reliability. Other
key parameters of authenticity and fraud not to be ignored are the heterogeneity of a food
matrix and the presence of an undeclared substance to the geographical origin discrimination.

In this framework, the aim of this work is to give an overview of the recent applica-
tion of different chemometric techniques—from clustering to classification and regression
applied—to several analytical data—encompassing spectroscopy, chromatography, and
electrochemical sensors—to fight milk adulteration. Further, a critical discussion is pre-
sented to schematize the steps which should be followed to develop a chemometric model
to face adulteration issues.

2. Chemometric Approaches
2.1. Clustering

The definition of “cluster analysis” or “clustering” encompasses the techniques which
split a set of samples (observations) into several groups or clusters. The outcome is usu-
ally represented as a vector of data, or a point (scatter) in a multidimensional space [33].
Clustering falls in the general category of unsupervised pattern recognition and numerical
and mathematical taxonomy [33,34]. Natural grouping of data takes place based on some
inherent similarity, as clustering is performed without any group labels, and this justifies
the unsupervised pattern recognition [33,35]. Furthermore, it takes place based on simi-
larities of the samples within the same group and others in different groups. Therefore,
homogeneity is dominant within the same groups [34]. In practice, the most common
approach to define similarity is the distance among the patterns; by lowering the distance
(e.g., Euclidean distance which is a well-used dissimilarity measure) between the two
objects, higher similarity and vice versa will be obtained [35,36].

Clustering is a valuable component of data analysis or machine learning-based ap-
plications such as regression, prediction, data mining, etc. [35]. Saxena et al. (2017) [35]
stated that there are various ways to categorize clustering methods because it is difficult
to define a cluster. In their paper, they suggested division into two different groups such
as hierarchical and partitioning techniques, or in three categories based on application,
density-based methods, model-based methods, and grid-based methods.

Hierarchical methods initially group the objects into small clusters of some samples,
and these are next grouped into larger clusters, thus a dendrogram is produced, which
is a tree-based depiction of each observation [36]. Optimization- partitioning methods
split the samples into a few groups to optimize a particular feature e.g., total within-group
distances. In this category, algorithms like k-means clustering, Fuzzy c-means clustering,
etc., are included [33-35]. Density-based clustering is focused on the probability that data
objects are drawn from a specific probability distribution and the overall distribution of
the data is assumed to be a mixture of several distributions. Data points can be derived
from different types of density functions (e.g., multivariate Gaussian or t-distribution),
or from the same families but with different parameters. Model-based clustering works
by detecting feature details for each cluster, where each cluster represents a concept or
class. Decision trees and neural networks are the two most frequently used methods in this
category. Grid-based clustering divides the space into a finite number of cells that make a
grid structure on which all the operations for clustering are performed [35].
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Recently, many evaluation criteria have been developed, and these are internal and
external. Internal quality parameters include the sum of squared error, scatter criteria,
Condorcet’s criterion, the C-criterion, category utility metrics, and edge cut metrics. Ex-
ternal quality criteria are related to the mutual information-based measure, Rand index,
F-measure, Jaccard index, Fowlkes—Mallows index, and confusion matrix [35].

Clustering is applied to perform data reduction or compression for handling huge
loads of data. It helps in compressing data information by grouping them into different
sets of clusters. This helps us to choose what is useful or not by saving time from data
processing along with data reduction [35]. Other uses contain data mining, document
retrieval, image segmentation, and pattern classification [33].

In order to explore the use and development of clustering methods recently, Table 1
has been prepared to summarize the studies related to milk adulteration and authenticity.

Table 1. Recent studies (2015-2021) related to milk adulteration and authenticity in combination with
clustering analysis.

, Analytical Clustering
Type of Milk Target Method(s) Method Approach Reference
Milk adulteration
Cow’s, sheep’s, and Adulteration from
water buffalo’s origin different species” origin FTIR HCA method [37]
milk milk
Bovine milk Adulteration with urea EIS HCA Eu'clldean [36]
distance
UTH milk samples Adulteration with cheese Euclidean
(skimmed and whey, based on distance and
semi-skimmed) and raw quantification of FTIR-ATR HCA Ward's 58]
milk caseinomacropeptide method
Cow milk Adulte.ratmn with Elect.rochemlcal HCA Ward’s [39]
melamine and urea biosensor method
Adulteration with Colorimetric sensor
Bovine milk formaldehyde, based on OlOTIMELIIC SEnso HCA - [40]
aldehydes and ketones array
Adulteration with The
UHT whole bovine milk soymilk in bovine and minimum
and UHT goat milk goat milk, as well as NMR CA distance [41]
bovine milk in goat milk. method
Adulteration with
Sodium Salicylate, k-means
Raw cow milk Dextrose, Hydrogen Sensor system clustering - [42]
Peroxide, Ammonium algorithm
Sulphate
Milk authentication
Euclidean
Powder and liquid milk Type of milk based on ICP-OES HCA distance and [43]
metal profiles Ward's
method
Type of milk (organic vs. Euclidean
Organic and conventional) based on distance and )
conventional milk organic status and trace ICP-MS HCA Ward's [44]
element content method
Malaysian vs. milk from Geographical origin, . Ward’s .
other countries based on metal content ICP-MS HeA method (4]
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Table 1. Cont.
. Analytical Clustering
Type of Milk Target Method(s) Method Approach Reference
CE-IRMS (6 180),
EA-IRMS (5 C and
Geographical origin, 81N, GC (fatty
- isotope ratios, metals, acids), ICP-OES (Na, HCA - [46]
and fatty acids K, Mn, P, Zn, Ca, Fe,
and Mg), and ICP-MS
(other metals)
Geographical origin,
Cow milk based on stable isotope IRMS and CRDS HCA - [47]
ratios
HCA:
Euclidean
distance and
. - HCA and Ward’s
Geographical origin, K-means method
Raw milk based on stable isotope IRMS and ICP-MS . [48]
. clustering K means: 200
ratios and metal content . . .
algorithm iterations and
25 random
starting
points
Species recognition
Cow, goat, camel, based on sn-2 and sn-1,3 ,
donkey, and yak milk fatty acid composition GC, GCMS HCA ) 491
and sterols
Fresh buffalo, bovine, Species 1 ition
and donkey milk as well pecies recognitio Euclidean
as processed milk based on amino acids, distance and
P . non-amino acids, and GC-MS HCA B [50]
samples (pasteurized o Ward's
. . citric acid cycle
and dried skimmed . method
metabolites
powder)
Reconstituted milk vs. lef?éentlc.opc‘;ent Ofi UPLCg .Q—EOF._ MS 51
UHT milk peptides, lipids, an combined with HCA - [51]
nucleic acids UPLC-MS/MS
IR (fat, protein, and
Fat globule lactose contents), GC
characteristics (diameter, (fatty acids Fuclid
Cow milk membrane surface, and ~ composition), atomic HCA ;.C rdean [52]
. . f istance
yield), fat, protein, fatty absorption
acids, calcium content spectrophotometry
(calcium content)
Different seasons of milk
collection, based on .
Cow, goat, buffalo, and gy 1 in milk fat of GC-MS-SIM HCA Euclidean (53]
camel milk distance

different species” origin
of milk

Abbreviations: CA = cluster analysis, CF-IRMS = continuous flow-isotope ratio mass spectrometer, CRDS = cav-
ity ring-down spectroscopy, EA-IRMS = element analysis-isotope mass spectrometry, EIS = electrochemi-
cal impedance spectroscopy, FCM = fuzzy c-means, FTIR-ATR = Fourier transform infrared-attenuated to-
tal reflection, FTIR = Fourier transform infrared spectroscopy, GC = gas chromatography, GC-MS = gas
chromatography-mass spectrometry, GC-MS-SIM = gas chromatography-mass spectrometry-single ion moni-
toring mode, HCA = hierarchical cluster analysis, ICP-MS = inductively coupled plasma mass spectrometry,
ICP-OES = inductively coupled plasma emission spectroscopy, IR = infrared, IRMS = isotopic ratio mass
spectrometry, UHT = ultra-high temperature, UPLC-MS/MS = UPLC-tandem mass spectrometry, UPLC-Q-
TOF-MS = ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
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Regarding milk adulteration studies, Cirak et al. [37] focused on determining milk
species adulteration by using FTIR. HCA was conducted based on Ward’s algorithm after
having calculated the initial derivate by using a standard method. The produced 2D-
dendrogram indicated that the types of origins (sheep, cow, and water buffalo origin, and
adulterated samples in binary mixtures) were clustered correctly. Minetto et al. [36] applied
HCA to detect urea in raw bovine milk samples, and the Euclidean distance was used to
build the dendrogram. HCA helped them to find the more appropriate number of clusters
which was used later in the classification of the samples. Vinciguerra et al. [38] used HCA
as an exploratory treatment on the pre-processed measurements obtained by FTIR-ATR.
By using both the Euclidean distance and Ward’s method, a dendrogram was generated,
however no pattern related to the caseinomacropeptide concentration was observed in
the dendrogram, and multivariate regression was followed. Qualitatively, the adulterated
groups with caseinomacropeptide were separated correctly in 3 groups: raw milk, skimmed
milk, and semi-skimmed milk. Adulteration with melamine and urea in cow’s milk was
also studied by Ezhilan et al. [39], who developed an electrochemical biosensor to detect the
two adulterants simultaneously. HCA application was useful to study the interrelationship
of the factors affecting the model for measurements taken by using various combinations of
concentrations of the adulterants. Mostafapour et al. (2021) [40] used a colorimetric array
device. The authors commented that even if there are differences in the colorimetric schemes
of the analytes, it is not a proper manner to group the samples after visual examination,
thus chemometrics is used to perform the clustering. The HCA dendrograms showed
highly accurate clustering of the studied carbonyl compounds, particularly eight different
aldehydes and ketones. In addition, HCA showed that one sample from formaldehyde
and one sample from acetophenone has been misclassified. Li et al. [41] used NMR to
detect the metabolites as markers of different milk types. Clustering analysis (CA) was
very useful as it provided similarities for the same species of milk as well as variations
in different milk species by applying the minimum distance method. CA also separated
the three milk types and showed that NMR and metabolites can differentiate these milk
products. Sowmya et al. [42] during the pre-processing steps applied cluster analysis, i.e.,
the k-means clustering algorithm. The algorithm proceeded by calculating the centroid
point of the dataset and the groups” mean points to build the new groups required. The
aim was to see the grouping of samples, to identify the similarities in the same categories,
and to check if the adulterants can be clustered by using raw spectra. Intraclass variation
was performed.

Regarding milk authenticity, Souza et al. [43] studied the metal profile of powder and
liquid milk samples to differentiate them based on the type of milk. HCA successfully
confirmed the initial outcome of PCA, and it allows the visualization of a sample’s trend to
form two groups. Whole cow powder milk, whole goat powder milk, skimmed cow powder
milk, and milk compounds powder fell in the first group due to their similar composition.
A sample from the last group clustered at a longer distance from its group due to the high
content of Zn. The second group consisted of whole and skimmed cow liquid milk and some
yogurts. Rodriguez-Bermudez et al. [44] by applying HCA revealed a correct clustering
based on the type of milk, organic vs. conventional. It was obvious that the variables
(metal content) in both the organic and conventional sets were distinct. To determine the
geographical origin, Zain et al. [45] measured the metal content of milk samples and due
to different environmental conditions, and the samples clustered successfully by HCA.
Ca, Na, Fe, Zn, Mn, K, Ba, and Mg are the metals that were significant for the samples’
grouping regarding geographical origin. Xu et al. [46] worked also in terms of geographical
origin by measuring isotope ratios, metals, and fatty acids and then by applying HCA. 5180
measurements were taken by having the milk in the fluid state, but for 513C, 615N, and
elemental and fatty acid measurements lyophilization took place. HCA aided to picture
the correlation between the sample and each variable as HCA heatmaps were created.
In addition, geographical origin was the target of Amenzou et al. [47], who studied the
3¢ /12C, 'N/MN, 180/160. The application of HCA was very important to visualize the
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samples in 3 important clusters. The stable isotope ratios analysis in combination with
chemometrics showed a very good capability to indicate the geographical origin of milk. In
a similar study, Podkolzin and Solovev [48] used HCA and the k-mean clustering algorithm
and both methods showed an equal number of clusters with almost the same content.
Karrar et al. [49] used HCA to evaluate the similarity in terms of sn-2 and sn-3 fatty acids
in different milk-origin samples. HCA heatmaps were produced to present the content
of sn-2 and sn-3 fatty acids in the samples. Bhumireddy et al. [50] applied HCA to group
the samples based on intrinsic similarities in their GC-MS measurements. HCA heatmaps
were produced using the log-transformed and normalized values of the relative abundance
of 17 amino acids, and their high and low expressions in each sample were presented
with different colors. Tan et al. [51] employed HCA to proceed to the clustering of the
different biomarkers (peptides, lipids, and nucleic acids) and to demonstrate the chemical
properties of the important metabolites. It must be also noted that the results indicated
that the processing that takes place to produce milk powders influences the nutritional loss
of peptides and lipids. HCA heatmaps showed that nutritional components were found
to be in lower concentrations in reconstituted milk compared to ultra-high-temperature
milk. Couvreur and Hurtaud [52] studied the parameters of fat globule characteristics
(diameter, membrane surface, and yield), fat, protein, fatty acids, and calcium content in
milk concerning diet composition, milking frequency, breed, stage of lactation, parity and
residual/cisternal milk. Based on the principal components of PCA, HCA was performed
which indicated 4 independent clusters of milk. A minor relationship was observed
between fat content and fat globule diameter in milk, especially for the Normandy breed at
the very end of the lactation. Dhankhar et al. [53] proposed a method to study the influence
of season on the variability of sterols in different species’ origins. Buffalo milk has a very
different sterol profile compared to other animal species. In addition, seasonal variation
affected especially cholesterol content compared to other minor sterols, and winter milk
had a lower level of cholesterol compared to other seasons. The authors commented that
the variation based on season was not able to be satisfactorily explained by PCA. However,
HCA correctly grouped the 4 species of animals into 4 clusters by the sterol content. Squared
Euclidean distance between objects was applied in HCA, to give the natural grouping of
samples. The HCA dendrogram allowed the visualization of the similarity or dissimilarity
of the measurements in 2D.

As can be observed, HCA is the main representative of the clustering methods. It
is also important to note that after CA, most of the studies presented above proceeded
to classification and/or regression analysis, which are presented in the next sections of
this paper. Overall, in the aforementioned-studies, CA was used as a step to visualize the
samples in clusters and to understand the interrelationships of the samples’ datasets, before
proceeding to supervised methods.

2.2. Classtfication

The capability to assign an object to a class on the basis of its characteristics belongs to
the pattern recognition field. There are many methods to classify objects and one of the
applications of chemometrics is the classification of objects in groups depending on their
characteristics expressed as results of a set of measurements [54]. Classification methods
could be distinguished into “discriminant” and “class-modeling” techniques (Table 2).

In the first case, the technique tries to discriminate among the object’s groups di-
viding the model hyperspace into several regions equal to the number of classes and
assigning each object to a specific region of the hyperspace on the base of its characteris-
tics. In this way, each sample may belong to just one class. In the case of class modeling
instead, the technique tries to model the analogies between objects of a class rather than
observe the differences. So, each group of objects is modeled separately, and, at the end,
an object could be assigned to one or more classes, or rejected as non-included in none of
the classes (Figure 1).
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Table 2. Main classification methods cited.
Classification Method Extended Name Abbreviation
Partial least squares-discriminant analysis PLS-DA
Orthogonal partial least squares-discriminant analysis OPLS-DA
One class-partial least squares OC-PLS
Quadratic discriminant analysis QDA
Discriminant Random forest RF
iscrimiman Support vector machine SVM
Linear discriminant analysis LDA
k-nearest neighbors kNN
Extreme learning machine ELM
Ensemble of extreme learning machine EELM
Soft independent modeling of class analogy SIMCA
Class-modeling Data-driven soft independent modeling of class analogy DD-SIMCA
Unequal class models UNEQ
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Figure 1. Example of difference between discriminant (a) modeling and (b) classification methods. In
(a) the hyperspace is divided into regions equal to the category number.

In the discriminant classification, some methods may be counted: kNN, PLS-DA, LDA,
and QDA. Instead, class-modeling techniques may be included: SIMCA, DD-SIMCA, and
UNEQ [55].

Describing the details of all classification methods is out of the scope of this work,
and here we will consider only the most used techniques (discriminant or class-modeling)
applied to the milk and dairy product classification in milk adulteration in the last years.

A basic distinction between supervised and unsupervised classification techniques
will be maintained. Supervised classification methods require some knowledge “a priori”
of the classes and the method to assign or not assign samples to a certain class; in contrast,
the unsupervised methods just classify samples on the base of their characteristics [56].

In recent years, the number of studies that use chemometrics to properly elaborate and
interpret analytical results is largely increasing. The power of the chemometric technique
is evident in all the cases where the output of an instrumental analytical technique is a
spectrum, like in visible and/or infrared spectroscopy (VIS, VIS-NIRS, NIRS), nuclear
magnetic resonance (NMR), or spectrometry (CG-MS, LC-MS).

Regarding classification used in milk adulteration, in the last five years, there have
been several examples that used chemometrics and in Table 3 some relevant examples have
been reported.
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The use of chemometrics on instrumental data requires some preliminary steps, like
data pre-processing or data dimension reduction. A short illustration of these steps has
been reported below. In general, the application of a specific classification technique in
place of another one depends on the data structure. In some cases, using one method rather
than another one leads to the same results; in others, the application of a specific method
could improve classification efficiency.

The classification statistical techniques most used in the last years for milk applications
were PLS-DA as a pure classification technique and SIMCA as a class-modeling approach.
Kamboj [57], for example, used PLS-DA to detect water adulteration in milk from NIRS
spectra. Chung [58], working on isotope ratio data, used OPLS-DA to perform classification.
The paper did not extensively explain the reason for this choice. Jin [59] used the least
squares support vector machine (LS-SVM) for qualitative analysis of adulterated milk
identification using 2D autocorrelation spectroscopic data. Karunathilaka [60] used Raman
spectroscopy data from two different instruments and SIMCA for not-target classification to
detect milk powder adulteration. Galvan [61], on data coming from low-cost spectroscopic
devices (NIR and energy dispersive X-ray fluorescence—EDXRF), used more than one
technique: PLS-DA for the EDXRF data and C-support vector classification (C-SVC) for
NIR data. In the end, they concluded that DD-SIMCA was more useful to classify the
samples with good accuracy (98.9%). Other two interesting uses of PLS-DA applied to NIR
data were conducted by Ejeahalaka et al. [62] on cow’s milk and by Di Donato et al. [63]
on donkey’s milk. DD-SIMCA is a one-class classification algorithm proposed in 2017 by
Zontov [64]. The algorithm in the first phase is similar to the SIMCA algorithm, with a
preliminary PCA. Then the PCA results were used to calculate the orthogonal distance and
score distance for each object. These distances were then used to individuate a threshold
limit value of the classification area. New samples were then classified in the orthogonal vs.
score plot and assigned to the class when under the acceptance area defined for a given
alpha value. Wang [65] evaluated four different classification methods (RE, LDA, SVM,
and kNN) when dealing with milk authentication by infrared spectroscopy. To evaluate
the best algorithm, the means of precision, accuracy, recall (true positive divided by the
sum of true positive and false negative), and another parameter F1 (that together evaluate
precision and recall) were calculated for each performance evaluation of all classes and
for every classifier. The results indicate that RF had the best performance. In a work
about image analysis [66] applied to recognize goat’s milk (as a target class) from other
milk species adulterants, two methods were tested: OC-PLS and DD-SIMCA. In this case,
OC-PLS was not recommended and DD-SIMCA was preferred. Chen [67] used ELM
and extreme ELM (EELM) to classify six types of milk of different brands analyzed by
NIRS. ELM is a regression and classification algorithm. It is simple and efficient and
extremely fast. Vargas [56] applied PLS on the voltammetric characterization of fresh cow’s
milk and from milk powder, using as Y the percentage of adulteration with reconstituted
milk. Potocnik [68] in his paper used DA and OPLS-DA to elaborate data from isotopic
ratios on types of milk to verify their geographical origins. Similarly, Xie [69] performed
similar work on geographical discrimination of milk from Mongolia using isotope ratio,
elements, and amino acids composition. In this paper, the chemometric analysis was
performed with OPLS-DA. Tommasini [70], again using NMR, in this case, to classify
the breed of cow, used PLS-DA analysis to distinguish between milk from different cow
breeds, Friesian vs. autochthonous. PLS-DA and OPLS-DA, together with HCA and RF,
were also cited by Sundelkide [71] to elaborate on the NMR spectra acquired in order to
underline the importance and potentiality of the milk metabolomics studies. Segato et al.
also used NMR to discriminate the metabolic profiles of different pasture-based alpine
Asiago PDO cheeses [72]. To conclude the NMR overview, Yanibada [73] reported the
application of OPLS-DA, preceded by an explorative PCA, to classify two groups of cows
by NMR metabolomics. In Table 3 a synthesis of the more relevant papers identified has
been reported.
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To summarize, excluding PCA (mainly used to preliminarily study the problem),
PLS-DA and OPLS-DA were the most used methods for classification in the recent papers
on milk classification. The second most used have been SIMCA and DD-SIMCA, followed
by many other various methods. The use of some classification techniques more than
others could be attributed to different reasons: PLS-DA and OPLS-DA, the more used in
the reviewed articles, are more known compared to some other more specific methods. The
main reason for their popularity is probably linked to the fact that they are implemented in
a lot of user-friendly commercial software, mainly used by non-expert users. It is advisable
to use PLS-DA in place of LDA when the number of variables is higher than the number of
samples and when the predictors are correlated. When classes are not balanced (i.e., the
number of samples for each class is very different), better results are often obtained by class-
modeling techniques, such as SIMCA. The choice of the proper classification method should
also be influenced by their parametric or non-parametric nature: the former, such as LDA,
assumes that the data follow a particular statistical distribution, so the model calculation
becomes the calculation of the parameters of these distributions. The disadvantage of
parametric techniques is that they can lead to big mistakes when starting assumptions
fail to be verified. The advantage is that they make it easier to obtain the probability of
obtaining a correct classification. On the other hand, non-parametric methods do not
explicitly assume no statistical distribution (e.g., SIMCA, kNN, etc.).

Table 3. Recent studies (since 2018) involving classification methods related to milk adulteration.

Classification

Type of Milk Target Analytical Method(s) Method(s) Reference
Cow Classification NIRS EELM Chen [67]
Organic milk .
Cow geographical indication Tsotope ratio OPLS-DA Chung [58]
Cow Authenticity NMR CDA Segato [72]
. . . OC-Classifier, OC-PLS, .
Goat Adulteration detection Image analysis DD-SIMCA dos Santos Pereira [66]
Cow Quality Chemical analysis, NIRS PCA, SIMCA, PLS-DA Ejeahalaka [62]
Various Authenticity NIRS, EDXRF DD-SIMCA, PLS-DA, Galvan [61]
C-SvC
Cow Adulteration IR LS-SVM Jin [59]
Cow Adulteration NIRS PCA, PLS Kamboj [57]
Milk powder Adulteration Raman PCA, SIMCA Karunathilaka [60]
. . . ANOVA, DA, OPLS-DA, .
Cow Geographical origin Isotope ratio DD-SIMCA Poto¢nik [68]
Cow Authentication Chemical analysis PCA, OPLS-DA Vargas [56]
Cow Authentication FTIR PCA, kNN, SVM, RE, Wang [65]
LDA
Cow Traceability Chemical analysis, PCA, OPLS-DA Xie [69]
isotope ratio,
Cow Quality, breed NMR PLS, PLS-DA Tomassini [70]
classification
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Table 3. Cont.
Type of Milk Target Analytical Method(s) Classification Ref
ype of Mi arge nalytical Method(s Method(s) eference
. PCA, PLS-DA, OPLS-DA, .

Cow Quality NMR HCA, RF Sundekilde [71]
Cow Quality NMR PCA, OPLS-DA Yanibada [73]

Donkey Authentication NIRS PLS-DA, VSN, ASCA Di Donato [63]

Abbreviations: ANOVA = analysis of variance, ASCA = ANOVA simultaneous component analysis,
CDA = canonical discriminant analysis, C-SVC = C-classification support vector classifier, DA = discriminant
analysis, DD-SIMCA = data-driven soft independent modeling of class analogy, EELM = ensemble of extreme
learning machine, HCA = hierarchical cluster analysis, k-NN = k-nearest neighbors, LS-SVM = least squares
support vector machine, LDA = linear discriminant analysis, OC = one-class classifier, OC-PLS = one-class
partial least Squares, OPLS-DA = orthogonal partial least squares-discriminant analysis, PCA = principal com-
ponent analysis, PLS = partial least squares, PLS-DA = partial least squares-discriminant analysis, RF = random
forest, SVM = support vector machine, VSN = variable sorting for normalization.

2.3. Regression

Multivariate regression is widely used to quantify the concentration of adulterants in
food matrices. In Table 4, the papers presented for this review in the last five years, with
reference to regression methods, are listed.

The most popular multivariate regression method is certainly partial least squares
(PLS) [74], as it is relatively simple to use and is implemented in a lot of statistical soft-
ware, including instruments software (e.g., Opus). For this reason, in the last five years,
PLS regression was used in more than three-quarters of the works on milk adulteration.
The main advantage of PLS is its ability to handle data with many more variables than
samples, specifically when these variables co-vary. The algorithm performs a simultaneous
decomposition of both X (descriptors matrix) and Y (response matrix) matrices with the
aim to maximize the covariance between the two matrices, computing at the same time
latent variables (LVs) that explain the maximum variability of X. Due to its features, PLS
is often used to treat spectral data, especially in the infrared region. In fact, with respect
to other methods, such as chromatography, near- and mid-infrared spectroscopies (NIR
and MIR, respectively) offer numerous practical advantages: they are fast, non-destructive,
non-invasive, and relatively cheap techniques. Moreover, sample preparation is usually
absent or extremely simple. The only drawback is the complex interpretation of the spectra,
especially for NIR spectra, where differences in overtones and combination bands are
difficult to detect and interpret. For this reason, the use of a simple multivariate tool for the
extraction of relevant information is essential.

NIR spectroscopy is used to detect and quantify different kinds of adulterants: the
most common and simple ones, such as water [57], urea [75-77], melamine [76-78], and
sugar [79], and less common ones, such as sodium dodecyl sulfate (a milk surfactant) [80]
or different vegetable oils added to yogurt [81]. Moreover, NIR spectroscopy is also used
to detect specific adulterants for particular matrices as showed by Pandiselvam et al.,
where coconut milk residue was used to adulterate desiccated coconut powder [82], or by
Di Donato et al., which used cow’s milk as an adulterant in goat’s milk samples [63].

MIR spectroscopy is also widely used coupled with PLS regression to detect and
quantify adulterants in different milk samples. In several works, MIR was used to quantify
the amount of cow’s milk in more expensive milk types: buffalo [83,84], goat [85], and
horse [86]. It was used to analyze coconut milk samples adulterated with water [87]. MIR
spectrometers equipped with an ATR cell were employed to detect soya bean oil and
common sugar [88], sucrose [89], and formalin [13] in cow’s milk. The use of an ATR cell
allows for minimizing sample preparation, as the penetration depth in the sample of IR
radiation does not depend on sample thickness. Obviously, NIR and MIR spectra have to be
propetly pre-processed to minimize noise, scattering, and other undesirable contributions.
Hence, it is good practice to build PLS models applying different combinations of pre-
processing methods and compare the results to see which one provides the best prediction
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performance. For instance, Temizkan et al. [81] tried different preprocessing options: nor-
malization, smoothing, first derivative, second derivative, multiplicative scatter correction
(MSC), and standard normal variate (SNV). These, together with the baseline correction,
are the most common row pre-processing method used to treat NIR and MIR spectra.

Another spectroscopic technique coupled with PLS in the milk adulteration field is
Raman spectroscopy, whose spectra rely on the light scattering of vibrating molecules.
Raman spectroscopy was employed to find maltodextrin, sodium carbonate, and whey
in bovine milk [90,91], as well as margarine, palm oil, and corn oil in cheeses made using
adulterated milk samples [92,93].

Although in the majority of papers PLS regression is applied to vibrational spectro-
scopic data, in recent literature, there are also many applications with different techniques.
Cyclic voltammetry, using a graphite/SiO, hybrid-working electrode, was employed to
quantify reconstituted skim milk in cow’s milk [11], electrochemical impedance spec-
troscopy was used to measure urea [36] whereas face fluorescence spectroscopy and laser-
induced breakdown spectroscopy assessed the amount of bovine milk in buffalo milk [90]
and ovine and caprine milk [94], respectively. Moreover, time-domain NMR [12] and
opto-electronic nose [40] quantified formaldehyde in bovine milk. The versatility of this
technique is one of the reasons why its presence is predominant among papers that deal
with multivariate regression. Actually, in many papers, PLS is frequently compared with
other two multivariate regression methods, i.e., multiple linear regression (MLR) [95] and
principal component regression (PCR) [96]. Jaiswal et al. [85] and Gongalves et al. [84]
showed comparable results between PLS and MLR in quantifying adulterants with MIR
spectroscopy. Conceigao et al. [97] used MLR coupled with MIR spectroscopy to assess
the amount of sodium bicarbonate, sodium hydroxide, hydrogen peroxide, starch, sucrose,
and urea in cow’s milk. However, the use of MLR is not recommended if the data matrix is
ill-conditioned, namely has more variables (e.g., wavenumbers) than samples, and if those
variables co-vary, as the regression model would be unstable. On the other hand, PCR
is a more reliable method, since the variables are orthogonal (the ill-conditioned matrix
problem has been overcome) and only relevant information in the original data matrix
is considered, being based on PCA. Unlike PLS, in PCR the information in the response
matrix (Y) is not taken into account when choosing the number of PCs. Moreover, for this
reason, PLS has been habitually preferred to PCR. In some of the papers inspected for
this review, these two methods were compared: on three occasions PLS provided the best
prediction performances [13,86,89], whereas in one case the results obtained by the two
methods were similar [87].

Throughout the years, the PLS algorithm has been modified by many authors to add
features and make it more suitable for specific tasks (e.g., multiblock analysis, locally
weighted models, etc.). One of the most famous extensions of PLS is orthogonal PLS
(OPLS) [98], which removes the systematic variation from X that is not correlated (orthogo-
nal) to Y. It was used by Delatour et al. [99] on data collected from eight different NIR and
MIR miniature sensors to measure the amount of semicarbazide hydrochloride, ammonium
sulfate, and cornstarch in skimmed milk powder [96]. Another different use of PLS regres-
sion, synergy interval PLS (siPLS) [100], has been used by Vinciguerra et al. to quantify
cheese whey in cow’s milk samples through MIR spectroscopy [38]. In this method, the MIR
spectra were divided into different intervals (8, 16, 32, 64, and 128) with the same number
of variables, applying a PLS on each interval. Furthermore, combinations of these intervals
(two by two, three by three, and four by four) were also explored and PLS was performed
for each combination. Hosseini et al. used the genetic algorithm PLS (GA-PLS) in order to
perform an efficient variable selection before calculating the regression models [80]. Lastly,
unfolded PLS with residual bilinearization (U-PLS/RBL) [101] coupled with fluorescence
spectroscopy was used by Barreto et al. to quantify melamine in bovine milk [102]. Actually,
U-PLS/RBL belongs to the family of multiway methods, similar to other techniques such
as parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least
squares (MCR-ALS), all based on obtaining pure profiles of the components present in
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a mixture system. They are also called second-order calibration algorithms, as they can
operate by decomposing the 3-way data matrix and then performing a regression between
the resolved relative concentration of the constituents of interest and the corresponding
reference concentration. Fluorescence spectroscopy provides excitation-emission matrices
(EEMs) that can be resolved by those algorithms. According to de Aratdjo Gomes et al.,
U-PLS/RBL is particularly suitable to deal with fluorescence data, as it is able to model the
inner filter effect that occurs in chemical fluorescence spectroscopy analysis systems [103].
Barreto et al. also used PARAFAC to quantify melamine, obtaining slightly better results
than the ones achieved with U-PLS/RBL. PARAFAC [104] is a generalization of PCA to
higher-order matrices, and its models furnish parameters (loadings) that describe the vari-
ability in the samples. Hence, MCR-ALS [105] was used by Zhao et al. on NIR data to
compute calibration models for the simultaneous quantification of multiple adulterants
(urea, melamine, and starch) [77]. In this case, MCR-ALS was used on classical 2-way data
(i.e., NIR spectra), but the assumptions made earlier are valid. In general, MCR decomposes
the data matrix into a bilinear model constraining the components’ profiles to assure that
the solution makes sense not only from a statistical point of view, but also chemically. ALS
optimization explores the possible solutions through an iterative least square calculation
until convergence is achieved.

Moving forward, some other less popular (but no worse) applications of multivariate
regression techniques employed in the area of milk adulteration than PLS and its extensions
can be found in the literature. Artificial neural network (ANN) regression methods, namely
generalized regression-NN [106] and back propagation-ANN [107], were used to assess
the amount of melamine, wheat flour, and corn flour in milk powder samples [108] and
acidity in cow’s milk samples [109], respectively, both through Raman spectroscopy. Least
squares support vector machine (LS-SVM) [110] was applied on both NIR and dielectric
spectroscopic data to quantify mature bovine milk in colostrum samples [111] and on
MIR data to assess cheese whey in bovine milk [38], providing better results than PLS.
A generalized linear model with lasso regularization (GLM-Lasso) [112] coupled with
MALDI-TOF mass spectroscopy provides better results than PLS too, in this case, to detect
bovine milk in caprine and ovine milk [113]. Ehsani et al. applied boosted regression
tree (BRT) [114] on NIR spectra collected by a portable spectrometer for a fast water
quantification in cow’s milk [115]. The presence of water in cow’s milk was also inspected
by Asefa et al. [116], who proposed a procedure based on digital image analysis coupled
with extreme gradient boosting (XGBoost) [117].

To sum up, the most-used technique for multivariate regression in the field of milk
adulteration is by far PLS, as it is relatively simple to use and is present in much commercial
software. In most cases, proper use of PLS regression is enough to obtain good prediction
performances, but in the case of a more complex data structure, it is worth trying more
advanced techniques. The use of the many extensions of PLS can be useful to increase the
signal-to-noise ratio, to compute prediction models only with the most relevant variables,
or to deal with 3-way data. More expert users sometimes use other kinds of multivariate
regression methods, such as ANN or SVM. In some cases, they provide slightly better
results than PLS, but in many other cases, the results are comparable.
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Table 4. Recent studies (2018-2022) involving regression methods related to milk adulteration.

Type of Milk Target Analytical Method(s) Regression Method(s) Reference
Cow milk Water NIR PLS [57]
Cow milk Urea NIR PLS [75]

Fat-filled milk powder Melamine, urea NIR PLS [76]

Goat milk powder Melamine, urea, starch NIR PLS, MCR-ALS [77]

Milk powder—infant Melamine, vanillin NIR HSI PLS [78]
formula

Cow milk Sugar NIR PLS [79]

Cow milk Anionic surfactant (SDS) NIR, MIR (ATR) PLS, GA-PLS [80]

Margarine, sunflower oil,
Yogurt corn oil, hydrogenated NIR, MIR PLS [81]
vegetable oil

Desiccated coconut Coconut milk Vis-NTR PLS 82]
powder

Donkey milk Cow milk NIR PLS [73]

Buffalo milk Cow milk MIR PLS [83]
Buffalo milk Cow milk MIR PLS, MLR [84]

Goat milk Cow milk MIR, Raman PLS [85]
Horse milk Cow milk, goat milk MIR PLS, PCR [86]

Coconut milk Water MIR PLS, PCR [87]
Cow milk Soya bean oil, sugar MIR (ATR) PLS, MLR [88]
Cow milk Sucrose MIR (ATR) PLS, PCR [89]
Cow milk Formalin MIR (ATR) PLS, PCR [13]
Cow milk Maltodextrin, sodium Raman PLS [90]

carbonate, whey
Cow milk Whey Raman PLS [91]
White ultra-filtered Margarine, pal{n oil, and Raman PLS [92]
cheese corn oil
Cow milk Reconstituted skim milk Cyclic voltammetry PLS [11]
powder
Cow milk Urea . Electrochemical PLS [36]
impedance spectroscopy
Buffalo milk Cow milk Face fluorescence PLS [93]
spectroscopy
. . . . Laser-induced
Ovine and caprine milk Cow milk PLS [94]
breakdown spectroscopy
Cow milk Formaldehyde TD-NMR PLS [12]
Cow milk Formaldehyde Opto-electronic nose PLS [40]
Sodium bicarbonate,
. sodium hydroxide,
Cow milk h . MIR (ATR) MLR [97]
ydrogen peroxide,
starch, sucrose, urea
Semicarbazide
Skimmed milk powder hydrolchlonde, NIR (mlruatlure spectral OPLS 99]
ammonium sulfate, devices)
cornstarch
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Table 4. Cont.
Type of Milk Target Analytical Method(s) Regression Method(s) Reference
Cow milk Whey MIR PLS, siPLS, LS-SVM [38]
Cow milk Melamine Fluorescence PARAFAC, U-PLS/RBL [102]
spectroscopy
Milk powder Melamine, wheat flour, Raman GRNN [108]
corn flour
Cow milk Acidity Raman PLS, BP-ANN [109]
Colostrum Mature cow milk NIR, dielectric PLS, LS-SVM [111]
spectroscopy
Ovine m‘ﬁﬁ;‘d caprine Cow milk MALDI-TOF-MS PLS, GLM-Lasso [113]
Cow milk Water NIR (portable) BRT [115]
Cow milk Water Digital image analysis XGBoost [116]

SAMPLING,

O...
Sampling strategies

- Numerosity o
- Representativeness
- Sample handling

Data quality

- Four dimensions .
of data quality ~‘

Missing values, outliers,
noise and misalignments

Abbreviations: ATR = attenuated total reflection, BP-ANN = back propagation artificial neural networks,
BRT = boosted regression trees, GA-PLS = genetic-algorithm partial least squares, GLM-Lasso = generalized
linear model with lasso regularization, GR-NN = generalized regression neural networks, HSI = hyperspectral
imaging, LS-SVM = least squares support vector machine, MALDI-TOF-MS = matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry, MCR-ALS = multivariate curve resolution alternating least
squares, MIR = mid-infrared, MLR = multiple linear regression, NIR = near-infrared, OPLS = orthogonal partial
least squares, PARAFAC = parallel factor analysis, PCR = principal component regression, PLS = partial least
squares, siPLS = synergy interval partial least squares, TD-NMR = time-domain nuclear magnetic resonance,
U-PLS/RBL = unfolded partial least squares with residual bilinearization, Vis = visible, XGBoost = extreme

gradient boosting.

3. Steps for Development and Validation of a Chemometric Approach

It is difficult to define a precise pipeline for the correct development and validation
of a chemometric approach for authentication purposes. This chapter tries to face the
fundamental steps, covering the sampling procedure, considering the analytical source of
data, the model calibration and validation, and the main figure of merits useful for model

evaluation (Figure 2).

AUTHENTICATION
PROBLEM DEFINITION

MODEL Cross-validation External validation
CALIBRATION -
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Regression —
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VALIDATION PROCEDURE
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Specificity

Figure 2. Schematic representation of the main steps useful to develop and validate a chemometric approach.
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3.1. Correct Sampling Procedure
3.1.1. Sampling Strategies

No matter the chemometric model to be performed, according to the developed
strategy goal, it is mandatory to perform a proper sampling strategy. Behind the word
“proper” there are a set of extremely challenging standpoints that should consider the nature
of the sample, the statistical representativeness, the analytical chemistry principles, and
the quality and the management of the obtained datasets. Sampling procedures are very
important to assure the robustness and reliability of the developed chemometric models.
However, no well-defined sampling protocols exist so far for fingerprint techniques.

When addressing the nature of the sample, a relevant emphasis should be placed
on the heterogeneity of a food matrix, together with the wide possibility of frauds, from
the adulteration, i.e., the presence of an undeclared substance to the geographical origin
discrimination, passing through the substitution of ingredients or commodities. In any case,
the source of the samples, i.e., the provider, must be extremely reliable when addressing an
authentication issue. They must be of provable provenance to assure they are authentic or
not; thus, it would be advisable to obtain them from the producer rather than buying at
retail markets [21].

For instance, the collection of commercial samples from local grocery stores to study
goat’s milk adulteration by cow’s milk [85] could be inappropriate. Indeed, the commercial
milk already passed to technological operation (heat treatments, fat separation, homoge-
nization); thus, it would be more representative of real fraud to mix the different types of
milk before any unit operation. This is what was done by Spina et al. [83], who described
in detail the farmers, the breeds, and the sampling period and batches. Furthermore, they
strengthened their experimental plan by planning a randomized pairing of cow and buffalo
milk to obtain 17 adulteration levels.

Pandiselvam et al. [82] also adopted the strategy of ad hoc sample preparation. They
prepared different adulterated samples by adding coconut milk residue to desiccated
coconut powder. Even though the sample numerosity was quite high, i.e., 20 samples
prepared for ten adulteration levels (from 0 to 100% w/w), it seems that the raw materials
used to prepare the standard samples were always the same, thus not covering all the
possible sources of variability. The variability of simulated adulterated samples was better
covered by de Oliveira Mendes et al. [88], who considered six samples of milk from
different producers to be adulterated with sweet whey prepared at a laboratory scale at
eight adulteration levels.

From a statistical standpoint, the size and the representativeness of the sample col-
lection must be considered [32] to obtain samples spanning all the sources of variability
associated with the application of the model [118]. Different strategies described by the
theory of sampling (ToS) could be followed to guarantee representative sampling and
appropriate analytical quality [119]. A power analysis could be performed to establish the
adequate number of samples required and to reduce the technical and biological variability.
When a wide variability should be covered in a limited set of measures, design of experi-
ments (DoE) techniques could be applied to obtain statistically valid data; the advantages
of these approaches are well described by Peris-Diaz & Krezel [120].

In the literature there are examples of poor sampling strategies; for example, there are
works considering a number of samples that is too low to be representative from both a
technological /chemical and statistical point of view [12,38,87].

From an analytical point of view, the sample handling in terms of conservation prior
to analysis, preparation, and analytical replicates should be faced to circumscribe the
intrinsic variability. This is quite a challenging issue which has been clearly pointed out by
Kemsley, et al. [121], and too often poorly described in the revised literature.

Finally, to sum up the useful sampling strategy to be adopted, the approach proposed
by the “Five Ws” iterative interrogative technique could be winning. The first W to be
clearly set is the goal of the developed approach, i.e.,, why, and the definition of the
authentication issue to be addressed. Then, it is appropriate to cover the personnel and
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instrument variability (who), together with the definition of sample unit, the number of
samples, handling procedure, representativeness, balanced /not balanced datasets, and
possible development/availability of trusted samples (what). Moreover, the range of time
(when)—which could refer to seasons, harvesting years, vintages, product aging, and so
on—should be adequately covered. Finally, the investigation of the effects of the area of
origin and/or the processing steps (where) should be faced.

3.1.2. Data Quality

The quality of the collected raw data strongly influences the data processing and
the model quality. This is highly dependent on the instrumentation characteristics and
related analytical methodology. The review by Szymanska [122] deeply described the four
main dimensions of data quality (accuracy, completeness, timeliness, and consistency) and
their characteristics. The most common artifacts generated by quality collection failures
are missing values, outliers, noise, and misalignments. According to the type, there are
strategies for their detection and deletion, substitution, or correction [122]. However, in
most of the literature, little attention is given to the description of these strategies, which
are hopefully applied to assess and monitor the quality of the collected data before the
chemometric model construction.

3.2. Pre-Processing

An exception is the description of data pre-processing, which is generally reported
as a winning strategy to remove irrelevant sources of variation, such as instrumental and
experimental artifacts due to the employed analytical method. However, there are still
authors who miss the preprocessing description, such as Kamboj et al. (2020) [57], or just
mention an automatic strategy applied by the software. Different preprocessing strategies
are available; in-depth information is given by Engel et al. [123]. Every specific dataset
has specific features; thus, the definition of a rule of thumb to define which preprocessing
strategy is more appropriate is impossible.

In any case, the spectroscopic data requires a pre-processing step before the statistical
data analysis to remove or minimize variability in the spectra not related to the sample’s
characteristics. It will be clear that pre-processing cannot generate information, but only
help to extract proper information already existing in the data. Moreover, incorrect use of
pre-processing may cause a loss of information. Pre-treatment should be well calibrated to
minimize the effects of “noise” such as optical phenomena, effects of temperature changes,
light scattering, baseline shift or trends, and so on.

Most of the revised works, especially the ones dealing with infrared data, apply
different preprocessing strategies, such as smoothing, standard normal variate (SNV) or
multiplicative scatter correction (MSC), and derivatives alone or in combination [87,99,124].
Later on, they select the most appropriate one to solve the specific adulteration issue based
on the performance criteria obtained in the developed models. However, it is important
not to apply all of them by default without looking back at their effect on the data. Indeed,
it should be considered that an inappropriate transformation can cause alterations to data
quality, driving relevant consequences on model outcomes. A must-read tutorial concerning
pre-processing has been written by Oliveri et al. [125].

Between the papers explored, some different approaches have been found in NIR
pre-processing. Ejeahalaka [62] performed a comparison between two different approaches:
first, no pre-processing at all, and second, extended multiplicative signal correction (EMSC)
on a selected part of the spectrum. In Galvan [61] some different pre-processing methods
were tested before a mean centering for all: (1) raw data, (2) Savitzky—Golay smoothing
(third-order polynomial and 21 window points), (3) standard normal variate (SNV), (4) mul-
tiplicative scatter correction (MSC), (5) first and second derivative with Savitzky—Golay
smoothing, (6) SNV plus first and second derivative, and (7) MSC plus first and second
derivative. At the end, the best performance (evaluated by RMSE of the calculated models)
was obtained by the application of the first derivative with smoothing (pre-processing 5).
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Wang [65] used three pre-processing steps: (1) mean centering, (2) first, and (3) second-
order Savitzky—Golay derivative, selecting at the end the first-order derivative as the better
pre-processing method.

Kamboj [57] did not indicate which pre-processing was used. Not mentioning the
pre-processing step should be avoided because this step implies some assumptions on
the nature of the data set variability, and it is crucial that these assumptions are well
understood and appropriate. An innovative approach was reported by Di Donato [63] in a
study on donkey milk. NIR data were used to identify and quantify cow adulteration in
expensive donkey milk. In this case, the pre-processing was done by variable sorting for
normalization (VSN), a recent scatter correction technique [126] that estimates the weight
of wavelengths that are or are not related to scattering effects instead of that related to the
response of interest. Not-related wavelengths were not considered in the successive step.
In this way, it is possible to obtain an improvement in signal and model interpretation.

Karunathilaka [60] in an application of Raman spectroscopy cites different spectral
pre-processing to remove fluorescence and laser fluctuations, including Savitzky-Golay
first and second derivatives and standard normal variate (SNV), choosing at the end the
second derivative.

3.3. Data Reduction

The analysis of spectroscopic results is a typical example in which the dimension of
the analytical part of the dataset (n columns) is much higher than the number of samples
(m rows), normally thousands of columns vs. tens or hundreds of rows. So, to avoid
elaboration problems and to select just the variables relevant for the statistical analysis, a
variable selection step is often evaluated. Reviewing in detail all the possible algorithms is
out of scope, considering their relevant number; thus, here we only report the ones used
in the evaluated papers. Between them, just a few used a data reduction algorithm. For
example, Chen [67] on NIRS data used an extension of the ReliefF filter algorithm [74].
ReliefF filter works on multiple classes, building a weight vector that indicates for each
feature (wavelengths in the NIRS case) how important it is to explain the differences
between samples of different classes. Wang [65] instead used just an observation of the first
two PCA loadings as the criterion to understand relevant wavelengths, but it was unclear
if just the relevant wavelengths in the subsequent classification step were used.

3.4. Use of Robust Validation Procedures

Before detailing the possible validation procedures, it is essential to consider the quality
of the calibration. Taking for granted that the data representativeness and numerosity must
be guaranteed according to the defined purpose, it is relevant not to overfit or underfit the
model calibration.

Model validation is frequently addressed by iterative validation procedures, such
as cross-validation. In the considered papers, the most used cross-validation strategy
is leave-one-out, to whatever degree it should be avoided for its over-optimistic results,
especially in the case of exhaustive sampling procedures [13,75,83]. Indeed, it means
that during the iterative recalculation of the model just one sample at a time is removed;
this way the robustness of the model is poorly investigated. None of the work internally
validates models with other iterative procedures such as Monte Carlo, Jackknife, holdout,
or bootstrapping.

The use of internal validation is often justified when a low number of samples is at
disposal. In these situations, it can be unaffordable to exclude 30-40% of the collected data
to be used as a test set. Westad and Marini [127] suggest this strategy when the number of
samples is smaller than 40.

Moreover, the internal validation procedures are fundamental insights to study
the model stability, identify the main sources of variation, and improve model perfor-
mance, i.e., by setting model dimensionality [128]. This was the approach followed by
Ejeahalaka et al. [76] for both SIMCA and PLS model development. It is important to notice
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that the correct model dimensionality is fundamental for predicting the test set; if the model
dimensionality is incorrect, the performance criteria/figure of merit may not be a good
estimate of future samples, as reported by Westad and Marini [127]. For instance, the
results obtained from internal validation give insights about model overfitting due to the
selection of a huge number of components/variables, which means fitting too much of the
data so that also the measurement noise is interpreted as a relevant effect.

Then, it is the time to use robust, mandatory validation procedures in order to guaran-
tee reliable and reproducible results. Usually, the available samples are divided into two
subsets: a training (or calibration) set to be used for building the model, and a test set used
to evaluate its validity [20] in terms of quality and generalization ability [129]. The division
should guarantee that the calibration set covers the whole variability domain to obtain
reliable results. The dataset split could be performed arbitrarily—according to the acquired
knowledge of the data, randomly, or designed by sampling strategies—such as the Kennard
and Stone algorithm, Duplex, D-optimality criterion, and K-means or Kohonen mapping;
for more details about the differences among the strategies and their effects refer to Westad
and Marini [127].

Infrequently, the experimental structure is considered for data splitting. This was
the case for Genis et al. [92] who considered 15 concentrations of fat in the calibration
set, and 11 concentrations of fat as validation data set when developing methods for the
identification of foreign lipid types and adulteration ratio in milk. Most of the revised
papers apply random sample selection to build the test set considering from 40 to 20% of
the whole data. Among the designed sampling strategies, the Kennard and Stone algorithm
is the one mostly used. However, in many cases no information is provided for dataset
splitting, thus making the model robustness evaluation difficult.

In any case, it would be advisable to use a fully independent set of data to test the
model; for example, considering a different production batch, a different time of the year,
or a different harvesting year.

This option will represent the ideal procedure for model validation, anyway it should be
set to guarantee the samples’ diversity if possible, or at least their mutual independence [130].

If someone argues it is still not enough, we can reply as suggested by Westad and
Marini [127]: “Another way to overcome the problem of using the same criterion to select
a subset of variables and the error (i.e., cross-validation) is to divide the objects into a
calibration, a validation and a verification set, where the verification set is the “proof of
the pudding”™.

Each step of model development (i.e., calibration, cross-validation, and external vali-
dation) should be properly evaluated by diagnostic metrics (i.e., Figures of Merits), which
are discussed in the next session.

3.5. Performance Criteria/Figure of Merits

Before mentioning the performance criteria useful for regression evaluation, it is
important to have enough information to evaluate the quality of the collected data. In
particular specific information must be reported about the numerosity of the data, their
variability (i.e., mean, median, and standard deviation), the nature of the measure (instru-
mentation used), the removed outliers (and adopted strategy), the regression algorithm
employed (mainly PLS, OPLS, PCR, MLR, LSSVM, SWM, ANN, GLM-Lasso, and so on),
or the classification approach (mainly PLS-DA and OPLS-DA for the pure classification,
and SIMCA and DD-SIMCA for the class-modeling techniques), the characteristics of the
model development steps (calibration, internal- and external validation), the potential data
pre-treatments, and the selected components/latent variables [131]. Last but not least, the
information about the reference method employed to determine the specific compound
and the associated error, i.e., the standard error of the laboratory (SEL), or the standard
error of the test (SET), must be reported [131]. Having a clear idea of the variance covered
by the data and the error of the reference analysis would be crucial to judge the results
obtained by the regression model obtained. Indeed, the accuracy of chemometric model
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predictors depends on the repeatability of the reference methods and it combines both the
error of the reference measure and the error of the fingerprint analysis [132].

3.5.1. R? (Coefficient of Determination) and RMSE (Root Mean Squared Error)

The main effective tests used to evaluate multivariate regression models are R2, SEP,
and the RPD. R2, the coefficient of determination, is commonly used to evaluate regression
models in every development step. It is quite relevant to compare the different coefficients
of determination obtained in calibration, cross-validation, and prediction to understand
the model stability. It would be better to evaluate the R2 adjusted, which corrects for the
number of explanatory terms in relation to the number of data points.

The coefficient of determination (R?) is, in its most general definition, computed by:

SSpes

RP=1-
SStot

@M

where SS;es is the sum of squares of residuals for measurements y; and mean of observed
data () and SSyt is the total sum of squares.

The R? adjusted is:

n—1 55
" 1-k—1 SSi
where n is the number of observations and k is the number of independent variables.

However, the evaluation of R? alone is not exhaustive: there may be models with
high coefficient values, thus describing high data variability, but with high error, expressed
as root mean square error. To determine the reasonability of RMSE value it should be
compared to measurement errors such as reference method, reproducibility error, historical
data, and so on.

The RMSE is computed as:

RMSE = /Yy, — 97 @
i=1

where n is the number of observations, y; is the predicted value and ¢ is the actual value.
If divided by the standard deviation of the experimental values it is obtained the
normalized RMSE (nRMSE), which is an unbiased measurement for model predictions.
Good error estimation was performed for the models developed by Genis [92]. They
calculated the relative error of standard deviation (RSD) and relative error of prediction
(REP) together with the limit of detection (LOD) and the limit of quantification (LOQ) in
the regression model intended for fat authenticity in milk for ultra-filtered white cheese.
The use of both criteria, R? and RMSE, is relevant especially in cases of high range of
variability of the considered compound; in this case, it could be plausible to obtain a model
with higher R?, but accompanied by higher RMSE, if compared with a dataset with limited
range of variability. Generally speaking, “wide” calibration could be less precise, but more
dangerous is a too-narrow calibration which will be valid just for the case understudy [132].
The ratio between the SD and the RMSE is referred to as ratio percentage deviation
(RPD). It can be seen as a performance criterion like R?, even if RPD is a ratio of SD,
whereas R? is a ratio of variance. Its calculation is present in few papers dealing with
milk adulteration [13,82,84,89,91], but its use can give an immediate insight to evaluate
the predictions as well as to compare models predicting different compounds [132]. There
are different papers that give an interpretation of model performance according to RPD
values, among them the one of Williams [133] which defines six levels of performance.
In the considered works the RPD was always quite high. Indeed, very good prediction
capabilities were reached by the MLR model for buffalo’s milk authenticity verification
developed by Gongalves et al. [84]; the RPD was 7.9. When developing a PLS regression
on the same data it improved to 9.0, thus demonstrating the excellent performance of mid-
infrared spectroscopy to assess cow’s milk levels in buffalo’s milk. The model developed by

R =1 2

S
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Pandiselvam et al. [82] for the detection of adulteration with coconut powder also achieved
excellent performance, resulting in an RPD of 11. Excellent performances were found by
Balan et al. [13] when developing a PLS model to predict formalin in cow’s milk, reaching
an RPD above 8. Also, the RPD of the PLS models developed by Balan et al. [89] was high
(13.4), demonstrating an excellent prediction capability of sucrose in milk, thus being able
to detect sucrose addition intended to increase total solid content as well as the sweet taste.
Similarly, de Oliveira Mendes et al. [91] developed a PLS model for whey quantification in
raw milk by Raman spectroscopy obtaining an RPD of 13.9.

In any case, where RPD is not reported as a model parameter, it can be calculated
directly from the R? such as 1/—-(1 — R2).

Bellon-Maurel et al. [134] proposed to substitute RPD with a new index, RPIQ (ratio of
performance to IQ). The index is based on quartiles, thus better representing the population
distribution. They found out that, in sample sets with skewed distribution, the RPD is
not a good approach for SEP standardization according to population spread, whereas the
RPIQ index, in which standard deviation is replaced by IQ (=Q3 — Q1), better considers
the spread of the population. However, none of the works considered here applied this
figure of merit.

3.5.2. Specificity and Sensitivity, and Graphical Representations

The performance of classification models is assessed by verifying if samples belonging
to the class of interest are designated as true positives (TP) or false negatives (FN), as well
as if samples not belonging to the class of interest are labeled as false positives (FP) or
true negatives (TN) [20]. Just to recall the theory, TP defines the samples recognized to
belong to the class a priori assigned, FN are samples erroneously rejected, FP are samples
erroneously assigned to the class, and TN are samples correctly refused.

From their assignments, it is possible to calculate the sensitivity and sensibility of the
method. Sensitivity is the true positive rate (TPR), computed as TP /(TP + FN). Specificity
is the true negative rate (TNR), computed as TN/(TN + FP).

The graphical tool used to represent the performance criteria of a discriminant model
is the receiver operating characteristic (ROC) curves (Figure 3a). The plot represents a
two-axis Cartesian space, with the horizontal axis reporting FPR, and the vertical axis the
TPR. The dashed diagonal represents the performance of a random classifier. Two examples
of classifiers (green and red) are shown, representing good and scarce results, respectively.
The curves are built by connecting with a line the experimental outcomes. This tool is
useful to compare the performances of models obtained with different parameter settings,
such as the threshold value. A detailed analysis of ROC curves is discussed by Oliveri [20].

If discriminant methods can be applied only to solve multi-class situations, class
modeling can be used to address both multi-class and one-class problems.

When performing a class-modeling analysis it could be useful to evaluate the results
with a graphical representation, so Coomans’ plots (Figure 3b). In a two-class problem, the
two axes represent the distances of samples from the models of Class 1 (O) and Class 2
(star), respectively. The two dashed lines correspond to the critical acceptance levels for
each model at the defined confidence level (normally 95%). Samples of the two classes
are projected as scatter points, with coordinates indicating the relative similarity with the
two models in the four sectors defined in the plot. In sector 1 it is possible to find samples
accepted only by Class 1 (O); in sector 2 it is possible to find samples accepted only by
Class 2 (star). Both sectors include samples defined as TP for the a priori defined class.

In sector 3 are positioned samples accepted by both models; indeed, since models
for each class are independently built, class spaces may overlap. Lastly, in sector 4 it
is possible to observe samples rejected by both models, which highlights that the used
variables do not completely resolve the class space. They prevent the forced (but possibly
wrong) classification of samples that may occur in discriminant approaches [20].
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Figure 3. Graphical tools to represent classification model performance. (a) Receiver operating
characteristic (ROC) curves; (b) Coomans’ plot.

4. Methods for Rapid and On-Site Detection to Combat Milk Adulteration

The dairy industry as well as regulatory bodies are looking for simple and rapid
methods for the detection of milk adulteration [135]. Lateral flow immunoassays (LFIAs)
have been used as in situ screening tools to monitor food raw material quality as they
provide rapid results [136]. LFIAs have been developed, among other applications [137],
for the detection and quantification of mycotoxins [138], such as aflatoxin M1 [139]. LFIAs
have been also used for the detection of adulteration of milk with melamine [140]. In a
very recent study adulteration of cow’s milk with buffalo’s milk was detected by an on-site
carbon nanoparticle-based lateral flow immunoassay in 10 min, with the sensitivity of the
test being 5%, i.e., 5% adulteration of cow’s milk with buffalo’s milk, proving that this tool
is suitable for rapid detection of adulteration [135].

Another novel technology for the rapid detection of milk adulteration is DN AFoil.
It is a portable, fully self-administered, on-site DNA test that does not require the use of
expensive PCR equipment or laboratory setups to confirm the detection of milk adulteration
within a short period of time. The efficiency of the DNAFoil kit used to detect the vegetable
material in milk products (DN AFoil UniPlant) was confirmed using real-time PCR assays.
The results showed that using 24 pL. of DNAFoil UniPlant master mix, a 17.5 min reaction
time allowed the detection of 10% adulteration of liquid cow’s milk by wheat flour [141].

Moreover, an electronic nose (e-nose) system is being evolved for the falsification
detection of milk and dairy products in a reliable and rapid way [142]. This technology
avoids the disadvantages of chromatography, spectrometry, and chemical methods with
high costs and long cycle times [143]. Adulteration of bovine milk with formaldehyde,
based on aldehydes and ketones, was examined by electronic nose by Mostafapour et al. [40].
In another investigation, the identification of trace amounts of detergent powder in raw
milk using a customized low-cost electronic nose was achieved [144].

5. Conclusions

An overview of the different chemometric techniques (from clustering to classifica-
tion and regression applied to several analytical data) has been presented along with
spectroscopy, chromatography, and electrochemical sensors as well as rapid and on-site
detection devices in the fight against milk adulteration and fraud. HCA is the main rep-
resentative of the clustering methods. The classification of objects in groups depending
on their characteristics expressed as results of a set of measurements is one of the applica-
tions of chemometrics. Classification methods were distinguished into “discriminant” and
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“class-modeling” techniques. The classification statistical techniques mostly employed in
the last few years for milk applications were PLS-DA as a pure classification technique and
SIMCA as a class-modeling approach. Multivariate regression is widely used to quantify
the concentration of adulterants in food matrices and was deeply described.

Finally, the steps which should be followed to develop a chemometric model to face
adulteration issues were carefully presented with the required critical discussion describing
sampling strategies, pre-processing, data reduction, and use of robust validation procedures
along with performance criteria/figure of merits.

All chemometric methods, supervised and unsupervised, had fundamental results in
order to serve the goals of each research study. It cannot be concluded which chemometric
method is the best, as each dataset is unique and different. Robustness is usually more related
to supervised methods, but unsupervised methods are also important in the field. Usually,
the availability and access to each chemometric method are the variables that influence their
specific selection. With regard to the field of milk adulteration, it is clear that, in most cases,
the simplest methods are enough to obtain good results. However, even the simplest methods
are in some cases used improperly, making the results obtained inconsistent.
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