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ABSTRACT 
English 

Product quality is a "must" for every producer. For a food company like Barilla, where I work, 
this is very relevant because food is strongly linked to our emotions, our health, and our well-
being. Regarding this, in fact, the Company's 'Mission' is: “The joy of food for a better life. Bringing 
people closer to the joy of good food and making quality the choice for a better life, from each 
individual to the planet”. This explains why there is a strong commitment to every quality-related 
issue in the Company. 

One of the tasks of the Analytical Food Science Research and Development Laboratory, where 
I work, is to develop new methods and tools to assess the quality of our products, both in a 
research and industrial context. The use of chemometrics in my work has grown over time 
because of its great ability to extract information from large amounts of data and the ability to 
present this information concisely and effectively. In some cases, the use of chemometric 
techniques is essential and it is not possible to analyse the data in any other way. Whitin an 
industrial context that is rapidly moving toward an Industry 4.0 context, more and more data are 
being produced from all the sensors installed in production lines, data that need to be analysed 
real-time and evaluated in the appropriate way. 

"Pesto Genovese" is an Italian green sauce made mainly of basil and olive oil, cheese, pine 
nuts and garlic, has a unique flavour known and appreciated all over the world. In this Thesis 
project, Barilla's production of "Pesto alla Genovese" was used as a benchmark.  

The objective of the Thesis project was to develop analytical-chemometric methods suitable 
for evaluating (i) the characteristics of the main raw material, basil, and of the finished product, 
pesto, in the most rapid and effective way, in a quality laboratory analysis context; and, (ii) the 
characteristics of the raw material, the production intermediate and the finished product in order 
to develop models for real-time quality monitoring, in a process monitoring context. 

From the analytical point of view, approaches based on rapid, non-destructive techniques have 
been developed, such as electron nose (based on gas chromatography), near-infrared (NIR) 
spectroscopy in its various implementations including multi- and hyper-spectral imaging. 
Chemometric approaches, which are essential for efficiently extracting the information obtained 
through these techniques, have ranged from exploratory multivariate analysis, multivariate 
variance analysis methods, image analysis methods, to the development of multivariate control 
charts and predictive models, always evaluating appropriate pre- and post-processing methods. 

The work done has demonstrated, through several real cases, how chemometrics is an 
indispensable support for obtaining information that would otherwise not be accessible and can 
provide powerful tools for real-time control of critical raw materials, process, and product. 

Despite the specific topic related to pesto, the approaches developed are general and 
extensible to other products/processes in the food industry. The main challenge was to transfer 
the methodological know-how to this application context. 

In conclusion, the original idea of this industrial PhD project to build a "statistical tool" for my 
daily work was successfully realized. In addition, the cases studied in the production environment 
open potential new applications with a strong impact on improving the possibility of process 
control and designed quality. 
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Italiano 

La qualità del prodotto è un “must” per ogni produttore. Per un'azienda alimentare come la 
Barilla, dove lavoro, ciò è molto rilevante perché il cibo è fortemente legato alle nostre emozioni, 
alla nostra salute e al nostro benessere. Riguardo a ciò, infatti, la ‘Mission’ dell'Azienda è: “La 
gioia del cibo per una vita migliore. Avvicinare le persone al piacere del buon cibo e fare della 
qualità la scelta per una vita migliore, di ogni individuo e del pianeta”. Questo spiega perché in 
Azienda è presente un forte impegno verso ogni tema legato alla qualità. 

Uno dei compiti del Laboratorio di Ricerca e Sviluppo di Scienze Alimentari Analitiche, dove 
lavoro, è quello di sviluppare nuovi metodi e strumenti per valutare la qualità dei nostri prodotti, 
sia in un contesto di ricerca che in quello industriale. L'uso della chemiometria nel mio lavoro è 
cresciuto nel tempo grazie alla sua grande capacità di estrarre informazioni da grandi quantità di 
dati e alla possibilità di presentare queste informazioni in modo sintetico ed efficace. In alcuni 
casi, l'uso di tecniche chemiometriche è essenziale e non è possibile analizzare i dati in altro 
modo. In particolare, in un mondo industriale che si muove rapidamente verso un contesto 
Industria 4.0, vengono prodotti sempre più dati da tutti i sensori installati nelle linee di produzione, 
dati che necessitano di essere analizzati real-time e valutati nel modo appropriato. 

Il “Pesto Genovese” è una salsa verde italiana a base principalmente di basilico, olio d'oliva, 
formaggio, pinoli e aglio e ha un sapore unico conosciuto ed apprezzato in tutto il mondo. In 
questo progetto di Tesi, la produzione di “Pesto alla Genovese” Barilla è stata utilizzata come 
benchmark.  

Obiettivo del progetto di tesi è stato quello di sviluppare dei metodi analitici-chemiometrici 
adeguati a valutare: (i) le caratteristiche della principale materia prima, il basilico, e del prodotto 
finito, il pesto, nel modo più rapido ed efficace, in un contesto di analisi laboratorio qualità; (ii) le 
caratteristiche della materia prima, dell’intermedio di produzione e del prodotto finito allo scopo 
di  sviluppare modelli per il monitoraggio real-time della qualità, in un contesto di monitoraggio di 
processo. 

Dal punto di vista analitico sono stati sviluppati approcci basati su tecniche rapide e non-
distruttive, quali il naso elettronico (basato sulla gas-cromatografia), la spettroscopia nel vicino 
infrarosso (NIR) nelle sue diverse implementazioni incluso l’imaging multi e iper-spettrale. Gli 
approcci chemiometrici, fondamentali per estrarre in modo efficiente le informazioni ottenute 
attraverso queste tecniche, hanno spaziato dall’analisi multivariata esplorativa, metodi di analisi 
di varianza multivariata, metodi di analisi di immagini, allo sviluppo di carte di controllo multivariate 
e modelli predittivi, sempre valutando gli opportuni metodi di pre- e post- processing.  

Il lavoro svolto ha dimostrato, attraverso diversi casi reali, come la chemiometria sia un 
supporto indispensabile per ottenere informazioni che altrimenti non sarebbero accessibili e 
possa fornire potenti strumenti per il controllo in tempo reale delle materie prime critiche, del 
processo e del prodotto.  

Nonostante il tema specifico relativo al pesto, gli approcci sviluppati sono generali ed 
estensibili ad altri prodotti/processi dell’industria alimentare. La sfida principale è stata trasferire 
in questo contesto applicativo il know-how metodologico. 

In conclusione, l’idea originale di questo progetto di Dottorato industriale di costruire uno 
“strumento statistico” per il mio lavoro quotidiano è stata realizzata con successo. Inoltre, i casi 
studiati in ambito produttivo, aprono a nuove potenziali applicazioni con un forte impatto sul 
miglioramento della possibilità di controllo del processo e della qualità progettata. 
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1 INTRODUCTION 
1.1 Context 

 
The basic aim in food industry research and development (R&D) is to create new products and 

launch them successfully on the market. More specific aims, which are strategic for R&D, include: 
offering a wider choice of food items to the consumers; enhancing good sensory perception that 
makes food more appealing; improving nutritional value to meet dietary needs; improving food 
safety; adding convenience; and finally, reducing production costs which may allow product prices 
to be lowered. These beneficial outcomes can be reached either from constant gradual product 
improvement or by introducing a significant product change in a single step. The latter situation 
usually takes place when a new technology - crop, ingredient, process, storage – is introduced, 
as well as when a new understanding of consumer needs is achieved. 

R&D covers the total food system chain and needs multidisciplinary research because the 
scientific base of the food system takes roots in diverse disciplines such as chemical, biological 
sciences and food technologies. The objective is always consumer satisfaction, but in a broad 
meaning that includes not only the individual perception but also consumer health and safety 
together with the environmental sustainability and the well-being of those who produce the food. 

Consumer satisfaction is strictly linked to the products quality. So, in food industrial production, 
guaranteeing a constant quality of the final product is a must, especially for brands with a high 
reputation. A great effort is deployed to design processes robust enough to always ensure the 
desired quality, compensating for the “physiological” variability of food raw materials and 
processes. The concept behind this is the Process Analytical Technology (PAT) [1,2,3,4,5,6] 
linked to the Quality by Design (QbD) [7] paradigm, which is  based on the concept that the quality 
of the (food) products can and should be ensured by process design and control (i.e. integrated 
into the process) and not only provided by post-production quality testing. Of course, this does 
not eliminate the need to apply quality control protocols to continuously monitor the final product 
as well as the process itself [8,9].  

To set up a PAT-QbD framework two basic requirements must be met: i) the implementation 
of on-line sensors and ii) the use of multivariate data analysis tools to extract, integrate and utilise 
the information provided by process and analytical sensors and link it to the product quality 
assessment. This framework will allow reaching process knowledge, such as what is the natural 
process variability, what are the most critical factors to control, how to implement a process 
monitoring/control system [10].  

This reflects in food scientists and technologists facing, during the last 30 years, increasing 
massive amounts of data derived from the use of different measuring devices (e.g., instrumental, 
and sensory data), the integration of different analytical techniques and processes during the 
analysis and production of foods. Therefore, complementary disciplines and tools, such as 
statistics and chemometrics, experimental design (DOE), Multivariate data analysis (MVDA), 
multivariate statistical process control (MSPC), [11,12,13] add to the more traditional ones used 
in food science, and they have become essential in modern sciences and are an integral 
component in the day-to-day foods analysis. 

It became so clear how much is felt the need to have appropriate methods to characterize row 
materials as well as production intermediates and final products. Appropriate analytical methods 
should be fast, non-destructive and, possibly, easy-to-use, considering their use in industrial 
context, and unavoidably they should be supported by data analysis tools. 

In this context, the main aim of my thesis project was to assemble a “toolbox” of knowledge 
and chemometric techniques allowing me developing proper analytical methods in my Company, 
in both R&D and industrial contexts. 

To do that, some cases of study related to the production chain of green sauce “Pesto alla 
Genovese” were selected as benchmarks for applying chemometric tools and improve data 
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analysis strategies. Of course, the approaches used are extendable to any other products or 
production plant. 

“Pesto alla Genovese” [14] is a green sauce inspired to the “PESTO GENOVESE” [15,16] 
name that associates to the original recipe of Italian traditional Basil Pesto sauce done with the 
seven ingredients contemplated by the Consortium for protection and guarantee of the ancient 
regional heritage, which are: PDO Genovese basil, Extra virgin olive oil, PDO Parmigiano 
Reggiano (as well allowed Grana Padano variant), PDO Pecorino Sardo, Pine nuts, Garlic and 
Salt. It has a unique flavour known and appreciated all over the world. Hereafter we will refer 
always to “Pesto alla Genovese”. 

The industrial production of “Pesto alla Genovese” requires the accurate control of the raw 
materials quality. Basil is one of the main ingredients of pesto sauce, in terms of importance and 
quantity. Its evaluation is nowadays still done visually inspecting a small part of the huge quantity 
of incoming basil in the production plant. This could be a weakness considering how its 
characteristics like aroma, plant colour, leaves to stems ratio, and defects are subject to variability 
while being so relevant for the final product quality. 

Analogously for the final product “Pesto alla Genovese” the aroma (in large part influenced by 
the basil) is one of the key quality factors, together with the physical structure related to the 
product creaminess and colour. 

Therefore, there is a need to select appropriate tools, analytical and statistical, to proper 
characterize basil and pesto. Moreover, in an industrial contest, to minimize the number of routine 
quality analyses, it is also important together with assessing which analysis describes at best the 
product quality. 

 

1.2 State of the art 

The concept of process analytics (PA) was probably born since 1940s in Germany in chemical 
and petrochemical industries. In these industries the PA was implemented as chemical or physical 
analysis [17] of materials carried out during the process. In the following twenty years it was also 
adopted by nuclear power plants [18]. The concept of Quality by Design was [19] first proposed 
by Joseph M. Juran in 1992 in some publications, mainly in Juran Quality by Design [20]. The 
basic idea is that quality can be planned. It was primarily [21] adopted by the automotive industry 
and then the US Food and Drug Administration (FDA) used it for the process of drug discovery, 
development, and manufacturing in early 2000 [22], introducing the concept of Process Analytical 
Technology (PAT). 

In food industry the adoption of QbD had have a slower speed [23], probably due to the relevant 
difference respect to pharma industries in terms of profit margins and consequently on invested 
money in more sophisticated technologies. 

In a recent paper [24] the implementation of the QdB/PAT tools in food industry has been 
studied. Results indicates that “QdB/PAT bases and tool are still rarely implemented in food 
industry”. There could be many causes for this, including the preference of the companies to 
evaluate the quality of products with a more “classical” off-line analysis using laboratory-based 
analytical methods [25,26]. So, in the Perez-Beltran paper [5 cit.] just 23 studies of QbD/PAT 
application in food industry were found, and this although QbD/PAT tools have been 
demonstrated their huge impact in improving process understanding and control and saving 
money by reducing the number of non-compliant products that have to be discarded. 

 
In food context the definition of quality includes more than one criterion: authenticity (food 

authentic, traditional, or natural and not adulterated during production, processing, or storage) 
sometimes also expressed as “integrity”; function (i.e. cooks well); biological activity (positive or 
negative interaction with body’s functions); nutrition (contribution to a healthy diet); sensorial 
experience (smell, taste, texture) and ethical (environmental, social, and ethical aspects). 

Application of Quality by Design requires a change from the classical inferential monitoring and 
controls of simple parameters in production (pH, temperature, pressure), most often done one 
parameter a time, towards core parameters that requires real-time measurements during the 
production process, by on-line or in-line techniques followed by multivariate data analysis [27,28] 
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to consider correlation structure of the different parameters. Moreover, the advent of the Industry 
4.0, the so-called fourth industrial revolution, will open new scenarios. The term “Food processing 
4.0” has been proposed [24] to indicate the industrial revolution 4.0 also in the food production. 
The Food processing 4.0 concept denotes processing food in a high technologized environment 
in which more attention will be posed, not only to the classical quality parameter (already cited), 
but also to environmental impact of the production processing in terms of consumption of water, 
energy, wastes, etc. 

The application of Food Processing 4.0 requires, from one side a new production environment 
with an increased level of interconnections (sensors, devices, measurement systems, machinery, 
data storage), and from the other side a fundamental aspect of interdisciplinary in chemical, 
physical, digital, and biological fields [29]. Despite this huge re-conversion required and the fact 
that food industry has typically less money to invest compared to pharma or biotech, in the last 
ten years the interest in this topic is exponential increasing. In parallel, it became more and more 
necessary to dispose of appropriate analytical techniques and mathematical tools to be applied. 

 
In another study Djekic et al. [30], conducted a survey of more than 200 European industries 

and they found that even if they implemented some QbD approach, their applications consisted 
of rather simplified models that did not evaluate all the QbD aspects (i.e. safety conditions or 
environmental impact). Further, it was pointed out that the application of mathematical models in 
food companies has not yet been a matter of interest. The study also identified some reasons to 
explain the absence of multivariate tools in the food companies: limited background knowledge 
on modelling; software that is not user-friendly; instability of processes when introducing 
experimental tests; additional cost of new experiments to be planned in the initial model building 
phase (although money is saved in the long term and the balance would be favourable, there is 
little awareness of it); high confidentiality of the studies already carried out, which hinders the free 
publication of the results in scientific journals.  

The conclusion is that it is necessary to start spreading the QbD/PAT approach in a broader 
and more complete mode in the food industry context. 

This could be done faster and better by improving the cooperation between Academia and 
companies and a PhD Thesis like mine is a promising first step. 

 

1.3  Thesis aims and outlines 

During the PhD Thesis project different analytical methods and modelling strategies were 
applied to evaluate the characteristics of basil and pesto in the fastest and most effective way. 
Despite the specific benchmark, the developed approaches are general and extendable to other 
product/processes in the food industry. 

The need for proper analytical methodologies embraces two main areas: the R&D area in 
which the characterization and evaluation of new basil chemotypes or new pesto prototypes has 
been exploited, and the Production area, where the focus has mainly been on controlling the 
homogeneity of the production in time (possibly real-time). 

In both cases chemometrics is fundamental to efficiently extract proper information from 
analytical data. 
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In the scheme below (Figure 1-1) is shown a synthesis of the work undertaken during the three 
years. 

 
Figure 1-1. Summary of the global pathway 

The Thesis organization follows from this scheme; below a brief description of the content of 
the different chapters is illustrated. 

 
In the studies reported in Chapters 4 the focus has been on aroma characterisation of both 

basil and pesto since flavour is a very important food quality attribute for consumers. Several 
analytical techniques have been evaluated coupled with the application of proper data elaboration 
strategies and tools. In particular, two analytical techniques, such as Head Space Fast Gas 
Chromatography electronic-nose (HS-FGC-e-nose) and Head Space Gas Chromatography-Ion 
Mobility Spectrometry (HS-GC-IMS), were esteemed promising and applied to evaluate basil 
chemotypes in agronomical studies with the main aim of selecting the basil chemotypes holding 
the best aroma profile. The multivariate data elaboration was essential in both cases. 

 
In the studies reported in Chapter 5, several analytical techniques have been evaluated to 

assess the most effective one for discriminating pesto samples obtained with different basil types. 
In this case, data curation, pre-processing, and exploration prior to classification were 
fundamental. Moreover, data fusion at low level permitted to better understand which of the 
evaluated techniques were more effective. 

 
Chapter 6 was dedicated to imaging methodologies applied to both basil and pesto. Different 

imaging system were evaluated, from the simpler and common RGB imaging to hyperspectral 
imaging systems in the Vis and Near Infrared ranges. These techniques require a pool of 
chemometric techniques and image analysis tools to extract the diverse and relevant information 
aiming at interpretable results. 

 
Finally, Chapter 7 was dedicated to a feasibility study for real-time on-line quality assessment 

in the production plant. Here, chemometric tools for Multivariate Statistical Process Monitoring 
(MSPC) and predictive modelling were applied. The main practical issues to be faced were 
exploited and discussed. While, the on-line monitoring system needs to be improved, it has been 
possible to demonstrate, as proof of concept, the possibility to predict in advance final product 
chemical parameters from NIR on-line on a semi-finished basis. 

 
 

 
1 Guidance for Industry, PAT – A Framework for Innovative Pharmaceutical Manufacturing and 

Quality Assurance, Draft Guidance” available form www.fda.gov/cder/OPS/PAT.htm 
 

2 Davies T. “What is PAT?” Spectroscopy Europe April/May 2004; 16(2) 33-34. 
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3 Juran JM. "The Quality Trilogy: A Universal Approach to Managing for Quality". Quality 
Progress. 1986; 19(8): 19-24. 
 

4 Callis JB, Illman DL and Kowalski BR. “Process Analytical Chemistry” Analytical Chemistry. 
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2 ANALYTICAL METHODS 
 

2.1 E-nose (HS-Ultra Fast GC-FID) 

The e-nose technology simulates the human olfactory system. Typically, an electronic nose 
consists of an array of electronic chemical sensors (most often inorganic oxides) with partial 
specificity for some classes of volatile molecules. An appropriate pattern recognition system 
elaborates the overall signal and recognize the odour without any specific information on the 
perceived molecules [1]. In 2010 a breakthrough was made by Alpha MOS (Toulouse, France) 
that propose an e-nose based on the ultra-fast gas chromatography (UF-GC) technique [2]. This 
GC based e-nose (GC-FID e-nose) is spreading due to its use in a similar way to a classical e-
nose, but with the possibility to obtain putative identification of the molecules present in the odour 
[3,4,5]. 

In particular, we used the instrumentation Heracles II ®, by Alpha MOS, Toulouse, France, 
implemented with an autosampler for headspace injection (PAL-RSI), a double-columns ultra-
fast-chromatography system with two Flame Ionization Detectors (FID). The autosampler can 
condition the samples at controlled temperature before the head space collection to allow the 
concentration of the volatile molecules between sample and headspace to equilibrate. After 
injection, volatile molecules are collected in a Tenax trap and then released into the two 
chromatographic columns. 

 

2.1.1 Basil aroma analysis 

For basil analysis about 30 g of the whole basil plants, including leaves and stems, were 
exactly weighted at 0.1 g and hashed in a blender (Oster, Sunbeam Products Inc., Boca Raton, 
FL, USA) for 30 s in 300 mL of extraction solution at room temperature. The extraction solution 
was prepared with NaCl at a concentration of 100 g L-1, to increase the volatiles release in the 
headspace (next step of the analysis), and 6 mg kg-1 of ethyl iso-butyrate to serve as internal 
standard for the CG analysis. After 30 s of resting time, 20 µL of the solution was collected and 
transferred in 20 mL amber vials that were immediately sealed and sent for analysis. Each extract 
was sampled at least three times in different vials. Samples vials were incubated for 20 minutes 
at 40°C, before injection with 500 rpm agitation (5 s on, 2 s off). Then 1 mL of air headspace was 
injected with a syringe temperature of 50°C. 

2.1.2 Pesto aroma analysis 

For the pesto analysis 2 grams were collected, transferred in a 20 mL vials and immediately 
crimped. Samples were then incubated at 50°C for 15 minutes with 500 rpm agitation (5 s on, 2 
s off), then 5 mL of the headspace were collected and injected in the GC-FID e-nose. 

 
In both cases, trap loading conditions were 18 s at 40°C, then flashed to 250°C for the release 

into the two columns at split ratio 1:1. 
Columns have both length of 10 m, internal diameter 0.18 mm, film thickness 0.40 micron and 

are respectively MXT-5 (non-polar) and MXT-1701 (slightly polar). 
For both analysis the temperature ramp for the two columns was 50°C for 2 s, then to 80°C at 

1°C/s, then to 250°C at 3°C/s. The total time was 110 s. The carrier gas was hydrogen. 
 
To calculate areas and concentrations of the volatile molecules AlphaSoft v16.0 software 

(Alpha MOS, Toulouse, France) was used. 
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For further chemometric data elaboration the raw chromatograms were exported in a suitable 
format for importing them in Matlab environment. In Figure 2-1 an example of an GC-FID e-nose 
chromatogram of pesto acquired with the XT-5 column is shown. 

 
Figure 2-1. Chromatogram of a pesto sample on Heracles II MXT5 column. 

2.2 Head-Space-Gas-Chromatography-Ion-Mobility-Spectrometry (HS-GC-IMS) 

The IMS (Ion Mobility Spectrometry) technique [6] measures the time employed by a soft 
ionized molecule, accelerated by a uniform electric field, to reach the detector moving through an 
inert gas flow (nitrogen) at ambient pressure. This time depends on the ion mobility, that is 
characteristic of each molecule and depends on its mass and its steric hindrance. Molecules with 
different ion mobility can thus be separated and detected [7]. 

IMS instruments are extremely sensitive devices commonly used to detect drugs or explosive 
(i.e., at airport security checks).  Due to the fast separation timescale (milliseconds) they are often 
used coupled to other techniques like mass spectrometry, gas chromatography or high-
performance liquid chromatography to obtain a multi-dimensional separation [8]. 

In our case the analyses were performed by a FlavourSpec ® (G.A.S. mbH, Germany) GC-
IMS instrument that use a GC column FS-SE-54-CB-0.5 (length 30 m, internal diameter 0.32 mm, 
film thickness 0.5 micron) for the first separation dimension. After the chromatographical 
separation the volatile molecules enter the drift tube where they are ionized reacting with reactant 

ions (water molecules naturally present in the drift tube charged by a -radiation source of tritium). 
Ions are then accelerated towards the detector and the drift time is recorded. 

Drift tube was maintained at ambient pressure and constant temperature of 80°C. 
 
For the analysis of pesto 2 grams were transferred in a 20 ml glass vial and immediately 

crimped. The samples were equilibrated for 20 minutes at 60°C before the headspace collection 
by the autosampler. After that 1 mL of headspace was injected. The output is a landscape for 
each sample that reports on the x-axis the retention time, on the y-axis the drift time (related to 
the ion mobility) and on z-axis the signal intensity (Figure 2-2). 
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Figure 2-2. Upper part: 2D HS-GC-IMS chromatogram (pre-processed data). Lower part: peak map with the 2-
dimension projected as sum on the relative axes, respectively on X axes the retention time, and on the Y axes the drift 
time. 
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2.3 Near InfraRed Spectroscopy (NIRS) 

Spectroscopy study the absorption or emission of electromagnetic waves by matter. The 
measure of such radiations is a way to obtain information about the systems and its components 
and is called spectrometry. There are several spectroscopic techniques based on the different 
ways the electromagnetic radiation interacts with matter, depending on the energy of the radiation 
[9]. 

Literature reports numerous studies that present applications of spectroscopy in research as 
well as in industrial environment [10]. Low energy techniques are particularly useful in food 
analysis, because they are fast, non-destructive, not dangerous for the operators, easy to use 
and often do not require any sample preparation.  

We will focus just on one of the techniques widely applied in food analysis that is the infrared 
spectroscopy, in mid or near infrared ranges. This technique uses the interaction of 
electromagnetic radiation with the vibrational states of covalent bonds and rotational states of 
molecules. For this reason, it is very powerful to measure foods that are composed by organic 
material containing covalent bonds between atoms like carbon, nitrogen, oxygen, sulphur, 
hydrogen. 

Some characteristic regions in the NIR spectra which are linked to food components are 
reported in Table 2-1. 

Table 2-1. Principal types of NIR absorption bands and their location in the spectrum 

Wavelength interval Absorption bands 

800 – 1100 nm 
N-H 2nd overtone 
OH 2nd overtone 
CH 3rd overtone 

1100 – 1300 nm 
CH 2nd overtone 
OH combination 

1300 – 1420 nm CH combinations 

1420 – 1600 nm 
OH 1st overtone 
NH 1st overtone 

1600 – 1800 nm CH 1st overtone 

1800 – 2200 nm 
OH combinations 
NH combinations 

2200 – 2500 nm CH combinations 

 
In food analysis NIR spectroscopy is largely used to measure concentrations of some 

parameters after the calculation of proper calibration curves by multivariate techniques, for its 
rapidity and easiness of use. Moreover, the NIR instrumentation is becoming more and more 
small and cheaper opening to new possible applications [11,12] in situ and in-line. It is also 
possible to use the VIS-NIR spectra to have a qualitative description of the sample analysed in 
an untargeted approach, when the aim is to discriminate samples having some differences. 

 
For the NIRS laboratory analysis undertaken for the work presented in this Thesis a benchtop 

DS-2500 (FOSS, Denmark) instrument was used. 
Spectra acquisition of “Pesto alla Genovese” samples were done just transferring about 100 

ml of pesto into the large cup of the instrument without any other preparation step. 
Spectra were collected in the range from 400 to 2500 nm (8 replicates for each sample) and 

the raw spectra were exported for further statistical analysis. 
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In Figure 2-3 an example of spectra acquired on pesto samples is reported. 

 
Figure 2-3. NIR raw spectra of pesto samples. 

 
For the NIR analysis conducted on-line in the pesto production plant a Pro-Foss spectrometer 

(Foss, Hillerod, Denmark) was used with a spectral range from 1100 to 1650 nm with a resolution 
of 0.5 nm and 64 scans per sample. The instrument was equipped with an optical fibre that 
connect the spectrometer to the acquisition probe located on the process pipe. 

 

2.4 Pesto stability analysis 

"Pesto alla Genovese” is a complex multiphase system with an emulsion of oil in water, mixed 
with a watery cheese phase in which are suspended solid pieced like basil leaves and cashews 
pieces. Its equilibrium depends on the proper ingredient combinations and is stabilized by the 
emulsifying effect of the milk proteins. When this equilibrium is not stable the oil separation after 
some time is one of the effects that could be observed. Despite this oil release does not change 
the nature of the product it is not appreciated by consumers. Became so important to measure 
the physical stability of the “Pesto” system. 

Stability has been evaluated by the LUMiSizer® (LUM, Berlin, Germany). It is basically a 
centrifuge equipped with a device for measuring the extinction of the transmitted light (NIR 856 
nm and blue 470 nm) across the entire length of the cuvette sample in real time during the 
centrifugation process. It uses the STEP-Technology that permits to obtain Space- and Time-
resolved Extinction Profiles over the entire cuvette holding the sample.  Up to 12 different samples 
can be analysed simultaneously. Parallel light (L0) illuminates the entire sample cell, and the 
transmitted light (L) is detected by two-thousands CCD sensors arranged linearly across whole 
sample cuvette from top to bottom, with a microscale resolution. Transmission is converted into 
extinction by taking the log(L/L0) and the particle concentration can be estimated in each point of 
the cuvette. The speed of the centrifuge can be changed from 200 to 4000 rpm (corresponding in 
the middle of the cuvette to 5 to 2300 g). It allows to measure drops and particles velocity 
distribution for phenomena like creaming or sedimentation and so it is possible to have an 
estimation of a product stability and make shelf-life prediction. 

The instrument can control the temperature from 4 to 60 °C. 
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In the present work the method used for the pesto characterisation used temperature 30°C, 
rotor speed 4000 rpm, light 865 nm, cuvette PA 10 mm optical path. 

2.5  Spectral Imaging 

2.5.1 Visible Red Green Blue (Vis-RGB) imaging 

The digital image processing was born in the 1960s on satellite images, mainly with the 
contribution of the Bell Laboratories, Massachusetts Institute of Technology, and the Maryland 
University [13]. 

Initially image processing consisted of methods dedicated to improving the image quality, in 
fact the first digital images had very poor quality. The Jet Propulsion Laboratory (JPL) used image 
processing tools to improve image quality and to extract information from the images sent back 
by the Space Detector Ranger 7 in 1964. From then on, the increased quality of photographic 
sensor joined to the elaboration power has started a new discipline that extend its application to 
many fields, from medicine to food analysis [14,15,16]. An idea of how much these applications 
are spreading is given by the number of reviews published in 2023, just on “image processing 
and food”, that overcome the 600. 

 
In food analysis, despite its simplicity, colour analysis plays a big role, since colour change can 

be the results of oxidation and decomposition processes thus capturing, albeit indirectly the 
“chemistry“ of food. Moreover, texture and appearance are important sensory attributes.  

 
In this work a Red Green Blue (RGB) camera has been used for basil characterisation, and a 

hyperspectral camera for pesto characterisation as will be shown in paragraph 6.1 and 6.2 
respectively. 

 
A vision system produced by SENSURE (SENSURE SRL, Bergamo, Italy) was used to acquire 

RGB images (24-bit, resolution 1280x1020 pixels). In Figure 2-4 it is shown as example of one of 
the basil images acquired in-line. 

The vision system software automatically extracts few features from the images and store 
them. 

 

 
Figure 2-4 Example of a basil image acquired by the on-line RGB camera. 
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2.5.2 Hyper Spectral Imaging (HSI) 

Whereas the human eye sees colour in the visible part of electromagnetic spectrum, mainly in 
three bands (around red, green, and blue), hyperspectral imaging collects for each pixel of an 
image a large electromagnetic spectrum with fine wavelength resolution, covering often a spectral 
range from ultraviolet to near infrared. In this way, it is possible to obtain much more information. 

Hyperspectral imaging [17,18] (HSI) was first applied in the mining and geology field for its 
ability to identify minerals or soils characteristics, but rapidly HSI applications spread to many 
other fields, mainly with the development of instruments installed on board of artificial satellites. 
Some of the fields range from agriculture to ambient protection, to biomedical to astronomy. In 
recent years also to food analysis, processing and controlling. 

Its powerfulness derives from the possibility to give simultaneously morphological and 
chemical information. 

 
In my period spent at the INRAn facilities in Montpellier (France) [19] pesto images acquisition 

was done using two separate hyperspectral cameras (see Figure 2-5): 

• Vis-NIR HSNR03 camera (wavelength 409 - 987 nm) 

• NIR HSNR05 camera (wavelength 964 - 2494 nm). 
Both cameras acquire the image in line scan (one row at time) modality. 
Pesto samples were acquired in small aluminium cup sampling from the middle of the jar, 

including in each image as reference a white plate (see Figure 2-6). 
 

 
Figure 2-5. Hyperspectral cameras at INRAn facilities. 
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Figure 2-6. Pesto sample acquisition with reference white plate. 
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3 CHEMOMETRICS 
METHODS 

3.1 Few words about Chemometrics 

Chemometrics is an interdisciplinary science that combines statistics and chemistry. It is 
practically oriented to solve analytical chemistry problems (and not only) using advanced 
statistical tools [1,2,3,4]. 

Called an “art” [5] by Svante Wold, one of the founders of this discipline, chemometrics helps 
to extract relevant information from chemical data. In fact, in analytical chemistry is quite common 
to have, as results of experiments, a large quantity of data in which noise and useful information 
are mixed. 

 Born in the early 1970s and facilitated on one hand by the increase in the computer power 
and, on the other hand, by the analytical instruments’ development its use has been largely 
spread for more than one reason. The most relevant is the augmented consciousness that 
chemometrics is not a "facultative” appendix, but a fundamental everyday tool [6,7,8,9,10]. 

Jus to mention an example, chemometrics give a relevant contribution on the design of the 
experimental trials, where it overcomes the old (but still strongly rooted) idea of changing "one 
variable at time”. Nature is a multivariate system and so it is crucial to have proper tools able to 
manage this complexity. Chemometrics does that using a multivariate approach to data analysis. 

 
Possibilities are a lot and some of them have been explored in this Thesis. 
Examples of classification techniques will be reported, useful when like in our case, a 

comparison between some classes of samples is pursued. In our cases, we had some additional 
information on the systems we were studying (i.e. the different recipes of a food product) and 
typically “supervised” models were applied. In other cases, we did not have additional information 
and so “unsupervised” methods will be required. 

3.2 Data pre-processing 

Data pre-processing [11,12,13,14] is a fundamental step needed to remove noise or sources 
of variability which are not inherent to the sought information, e.g. related to the physical 
characteristic of samples when compositional profile is of interest, variability due to ambient 
conditions, variation in instrumental settings, etc. In general, it can be distinguished signal pre-
processing (applied in the row direction sample by sample) from pre-processing such as centring 
and scaling (applied in the columns directions of the dataset) [15]. Here, are concisely reported 
the signal pre-processing applied per type of signal. 

Imaging pre-processing is described in the paragraph 3.6. 

3.2.1 Chromatographic data  

Chromatographic data may be affected by retention time shift from run to run and when the 
chromatograms are analysed as such, i.e. without peak recognition and integration, this 
represents an issue for further multivariate data analysis, as well it does baseline disturbance. In 
addition, normalization may be needed to compensate run to run intensity variability, and the 
presence of major and minor components may require scaling to let all of them to contribute fairly 
to the modelling phases.  

In the GC-FID e-nose analysis an Internal Standard (IS) was used in each chromatographic 
run and thus normalization was applied by dividing data by the IS signal. 

Also, the gas chromatograms acquired by the Heracles II instrument, despite their high 
reproducibility and stability, showed both baseline and retention times shift. 
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Thus, retention time samples alignment was done by using the Interval Correlation Optimised 
Shifting algorithm (icoshift) applied by intervals, which were manually defined. 

The icoshift algorithm was initially proposed in 2010 by Tomasi et al. [16] for NMR spectral 
data, and then extended in 2011 to chromatographic data [17]. It is based on COrrelation 
SHIFTing of spectral intervals and employs an FFT engine that aligns all spectra simultaneously. 
The algorithm is demonstrated to be faster than similar methods found in the literature making 
full-resolution alignment of large datasets feasible. 

Baseline subtraction was operated by using the weighted least squares algorithm (2nd order 
polynomial) [18, pages 173-174]. 

Finally, since the peaks’ intensity and variance reflect the presence of major and minor 
constituents, it was important to use a procedure able to make the different chromatographic 
regions influence on the developed statistical models comparable. To this aim block scaling to 
equal block variance (defining the blocks to be the same as the intervals used for the alignment 
with icoshift) was used, including column mean centring. 

3.2.2 Spectroscopic data 

The name spectroscopy encompasses many techniques depending on the wavelength, and 
so the energy, used. In fact, the energy of the light that interacts with the matter causes 
phenomena related to absorption of energy at atomic level causing changes in electronic state 
(X-ray and UltraViolet Visible absorption), or molecular level, with changes in rotational and 
vibrational states (InfraRed and Raman) or in rotational states (microwaves and Nuclear Magnetic 
Resonance). 

We will focus just on Near Infrared Spectroscopy (NIRS). This technique, despite the infrared 
radiation was discovered in 1800, show its first practical applications starting just in late 1960s, 
mainly for moisture determination [19,20,21,22]. This late spread could be attributable to the lack 
of instruments, but also to the absence of proper mathematical tools to extract analytical 
information from the spectra. In fact, in the NIR range the Lambert-Beer law (that relates linearly 
the light absorption of an absorbing analyte with its concentration) is not applicable. 

Moreover, in the NIR spectroscopy there are several ‘disturbing’ factors, like light scattering 
phenomena, overlapped signals, background effects, bands overtones (with internal correlations 
of signals) and the absorption of water (almost ubiquitarian in food systems) in a wide part of the 
spectrum. 

All these considerations explain why is necessary to pre-process NIRS data before extracting 
relevant information. 

 
Spectral (or signal more in general) preprocessing is itself a field of research, and detailing it 

is beyond my aim. In general, in NIRS preprocessing may be divided into three main categories 
smoothing, baseline correction, and normalization [13,23] 
 
The preprocessing applied in my Thesis work is reported below: 

• Smoothing by Savitzky-Golay filter (SG). This filter removes the high frequency noise by 
polynomial interpolation (codified in specific filter) applied by spectral window (a zero-
degree polynomial corresponds to moving average) 

• Transforming the signal to its first or second Derivate, applied on a smoothed signal so to 
remove noise. First derivative can remove constant background. Second derivative 
removes constant and additive background. In addition, implicitly they can deconvolute to 
some extent overlapped band by highlighting the presence of shoulders, etc. 

• Normalization by the SNV (Standard Normal Variate) method. This is done to make all 
spectra comparable, passing to relative intensities (or absorbance level). It can be useful 
to correct spectra for changes in optical path length and light scattering (it is assumed that 
the standard deviation of the spectra represents well these changes). SNV is, for example, 
frequently used to compensate for changes in surface roughness of the material [23]. 
Mathematically, SNV consists in subtracting each spectrum by its own mean and dividing 
it by its own standard deviation, so after SNV each spectrum will have a mean of zero and 
a standard deviation of one. 
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• Multiplicative Scatter Correction (MSC). In this case, it is assumed that chemical variation 
is small compared to physical variation (i.e. variation introducing a constant 
(additive)/proportional (multiplicative) baseline effect) and thus the true ‘signal’ may be 
replaced by a constant reference signal, usually the mean (or median) spectrum, m (it 
may also be a specific spectrum of the data set). 

3.3 Exploratory data analysis and modelling methods 

3.3.1 Principal Component Analysis (PCA) 

Principal Component Analysis [24,25,26] is an important and powerful method used for 
explorative analysis of dataset containing high number of dimensions for each observation. 

It increases the interpretability and visualization of multidimensional data while preserving the 
maximum amount of information. 

Originally proposed by Pearson in 1901 and subsequently improved by Hotelling in 1933, it 
became computationally feasible to use on larger dataset after the availability of computers. 

Fundamentally PCA reduce the dimensionality of a dataset linearly transforming the data into 
a new orthogonal coordinate systems (Principal Components) where most of variation in the data 
can be described. 

PCA works finding a new reference space (hyperspace) in which the centre is the average 
value of the original data; then the first principal component direction is calculated from the centre 
in the direction that maximize the data variance. The second component is calculated in the 
direction, orthogonal to the first, that again maximize the data (residual) variance. The process is 
repeated for each principal component. 

Mathematically PCA is represented as (Figure 3-1) 

X = TPT + E (Eq. 3-1) 

where: 
X is the original dataset 
T is the score matrix 
P is the loadings matrix 
E is the matrix of the residuals. 
 
The scores matrix T describes how the different rows in X (observations) relate to each other. 

Scores are the coordinates of samples in the PCA space (i.e. each scores vector is a linear 
combination of original variables). The scores plot is a powerful tool to display patterns in 
multivariate data. 

The loading matrix P holds the weights of the linear combination and thus reflect the influence 
of the variables in X in defining the PCA model. In other words, loadings indicate which variables 
are responsible for the pattern found in scores T. 

The loadings plot shows graphically how the variables are related. 
Discussing the scores and loadings plots jointly allows linking pattern observed in scores plot to 
the variables responsible for them. 

The residual matrix E is the noise part of the data. It represents the part of X not explained by 
the model TPT. Plotting the changes in residual variance vs the number of PCs is one of the 
criteria which can be used to establish the best number of PCs (scree plot, introduced by Cattel 
in 1966 [27]). 
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Figure 3-1. Principal Component Analysis scheme: t1 and p1 are respectively the scores and the loadings of the first 
PC, and so on. E is the residual matrix. 

3.3.2 Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS)  

In the cases in which the measured data are the results of a combination of different 
contributions and the interest is recovering them distinctly, then resolution/spectral unmixing 
methods can be applied. For examples in spectroscopy where a spectrum is the combination of 
the spectra of the pure components of a mixture, or in chromatography where the signal intensity 
of a chromatogram is the combination of the signals (partially overlapped) of singles molecules, 
or in hyperspectral imaging where to each pixel correspond a spectrum resulting from the 
combination of the pure spectra of the individual components present in the system. 

 
Among the different methods, in this Thesis works we applied Multivariate Curve Resolution 

Alternating Least Squares [28,29,30], which is a curve resolution method assuming the data follow 
a bilinear model, that is the observed signal (spectrum or chromatogram or other) is a linear 
combination of the pure components in the system. 

MCR-ALS decomposes the D data matrix into the product of matrices C (the concentrations of 
each resolved component in the samples) and ST (the spectra profile of each resolved “pure” 
component). 

The bilinear model could be written as (Figure 3-2): 

D = CST + E Eq. 3-2 

where: 
D is the original dataset 
C holds the relative concentrations of the “pure” components  
ST holds the spectral profile of each “pure” component. 
E is the unmodeled part of the data D 
 

 
Figure 3-2. MCR-ALS example of application for a hyperspectral image. In matrix C, c1 to cn are the components in 
which D has been decomposed and s1 to sn are the correspondent pure spectra. 
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To apply MCR some constrains need to be imposed to give unique results, in fact the ALS 
solution suffers from rotational ambiguity. Constrains to give proper results should be consistent 
with the nature/behaviour of the studied systems. Typically for spectral systems non-negativity 
constrains are applied on both concentration and spectra dimensions, within the assumption that 
a concentration as well as spectral signal should not be negative. Other possible constraints that 
could be applied are unimodality, that forces a “pure” component to be constituted of just one 
peak (it can apply to chromatographic signals), or closure (i.e. the concentration of the resolved 
components in each sample should close to 1 or 100 %) in the case of mixture data. Other useful 
constraints, which can be applied in a flexible way to just one or all the components, are selectivity 
constraints, which use a priori knowledge on the spectral profile of pure species, e.g. imposing 
zero in region where they do not absorb. 

The number of components to be used in the decomposition should be chosen carefully. 
Typically, a knowledge of the chemistry of the system could help, otherwise several MCR models 
with different numbers of components could be tried and for each of them the interpretability of 
its resolved spectral profile, based on the pure spectrum to which could be associated, or the 
presence of bands that are meaningful with respect to the composition of the studied system, 
should be evaluated. A suggested rule of thumb is that if two models provide equally plausible 
solutions the solution with least components will be chosen [30]. 

 

3.3.3  ANOVA-simultaneous component analysis (ASCA) 

Analysis of variance (ANOVA) is a method applied to designed data (i.e. data acquired by 
systematic varying one or more conditions at specified levels) to assess the effect of the 
experimental factors, e.g. different samples categories, treatments, etc., on each dependent 
variable. However, ANOVA does not suffice to analyse multivariate data since it does not take 
the interrelation between variables into account. The classical extension of ANOVA to multivariate 
data is multivariate-ANOVA (MANOVA) [31]. However, MANOVA is not able to analyse data when 
the number of variables exceed the number of measured samples (example in the case of a 
spectra) also, multinormal distribution of the data is assumed, which is rarely fulfilled in complex 
dataset. 

One of the methods proposed to overcome this limitation is ANOVA-simultaneous component 
analysis (ASCA) [32,33]. In the ASCA methodology ANOVA is merged with PCA, removing in this 
way the drawbacks of both methods. 

The formulation, in case of two studied factors, e.g. in agronomic studies plant variety and 
harvesting season, is as in equations 3.3 and 3.4. At first step, as in ANOVA, the data matrix X is 
partitioned into the contribution of each factor and their interactions: 

Xc = X – 1mT = X1 + X2 + X1x2 + Xres  Eq. 3-3 

where Xc is the centred data matrix, mT is the vector of column averages, X1 and X2 are the 
main effect matrices holding the levels average for factor 1 and 2 respectively, X1x2 is the 
interaction effect matrix and Xres is the residuals matrix. 

Then, at a second step a Simultaneous Component Analysis (SCA) is performed, obtaining a 
scores matrix T and a loadings matrix P for each effect and interaction matrix:  

Xc = T1P1 + T2P2 + T1x2P1x2 + Xres  Eq. 3-4 

where T holds the scores and P the loadings of each PCA model; the maximum number of 
PCs for each model is equal to the number of levels minus one. In Figure 3-3a schematic 
representation of ASCA is shown  
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Figure 3-3. Scheme of ASCA. 

To better inspect the ASCA results, i.e., to highlight how the samples are dispersed around the 
mean of each effect level, could be useful to project the single sample on the ASCA scores plot. 
This can be achieved by adding the residuals to the estimated xi values and then obtaining the 
single sample scores form the SCA model. For example, for each factor or interaction (f) the 
computation of the score vector ti+res(f) is carried out through the following equation: 

ti+res(f) = (Xi(f) + Xres)pres(f) Eq. 3-5 

where Xi(f) is the effect matrix for a specific factor or interaction and Xres is the residuals matrix, 
whereas pres(f) represents the loadings vector of the SCA model for the effect of that factor or 
interaction. 

 

3.3.4 Partial Least Squares regression (PLSR) 

Partial Least Squares Regression (PLSR) [34] is a widely used method for calibration and 
regression tasks. 

The aim of PLS is to relate two sets of data, X and Y, building a multivariate model based on 
maximization of XY covariance, and then use this model for prediction.  

PLS overcome the limitations (collinearity issue and requirement of number of samples larger 
than number of variables) of multilinear regression by a first step of data compression by latent 
variables. 

Two main algorithms can be used for the calculation of the PLS models, the NIPALS [35] and 
the SIMPLS [36] algorithms. 

NIPALS, developed by H. Wold, calculates scores T and loadings P for the X block, and scores 
U and loadings Q for the Y block in a PCA-like way: 

 

X = T PT + E Eq. 3-6 
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Y = U QT + F Eq. 3-7 

 
Where T and P are the scores and loadings, respectively for the X block while U and Q are the 

score and loadings for the Y block. E and F are the residual for X and Y blocks, respectively. 
 
Specific to PLS is a weight matrix W that ensures maximization of the covariance between T 

and U. In NIPALS algorithm the following calculation is repeated iteratively until convergence 
(component wise): 

 

T = X WT Eq. 3-8 

 

W = UTX Eq. 3-9 

 
After the significant PLS components are calculated, by post processing the “pseudo-

regression” coefficients matrix B, which relates the predictors X with the responses Y is calculated 
as: 

 

B = W(PTW)-1QT Eq. 3-10 

 
In this way, the model can be, finally, re-expressed in term of the original variables (which is 

useful for prediction): 
 

𝒀 ̂= B X Eq. 3-12 

 
The second algorithm, SIMPLS, differs from the first one mainly in the way the X matrix is 

deflated after the first component. In this case a non-iterative approach uses Singular Value 
Decomposition of the covariance matrix XTY to calculate loadings and scores. 

 

3.4 Discriminant analysis 

The possibility to understand if a certain sample is a part of one or more known categories falls 
under the general topic of classification. In terms of data analysis, it means that some 
mathematical/statistical rules will be defined as to assign each sample to one or more categories, 
based on the variables that describe the sample. 

In this case, differently to exploratory analysis, is necessary to know a priori information about 
the categories, and this information is used to build the model (supervised method). 

There are many multivariate classification methodologies, and to go into details for all of them 
is out of the scope of this Thesis. It is important to underline that they are divided into two main 
groups: aimed at discrimination and aimed at class modelling. In the first case the classification 
rules are defined to finds differences between sample categories (classes). This means to find 
directions in the geometrical space (hypersurface) of variables which allow assigning the samples 
of a given class to a specific region of the variables space. So, there will be defined as many 
regions as the number of classes. In class modelling instead the objective is on modelling 
similarity between samples that belong to the same class, and not to differentiate the classes. In 
this case the class modelling rules define the space of the class (hypervolume) without 
considering if there are other classes, and in an independent way from each other. 
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To resume, the main difference between discriminant classification and class-modelling, is that 
in the first case a sample is always assigned to one of the defined categories, while in the second 
case a sample could be assigned to one, more than one, or none of them. 

In the case of discriminant classification, the decision rules to assign a sample to a given 
category are based on probability criteria (Baye’s rule says that a sample is assigned to the class 
where it has the maximum probability to belong). However, under this general framework are 
comprised several methods. Among them, the most used are Linear Discriminant Analysis (LDA), 
Quadratic Discriminant Analysis (QDA), and Partial Least Squares Discriminant Analysis (PLS-
DA). The first two share the limitations that they can be applied only when the number of samples 
is larger than the number of variables, and when variables have low correlation with each other. 
Both issues could be overcome by applying before discrimination a data reduction methodology 
providing an orthogonal subspace, like PCA and PLS-DA. 

Hereafters are briefly recalled the discriminant techniques used in this thesis work, which are 
based on extension of PLS regression to discriminant classification task. 

3.4.1 Partial Least Square – Discriminant Analysis (PLS-DA) 

PLS-DA is a variant of partial least squares regression (PLS-R) that is used when the matrix 
of response variables Y is categorical (with discrete values) [37,38,39,40]. 

In Partial Least Squares Discriminant Analysis (PLS-DA) the discriminant classification 
problem is reformulated as a regression problem in which the responses matrix Y contains the 
class membership information in a binary coded form, i.e. each Y-column refers to a given 
category and each sample will have a value of 1 in the Y-column corresponding to its true class 
and zeros, or -1, elsewhere. Accordingly, the classification problem can be reformulated as finding 
the best regression model (by using the PLS algorithm) linking the experimental data measured 
on the samples (X) to the binary-coded dummy matrix Y. 

It has been demonstrated that PLS-DA converge to linear discriminant analysis if the number 
of PLS latent variables is equal to the number of variables in X. The regression coefficients matrix 
(B, see eq. 3-13 above) allows prediction of the Y values for unknown samples Xnew; as the 
predicted values (Ŷnew) can assume real values, and not only ones and zeros, in this case a 
classification rule to assign the samples to a given category must be defined. In general, there 
are two approaches a “true” discriminant one where classification is accomplished by assigning 
the samples to the category corresponding to the highest value of the predicted dummy response, 
e.g. if the classification problem regards three classes, a sample whose predicted Y values are 
[0.98 0.5 0.1] will be assigned to class one. This approach when modelling more than two 
categories may be sub-optimal and it is suggested to apply LDA (or QDA) on the Y scores or on 
the Y predicted values [39], instead. 

A second approach is based on the choice of a class threshold for each category [18], i.e. a 
value for each dummy y, if the predicted y for a sample is above it, then the sample is assigned 
to the class and viceversa if it is under. The threshold is usually chosen based on classification 
performance estimated in cross-validation. 

 

3.4.2 Sequential and Orthogonalized - Principal Least Square (SO-PLS) and 
Sequential and Orthogonalized - Principal Least Square – Linear Discriminant 
Analysis (SO-PLS-DA) 

SO-PLS is a multiblock extension of the PLS regression [41,42] in which the information is 
extracted sequentially from each predictor block and where the subsequent blocks are 
orthogonalized to the previously selected components. Unlike multiblock PLS where block scaling 
is essential because blocks are used altogether, block scaling is of no concern in SO-PLS. 
However, the order in which the blocks are presented to the algorithm can influence the results. 
The significance of the addition of any predictor block can be tested. 
Considering, e.g.  two blocks of predictors the SO-PLS steps are: 
 

a. starts by one of the blocks, e.g. X, and fit a standard PLS model. Thus obtaining 



 

25 
 

X-scores (TX), the X-weights (WX), the X and Y loadings (PX and QX respectively) and Y-
residuals (E = Y − TXQX

T)  
 

b. The second block Z is orthogonalized with respect to the scores of the previous PLS model: 
 

Zorth = Z -Tx (TxT Tx )-1TxTZ  Eq. 3-11 

c. Zorth is then selected to calculate a PLS model with the Y-residuals (E). Thus, obtaining the 
Zorth-scores (TZorth), the Zorth -loadings (PZorth), the Zorth-weights (WZorth), and the Y-loadings 
(QZorth).  

 
In this way, further information is extracted from Z that explains the remaining variance in Y, 

but which is orthogonal to the information previously contributed by block X (i.e. SO-PLS focus 
on the distinctive information each block carries).  

 
d. In the last step the full predictive model is obtained adding the two models:  

�̂� =  𝑻𝑋𝑸𝑋
𝑇 +  𝑻𝒁𝒐𝒓𝒕𝒉

𝑸𝒁𝒐𝒓𝒕𝒉

𝑻   Eq. 3-12 

As in any PLS model this can be rearranged to be expressed in terms of regression 
coefficients: 

 

�̂� =  𝑿𝑩𝑿 + 𝒁𝑜𝑟𝑡ℎ 𝑩𝑍𝑜𝑟𝑡ℎ   Eq. 3-13 

 
Where: 
 

𝑩𝒙 = 𝑾𝒙(𝑷𝒙
𝑻𝑾𝒙)−𝟏𝑸𝒙

𝑻  Eq. 3-14 

𝑩𝒁𝒐𝒓𝒕𝒉
= 𝑾𝒁𝒐𝒓𝒕𝒉

(𝑷𝒁𝒐𝒓𝒕𝒉

𝑻 𝑾𝒁𝒐𝒓𝒕𝒉
)−𝟏𝑸𝒁𝒐𝒓𝒕𝒉

𝑻  Eq. 3-15 

 
The number of latent variables is decided independently for each block, usually by cross-

validation. 
Adding more blocks than two can easily be done by repeating orthogonalization with respect 

to the scores of the previous PLS regression and fitting the orthogonalized block with the 
preceding residual matrices. 

Extending SO-PLS to the discriminant case (SO-PLS-DA or SO-PLS-LDA depending on the 
classification rule adopted [41]) can be done by using a dummy Y matrix containing the 
information about the class membership, as when passing from PLS to PLS-DA.  

 
The CovSel features selection method [see section 3.5.1] has been also implemented in the 

SO-PLS framework, considering the multiblock nature of the method. Hereafter are reported the 
algorithm steps in the case of two predictor blocks X and Z and a dummy vector y (codifying two 
classes): 
1. Variables are selected by Cov-Sel from X (as in standard Cov-Sel) and stored in matrix Xsel 

2. y is fitted to Xsel by Ordinary Least Square (OLS):  �̂� = XSel𝑩𝒙+ EY 
(since only few variables are selected) 

3. Zorth is obtained by orthogonalizing Z with respect to Xsel 
4. Cov-Sel is applied to select variables in Zorth 

5. Y residuals (from step 2) are fitted to Zorth_sel by OLS: �̂�𝒀  =  𝒁𝒐𝒓𝒕𝒉_𝒔𝒆𝒍𝑩𝒁𝒐𝒐𝒓𝒕𝒉_𝒔𝒆𝒍
+ 𝑬𝒀𝒏𝒆𝒘  

6. The full model is calculated merging steps 2 and 5: �̂� = XSel𝑩𝒙+ Zorth_sel𝑩𝒁𝒐𝒐𝒓𝒕𝒉_𝒔𝒆𝒍
+ EYnew 
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In case of classification, analogously to PLS-DA the responses matrix is dummy coded and 
the classification rules may be based on predicted responses or on applying LDA on the 
selected variables ([Xsel  Zorth_sel]). 
 
The optimal number of variables to be retained in each block can be carried out as explained 
below for Cov-Sel. 
 

3.5 Variables selection 

Variables selection is a research field per-se very rich in available methods. The main reasons 
for aiming at pruning the initial set of collected variables/descriptors to be used in multivariate 
regression or classification tasks, when using latent variables based methods, are enhancing 
interpretability, remove extremely noisy variables when these are a huge number, and selecting 
few informative ones, e.g. to reduce the experimental analyses cost or to build cheaper 
spectroscopic devices by using only some spectral bands (i.e. using LEDs). 

Among the available methods in this Thesis, we evaluated CovSel. 

3.5.1 Covariance Selection (CovSel) 

CovSel [43] is a variable selection method dedicated to the cases where there is a huge 
number of variables (yielding a very large solution space), the variables are highly correlated, like 
in case of spectral signals, and the aim is to obtain very few selected features. CovSel performs 
variable selection iteratively up to a maximum number decided by the user (falling in the wrapper 
methods for feature selection). At each selection step the global covariance between single 
dependent variables with all the responses is evaluated, and the variable showing the highest 
covariance is selected first; then follow a projection of the data orthogonally to the selected 
variable before the next selection step. The maximum number of variables to be selected is given 
in input by the user (i.e. there is not an optimization of a performance criterion to stop the 
selection) which a posteriori can graphically inspect the explained X and Y variance vs. number 
of selected features (ordered by selection). In addition, or alternatively, the cross validation 
prediction error as function of number of included selected features can also be evaluated, to 
decide how many to retain. 

 
CovSel can be applied in exploratory analysis (in this case the selection criterion is based 

solely on X-variance), in regression, and discrimination tasks. 
In regression, Y consists of continuous responses, and CovSel could be used to make a 

variable selection based on all responses and then this global selection can be refined for each 
individual response, e.g. in a second step the ordered selected variables can be evaluated by 
stepwise addition to see which number will give the minimum cross validation error for each single 
response.  

For discrimination, Y contains dummy variables codifying class membership, and CovSel is 
used on this multi-response Y. In this case, to decide the final number of selected variables to 
retain LDA can be performed on the selected features by stepwise addition (see paragraph 3.4.2). 

 

3.6 Image analysis 

The image analysis field is very broad [44], and duly illustration of it is outside the scope of this 
Thesis. Here, only the basic of the used approaches, and the motivation for using them, are 
presented. 

Two kinds of images have been analysed RGB (i.e. three Vis channels) and hyperspectral 
acquiring a whole spectrum in the Vis (400- 800 nm) and NIR ranges (800 -2500 nm). 

In the RGB case the aim was to detect objects, such as basil stems and leaves from 
elaboration of basil images taken by the vision system installed in-line (see 2.5.1). However, due 
to varying illumination conditions a segmentation approach [45]  did not gave satisfactory results, 
then we evaluated pixel-based approaches. One combined wavelet transforms filter (WT) (section 



 

27 
 

3.7.1), as features enhancement step [46,47], with PLS-DA, for pixel classification; a second one 
used a deep learning net. 

Hyperspectral images (HSI) of pesto were acquired and evaluated with the objective of 
assessing homogeneity of distribution of the different components. To this aim first, HSI were 
unfolded then MCR-ALS was applied to resolve the purest components profiles. Finally, to inspect 
the resolved components distribution features extraction, by different methods, was applied to the 
refolded concentration matrix (section 3.7.1). 

3.6.1 MCR-ALS in image analysis 

MCR-ALS could also be used in hyperspectral image analysis [48]  to separate the different 
contributions of the constituent components, i.e. by spectral unmixing, and to study their 
distribution in the image. 

In this case, the HSI (a 3D data array of dimensions pixels_x * pixels_y * wavelengths) is first 
unfolded pixelwise to obtain a 2D matrix of dimensions pixels_xy (rows) * wavelengths (columns). 

On the assumption that each pixel’s spectrum is a linear combination of “pure” components 
spectra, then MCR-ALS can resolve them. When more than one image must be analysed (several 
samples altogether) a multiset MCR model can be applied by merging the single sample unfolded 
matrices to obtain a unique matrix of dimensions (samples x pixel_xy) * wavelengths, as shown 
in Figure 3-4. In this case, a single set of spectral profiles is recovered (same S for all samples) 
and a distinct concentration matrix for each sample (Cs). The latter can be refolded (pixel_x * 
pixel_y) obtaining a concentration map for each resolved component (i.e. an image showing the 
spatial distribution of that component), see Figure 3-5 top. Figure 3-5 bottom shows the 
corresponding “pure components” spectra. 
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Figure 3-4. Example of 3 unfolded images (corresponding to three distinct samples). HSI arrays are unfolded pixelwise 
creating 2D matrices of dimensions (d1 x d2) x lambda for each sample s. All the matrices were then merged obtaining 
a unique matrix of dimension (s x d1 x d2) x lambda that is used in MCR-ALS (multiset option). 

 
Figure 3-5. Upper part, images of the concentration maps corresponding to each resolved component when analysing 
by MCR-ALS the NIR hyperspectral image of sample 1. In the lower part the correspondent resolved spectra. 
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3.6.2 Image features extraction (applied to concentration map) 

Different methods have been developed to characterize the spatial distribution of the pixel 
intensities in images, aiming at obtaining statistical parameters that can differentiate images 
containing the same elements but in different spatial disposition (texture features) [49]. 

Texture features extraction methods can be classified in four main categories: (i) statistical, 
i.e. describing the texture of image regions, by means of high order moments on the pixel 
frequency histograms; (ii) structural, i.e. defining texture as well-defined compositional elements 
(spatial regularity of parallel lines); (iii) model based, i.e. which creates an empirical model of the 
image; and (iv) transform-based, that converts an image in other forms, using filters (e.g. wavelet 
transform) [50]. 

In this work, two main approaches were evaluated to assess the concentration map obtained 
by MCR-ALS (after hyperspectral images decomposition): the well-established Haralick approach 
[51], and a more recent proposal [52] to evaluate image homogeneity based on comparison of 
the actual image with one where the same pixels are totally randomly distributed. 

 

3.6.2.1 Haralick features 

One of the most used approaches to study image texture (spatial correlation) is the one 
postulated by Haralick et al. in 1973, known as Gray-Level Co-occurrence-Matrix (GLCM) [51]. It 
consists of two steps: in the first one from the original grayscale image, it is generated a GLCM 
matrix by considering: one pixel, its grey level, and the level of the surrounding pixels. Each entry 

(i,j) in a GLCM corresponds to the number of occurrences of the pair of grey levels i and j which 

are a distance d apart in the original image; in the second step is carried on the calculation of a 
set of statistical features (angular second moment, contrast, correlation, variance, inverse 
difference moment, sum average, entropy, energy, etc.) from the GLCM. Haralick proposed 14 
statistical features, here only eight of them (which were the less correlated among them) were 
selected and used (Table 3-1). 
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Table 3-1. Haralick features formulae. The number of the function in the formula refers to the original Haralick paper. 

Feature  Formula 

Energy (angular second moment) 
 𝑓1 =  ∑ ∑{𝑝(𝑖, 𝑗)}2

𝑗𝑖

 

p(i,j) is the (i,j)th pixel in image normalized matrix  
Contrast 

𝑓2 =  ∑ 𝑛2 {
∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔
𝑗=1

𝑁𝑔

𝑖=1

|𝑖 − 𝑗| = 𝑛
}

𝑁𝑔−1

𝑛=0

  

Correlation 

𝑓3 =
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥 𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

𝜇𝑥 𝜇𝑦 𝜎𝑥𝜎𝑦 are the means and standard deviations of px and py 

Variance 

𝑓4 = ∑ ∑(𝑖 − 𝜇)2𝑝(𝑖, 𝑗)

𝑗𝑖

 

Inverse Different Moment (IDM) 

𝑓5 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑗𝑖

 

Sum entropy 

𝑓8 = − ∑ 𝑝𝑥+𝑦(𝑖)𝑙𝑜𝑔{𝑝𝑥+𝑦(𝑖)}

2𝑁𝑔

𝑖=2

 

Information measure of correlation 

𝑓12 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋, 𝐻𝑌}
 

𝐻𝑋𝑌 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔 (𝑝(𝑖, 𝑗))

𝑗𝑖

 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔{𝑝𝑥(𝑖)𝑝𝑦(𝑗)}
𝑗𝑖

 

HX and HY are respectively entropies of px and py 

Maximal Correlation Coefficient 

𝑓14 = (𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)
1

2⁄  

where 

𝑄(𝑖, 𝑗) = ∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)
𝑘
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3.6.2.2 Homogeneity index 

This method is based on the Macropixel analysis (MA) introduced by Hamad et al. [53]. MA is 
a method that splits the image in smaller sub-images and study the different properties of those 
sub-images and their correlations. 

Two possible ways may be used to scan the original image in MA: the Discrete Level tiling 
(DLT) which uses non overlapping tiles, and the Continuous-Level Moving Block (CLMB) that 
scans in all possible dimensions the macropixels in the image. CLMB method was used in this 
work. 

For an image of dimensions L x L (squared for simplicity of explanation), considering a Sm 
windows of m x m (where m ≤ L) pixels, the total number of sub-images will be: 

TOTALSm = (L-(m-1)) (L-(m-1))  Eq. 3-16 

With a sub-image (Sm) dimension of 

PIXm=m * m  Eq. 3-17 

For each Sm used, the pooled standard deviation is calculated as 

𝑆𝑇𝐷𝑆𝑚 = √
∑ ∑(𝑇𝑂𝑇𝐴𝐿𝑆𝑚−�̅�)

𝑃𝐼𝑋𝑚−1
 Eq. 3-18 

Where �̅� is the average of the pixel intensity of the whole image. The standard deviation of 

each sub-sample windows m will be: 

𝑆𝑤𝑚 =
∑ 𝑆𝑇𝐷𝑆𝑚

𝑇𝑂𝑇𝐴𝐿𝑆𝑚
 Eq. 3-19 

Plotting the Swm vs r, the normalized windows dimension (pixel size/image pixel size) a so-
called homogeneity curve is obtained. 

 
In other words, we can say that homogeneity curve is the results of the application of CLMB 

analysis to evaluate the mean standard deviation of the macro-pixels in an image. 
Homogeneity curves were calculated with an algorithm in MATLAB supplied by courtesy of 

Prof. Jose Amigo, University of Basque Country (Spain). 
The results provide a comparison of the homogeneity calculated for: (i) the actual image; (ii) 

the Homo image, calculated on the randomized image (where the pixels intensities are the same, 
as in the original one, but uniformly distributed); (iii) the Inhomo image, calculated on an image 
obtained by arranging the pixels in an ordered pattern. 

Inhomo image represents the maximum level of possible inhomogeneity for the studied image, 
while the Homo image the maximum possible homogeneity level. The algorithm calculates the 
relative homogeneity (%H) of the image, as percentage of the difference of homogeneity between 
the actual and the Inhomo, divided by the difference between the Homo and Inhomo. 

An example of results is reported in Figure 3-6. 
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Figure 3-6. Example of Homogeneity results. 

 

3.7 Analysis of RGB images 

3.7.1 Wavelet (WT) + PLS-DA approach 

Wavelet transform (WT) is a very powerful mathematical tool used to extract information form 
many kinds of data, included images [54]. 

Wavelet is categorized into continuous wavelet tools and discrete wavelet tools [55]. The first 
are used for signal analysis or time-frequency analysis, while the seconds are most used for 
compressing data [56] 

 The basic idea of the wavelet transform is to decompose a signal or an image into distinct 
subspaces capturing different frequency contents of the raw signal/images, namely high 
frequencies are collected in the so-called details blocks (holding sharp, oriented changes, etc) 
while low frequencies in approximation (holding smooth changes like tones) block. 

In the case of images, to do that 2D-WT applies recursively high and lowpass filters to obtain 
four sub-images: 1) approximation (A): a low-pass filter is applied both row- and column-wise; 2) 
horizontal details (H): a low-pass filter is applied row-wise, then a high-pass filter, column-wise; 
3) vertical details (V): a high-pass filter is applied row-wise, then a low-pass filter, column-wise; 
4) diagonal details (D): a high-pass filter is applied both row- and column-wise. 

This decomposition can be then applied to the obtained approximation block, obtaining A, H, 
V and D at second decomposition level, and so on until the maximum decomposition level 
compatible with the image size is reached. 

This decomposition is applied distinctly to each spectral channel. 
The four sub-images for each channel are then unfolded pixel-wise and concatenated to obtain 

a final matrix of dimensions: (pixel x pixel), on rows, and (n° of channels x n° of levels x 4) on 
columns dimension. 

This matrix is used in a PLS-DA model where the Y is a dummy matrix with class membership 
of each pixel, e.g. 1 in the pixels representing the characteristic of interest to predict in the image 
(i.e. the background) and 0 in the other pixels. 

The obtained PLS-DA model is then applied on new images to predict the class to which their 
pixels belong (i.e. showing the spatial features of the new images), applying the same sequence 
of steps: wavelet decomposition and unfolding. More details are reported in the chapter 6. 

 

Homogeneity measurement
Homogeneity was calculated by Continuous –Level Moving Block (CLMB ) method [3].
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3.7.2 DeepL approach 

For the application of the deep learning approach [57,58,59,60] three main steps must be done: 
in the first, the images have been split in sub images of size 256x256xRGB; then convolution 
filters have been applied to extract features containing relevant information in the learning phase. 
The extracted features have been used to recreate pixelwise label space. 

 
The architecture giving the best classification results, among the three tested, consists of a 

two-layer CNN (convolutional neural networks), where the first layer is the largest (32 units), and 
the second layer serves to condense the information. These first two convolutional layers encode 
the information, and the transposed convolution operation serves to decode the information going 
back to pixel space. The last convolution layer uses the decoded information to learn 
classification. 

 

3.8 SOFTWARE 

Data elaboration was performed within MATLAB (The Mathworks Inc., Natick, MA, USA, 2007) 
environment. PLS Toolbox 9.1 (Eigenvector Research, Inc., Manson, WA, USA) has been used 
for PCA, PLS and PLS-DA. The MATLAB Wavelet Toolbox has been used for image 
decomposition, while the Image Processing MATALAB Toolbox has been used for GLCM image 
analysis. 

 
For MCR-ALS the MCR-ALS GUI 2.0 [61] has been used, which can be freely downloaded 

from the website www.mcrals.info. 
 
The CovSel code (in Matlab) has been implemented and kindly provided by courtesy of Prof. 

Jean Michel Roger (French National Institute for Agriculture, Food, and Environment (INRAE). 
 
The Homogeneity code (in Matlab) performing Continuous Level Moving Block method has 

been implemented and kindly provided by courtesy of Prof. José Amigo (University of Basque 
Country, Spain). 

 
The SO-PLS and SO-PLS-DA codes (Matlab) have been implemented and kindly provided by 

the Rome Chemometrics group (Prof. Federico Marini and Prof. Alessandra Biancolillo) of 
University La Sapienza (Rome, Italy). 

 
Several auxiliary routines have been implemented in Matlab by me or by the Modena 

chemometrics research group. 
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4 BASIL AROMA 
CHARACTERISATION 

Basil aroma is one of the main traits that confers ageable sensory features to the pesto sauce.  
Its characterization is of utmost importance, both in the search for new basil chemotypes (also 
called varieties in common language and in the paper 1) and in the control of the basil used. To 
this aim a fast and sensible analytical technique (GC-FID based e-nose) was used and two 
different analysis approaches were evaluated: i) target analysis (implying use of analytical 
standards and quantification), which required prior to GC-FID e-nose analysis the use of reference 
techniques (GC-MS and olfactometry) to assess the key odorant molecules present and 
perceivable; and ii) untargeted analysis, i.e. direct application of GC-FID e-nose and elaboration 
of the whole chromatographic profile. Untargeted approach is advantageous in terms of analysis 
cost/time and for recovering the entire information since the whole aroma fingerprint is 
considered. However, it requires proper chemometric tools. Within my Thesis objective this is an 
example of how a deeper chemometric knowledge in R&D may aid developing faster approaches 
in routine analysis.  

4.1 Targeted analysis of basil aroma  

Here the study context and results are summarized, for more details, please refer to published 
paper number 1 in appendix 1. 

 
The basil aroma is composed of many molecules, mainly terpenoids, alcohols, aldehydes, 

ketones, and esters [1,2]. Totally, there are more than one hundred molecules, of which the most 
representatives in sweet basil are considered linalool, estragole, eugenol and eucalyptol (1,8-
cineole) [3,4]. The content of these molecules could give a preliminary evaluation of different basil 
flavour profiles, while a more accurate evaluation of the final aroma will also consider the 
concentrations of other minor components, mainly the molecules that have a low odour threshold 
[5,6]. The odour threshold is defined as the lowest concentration of a molecule that could be 
perceived by olfaction. Thus, in the evaluation of the flavour patterns, it is necessary to consider 
not only the concentration of a given molecule but also its capacity to be perceived. 

Despite there are many different methods to identify and quantify volatile organic compounds 
(VOCs), the basil aroma pattern, to the best of my knowledge, has been characterized only by 
gas chromatography (GC) based techniques like for instance, headspace solid phase 
microextraction gas chromatography–mass spectrometry (HS-SPME-GC–MS) [7], headspace 
sorptive ex-traction gas chromatography–mass spectrometry (HSSE GC–MS) [8], as well as gas 
chromatography as such (GC and GC–MS) [4] indirectly measuring the total phenolic compounds 
[9] or using flow-injection mass spectrometry [10]. 

As basil is a very delicate plant, which is difficult to store after cutting [11,12], it would be 
extremely useful to have a fast analytical method, being at the same time suitable to discriminate 
the different chemotypes and furnishing information on the compositional profile of the aroma 
fraction. 

 
To this aim, in my work an GC-FID electronic nose device (Heracles II, Alpha MOS, Toulouse, 

France) was tested since it can provide a rapid and sensitive system. 
The basil key odorant molecules were selected combining information from sensory evaluation 

and gas-chromatography olfactometry (see published paper number 1) Then the nine key 
molecules individuated were quantified, in a fast way by using GC-FID e-nose and calibration by 
external standards, with an internal standard to normalize every single injection.  

Several basil chemotypes were analysed, grown on open fields in different years and 
considering more cuts each year. The aim was obtaining a preliminary over-view by multivariate 
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exploratory data analysis of the aroma variation due to both chemotypes and period of harvesting. 
To deepen understanding of these effects and to assess their statistical significance ANOVA–
Simultaneous Component Analysis (ASCA) was used [13]. ASCA generalizes classical analysis 
of variance (ANOVA) to multivariate data, over-coming the main limitations (number of samples 
higher than number of variables, breakdown in case of variables collinearity) and multinormal 
distribution assumption of multivariate ANOVA (MANOVA). 

First, a classic ANOVA was carried out to split the data matrix into the effect matrices for each 
experimental factor and their interactions. Then, simultaneous component analysis was carried 
out on the effect matrices to identify and visualize the contribution of the measured variables to 
each of the effects that introduced systematic variation [14]. 

Because ASCA requires data coming from an experimental design, and sampling was not 
programmed beforehand having ANOVA analysis in mind, a balanced reduced set (to meet a 
balanced design) of basil samples was selected, to investigate the effects of cutting period (cut), 
basil chemotypes and harvesting year on the basil aroma pattern. 

 

4.1.1 Results and Discussion 

4.1.1.1 Basil aroma analysis for molecules identification 

The pattern of volatile compounds of basil highlighted by the fast-CG analysis comprises 
eighteen molecules that were tentatively identified by using the Kovats relative retention indexes. 
The Heracles software compares the retention indexes of the two columns which have different 
polarities to improve the tentative identification. In Figure 4-1, the identified molecules are shown. 
Among them, there are the nine ones that were identified as relevant in terms of persistent 
perceived odour by applying olfactometry analysis (GC-O) with an expert panel. Thus, this is an 
indication that the fast-CG technique is suitable to characterise basil aroma. 

The identification of these nine molecules was confirmed by comparison with the elution time 
of injected standards, once peaks were identified, calibration curves for quantification were 
obtained by using an internal standard. The resulting concentration values were consistent with 
a typical “eucalypt” basil volatile pattern [6,8] with the prevalence of linalool, followed by eucalyptol 
(1,8-cineole) and then by eugenol. Other molecules are typical of essential oils of basil such as 
hexanal, α-pinene, myrcene and β-caryophyllene [12]. 

As previously reported, the flavour profile is strictly related to the presence or the prevalence 
of key odorant molecules, with a consequent impact on the final perceived bouquet. Four main 
basil chemotypes have been described by Lawrence et al. [15] depending on the prevalence of 
odorant molecules: estragole rich, linalool rich, methyl-eugenol rich and methyl cinnamate rich. 
Chemotypes used in the present study held predominantly in the linalool rich chemotype, but with 
some diversity. Chemotype 8, for example, was characterized for its lower level of linalool 
compared to other varieties, whereas on the contrary, chemotype 9 had the highest content. In a 
similar way, estragole was relatively more present in chemotypes 8 and 9 with respect to other 
chemotypes. 
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Figure 4-1. As example it is shown the chromatogram obtained by elution on column MXT-5 of Heracles II for one of 
the samples. Peak 4 is the internal standard. 

4.1.1.2 Multivariate Exploratory Data Analysis 

PCA analysis was applied to the autoscaled data matrix composed by the nine volatile 
molecules (variables, in column) obtained for the 267 samples (rows) characterized by different 
varieties, cuts, and harvested years. Autoscaling was selected as the most appropriate data pre-
processing method as the different volatile compounds had different variances due to their 
different concentration ranges. 

In this first exploratory analysis, two principal components seemed appropriate considering 
their explained variance (Figure 4-2). 
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Figure 4-2. PCA of all basil samples. PC1 vs. PC2 scores (a–c) and loadings (d) plots. Basil samples are coloured 
according to: (a) year; (b) cut; (c) chemotype. 

In Figure 4-2, the PC1 vs PC2 scores plot (PCA conducted on species concentrations) is 
reported and the different basil samples are represented with different symbols and colour 
according to year (Figure 4-2a), cut (Figure 4-2b) and basil chemotype (Figure 4-2c). 

From the PCA results some information could be obtained. Figure 4-2a shows that slight 
differences could be observed among the three harvesting years, more in 2018 than in 2019 and 
2020. The main contribution to this separation seems to be due to a higher concentration of almost 
all the investigated volatile molecules, since they lie on the same side of the respective loadings 
plot, all at positive values (Figure 4-2d). This difference is within the expected yearly variability, 
due to the different weather conditions. As an example, the year 2018 was probably characterized 
by less rainfall than the years 2019 and 2020. 

As far as different basil cuts are concerned, Figure 4-2b points out that well defined clusters 
are not observable with respect to different basil cuts. Cut number 4, located on the left of the 
scores plot, is more homogeneous, at first it seems that the average level of all the flavour 
molecules is lower than in the other cuts; however, this information overlaps with that of the year. 

In Figure 4-2c, the different chemotypes are rather overlapped, and it is evident a “spread” of 
“Italiano Classico” basil chemotype samples, which are uniformly distributed along the variability 
range of the scores space. Notwithstanding, PC2 highlights the difference of basil chemotype 8, 
which has the most negative scores on PC2 and thus presents a higher value of estragole and α-
pinene (negative loadings values on PC2). A few samples harvested in 2020 of chemotypes 1, 4 
and 9, and of “Italiano Classico” harvested in 2018, show high positive scores value on PC2, 
corresponding to higher amount of hexanal (most positive loadings value on PC2), whose odour 
is described as “green grass”, and could give, depending on its concentration, an unwanted “hay” 
note. 

Finally, it can be observed that chemotypes 1, 2, 4, 6 and 7, which were cultivated only in 
2020, are mostly located in the first quadrant (negative PC1 and positive PC2 score values) this 
indicates a lower amount of estragole, α-pinene, myrcene, β-caryophyllene, and eugenol, which 
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fall in the opposite quadrant in the loadings space (positive PC1 and negative PC2 loading values) 
and thus less fruity/floral and spicy odours. 

In general, the interpretation of the overall PCA results is hampered due to the combined 
effects of all the investigated factors. 

For these reasons ASCA was applied on the balanced reduced dataset with the aim to assess 
if the considered experimental factors and their interactions could have a significant effect on 
basil’s aromatic profile. The effects/interactions partition by ASCA is reported in Table 4-1 (first 
column) together with the significance (p-value, second column) of each term effect as assessed 
by means of a permutation test (i.e. by comparing the experimental sum of squares for each effect 
matrix with its corresponding distribution under the null hypothesis).. All the considered factors 
and interactions were statistically significant (p < 0.05), even though the effects of the factors 
“chemotype” and “year” presented a higher explained variance than other effects. On the other 
hand, the effect of factor “cut” explained just 3% of the total variance, suggesting a lower influence 
on basil’s aromatic profile compared with the other two main factors. This can also be seen in the 
fact that the second order interactions in which factor “cut” is involved explain less than the 4% of 
the total variance, whereas the interaction “year × chemotype” explains about the 12%. 

Table 4-1 Explained variance and probability values for main factors and their second order interactions. 

Factor Explained Variance % p 

Chemotype 36.41 <0.001 

Year 22.31 <0.001 

Year × Chemotype 11.95 <0.001 

Year × Cut 3.74 <0.001 

Cut × Chemotype 3.1 0.003 

Cut 3 <0.001 

 
After the assessment of the significance of each factor and interaction, a component analysis 

(SCA) was performed on each effect matrix separately to interpret the observed variation. In 
Figure 4-3a, the scores plot of the effect for factor “year”, with projected residuals, is shown. Since 
the year effect matrix contains just two rows, one for each considered year, the SCA model is 
described by only one component (SC1), which explains 100% of the variance. 

From the scores plot, it was possible to confirm the significant difference between the two 
levels of the factor “year”: all samples collected in 2019 have negative scores, whereas almost all 
the samples collected in 2020 have positive scores, highlighting the high difference between the 
two levels of this factor. To explain this difference, in Figure 4-3b the corresponding loadings plot 
is reported, where it can be observed that the year 2020 samples present higher contents of 
almost all the molecules investigated in the study, except for 2-hexenal and myrcene, which do 
not contribute to explain the difference between the two years. 

 
Figure 4-3. SCA of the effect matrix “year”. (a) Scores plot (SC1) with projected residuals; (b) variable loadings (SC1). 

Figure 4-4 a,b shows the scores and loadings plots for the effect of factor “cut”, respectively. 
They are represented in the same way as for the factor “year”. In this case, the scores plot 
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confirms that there is a significant difference between the second and fourth cuts, even if it is not 
as marked as for the other main factors. Scores of samples from 10 to 18 (4th cut, year 2019) 
present both positive and negative values in an irregular pattern. From the loadings plot, it is 
possible to observe that samples collected at the fourth cut present mainly a higher content of 
myrcene, eugenol and linalool, with respect to the second cut samples. β-caryophyllene and 2-
hexenal contribute to the same direction but to a lesser extent. A slightly lower content of estragole 
characterizes the second cut. In general, for the factor “cut”, not all the samples characterized by 
the same conditions behave similarly, as the effect of “cut” is of the same entity of its interactions 
with year and chemotype. However, the general trend suggests that the influence of this factor 
on basil’s aromatic profile cannot be neglected. 

 
Figure 4-4. SCA of the effect matrix “cut”. (a) Scores plot (SC1); (b) variable loadings (SC1). 

Results of SCA for the factor “chemotype” are represented in Figure 4-5. In this case, since 
the factor “chemotype” was varied at three levels, two components (SCs) were necessary to 
describe its effect. The first SC clearly describes the difference between Var. 9 with respect to 
Var. 5 and “Italiano Classico” chemotypes. Var. 9 presented a higher content of almost all the 
molecules considered in this study, especially eucalyptol, estragole, and α-pinene, which gave a 
balsamic connotation to the odour. On the other hand, the second SC shows the difference 
between Var. 5 and “Italiano Classico” chemotypes, less marked than the difference described 
by SC1. In this case, the compounds mainly responsible for this difference are hexanal and 2-
hexenal, which are in greater quantity in the “Italiano Classico” chemotype, whereas Var. 5 is 
characterized by slightly higher quantities of eugenol, β-caryophyllene, α-pinene, estragole and 
eucalyptol. 

 
Figure 4-5. SCA of the effect matrix “chemotype”. (a) SC1 vs. SC2 scores plot with projected residuals (empty symbols); 
(b) variable loadings (SC1 vs. SC2). 

To deeply investigate the effect of considered factors on basil’s aromatic profile, their second 
order interactions were also examined. Figure 4-6 shows the effect of the interaction between the 
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factor’s “year” and “chemotype”. It is possible to observe how Var. 9 is extremely different from 
the other two chemotypes, as it shows the opposite behaviour in SC1, i.e., Var. 9 samples 
collected in 2020 (negative SC1 values) have a higher content of almost all the considered 
molecules (negative SC1 loadings, except for 2-hexenal and hexanal close to zero) with respect 
to samples of the same chemotype collected in 2019. At variance, the other two chemotypes are 
richer in flavours in 2019 than in 2020. “Italiano Classico” and Var. 5 show the opposite behaviour 
with respect to year in SC2: the first is richer in flower/fruity aroma (higher myrcene and linalool) 
and lower in α-pinene and hexanal in 2019 with respect to 2020, and the opposite holds for Var. 
5. Thus, it is worth noting how the variation of the factor “year” changes the chemical composition 
of samples of the same chemotype. 

 
Figure 4-6. SCA of the effect matrix interaction “year x chemotype”. (a) SC1 vs. SC2 scores plot with projected residuals 
(empty symbols); (b) variable loadings (SC1 vs. SC2). 

The same pattern can be observed in Figure 4-7, which describes the effect of the interaction 
between the factors “cut” and “chemotype”. In this case, the variation of factor “cut” is the one that 
strongly changes the chemical composition of samples characterized by the same chemotype, 
even if it does it to a lesser extent than the factor “year”. High SC1 values correspond to a high 
2-hexenal content, whereas low SC2 values are linked to high eugenol values. 

 

 
Figure 4-7. SCA of the effect matrix interaction “cut x chemotype”. (a) SC1 vs. SC2 scores plot with projected residuals 
(empty symbols); (b) variable loadings (SC1 vs. SC2). 

Considering the projected residuals, the differences are appreciable mainly in SC1, where 
Italiano Classico and Var. 9 show the same behaviour, being richer in floral/fruity flavours in cut 
4 with respect to 2, while the opposite holds for Var. 5 
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4.1.2 Conclusion 

The results obtained support the use of a fast-GC based electronic nose for rapid assessment 
of basil aroma; in fact, the main molecules perceived as persistent by olfactometry (GC/O) are 
identifiable and quantifiable. In agreement with previous literature, it has been observed that the 
aroma composition is not only a distinctive trait of chemotype, but the content of each specific 
molecule varies with agronomic year and cut period. On the one hand, this renders more 
problematic the choice of a specific chemotype to be cultivated to achieve a desired flavour profile; 
on the other hand, it may help focus on the chemotypes showing more stability with respect to 
the agronomic variability. In terms of percentage of variance, the cut affects the aroma less with 
respect to year and chemotype. The effect of year seems to be a bulk effect affecting the content 
more than the type of molecules found in the aroma. 

 

4.2 Untargeted analysis of basil aroma  

Here the study context and results are summarized, for more details, please refer to published 
paper number 2 in appendix 1. 

 
The possibility to observe the complete chromatogram in an unsupervised way was the natural 

progression to fully benefit from the potential of the fast GC method. To this aim, the raw 
chromatographic signals, acquired in a very short time (110 s) were analysed together, after 
concatenation of the respective data matrices, according to a low-level data fusion approach [16, 
17]. Furthermore, a higher number of basil samples collected from 2019 to 2021 (this year was 
not previously considered) were measured, while the number of chemotypes (chemotypes) 
studied was increased. 

As pointed out, in this second study, the focus was on the extraction of reliable chemical 
information from the raw signals aided by proper data analysis and preprocessing tools. In this 
way, without the need and the effort of identifying and quantifying the specific markers, was 
nonetheless possible to study the different factors linked to production aspects and their influence 
on the product quality. This kind of approach could be easily and rapidly exported to other 
products where to acquire the knowledge of which individual molecules are present is more 
challenging or time consuming. 

Multivariate data analysis pipeline included: proper preprocessing, exploratory analysis by 
Principal Component Analysis (PCA), and ANOVA Simultaneous Component Analysis (ASCA) 
[14] to assess the effect of chemotypes, cuts period and harvesting years (2019, 2020 and 2021) 
on basil aroma.  

4.2.1 Results and Discussion  

4.2.1.1 PCA Exploratory Analysis 

In this first exploratory analysis, the aim was to obtain a general overview of the variation of 
the basil aroma. Punctual considerations of the influence of harvested year, chemotype and cut 
could not be conducted, since it was not possible to plain a systematic sampling beforehand, due 
to company and producer constrains. Three principal components were considered according to 
their explained variances (58%). In Figure 4-8, the PC1 vs. PC2 score plot is reported, 
representing the different basil samples with different symbols and colour as function of harvesting 
year and basil chemotype (Figure 4-8a) or cut and basil chemotype (Figure 4-8b). 
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Figure 4-8. PC1 vs PC2 score plots of basil samples. (a) Different symbols were used for each harvesting year (2019: 
circles; 2020: squares; 2021: triangles) and distinct colours for each basil chemotype. (b) Different symbols were used 
for each cut (first: diamonds; second: squares; third and fourth: upwards and downwards triangles, respectively; fifth: 
stars) and distinct colours for each basil chemotype. 

From the score plot of the first two components, it is difficult to highlight a clear separation of 
samples according to chemotypes, due to the slight differences in the flavour pattern among 
commercial chemotypes that belong to the same species (O. basilicum). However, interesting 
information can be pointed out. In particular, the VAR 1 (harvested only in 2019) and VAR 11 
(harvested only in 2021) samples have the highest PC2 score values and leads to their separation 
from the other samples (Figure 4-8a). These chemotypes also present a trend, from higher to 
lower score values, according to their different cut (Figure 4-8b). Another peculiar chemotype 
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seems to be VAR 4 (harvested only in 2021), with positive scores for both PC1 and PC2. This 
chemotype shows differences in aroma according to different basil cuts as well. 

As far as the other samples are concerned, they are distributed along the first principal 
component, which seems to be the most responsible for the differences in the separation between 
the VAR 14 samples (higher positive PC1 score values) and first cut of VAR 7, VAR 18 and 
Italiano Classico (negative PC1 score values). 

Furthermore, the in-depth analysis of the figure shows that two samples belonging to the third 
cut of VAR 16 (higher PC1 score values) seem to have quite a similar aroma profile to VAR 14. 

No further observations to assess any pattern can be performed considering the different basil 
cuts, years, and chemotypes, since it is not certain what the real cause is as some chemotypes 
were measured only in one year. The score plot of the third component (Figure 4-10) highlights 
the differences among the first basil cut of the VAR 8 and VAR 17 samples (higher positive score 
values) with respect to all the others. 

From the PC1 loading plot (Figure 4-9a), for both MXT5 and MXT17 columns, it is possible to 
point out that, with almost all the loadings values being positive (from 40 to 110 s), the separation 
between the VAR 14 samples and the other basil chemotypes is mainly due to a global higher 
concentration of aroma compounds in these samples, and roughly speaking, most of the samples 
harvested in 2021 (positive PC1 score values) seem to present a similar trend. 

 
Figure 4-9. PC1, (b) PC2 and (c) PC3 loading plots. Numbered peaks correspond to the volatile compounds putatively 
identified on the basis of Kovats’s relative retention indices: (1) hexanal, (2) 2-hexanal, (3) 5-methylfurfural, (4) 
myrcene, (5) eucalyptol, (6) linalool, (7) β-caryophyllene, and (8) eugenol (9) not identified. 
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Figure 4-10. PC3 scores vs number of samples. 

Notwithstanding the aim of the present study, which is to make a fast model to discriminate 
basil samples with an untargeted approach, some considerations on the presence of some 
chemical compounds can be presented based on our previous study. Regarding the second 
principal component Figure 4-9b), which is mainly responsible for the separation of VAR 1 and 
VAR 11 from the others, the same chromatographic regions (Rt, retention time: 76.8 s and 85.3 
s for MXT-5 and 79.9 s and 90.4 s for MXT-17), for both the MXT-5 and MXT-17 columns, with 
the same trend (loadings value and sign), are relevant. Thus, both the estragole (Rt: 76.8 s and 
79.9 s in MXT-5 and MXT-1701, respectively) and eugenol compounds (Rt: 85.3 s and 90.4 s in 
MXT-5 and MXT-1701, respectively), with high positive and negative loading values, respectively, 
are important to characterize VAR 1 and VAR 11. However, the samples belonging to these two 
chemotypes, presented a particular aroma, probably due to the presence of anethole, which co-
elutes with estragole in both column separations. 

As regards the third principal component (Figure 4-9c), unassigned compounds (in the first 40 
s of both columns), which have positive loadings, seem more abundant in the VAR 8 and VAR 17 
samples (located at positive scores values). Hence, further investigation will be conducted for the 
identification of these volatile compounds. 

Notwithstanding the overall interpretation of PCA results, which offered some insights, more 
specific information is difficult to gain, since the contributions to variance of all the investigated 
factors (i.e., year, chemotype and cut) overlap. Therefore, after this preliminary investigation, the 
ASCA methodology was used to systematically assess the influence of each factor and their 
interaction on the basil aroma profile. 

4.2.1.2 ASCA results 

The first ASCA model was computed according to the regular experimental design that could 
be obtained limiting the analysis to only three chemotypes. The original data matrix variation was 
split in eight submatrices: three corresponding to the main effect of each experimental factor, 
three accounting for the effect of each second-order interaction, one describing the effect of the 
third-order interaction and one holding the residuals. The significance of all these effects was 
assessed by performing a permutation test, whose results are shown in Table 4-2. The p-value 
of all the inspected factors and interactions was lower than 0.001. However, the factors 
“chemotype” and “year” explained most of the data variance (39.9% and 24.8%, respectively), 
suggesting their higher influence on the aromatic profile of basil compared to the factor “cut”. This 
can also be observed by the fact that explained variance values of interactions including “cut” are 
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systematically lower than values related to interactions in which “cut” is not involved. Additionally, 
the third-order interaction effect explains less than 3% variance. 

Table 4-2 - Explained variance and p-values for main factors and their second and third order interactions. 

Factor Explained Variance (%) p 

Chemotype 39.9 <0,001 

Year 24.8 <0,001 

Year x Chemotype 8.5 <0,001 

Year x Cut 7.2 <0,001 

Cut 2.9 <0,001 

Chemotype x Cut 2.5 <0,001 

Year x Chemotype x cut 2.8 <0,001 

 
Afterwards, the ASCA algorithm performed a SCA on each effect matrix individually, with the 

aim of interpreting the observed variation. 
Figure 4-11a shows the score plot for the factor “year”. The first component (SC1), which 

explains 67.7% of the total variance, describes the difference between the samples harvested in 
2019 and the samples harvested in 2020 and 2021. The loadings plot of the first component, 
shown in Figure 4-11b, explains this difference. In fact, the 2020 and 2021 samples have a richer 
aroma profile, as the concentration of the compounds between 40 and 110 s, associated with 
statistically significant loadings, are higher compared to 2019 samples. On the other hand, 2019 
samples present higher concentrations of unassigned peaks before 40 s highlighted by the MXT-
1701 column, confirming the need of further investigation for their identification. 

 
Figure 4-11. SCA for the effect of the factor “year”. (a) SC1 vs. SC2 score plot. Empty symbols represent the projected 
residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines indicate statistically significant regions, 
whereas blue lines indicate regions associated with loadings statistically indistinguishable from zero. 

The second component (SC2) and the related loadings plot (Figure 4-11c) show how the 2021 
samples (positive scores values) present lower peaks in MXT-1701 that can be ascribed to 2-
hexanal and β-caryophyllene (negative loadings values), but higher peaks assigned to all other 
compounds. 
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Figure 4-12a shows the score plot for the factor “chemotype”. It can be observed that most of 
the explained variance (96.3%) describes how VAR 14 is different compared to Italiano Classico 
and VAR 9. Indeed, as shown by the loadings plot in Figure 4-12b, VAR 14 presents higher 
concentrations of all the chromatographic peaks, suggesting a richer aroma profile with respect 
to the other two chemotypes. SC2, even though the related explained variance is extremely low 
(3.7%), mainly shows how VAR 9 has more β-caryophyllene than Italiano Classico (Figure 4-12c), 
as their peaks are basically the only ones that had statistically significant results. 

The results of the SCA for the effect of the interaction “year x chemotype” were reported in 
Figure 4-13. In the score plot (Figure 4-13a), it can be observed that SC1 describes the difference 
among VAR 14 samples throughout the years. In detail, the VAR 14 samples collected in 2020 
presented a higher concentration of all aroma compounds compared to the ones collected in 2019 
and 2021, as assumed by the loadings plot shown in Figure 4-13b. As regards Italiano Classico, 
the best year in terms of intensity of aroma profile is 2019, whereas for VAR 9, the years 2019 
and 2021 were better than 2020. 

 
Figure 4-12. SCA for the effect of the factor “chemotype”. (a) SC1 vs. SC2 score plot. Empty symbols represent the 

projected residuals; (b) SC1 and (c) SC2 loadings plot. In the loading plots, red lines indicate statistically significant 

regions, whereas blue lines indicate regions associated with loadings statistically indistinguishable from zero. 

It can also be observed how VAR 14 appears to change more over time, having a higher 
variation through the years than the other two chemotypes. 

Moreover, Italiano Classico is the basil chemotype that presents the lowest variability among 
its replicates. In fact, red and green samples in the score plot (VAR 9 and VAR 14, respectively) 
are more spread and farther apart, especially along SC2. This limits further comments about the 
difference between the years 2020 and 2021 with respect to the Italiano Classico samples (blue 
triangles and diamonds in Figure 4-13a, respectively), which is due to the statistically significant 
peaks between 50 and 70 s, linked to most of the aromatic compounds. 

Regarding the factor “cut”, the SCA showed how samples collected during cut 2 detain a richer 
aroma profile than samples acquired during cut 4. However, according to the authors, since this 
factor explained less than 3% of the total variance, these results are not relevant compared to the 
ones described above. Both for this reason and for the sake of brevity, plots related to the factor 
“cut” were not shown. 

The second ASCA model was computed considering only samples collected in 2021. In this 
case, it was possible to build a balanced design, including nine chemotypes and three cuts (see 
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paper 1) The data matrix was partitioned in four submatrices: two corresponding to the main effect 
of each experimental factor, one describing the effect of the second-order interactions and the 
residuals matrix. The results of the permutation test for the significance of the effects are shown 
in Table 4-3. As for the first ASCA model, also in this case, all the factors and their interactions 
were significant (p < 0.001). Furthermore, the explained variance for the factor “cut” (6.9%) was 

significantly lower than the variance explained by the factor “chemotype” (63.5%), suggesting, 
once again, the small impact of plant age on the basil aroma profile. 

 
Figure 4-13. SCA for the effect of interaction “year x chemotype”. (a) SC1 vs SC2 Score plot. Empty symbols represent 
the projected residuals; (b) SC1 and (c) SC2 loadings plot. In (a) distinct colours refer to different chemotypes (blue - 
Italiano classico; red - VAR 9; green - VAR 14), whereas different symbols refer to different harvesting years (circles - 
2019; triangles - 2020; diamonds - 2021). In loading plots, red lines indicate statistically significant regions, whereas 
blue lines indicate regions associated to loadings statistically indistinguishable from zero. 

Table 4-3. Explained variance and p-values for main factors and their second order interactions related to the ASCA 
model. 

Factor Explained Variance (%) p 

Chemotype 63.5 <0,001 

Chemotype x Cut 20.3 <0,001 

Cut 6.9 <0,001 

 
The results related to SCA on the “chemotype” effect matrix are shown in Figure 4-14. 
From the score plot (Figure 4-14a), it is clear how the first principal component shows the 

difference between VAR 4 and all the other chemotypes. In the loadings plot (Figure 4-14b), it is 
shown that the peak that is responsible for this difference can be ascribed to myrcene, of which 
VAR 4 is particularly rich. Observing SC2 scores and loadings (Figure 4-14c), it can be concluded 
that VAR 14 and VAR 16 present the richest aroma profiles, whereas Italiano Classico and VAR 
15 have the poorest profiles. 

Figure 4-15a shows the frequency histogram of the SC1 scores values for the distinct levels 
of the factor “cut”. Eucalyptol and β-caryophyllene are less present in cut 4 samples, and in 
general, they are the compounds responsible for describing the difference between cut 4 samples 
and cut 1 and 2 samples, as shown in Figure 4-15b. 
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Figure 4-14. Results of ASCA performed on 2021 samples. SCA for the effect of factor “chemotype”. (a) SC1 vs SC2 
Score plot. Empty symbols represent the projected residuals; (b) SC1 and (c) SC2 Loadings plot. In loading plots, red 
lines indicate statistically significant regions, whereas blue lines indicate regions associated to loadings statistically 
indistinguishable from zero. 

 
Figure 4-15. Results of ASCA performed on 2021 samples. SCA for the effect of factor “cut”. (a) histograms of ASCA 
score frequency (with projected residuals) on SC1 for the distinct levels of factor “cut”; (b) SC1 Loadings plot. In loading 
plots, red lines indicate statistically significant regions, whereas blue lines indicate regions associated to loadings 
statistically indistinguishable from zero. 

The ASCA results show how the entire aromatic profile has a significant influence in the 
discrimination of samples according to the investigated factors (i.e., years, chemotype and cut), 
highlighting the presence of new potential biomarkers (for instance the species with retention time 
in the first 30 s of the chromatogram or the ones falling in the area between the retention of 2-
hexanal and 5-methylfurfural), which have not been quantified in this study, but that could be 
relevant in further investigations. For the sake of clarity, an example signal fingerprint with all the 
chemical analytes, putatively identified for both the chromatographic separations, is reported in 
Figure 4-16. 
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Figure 4-16. Chromatograms of Italiano Classico chemotype obtained by elution on columns MXT-5 and MXT-1701 of 
Heracles II. 

4.2.2 Conclusions 

In this second study, the development of a fast analytical screening strategy based on ultra-
fast chromatography e-nose and multivariate analysis was proposed as a useful tool for quality 
control of food. The proposed approach, relying on the simultaneous analysis of the 
chromatographic profiles coming from two GC-columns of different polarity, permits to fully 
explore the volatile profile of foodstuff and may represent a fast and simpler alternative to other 
chromatographic techniques. The chemical identification and quantification of the single chemical 
species, responsible for differentiation of the studied food products, can be undertaken on a few 
samples at a second time if necessary. In fact, once the main chromatographic peaks, most 
responsible for the differentiation between samples, have been underlined, their respective 
chemical species can be identified with a considerable reduction in costs and analysis time. 

This approach was applied on the analysis of basil samples involved in the production of Italian 
pesto sauce, where the whole GC-FID e-nose signals, coming from two columns with different 
polarity, were fused and used as a fingerprint of the aroma profile. The obtained results 
highlighted the possibility to differentiate basil samples based on the three investigated factors, 
years, cut and chemotype, taking also into account the interactions among them. The low-level 
data fusion approach allowed computing a single ASCA model, which effectively pointed out the 
different significant peaks between the two columns considered, thus underlining that enhanced 
information may be gained. 

The knowledge of the influence of the investigated factors on the quality of basil is very 
important, since it may allow a company to achieve useful information both to plan future 
campaign strategies for the acquisition of the raw materials and to improve the quality of the final 
pesto sauce. 
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5 EXPLOITING PESTO 
SAUCE: A DATA FUSION 
APPROACH 

In R&D an important aspect is to assess which analytical technique to adopt in routine analysis 
reaching the best compromise among costs, time and personnel expertise required. The main 
aim is to dispose of fast and easy to operate methods to afford a larger number of samples to be 
routinely analysed.  

In this study, three analytical techniques were considered: GC-FID e-nose (successfully 
applied to inspect basil aroma), head space gas chromatography ion mobility spectroscopy (HS-
GC-IMS) and near infrared spectroscopy (NIRS). 

HS-GC-IMS [1] is very sensitive but requires complex and time-consuming data elaboration 
routines. The GC-FID e-nose [2] is enough fast but requires trained people and a laboratory 
context. The NIRS [3] is a very rapid and easy-to-use technique with high potential to application 
in an industrial context. In fact, it allows quick evaluation of the product characteristics also in-
situ/on-line, but its capability to “see” different aromas needs to be verified. 

The objective here was to evaluate the capacity of each technique to differentiate the classes 
of pesto, accordingly the data analysis pipeline included exploratory analysis, and applying 
discriminant analysis (also coupled to variable selection) on each data set. Then, it was also 
evaluated the discriminant capacity of all the techniques used together with a low-level multi-block 
data fusion approach. 

The obtained results indicates that GC-FID e-nose was more efficient in separating the pesto 
classes, followed by NIRS that was shown to be promising in differentiating the pesto categories. 
A variable selection applied to each single analytical technique helped to interpret the causes of 
the differences between pesto samples. 

The combined data from GC-FID e-nose, the HS-GC-IMS and NIRS did not give a significant 
increase in discrimination performance, also after the variable selection application. However, it 
gave useful information to understand which analytical technique could be useful in pesto 
characterisation. 

An important take home message was the confirmation of the ability of the tested methods 
that measure the aroma profile, to characterize pesto classes but, more interestingly, that also 
NIRS can successfully be used to distinguish pesto classes, with potential future applications in 
industrial environment. 

 

5.1 Materials and methods 

5.1.1 Sampling 

Twenty-six samples of “Pesto alla Genovese” produced by Barilla in Rubbiano plant facility, 
were selected from the whole 2021-year production period and analysed. They covered the use 
of three different basil categories. For confidentiality reasons the three basil categories will be just 
reported as class1, class2 and class3. 

The analytical methods details have been reported respectively: for GC-FID e-nose in 
paragraph 4.5.2, for HS-GC-IMS in paragraph 4.6 and for NIRS in paragraph 4.7. 
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5.2 Results and discussion 

Results will be presented first per single techniques also describing the data preprocessing 
and issues posed by each type of data, and afterwards the data fusion results will be presented. 

5.2.1 HS-GC-IMS data 

The raw data from HS-GC-IMS, are per single sample a landscape reporting signal intensity 
as function of the two distinct separation dimensions, retention time (chromatographic dimension) 
and drift time (ion mobility dimension). The data size is huge, and several issues must be faced 
such as shift in drift time dimension. 

5.2.1.1 Preprocessing steps 

In Ion Mobility Spectrometry [4], that works at ambient pressure, the ionization of the analytes 
molecules passes through the ionization of water molecules naturally present in the ionization 
chamber. The water ions, (H2O)n(H3O)+, then exchange charge with the analyte molecules 
coming from the gas chromatographic column. So typically, it is visible a peak of the charged 
water (called Reactant Ion Peak, RIP) in the first part of the chromatogram, that decreases in 
intensity depending on the given charge. Because it is not useful in the elaboration, the RIP zone 
has been cut and removed from the chromatograms. 

For computational reasons it was necessary to preliminary reduce the dataset size before 
further elaboration. The first step has been to retain just the informative part of the mass direction 
and remove empty regions: the final retained range in the drift time was from 8.5 to 18 ms. In the 
chromatographic direction the full period window was maintained, but the number of points was 
reduced collecting one point every ten. This was possible because the sampling frequency was 
enough high and the chromatographical profile was not altered after the downsizing. In this way 
the sample landscape dimensions were reduced from the original 6285 (Rt) x4500 (ms) to 629 
(Rt) x1427 (ms) (Figure 5-1). 

 

 
Figure 5-1 GC-IMS landscape for sample 1, after data reduction. The x-y axes are the two separative dimensions, 
chromatographical retention time and drift time, while the z axis reports the signal intensity. 
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After data reduction preprocessing was applied, this was decided based on inspection of the 
raw data as shown in Figure 5-2. 

 

 
Figure 5-2. Top) drift time profile, obtained by taking the sum at each single drift time along the Rt dimension; day to 
day shift observed on RIP in mass (drift time) direction. Bottom) chromatographic profile, obtained by taking the sum 
at each single retention time along the drift time dimension; no shift is observable, but signals are noisy, in 
chromatographic direction. 

In particular, day to day shift is present in mass direction (drift time) while noise and baseline 
are observable in chromatographic direction (retention time). In addition, normalization is required 
because absolute intensity is run dependent so to compare the different samples is better to 
switch to relative intensity profiles. 

Misalignment in chromatographic direction seems not to be present, anyhow since MCR-ALS 
will be applied on the data unfolded along retention time dimension (in multiset modality, i.e. to 
each sample will correspond its own resolved chromatographic profiles one for each resolved 
component) shift in this dimension is of no concern. 

Thus, samples were first aligned on drift time direction to compensate small shifts due to 
fluctuation in the ambient pressure between days. In fact, the ions mobility into the drift tube 
depends on the ambient pressure [5]. Alignment was done using the icoshift algorithm (see 
paragraph 3.2.1). Data were then smoothed with Savitzky-Golay filter, baseline corrected 
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(Whittaker filter [6] 0.001, lambda 100) and then normalized (dividing by Euclidean norm). In 
Figure 5-3 the applied preprocessing steps are illustrated. 

 

 

Size reduction in chromatographic direction and cuts in drift time direction 

 

Sum on chromatographic direction to study misalignment on drift time direction 

 

shifts are observable in drift time direction. 



 

61 
 

 

 

 

 

 

 

 
Figure 5-3. scheme of data processing for GC-IMS data. 

 

5.2.1.2 Decomposition/Resolution by MCR 

Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) (see chapter 3) was 
applied to the pre-processed HS-GC-IMS data. Typically, a peak peeking is done on the GC-IMS 
landscape for a representative sample to select manually the peaks present [7,8] then these are 
sought by the instrument software in all acquired samples and integrated. More recently, several 
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multivariate approaches were proposed in the literature [9,10,11]. Among them MCR-ALS [12,13] 
is appealing since it can resolve overlapped signals in “pure” components contributions 
considering the information of the second dimension, in our case the drift time related to ion 
mobility. In this way, it become possible to separate the single chemical components contribution 
present in the samples. 

A preliminary MCR application on the whole multiset, i.e. all 26 samples (data not reported), 
showed sub-optimal, thus, to improve the separation performances, the chromatograms were 
divided in six intervals (interval one was discarded because do not contain any peaks). This is 
quite common to do when MCR is applied to hyphenated chromatographic techniques as well as 
to GC-IMS [14,15,16]. Thus, five matrices were prepared one for each interval, unfolding for all 
the samples the GC-IMS landscape row-wise with the drift time in columns and the retention time 
of all the samples concatenated in rows. These matrices were then decomposed by MCR-ALS. 
Non-negativity was imposed as constrain on both C and S matrices during ALS iterations. 

For each interval have been retained only the MCR components that showed a clear peak 
profile as reported in Table 5-1, discarding components ascribable to baseline contributions. In 
Figure 5-4 it is shown an example of components resolved in one of the intervals. 
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Figure 5-4. As an example, it is shown for one of the samples: in the upper figure are superimposed all the 
chromatograms, at the different drift times, for the retention time region corresponding to the interval 4; in the lower 
figure the chromatographic profiles of the resolved components selected in the same interval. 
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After the application of MCR-ALS routine, the peak areas of all the selected components were 
calculated and joined in a single data set, which was then input to further multivariate analysis. 

 Table 5-1. MCR components selected for each interval. 

INTERVALS 
Resolved 

components 
Selected components for 

further data analysis 

INT2 20 8 

INT3 9 4 

INT4 86 4 

INT5 88 4 

INT6 55 3 

 
Firstly, an explorative PCA was done (data not reported) to have an overview on the sample’s 

similarity/differences. 
Then, data was split respectively in 31 calibration samples and 12 validation samples, and 

PLS-DA was applied (Figure 5-5). 
To estimate the correct number of latent variables to be used in the PLS-DA models, cross-

validation was performed with a venetian blind scheme using 10 splits. Six latent variables were 
selected.  

The results are shown in Figure 5-5, where it can be observed that class 2 is well separated, 
while classes 1 and 3 are overlapped. 

The confusion matrix in cross validation and in prediction are reported respectively in Table 
5-2 and Table 5-3 Samples belonging to Class 2 are always correctly predicted, while the other 
classes have some misclassified especially none of the class 1 test samples is recognized as 
belonging to it. In Figure 5-6, are reported the predicted Y-value vs. N° of samples (test samples 
are separated by a vertical line) and the class threshold (horizontal red line). It is possible to 
observe that PLS-DA model can correctly allocate the test samples only for classes 2 and 3. Off 
course the low number of samples prevent any assessment of predictive performance, but as 
feasibility of the technique to reflect pesto type 2 and 3 results seem encouraging. 
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Figure 5-5. PLS-DA (model based on HS-GC-IMS) scores plot of all samples, coloured by classes; test set samples 
are indicated whit a T. 

 

Table 5-2. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by HS-GC-IMS data) 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 2 0 5 

Predicted as 2 0 7 0 

Predicted as 3 2 0 5 

unassigned 0 0 0 

 

Table 5-3. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by HS-GC-IMS data) 

 
 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 0 0 0 

Predicted as 2 0 3 0 

Predicted as 3 2 0 7 

unassigned 0 0 0 

 
The VIP scores are reported in Figure 5-7 and indicate that to class 2 separation contribute 

most of the resolved components, indicating how this samples have quite different compositional 
profile respect to the other two classes. The components important for prediction of Class1 and 3 
memberships are almost the same and this could explain the lower capability of the model to 
discriminate class 1 from 3. 
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Figure 5-6. PLS-DA class prediction for HS-GC-IMS. Classes are from top to bottom respectively class1, class2 and 
class3. In each figure on the left of the vertical line the calibration set samples, on the right the prediction set samples. 
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Figure 5-7. PLS-DA model based on HS-GC-IMS data. VIP scores of the variables for each class. Labels indicates the 
interval and the relative component number. 
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5.2.2 GC-FID e-nose data 

The whole chromatogram obtained with the MXT5 column was considered. The 
chromatograms were normalized for the respective internal standard, then aligned on retention 
time using icoshift algorithm (see chapter 3). The resulting chromatograms were used in an 
explorative PCA (data not reported for sake of brevity) to have an overview on the distribution of 
samples. 

Again PLS-DA, after calibration and validation samples splitting, was used to inspect pesto 
distinction by classes. To estimate the correct number of Latent Variables of PLS-DA, cross-
validation was performed with a venetian blind scheme using 10 splits. Four Latent Variables 
were selected. 

In Figure 5-8 is reported the scores plot for the first two LVs. It is possible to observe a good 
separation of the samples, especially for class 2, but also for classes 1 and 3. Moreover, it is 
possible to observe how the test samples (indicated by a T) are close to the respective classes. 

 
Figure 5-8. PLS-DA for GC-FID e-nose data. Samples are coloured by classes, while the test set samples are indicated 
with the letter T. 

The confusion matrix in cross validation and in prediction, reported in Table 5-4 and Table 5-5 
respectively indicates that all classes are correctly predicted. The same could be observed in 
Figure 5-9, where are reported the values of the predicted Y-values vs. N° of samples with the 
respective thresholds.  
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Table 5-4. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by GC-FID e-nose data) 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 2 0 0 

Predicted as 2 0 4 0 

Predicted as 3 1 0 11 

unassigned 0 0 0 

 
 

Table 5-5. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by GC-FID e-nose data) 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 2 0 0 

Predicted as 2 0 2 0 

Predicted as 3 0 0 4 

unassigned 0 0 0 

 
The VIP scores for each class, reported in Figure 5-10, give information on which part of the 

chromatogram is relevant in separating the pesto classes. 
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Figure 5-9. PLS-DA based on GC-FID e-nose data. Plot of predicted Ys for each class. Samples are coloured per 
classes, while test set samples are on the right of the vertical line in each figure. The red lines represent the class 
membership threshold. 
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Figure 5-10. PLS_DA for GC-FID e-nose. VIP scores for the three predicted classes. 
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By looking at the VIP scores for each class, is not so easy to depict which peaks are 
responsible for the classes’ differences, so to see which are the most discriminant feature, and to 
highlight which can be worth of quantification through analysis with standards. Thus, a 
parsimonious variable selection routine, i.e. CovSel, was applied to recover the most discriminant 
peaks. 

The maximum number of variables to select was set to 20 and after inspecting the plot of 
explained Y-variance vs. number of selected variables, 8 variables were retained, that correspond 
to the peaks reported in Figure 5-11. It is interesting to observe that these variables, selected by 
CovSel correspond to peaks which were putatively identified (name reported in the figure) as 
molecules that for the majority were already known as important for the pesto aroma. The other 
peaks indicated by CovSel will be further investigated and could be related with other ingredients 
present in pesto. 

 

 
Figure 5-11. Heracles II (HS-GC-FID). Chromatogram of MXT5 column. In red the 8 variables selected by CovSel. 
Some of them correspond to peaks of already identified as pesto aroma molecules: hexanal (5), 2-butenal (4), 2-
hexenal (7), myrcene (8), eucalyptol (3), linalool (6). The other molecules will be identified. 

Using just the 8 variables selected with CovSel a new PLS-DA model was recalculated (Figure 
5-12). A three LVs model in this case, was estimated according to cross-validation (venetian blind, 
10 splits). 

 
As observed the class separation is equivalent to what obtained using the whole 

chromatogram. This indicates also that in future investigation just the selected peaks can be used, 
without loss of information. 

The confusion matrix confirms that the model with just 8 selected variables give the same 
performance in prediction (see Table 5-6 and Table 5-7). 

In this case studying the VIP scores, combined with the information of the variable on the 
chromatogram, is possible to understand that: variable 6 and 4 (linalool and 2-butenal) are more 
relevant for identify class 1, variable 1, 2 (unidentified) and 7 (2-hexenal) are relevant for class 2 
and variable 6 (linalool) is relevant for class 3. 

This is a good example on how the chemometrics approach could give important information 
on the real system under study. 
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Figure 5-12. HS-GC-FID Heracles II – PLS-DA score plots with the 8 variables selected by CovSel. Different color 
represents the three classes. 

 

Table 5-6. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by GC-FID e-nose with selected variables 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 1 0 1 

Predicted as 2 1 4 0 

Predicted as 3 1 0 10 

unassigned 0 0 0 

 

Table 5-7. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by GC-FID e-nose with selected variables 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 1 0 0 

Predicted as 2 0 2 0 

Predicted as 3 1 0 4 

unassigned 0 0 0 
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Figure 5-13. PLS-DA on GC-FID e-nose with selected variables. The colours represent the pesti classes, while test set 
samples are on the right of the vertical line in each figure. 
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Figure 5-14. PLS_DA for GC-FID e-nose with selected variables. VIP scores for the three predicted classes. 
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5.2.3 NIRS Data 

NIRS data (in the range 400-2500 nm) were pre-treated by Savitzky-Golay smoothing, second 
derivative and mean centering. 

For each sample eight spectra were collected automatically by the instrument rotating the cup 
containing the sample, to acquire the replicates in different portion of the sample. In the 
preparation of the calibration and validation sets all replicates of the same sample were 
maintained in the same set. 

 
The whole pre-treated spectra were used for an explorative PCA (data not reported) and then 

a PLS-DA was calculated. Four Latent Variables were selected according to cross validation 
(venetian blind, 10 splits). As in the other cases, samples were split into calibration set and 
validation set (144 spectra corresponding to 18 samples and 64 spectra corresponding to 8 
samples respectively). As observed in Figure 5-15 PLS-DA indicated again a separation of the 
class 2 from the other two, that on the other hand are quite overlapped, as already observed with 
the other techniques. 

 
Figure 5-15. NIRS data. PLS-LDA scores plot of whole pre-treated spectra. Different color represents the three classes: 
Letter T indicates test set samples. 

Here, the overlap between class 1 and 3 is more pronounced, as to be expected being the 
difference among pesto types mainly due to the aroma which can be more difficult to catch by 
NIRS. Anyhow some other characteristics of pesto composition may vary among classes, that 
could be correlated to what the other technique observes in terms of pesto aroma. 

In tables Table 5-8 and Table 5-9 the confusion matrices are reported, confirming a predictive 
capability quite similar to the chromatographic techniques. In fact in terms of samples only one is 
misclassified (belonging to class 1 but predicted as class 3) and a single replicate of class 3 
predicted as 1. Figure 5-16 reports the predicted Y-values for each class. 
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Table 5-8. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by NIR 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 18 0 4 

Predicted as 2 0 32 0 

Predicted as 3 6 0 84 

unassigned 0 0 0 

 

Table 5-9. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by NIR 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 10 0 1 

Predicted as 2 0 16 0 

Predicted as 3 6 0 31 

unassigned 0 0 0 

 
In this case the study of the VIPs indicates that the class 1 is more different in the visible range 

from 400 to 800 nm and in the NIR range from 1800 to 2000 nm, a zone that could be related to 
the water signals.  

Also in this case, like for the GC-FID e-nose, the complexity of the original spectrum does not 
allow a clear interpretation. 
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Figure 5-16. PLS-DA on NIR data. Samples predicted for the three classes from top to bottom respectively. Samples 
on the right of the vertical line are test set samples. 
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Figure 5-17. PLS-DA of NIR data. VIP scores for the three classes respectively. 
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Thus, CovSel was applied to highlight the most relevant spectral features. The results indicate 
that the discriminant spectral regions are related to colour and chlorophylls in the visible part of 
the spectrum, and water content and lipids in the last part of the spectrum, in NIR region (Figure 
5-18). 

 
Figure 5-18. NIRS pesto spectrum. Red circles are the 60 variables indicates by CovSel to better separate the three 
pesti classes. 

Again, a PLS-DA (5 LVs according to venetian blind CV, 10 splits) was calculated with just the 
variables selected by CovSel. 

The results are slightly worse than the one obtained by the whole spectrum model, however 
coherent with them. 
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Figure 5-19. PLS-DA on NIR with selected 60 variables. Latent Variable 1 and 2 are reported. Samples with le letter T 
are the test set.  

Observing the confusion matrixes is possible to observe that also in this case the classes 
membership prediction is still quite good, as could be already observed in Figure 5-20 that reports 
the predicted samples for each class. 

The observation of the VIP scores for each class suggest that the main differences are in the 
visible part of the NIR spectrum (the colour of the pesto), but also in the zone of the water and 
lipids. 

Table 5-10. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by NIR with selected variables 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 21 0 6 

Predicted as 2 0 32 0 

Predicted as 3 3 0 82 

unassigned 0 0 0 

 

Table 5-11. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by NIR 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 7 0 0 

Predicted as 2 0 16 0 

Predicted as 3 9 0 32 

unassigned 0 0 0 
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Figure 5-20. PLS-DA for NIR with 60 selected variables with CovSel. Predicted samples for each class are reported. 
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5.2.4 Data fusion 

To combine all the three datasets a multiblock approach was considered. The NIRS block 
holds the whole spectra (averaged by replicates), pre-processed as described in section 3.2.2. 
Analogously the GC-FID e-nose data blocks hold the whole chromatograms pre-processed as 
described in section 3.2.1. 

The GC-IMS data block was assembled by considering the peaks areas of the 31 MCR 
components. 

Prior to multiblock data analysis samples were split into 18 calibration samples and 8 validation 
samples, to gather the model performance in prediction. Then block scaling and mean centring 
was applied to have fair contribution from each block when applying multiblock PLS-DA. 

Six Latent Variables were selected (according to CV, venetian blind, 6 splits). 
As observed in Figure 5-21 the class 2 continue to be separated properly form the other two. 

Respect to the single elaborations for each technique in this case also classes 1 and 3 seems to 
be less overlapped. 

 

 
Figure 5-21. PLS-DA score plots on Low Level Data Fusion dataset without variable selection. Different colors represent 
the three classes, while samples with letter T represents the test set samples. 
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The confusion matrix reported in Table 5-12 and Table 5-13 confirm the good prediction of the 
three classes. 

Same consideration cold be done observing the Figure 5-22 where are reported the predicted 
Y-values for each class. 

 

Table 5-12. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by low level data fusion 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 3 0 2 

Predicted as 2 0 4 0 

Predicted as 3 0 0 9 

unassigned 0 0 0 

 

Table 5-13. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by low level data fusion 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 2 0 1 

Predicted as 2 0 2 0 

Predicted as 3 0 0 3 

unassigned 0 0 0 
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Figure 5-22. PLS-DA on low level data fusion. Samples predicted for the three classes from top to bottom respectively. 
Samples on the left of the vertical line are calibration set samples, while samples on the right of the vertical line are test 
set samples. 
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The VIP scores reported in Figure 5-23, coloured by block shows that the  GC-IMS seems to 
be more relevant in order to separate the pesto classes. 

 

 

 
Figure 5-23. VIP scores of PLS-DA for low level data fusion. Different colours indicated the three blocks of data. 
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Also in this case to further interpret the role of the different blocks/variables the CovSel 
algorithm has been applied on the low-level fused dataset. The initial number of selected variables 
was set to 20, then, observing the cumulative variance plot (Figure 5-24) the variable number 
chosen was 10. 

 
Figure 5-24. Cumulative variance for X and Y for CovSel applied on low-level data fusion. 

The selected variable, belong: three to the NIR block, one to the GC-FID e-nose block and six 
to the GC-IMS block. With these ten variables a new PLS-DA model was built with four latent 
variables (selected by cross validation with a venetian blind scheme with 10 splits). However, this 
reduced model performs poorly, maintaining some predictive capability just for the class 2 (see 
Figure 5-25 and confusion matrixes in Table 5-14 and Table 5-15). 
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Figure 5-25. PLS-DA with variables selected by CovSel on the low-level fused dataset. Letter T indicates test set 
samples. 

 

Table 5-14. Confusion matrix reporting the number of samples recognized in Cross Validation for each class (PLS-DA 
model obtained by low level data fusion, after CovSel with 10 variables. 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 2 1 0 

Predicted as 2 1 3 1 

Predicted as 3 0 0 10 

unassigned 0 0 0 

 

Table 5-15. Confusion matrix reporting the number of samples recognized in Prediction (test set) for each class (PLS-
DA model obtained by low level data fusion after CovSel with 10 variables. 

 Actual class 1 Actual class 2 Actual class 3 

Predicted as 1 0 0 0 

Predicted as 2 0 2 0 

Predicted as 3 2 0 4 

unassigned 0 0 0 

 
  



 

89 
 

 

 

 
Figure 5-26. Sampe prediction done with model on CovSel selected variables on low-level fused dataset. 
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Figure 5-27. VIP scores of model with variable selected by CovSel on low-level-fused dataset. 
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5.3 Conclusions 

All the three techniques, HS-GC-IMS, GC-FID e-nose and NIRS, singularly evaluated were 
able to perfectly discriminate class 2 from the others two, and satisfactorily class 1 and 3. 

In the first two cases the separation could be attributed to the aromatic pattern, while in the 
case of NIRS, differences were due to pesto colour, chlorophyll, water, and lipids contents. 

 
The GC-FID e-nose shows the better performances in separating the three pesto classes. 

Class 2 is very well separated, but also the other two classes are quite distinguished. 
The use of the whole chromatogram by the GC-FID e-nose is appealing since it catches all the 

information of volatile molecules, while being rapid and easy to operate. The same good 
performance remains after the variable selection done with CovSel, with just a moderate loss. 

HS-GC-IMS, that similarly to GC-FID e-nose works on volatile molecules, separates in a proper 
way the class two but less well the other two. In this case the more complex routine to extract 
information from the 3D chromatogram could have influenced the final performances. For this 
technique, due to the low number of variables obtained from the MCR-ALS variable selection has 
not been tested. 

The NIR, also gave a satisfactory performance in this case not only the volatile molecule 
profile, but also colour, chlorophylls, water, and lipids content contribute to classes separation. 

Thus, the NIRS technique could be also used to characterise the pesto classes, instead of 
more complex and time-consuming techniques. 

 
After variable selection the performance decreased, while remaining acceptable, suggesting 

that the main differences lie in the chlorophyll, water and lipids content. This could be an indication 
for eventually adopting this simpler and cheaper analytical technique for fast screening. 

 
The combination of the information of the three techniques did not give in this case a significant 

increase in discrimination performance, nonetheless, providing reduced classes overlap, contrary 
to single technique models, here when using only the Covsel selected features the predictive 
performance decreased. 

However, the data fusion approach gives the possibility to better understand which analytical 
technique is more useful for the class characterization of pesto samples. In this specific case the 
relevant information is that NIRS, more easy, flexible, and exportable technique, can successfully 
characterize pesto, with a potential application in an industrial environment. 
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6 IMAGING APPLICATIONS 
FROM RGB TO 
HYPERSPECTRAL 
IMAGES 

It has been already underlined how the basil characteristics may impact on the quality of the 
final product pesto. In particular, the basil characteristics, in terms of flavour, colour, fibre and 
water content, have a heavy impact on the finished product quality. Moreover, different chemotype 
of Genovese basil and its method of cultivation could give differences in term of flavour or colour. 

One of the critical characteristics of the “Pesto alla Genovese” is its smooth structure due to 
the emulsion of oil in aqueous phase. A consistent oil release could indicate a loss of stability in 
the emulsion structure. The differences in the basil could affect the final structure of pesto for 
several reasons: the colour of the basil affects the colour of the final pesto; the water content and 
the “fibrousness” of the basil stems affects the oil:water ratio and consequently the emulsion 
equilibrium [1]. 

For these reasons the proper characterisation of basil is a crucial step. 
In order to continuously monitor the incoming basil a classical RGB vision system has been 

installed in the very preliminary step of the pesto production line, where the basil plants enter the 
process. The proper elaboration of basil images will do the differences between taking just a photo 
and disposing of a set of precious information. Information related to the colour and the 
morphology of the basil plants in terms of leaves and stems, is considered highly relevant. 

Hyperspectral imaging (HSI) [2] is a powerful methodology joining the possibility of describing 
the morphological characteristics of the sample (i.e. the image of the sample surface) to the 
acquisition of detailed chemical information (i.e. captured by the spectrum taken in a given 
wavelengths range for each single pixel of the image). In fact, with respect to classical digital 
images where only three (red, green, and blue) channels are acquired (RGB images), 
hyperspectral imaging acquires for each pixel a whole spectrum, where visible and/or near 
infrared range are the most common for food applications. HSI data coupled with proper data 
elaboration is potentially capable to give information about the chemical components and their 
distribution on the imaged surface. In the case of pesto, it could be very relevant to observe the 
different recipe ingredients/constituents distribution and to evaluate if the differences in basil 
origin on it. 

In this Thesis, the two typologies of images were touched either on basil or pesto for evaluating 
different aspects and possible employment in the quality control at the plant. 

 

6.1 RGB Vision System for on-line Basil analysis 

As pointed out in the introduction to this chapter, the quality of the basil affects the quality of 
the pesto sauce, so in addition to the laboratory analyses, which provide an extended 
characterization but on fewer samples, a vision system has been implemented, at the very first 
step of the production line, for in-line monitoring of the basil. The system acquires RGB images 
while the basil is loaded on a conveyor belt, and from them some standard features are calculated 
by the vision system proprietary software. These are average and standard deviation of the 
registered intensity in small time intervals at each colour channel, plus an overall estimation of 
the belt area covered by basil plants. 
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However, there can be further refined information to extract. One issue is due to the varying 
illumination at the location where images are taken, which is not automatically compensated by 
the vision system and would require frequent recalibration of the software parameters, the 
conveyor belt is also covered to very different extent during production, hence giving sometimes 
images with very few basil plants. In addition, it would be of interest to gather an estimation of the 
fibrous part amount, i.e. basil stems, distinctly from the leaves amount, as well as to estimate the 
defects, such as black or darker spots. 

With, respect to these general aims, in this study we explored different computational 
approaches to calculate the ratio between the leaves and the stems of the basil plants from the 
RGB images.  

As a first attempt, we applied methods of image segmentation, by using the Otsu method [3], 
and different tools, present in the image analysis toolbox in Matlab, for objects detection. 
However, the very different illumination prevented to obtain segmentation thresholds that could 
satisfactorily work for all the images. The segmentation methodology was thus, only preliminary 
applied to annotate the ground truth for a set of calibration images, followed by manual 
refinement. This calibration set was then used to build classification models at pixel levels, by 
developing and testing three main strategies: 1) feature enhancement by applying wavelet filters 
+ PLS-DA; 2) calculation of textural features + PLS-DA, and 3) Deep learning, by CNN net, for 
pixels classification. 

At present, only the results of the first approach are available, while work is still in progress 
concerning the other two strategies, as it will be presented in the following. 

 

6.1.1 Sampling 

A prototype RGB Vision System (Sensure, Orio Al Serio, BG, Italy) [4] was installed in the 
Pedrignano plant to characterize the basil plants. The acquired images are usually not stored for 
memory constraints, however with the aim of improving the amount and significance of the 
extracted information some hundreds of images were manually saved during the 2021 summer 
production and imported in Matalb for further image processing. These RGB images have size of 
1280x1020 pixels. 
An example of an acquired images is shown in Figure 6-1. 

 
Figure 6-1. RGB basil image acquired by the Vision System at the conveyor belt. 
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6.1.2 Feature enhancements step by WT and PLS-DA. 

In the first strategy described here, the segmentation of the three main part of the image 
(stems, leaves, and background) was done applying the wavelet filters, then a pixel-based 
classification by using PLS-DA. 

 
The wavelet transform (WT) [5] allows capturing the different frequency contributions of a 

signal (1D-WT) or an image (2D-WT). In the case of images WT is a good tool, not only for 
denoising, but as well to analyse the texture, or in other word to recover the spatial features. In 
short, the WT decomposes the raw image in four sub-images called Approximation (holding 
smooth changes, e.g. tones) and Horizontal, Vertical and Diagonal details (holding sharp, 
oriented changes, e.g. stripes in specific spatial direction). In this way an RGB image is 
decomposed in four sub-images CA, CH, CV and CD for each spectral channel (Figure 6-2). The 
obtained Approximation image (CA1) can then be decomposed in turn, increasing the 
decomposition level, to obtain smoother and smother version of the raw image in the 
Approximation image at further levels. The high frequency contributions are filtered in the details 
sub-images (this is also referred to as multiresolution). This decomposition process is applied 
distinctly to each colour channel. In order, to compensate low-level distortion we used the 
stationary wavelet transform (SWT) implementation [6, 7, 8]. 

 
Figure 6-2. As an example, the wavelet decomposition of a four spectral channels image at the first decomposition 
level is shown. 

From the data analysis point of view, collecting the decomposition sub-images at different 
levels allows setting up a multivariate data set containing enhanced information and exploiting 
the spatial features. For a single image, each decomposition sub-image of dimensions n1 per n2, 
is unfolded pixel-wise, obtaining a matrix of size n1*n2 rows x 4 columns. Then, the matrices 
corresponding to the different colour/spectral channels and decomposition levels are 
concatenated column-wise (Figure 6-3 left).  

 
Figure 6-3. PLS-DA model 1 to predict background vs stems + leaves. 

Different wavelet filters are available, for our purposes we selected the simplest, i.e. the Haar 
(or db1) filter and used the maximum decomposition level (namely 9) compatible with the image 
size. 
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The unfolded data set can be analysed by any multivariate method. In our case, since we 
wanted to achieve pixels classification PLS-DA has been applied (data was autoscaled to 
compensate the different scales of WT coefficients at different decomposition levels).  

In particular, we used a sequential strategy: a first PLS-DA model was calculated to separate 
background (conveyor belt) from the rest (basil leaves + stems). Thus, the corresponding Y1 
dummy matrix (Figure 6.3 Y block) was coded 1 for pixels belonging to background and 0 for the 
rest (basil plant, both stems and leaves); then by considering only pixels belonging to the basil 
plants a second PLS model is built to discriminate stems from leaves. 

The calibration models have been built by using as calibration set four different images (whose 
ground truth has been annotated as explained before) with varying degree of conveyor belt 
covering and varying illumination. Because the pixels belonging to leaves are generally much 
more numerous than those belonging to stems, when building the second PLS-DA model the 
leaves class has been randomly subsampled (it is well known that any discriminant method 
suffers from class imbalance). 

The number of PLS-DA components for both models has been selected according to minimum 
classification error in cross-validation (venetian blind, five splits). The classification rule adopted 
is to assign a pixel to the class for which the predicted Y probability is maximal. 

 
Once the two PLS-DA models were obtained, an external set of images was predicted. 
The prediction step is very fast, compatible with the on-line implementation, and is done on a 

new image by applying the wavelet decomposition, unfolding and concatenation to obtain the 
data matrix, and then applying the model 1 and model 2 in sequence: 

[Ybackground Ypred _Stems+leaves ] = Bmodel1 * Xtest_all   6-1 

[Ypred _Stems Ypred _Leaves ]= Bmodel2 * Xtest_stems+leaves   6-2 

Refolding the predicted class membership vector, the location of the corrected predicted pixels 
can be visualized (Figure 6-4). 
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Figure 6-4. PLS-DA predictions for one of the test images, i.e. number 9. The plots show the refolded predicted class 
membership and the ground truth image (bottom right). Top left stems image, top right leaves, bottom left, background. 
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6.1.2.1 Results 

In Table 6.1 are shown the results obtained for the test images, while for the calibration set 
considering the four images altogether the following percentages of corrected classified pixels 
were obtained: 69%, 86%, and 90% for stems, leaves, and background, respectively. 

 

Table 6.1. Percent of correct pixels classification in prediction for the test set images. 

Image 
number 

Stems 
% correct pixels 
classification 

Leaves 
% correct pixels 
classification 

Background 
% correct pixels classification 

9 51,4 75,7 90,4 
10 55,0 66,5 94,5 
11 74,5 48,3 98,7 
12 54,2 83,0 32,8 
13 51,2 89,1 68,1 
14 48,7 88,8 25,5 
15 45,5 88,5 28,1 
16 53,5 81,2 62,0 
42 31,8 82,7 82,9 
43 51,9 75,5 92,4 
44 42,4 74,5 91,1 
45 45,3 72,4 96,9 
46 54,2 69,6 92,4 
97 55,1 74,5 91,9 
98 57,8 67,9 98,2 
99 72,2 63,0 95,0 

 
As it is possible to observe, the percentage of correct prediction is good for most of the 

samples, with very few exceptions. The worst predictions obtained in the case of background 
(images number 12, 14, 15) correspond to images where the background pixels are a minority, 
and it must be considered that for PLS-DA model 1, since in general background was proportional 
to leaves, correction for imbalance was not applied. Stems in general show lower correct 
predictions percentage, the reason could be that they are often of the same colour of the nerves 
of the leaves and thus share some similarity with leaves and can be confused. Nonetheless most 
of them are depicted, e.g. see Figure 6-5 where predictions for image number 44 (one of the 
lowest correct %) are shown. 
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Figure 6-5. Predicted pixels memberships for test image of sample 44. Top left stems image, top right leaves, bottom 
left, background, and bottom right the ground truth image. 

Work is in progress to refine the obtained model and to compare with the other strategies. 
In Table 6.3, a preliminary classification obtained by Deep Learning architecture, described in 

the chapter 3 is reported. The calibration images used for the learning phase were 104 in this 
case. 
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Table 6.3. Percent of correct pixels classification in prediction for the test set images obtained by a DeepL architecture. 

Image 
number 

Stems 
% correct pixels 
classification 

Leaves 
% correct pixels 
classification 

Background 
% correct pixels classification 

9 19,66 83,81 98,84 

10 2,01 41,60 51,95 

11 0,00 13,36 83,34 

12 1,91 66,31 33,45 

13 5,71 88,10 13,44 

14 6,63 86,14 7,36 

15 3,57 91,39 6,61 

16 6,10 76,63 9,37 

42 2,71 71,33 45,42 

43 6,56 49,47 45,97 

44 0,95 29,90 83,94 

45 6,51 41,57 90,98 

46 5,78 44,02 70,41 

97 3,64 24,13 83,65 

98 3,28 55,52 82,10 

99 19,66 83,81 98,84 

 
The DeepL results, albeit preliminary are worst especially for the stems class, of course other 

architectures need to be tested and optimized, however some cons of this methodology are the 
higher number of training images required and the much demanding computational effort in the 
learning phase.  

 
Overall, these results highlight that the adopted WT + PLS-DA approach could potentially be 

useful to measure the ratio between leaves and stems in the basil plants controlled by the in-line 
RGB Vision System. 

 
The possibility to characterize basil plant when they arrive at the production plant could give a 

relevant increase in the quality of the final product. To do that it is very important to have the 
capability to proper elaborate the RGB images acquired by the Vision System already installed in 
the plant. The chemometric approach gave a promising way to solve this topic. 

 

6.2 Hyperspectral imaging (HSI) 

6.2.1 Introduction 

In the food industry there is an increasing need of fast and non-destructive analytical methods 
to evaluate the characteristics of products, especially for in-line or on-line monitoring in production 
plants. Hyperspectral imaging (HSI) is a powerful methodology both fast and non-destructive, as 
well as being possible to implement in/on-line. Moreover, from Hyperspectral images it is possible 
to obtain both morphological and chemical information.  

In this work, a preliminary study has been done on the feasibility of applying Visible (Vis-HSI) 
and Near Infrared Hyperspectral imaging (NIR-HSI) for the characterization of Italian “Pesto alla 
Genovese” sauces.  

Pesto samples obtained by basil coming from three different origins giving rice to pesto sauce 
with different characteristics, were studied. The aim was twofold: on one hand to set up a data 
analysis strategy to fully exploit the information carried out by HSI, and on the other one, to 
distinguish the different categories of pesto. 

The multivariate image analysis pipeline, applied to Vis an NIR HSI, comprises a Region Of 
Interest (ROI) extraction from each image, a proper spectral pre-processing step, then 
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Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) multiset analysis was used 
to obtain the purest components spectral profiles and their respective relative concentration map. 

Post elaboration of concentration maps of the resolved components has been applied to study 
their spatial distribution. In particular, a homogeneity index has been estimated for each resolved 
component by implementing the “homogeneity curve” method. In addition, global textural features 
were extracted by Gray-Level Co-Occurrence Matrix. Exploratory Principal Component Analysis 
(PCA) was then applied on the extracted features, allow distinguishing the different pesto 
categories. 

As mentioned in the introduction to this chapter the smooth structure of pesto obtained by a 
balanced oil-water emulsion is fundamental for a good quality product, in this respect 
hyperspectral imaging has the potential to be used to monitor this characteristic. In fact, it joins 
the possibility to inspect the distribution (it can be obtained by the image of the sample) of the 
ingredients/phases (the chemical information come from the spectra available for each single 
pixel of the image). So, the use of a hyperspectral system coupled with proper data elaboration, 
can extract information about the chemical components and their distribution on the surface of 
pesto, which may be due to the different basil used in the recipe, or other processing steps. In 
particular, the eventual oil release can be monitored. 

6.2.2 Material and Methods  

6.2.2.1 Sampling 

Twenty-three commercial samples of Italian sauce “Pesto alla Genovese” were collected 
directly at the production plant during the whole productive season, ranging from May to October 
2021. The collected pesto samples were obtained by basil plants of three different origins called 
1, 2 and 3 for confidentiality reasons. This prior information about basil was used as class label 
for the pesto samples, resulting in three classes into which can be potentially distinguished. The 
collected samples, their month of production and basil origin are reported in Table 6.2. 

Table 6.2. Samples collection scheme, classes and numerosity 

Month Number of samples 

May 3 (class 1) 

June 3 (classes 1, 2 and 3) 

July 5 (class 3) 

August 4 (classes 2 and 3) 

September 4 (class 2) 

October 4 (classes 1, 2 and 3) 

 

6.2.2.2 Instrumentation and images sampling 

In the present study were used two hyperspectral cameras assembled at INRAe facilities. They 
cover the spectral ranges from 409 to 987 nm (24450 to 10132 cm-1) and from 964 to 2494 nm 
(10373 to 4009 cm-1), respectively (see 2.5.2). Images were acquired by pouring an aliquot of 
pesto onto a disposable aluminium vessel. Together with pesto as white reference a white tile 
was imaged to correct illumination differences, from sample to sample, and to normalize each 
image. Acquisition was done in reflectance mode. Then the acquired images were normalized 
dividing every pixel by the average signal of the white tile to compensate the eventual illumination 
changes between acquisitions. Subsequently images were converted in absorbance using the 
formula: 

Image Absorbance = - log10 (Image Reflectance) Eq. 6-3 

 
For instrumental reasons the images in the Vis and NIR range were collected in subsequent 

sessions. In a preliminary session (data not reported) were tested three different possible sample 
presentations to the hyperspectral cameras: 1) through the glass on the bottom of the jar; 2) on 
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the sample contained in the jar previous removal of the first superficial layer; 3) on the sample 
collected and transferred to an aluminium vessel. These preliminary trials highlighted in the first 
case some problems of unwanted reflection on the jar glass, and in the second case some 
problem of unwanted shadows and non-homogeneous illumination. So, the third presentation 
mode was chosen to collect the images. 

 
The Vis camera had a resolution of 1167x1600 pixels and in the range 408-987 nm, 160 

spectral wavelengths were sampled. This, for each image sample a 3D array of dimensions 
1167x1600x160 was obtained.  

Before further elaboration a region of interest (ROI) (Figure 6-6) of dimensions 400x400 pixels 
from the centre of the sample was selected for each image, obtaining a 400x400x160  array, 
which for computational reasons, was further resized to 100x100x160. 

 
The NIR camera had a resolution of 320x260 pixels with 256 spectral wavelengths from 964 

to 2494 nm. Analogously to the Vis case, a square region of interest (ROI) of 91x91 pixels was 
selected, giving for each sample a data array of dimensions 91x91x256.  

 

 
Figure 6-6 Steps to prepare image for analysis, used for both Vis and NIR cameras: from the left: original sample in 
aluminium box, with reference white tile, the raw image, the image normalized vs reference and transformed to 
absorbances, Region Of Interest selection, ROI image ready for analysis. 

6.2.3 Data analysis 

6.2.3.1 Spectral preprocessing 

For each single image, after pixels-wise unfolding, the spectra were preprocesssed by applying 
SG smoothing (polynomial order 2 and window 9), baseline correction (Whittaker lambda=100 
sigma 0.001) and normalization by Multiplicative Scatter Correction (MSC, see ref. 13 in chapter 
bibliography) using as reference spectrum the average one. 

6.2.3.1 MCR-ALS decomposition 

The use of MCR-ALS in image analysis has been introduced in paragraph 3.6.1. In this case, 
for computational constraints due to the image dimensions, the MCR-ALS model was calculated 
on six representative images, i.e. corresponding to samples number 2, 4, 5, 8, 12 and 16, by 
using the multiset modality (Figure 6-7 top). The Vis images were not pre-processed and a three 
components MCR model was calculated (applying non-negativity constrains on both C and S 
matrices). 

For the NIR images to better resolve the spectral profile of purest components we proceeded 
as follow: 

i) as a first step a single pre-processed unfolded image was decomposed in principal 
components (by singular value decomposition), then the pixels carrying essential 
information [9] were individuated by applying the convex-hull in the normalized (dividing 
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by the first component to make the PC space convex) scores space (component 2 vs. 
component 3). Eight pixels belonged to the convex-hull; 

ii) The spectra corresponding to the eight pixels were decomposed by MCR-ALS 
imposing non-negativity constrains on both C and S matrices, retaining three 
components; 

iii) The Sopt matrix, obtained in step ii) was then used as spectral initial guess in the MCR-
ALS of the multiset composed by concatenation row-wise of the six unfolded and pre-
processed representative images. In addition to non-negativity, for one of the three 
component a selectivity constrain was also imposed (trying to recover an aqueous 
phase component, we imposed zero values in spectral wavelengths where water does 
not absorb). In this way new Copt and Sopt matrices were obtained; 

iv) The C matrices for all the other images (the other samples) have been calculated (after 
applying unfolding and preprocessing) by inverting the MCR equation and by using the 
Sopt obtained in iii) (Figure 6-7 bottom).  
 

 

 

 

 
Figure 6-7. Scheme of application of MCR-ALS to the multiset (top) composed by the images of six representative 
samples. Bottom) obtaining the concentration matrix C for the remaining samples by MCR model inversion. 

The images of the refolded concentration matrix (concentration maps) of the purest components, 
for both Vis and NIR MCR-ALS models, and their relative spectra are reported in Figure 6-8. 
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Figure 6-8. Images of the purest resolved components and their correspondent spectra for sample 2, one of the samples 
used to build the MRC-ALS model. In the upper image the Vis model (concentration map and resolved spectra) and in 
the lower image the NIR model (concentration map and resolved spectra). In both cases, the components are reported 
in order from one to three respectively from left to right. 

 
In the Vis the spectral profile of the first pure component shows two bands that can be ascribed 

to the absorption of the chlorophylls, respectively “chlorophyll a” at around 662 nm, and 
“chlorophyll b” at 642 nm. The spectral profiles of the second and the third components could be 
attributed to the absorption of oil [10]. The distribution is rather homogeneous and similar for 
component 1 and 2, while specular for component 3 (i.e. where components 1 and 2 show the 
higher intensity component 3 show the lower). 
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In the NIR, the spectral profiles of the three purest components remind to absorption bands of 
water, proteins, and oil (as described in the method chapter 2). In details, the first component 
presents the two typical absorption bands of water, the second component present the most 
intense band in the spectral region where proteins absorb, and some less intense bands in the 
spectral regions where water and lipids absorb. This could suggest that the second component 
may be representative of the emulsion phase. The third component shows bands mainly in the 
spectral regions where lipids absorb (thus could represent oil). The spatial distribution of the three 
components is rather similar, but there is a region in which aqueous phase prevails (intense yellow 
colour in concentration map of component one) and the blue spots represent regions where all 
components have low concentration values. 

 

6.2.3.1 Post Processing of concentration maps 

To characterize and differentiate the pesto samples disposing of global features for each 
sample is useful. To this aim, some features were calculated by the concentration maps of the 
purest components treating them by image analysis tools. In particular, the two approaches 
described in chapter 3 were applied on the six concentration maps for each sample obtained by 
MCR-ALS of NIR and Vis imaging data, respectively (three for each). 

The first approach was the calculation of image features by using the Haralick method on the 
Gray-Level Co-Occurrence Matrix (GLCM) [11)]. The features were calculated as detailed in 
Table 3-1 of chapter 3 exploring different pixel neighbours’ distances, namely 1, 2, 4 and 8, and 
different grey levels, such as 8, 16, 32 and 64. At the end, merging Vis and NIR data, a matrix of 
23 samples x 768 columns (features) was obtained and was used for further PCA explorative 
analysis. 

The second approach was the Homogeneity calculation by Continuous – Level Moving Block 
(CLMB) method by using the methodology proposed in [12], which is based on the Macropixel 
analysis methodology, already presented in chapter 3. 

The formula was applied to all the 6 images i.e. concentrations maps of the purest components 
of each sample, giving as result a matrix holding the homogeneity index in percentage of 
dimensions of 23x6. On this matrix an explorative PCA was done. 

 

6.2.4 Results and discussion 

The spectra of the pure components decomposed by MCR gave some chemical information 
on the images. In fact, observing the spectra in the visible range (Figure 6-9) was possible to note 
that component 1 cover the absorbance of chlorophylls a and b, relative to basil, while component 
2 and 3 could be relative to the olive oil pigments (including chlorophylls).  
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Figure 6-9. Spectra of pure components in the VIS hyperspectral images decomposed by MCR-ALS. 

Observing the results obtained for the NIR range, the three pure  components (Figure 6-10) 
could be ascribed to water (absorption bands at about 1450 and 1940 nm), lipids (absorption 
bands at about 1200, 1700 and 2300 nm) and proteins (absorption bands from 2050 to 2180 nm). 

 

 
Figure 6-10. Spectra of pure components in the NIR hyperspectral images decomposed by MCR-ALS. 

The respective concentration maps, obtained for each sample are shown on Figure 6-9 and 
Figure 6-10. The general observations drawn for the six samples on which the MCR models were 
built (see 6.2.3.2) still holds. In addition, it can be seen some differences from sample to sample 
with respect to the spatial distribution of one or more components, e.g. a different degree of 
homogeneity for component 3 of NIR (attributed to lipids). 

 
The features calculated on these concentration maps by the two approaches described in the 

chapter 3 were used for two distinct explorative PCAs. 
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The PCA on the Haralick features (Figure 6-11) shows in both PC1 vs PC2 and PC3 vs PC4 
scores plots a poor separation between the three classes. The highest PCs have been also 
inspected but not reported because did not add more information. Samples number 18 and 23 
appear to be very different from the other samples. For sample 18 in fact, looking at its 
concentration maps, a different distribution for components 1 and 2 could be observed, especially 
for the Vis (pointing to different distribution of chlorophyll pigments and eventually in segregation 
of basil plant residues) and to a less extent for the NIR components as well, with respect to the 
other samples. For sample 23 differences with respect to other samples are more evident in NIR 
images, especially for components 1 and 3, related to chlorophylls and oil. 

The reason explaining this behaviour need further investigation. 
 

 

 
Figure 6-11. Haralick’s classical features calculated on both Vis and NIR images of pure components. Score plot of 
PC1 and PC2 (top) and PC3 and PC4 (bottom) of explorative PCA. The different colours indicate the three pesto 
classes related to the basil origin. 



 

108 
 

 

 



 

109 
 

 
Figure 6-12. Reconstructed images of MCR-ALS pure components of all VIS hyperspectral images of all samples: 
respectively from top to down the three components.  

  



 

110 
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Figure 6-13. Reconstructed images of MCR-ALS pure components of all NIR hyperspectral images of all samples. 

The explorative PCA calculated on the homogeneity index data (Figure 6-14), showed more 
overlap among different pesto classes; only class 1 samples (except one) are localized at most 
negative PC1 values with respect to the other two classes.  

 
  



 

112 
 

 
Figure 6-14. Score plot of explorative PCA done on homogeneity feature data of VIS and NIR images. The three colours 
indicate the pesto classes. 

 

6.3 Conclusions 

Hyperspectral imaging (HSI) is a very powerful tool to collect simultaneously morphological 
and chemical information of a sample. Its use is increasingly spreading due to the camera’s 
affordability in terms of costs and performances and the augmented computing power and 
methodologies. 

In the case of pesto characterisation their very complex matrix was a challenging topic to solve. 
The use of more sophisticated elaboration technique like MCR-ALS helped to extract information 
from the images giving as result images of pure components, which were putatively attributed 
based on their resolved spectra. Inspection of this distribution maps, sample by sample, provide 
a depth insight on how smooth the structure of pesto is. However, the global features extraction, 
either by the Haralick method or by the homogeneity index, did not brin to a clear separation in 
the three pesto classes. It could be that the differences in basil origin is not so crucial for the final 
pesto structure, and the pesto processing is successful in providing a stable product. On the other 
hand, some differences emerged for some few peculiar samples, such as number 18 and 23 
where highlighted. 
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7 A FEASIBILITY STUDY 
TOWARDS THE ON-LINE 
QUALITY ASSESSMENT 
OF PESTO SAUCE 
PRODUCTION BY NIR 
AND CHEMOMETRICS 

 
This work has been done in collaboration with Daniele Tanzilli, a PhD student of Professor 

Marina Cocchi and it is the object of Publication n°3 (reported in Chapter 8), to which the reader 
is referred for more details. I was responsible of data acquisition, curation, exploratory analysis. 
Equal contribution was given to results presentation, validation and discussion, writing, editing. 
Daniele, was responsible of methods development in particular for data synchronization, 
preprocessing and predictive modelling.  

In the following, I will report just a part of the whole work done, such as the preliminary 
feasibility analysis (which is not present in the published paper) and the multivariate control charts, 
while for the on-line prediction only a Table summarizing the obtained models (including some 
which are not present in the publication) is shown. 

 

7.1 Introduction 

The texture of pesto is a delicate equilibrium of an emulsion of oil in water, protein matrix, 
pieces of basil (leaves and stems) and of cashew nuts [1]. Its stability depends on proper raw 
materials characteristics and proportion, and preparation process (cutting, mixing and thermal 
treatment). The control of the process in its crucial steps became so an important part of the 
production, from one hand to maintain the designed quality, to the other hand to detect potential 
critical conditions with the aim of minimize wastes or production stops. The process control could 
be achieved with on-line monitoring systems and models, and NIR spectroscopy is widely used 
in food processes with appropriate chemometric models developed. 

 
A preliminary part of this part of the study was done to evaluate the feasibility of NIRS to gather 

compositional/structural information which will then allow, aided by chemometrics modelling, 
predicting the pesto sauce characteristics, and particularly its emulsion stability. In fact, the 
reference method used in R&D Lab to measure of the emulsion stability of the pesto structure, 
during the development of new recipes or technologies, is based on analysis with a dedicated 
type of centrifuge (LUMiSizer®, see Chapter 2). This centrifuge is able, during the centrifugation 
process, to measure the speed and the amount of the pesto phases separation thus allowing to 
determine the emulsion stability. However, it is not appropriate in a production context because 
each measure requires several hours and trained personnel. So, the need to evaluate a more 
rapid and “easy to use” technique like NIRS. The evaluation study was done in Lab with an off-
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line bench instrument, but a future step could be to exploit the methodology in the plant by using 
on-line NIR instrument.  

 
In the published work, indeed a feasibility study was done to establish how an on-line NIRS 

system (already installed in pesto production plant) could help to real-time monitor the 
intermediate/final product quality during production by using Multivariate Statistical Process 
Control (MSPC) methodology. To this aim, data from one pesto production campaign was 
analysed by applying both multivariate control chart (MCC) based on Principal Component 
Analysis (PCA), and PLS regression-based models to calibrate specific properties of finished 
product, i.e. pesto. Since NIR spectra are collected on-line, once models are developed, they can 
be applied real-time in prediction and monitoring for early estimation of product quality and for 
early detection of any departure from normal operating condition during processing.  

7.2 Materials ad methods 

7.2.1 NIR feasibility study at R&D Lab scale 

During the 2022 pesto production campaign 182 samples of “Pesto alla Genovese” were 
collected over three months, just after the production, in Rubbiano plant. Their emulsion stability, 
expressed as instability index, was measured by the reference method in the R&D Lab in Parma. 

Samples were collected in three distinct production phases: 1) at the start of a production lot; 
2) in the middle of a production lot; and 3) at the re-start after a production stop due to some 
issues and maintenance operations. In this last case, part of the product lasted in a tank for some 
time (variable duration depending on the type of issue to be solved) at higher temperature under 
continuous mixing, conditions that could affect the stability of the emulsion in the final product. 

 
To be representative, for each sample eight NIR spectra (in eight distinct positions by rotating 

the sampling cup) were recorded in the range 400-2500 nm, by the benchtop instrument. The 
average spectrum of the eight acquired spectra was used to assemble the spectral data set. 

 
The spectral dataset was divided in two blocks, by splitting the wavelengths regions, related 

to the two detectors of the NIR instrument. Respectively from 400 to 1100 nm the silicon detector 
and from 1100.5 to 2500 nm the lead sulphide detector (Figure 7.1). The part of the spectra from 
2360,5 to 2500 nm was removed because it is affected by high noise. 
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Figure 7.1. VIS-NIR spectrum example with the colours that indicates the separation into two blocks based on the two 
instrument detectors (red silicon detector, green lead sulphide detector). 

Several spectral preprocessing was tested on both blocks (i.e. SNV and Savitsky-Golay first 
and second derivatives and their combinations) and at the end the first derivative (2nd polynomial, 
15 points) was selected, for both of them, showing a better distinction in PCA space of the three 
production phases. 

Samples were then divided in a calibration set (127 samples) and a validation set (55 samples) 
by using the DUPLEX algorithm. 

Multiblock PCA was applied after block-scaling to unit variance (including mean centring).   

7.2.2 Monitoring of semifinished product by on-line NIR 

Semifinished pesto is a mix of oil, salt and cut basil, produced in the first part of the production 
process before the addition of the other ingredients. The NIR on-line probe recorded the spectra 
of semifinished product in a spectral range from 1100 to 1650 nm. 

NIR spectra were pre-processed to remove effects, such as scattering, introducing variability 
not linked with information to be retrieved, and/or to enhance extractable information. In particular, 
Savitzky–Golay 2nd derivative and mean centering were applied prior to exploratory Principal 
Component Analysis and multivariate control charts building. 

The dataset had been split in calibration and test sets manually, considering Normal Operative 
Conditions (NOC) observations, subdividing each period without production stops, as follows: the 
first part (about 65%) consisted of temporally contiguous points in the calibration set; and the 
second part (about 35%) was in the test set. In this way, we mimicked the real situation of 
continuous monitoring where samples to be predicted came after in time for each period. 
Observations not in NOC, as highlighted by exploratory PCA, were all included in the test set. 

To estimate the correct number of PCs, cross-validation was performed with a venetian blind 
scheme with ten splits. The MSPC charts were based on two parameters: Hotelling T2, which 
described the distance of a sample in the model space, and Q, which defined the distance of a 
sample from the model space. In other words, if a sample had high T2

 values, the model was able 
to describe it, but the distance between the sample and the centre of the model was high, i.e., it 
showed an extreme behaviour. On the other hand, if a sample was characterized by high Q 
values, the model was not able to describe the sample properly, hence the correlation structure 
of variables was different from the other samples. To assess if a sample was extreme or 
anomalous, signifying a departure from normal operative conditions for both control charts, the 
acceptance limits had to be estimated. The T2

 limit was obtained based on Hotelling’s T2
 



 

118 
 

distribution, whereas the Q limit was based on χ2 distribution and was calculated either with 
Jackson and Mudholkar approximation or the Box method [2, 3] 

7.3 Results and discussions 

7.3.1 Results of NIR feasibility study 

The graph of the instability index (Figure 7.2) indicates that most of the un-stable samples 
(higher instability index) refer to samples collected after a stop of the production line (represented 
by blue triangles in Figure 7.2). The samples at the production start (shown as red diamonds) had 
all an extremely low instability index during all the production periods, thus good structure of the 
emulsion. The samples collected in the middle of the production period (green squares) showed 
just few unstable samples.  
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Figure 7.2. Instability index of all the samples analysed. Top plot (a): samples have different symbols and colour 
depending on the production phases: production start) red diamonds; middle of production) green squares; after 
production stops) blue triangles. Bottom plot (b): samples are coloured by instability index values (see colour bar) and 
different symbols are used basing on production phases as in (a) with diamond, squares and triangles indicating start, 
middle and after stops, respectively. 

Observing the score plot of PC1 vs PC2 of the explorative PCA done on NIR spectra (Figure 
7.3) is possible to note that part of the samples collected after a stop and re-start in production 
(blue triangles) had very negative values of PC1 and are so clearly separated from the others. 
These samples had higher values of instability index (Figure 7.3). On the other hand, most of the 
samples collected at the start (red diamonds) and in the middle of production (green squares) had 
positive or slightly negative values of PC1. An interpretation on the differences between these 
samples could be made evaluating the spectral wavelengths in the loading plot of PC1 and PC2 
(Figure 7.4). Samples with negative values of PC1, so in the left part of the score plot, had lower 
levels of chlorophyll (band at 730 nm), higher level of water (spectral region around 1400 nm and 
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2000 nm where water absorption take place) and lower level of lipids (bands around 1900 nm and 
2300 nm). The differences observed in PC2 was more related to the chlorophyll and proteins 
content. 

 

 

 

 
Figure 7.3. Explorative PCA of VIS-NIR spectra. Score plot of PC1 vs PC2. Red diamonds (middle of production), green 
squares (start of production) and blue triangles (restart after production stop) represent respectively samples collected 
at start, middle, and re-start of production. 
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Figure 7.4. Loading plot of PC1 (top) and PC2 (bottom). 

The Hoteling T2 (Figure 7.5) plot, which show how extreme are samples in the overall PCA 
model, was also inspected As it can be observed in the figure, the samples having higher 
instability index fall over the T2 critical limit and are so indicated as very extreme samples and 
most of them were collected after productions stops/re-starts. Most of these samples were the 
ones located at negative PC1 vs PC2 PCA scores plot (far from the others, e.g. 26, 31 and 35. 



 

122 
 

 

 
Figure 7.5. Multivariate control chart. Top samples coloured for pesto classes; bottom samples coloured for instability 
index. 

An attempt was also made to estimate the instability index by the NIR spectra. To build the 
multivariate calibration model between the VIS-NIR spectra and the instability index a PLS 
regression model by using three latent variables (according to minimum error in cross validation 
with venetian blind with ten steps) was selected. The results (Figure 7.6) indicated a quite good 
prediction model, with a RMSECV 0.0521 and RMSEP 0.0538 indicating that NIRS could be an 
acceptable alternative to quicky evaluate the stability at least at pre-screening level. 

This results, are especially interesting because two NIRS are already installed on-line in the 
Rubbiano plant in two points of the production line, and thus the predictive model could be in 
future implemented as real-time measure. 
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Figure 7.6. Instability index prediction by NIRS reporting the measured Instability index on x axes vs the predicted 
Instability index in y axes. The green line indicates the ideal prediction. Calibration and test samples are reported. 

7.3.2 Results on NIR on-line on semifinished product 

PCA analysis carried out on NIR spectra (acquired for 459 time points) had highlighted the 
presence of a cluster of samples at the negative value of PC1 and positive value of PC2, as 
shown in Figure 7.7a, as very far and different from all the other samples. Observing the PC1 
versus time plot (Figure 7.7b), it was evident that these samples always corresponded to re-starts, 
where production started after a period of inactivity. In Figure 7.7c, the loadings line plots for PC1 
and PC2 are shown as the blue and red lines, respectively, where it is possible to see the 
absorption bands as mainly responsible for this difference. However, to jointly interpret scores 
and loadings plots, a PC1 vs PC2 loadings scatter plot was also generated (Figure 7.7d). In the 
two figures d and c, highlighted in purple, the wavelengths that describe the separation between 
the NOC and anomalous samples are shown. It can be observed that the band in PC1 at 1400 
nm, despite being the most intense, is not involved in the description of anomalous samples but 
just in extreme NOC samples with high values of PC1 scores in Figure 7.7a. On the other hand, 
the bands at 1170, 1213, 1236, and 1410 nm describe the behaviour of the anomalous samples, 
as they fell in the separation direction, meaning that these samples had quite different absorptions 
at these wavelengths. In detail, the bands at 1178 and 1410 nm can be ascribable to lignin, 
namely, the second overtone of C-H bond stretching of CH3, and to the first overtone of the O-H 
bond stretching of the ROH group, respectively. Whereas the band at 1213 and 1236 nm are 
related to the first and second overtone of CH bond stretching of oleic and linoleic acid in olive oil 
CH2 (4, 5, 6). 
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Figure 7.7. Results of the Exploratory Data Analysis performed on NIR data. PC1 vs PC2 Scores plot (a), Scores on 
PC1 as a function of time (b), Loadings on PC1 and PC2 as a function of time (c) and Loadings on PC1 vs PC2 (d). In 
(a) and (b) purple points represent anomalous samples; in (c) and (d) purple points represent wavelengths that are 
depicting the difference of anomalous samples from the other ones. 

Since these samples show outliers behaviour, as they clearly do not represent the Normal 
Operative Condition (NOC), were removed and a new PCA model was built to obtain a better 
visualization of differences among NOC samples. 

The first PC (79.36% of variance explained) did not show any interesting trend, so PC2 and 
PC3 were inspected. In Figure 7.8a and Figure 7.8b are reported the scores plot of PC2 vs PC3 
where samples are coloured according to the different additional information available i.e., 
suppliers and different cuts, respectively. The suppliers’ names have not been disclosed because 
of confidential agreement restrictions. PC2 discriminates samples according to suppliers, as 
almost all samples of supplier number 2 have positive PC2 values and samples of supplier’s 
number 3 and 4 have negative PC values, suggesting that they are more similar to each other 
with respect to number 2. Only the samples coming from supplier number 5 does not clearly 
differentiates from the others, whereas the number of samples of supplier number 1 is too low to 
judge. Furthermore, PC2 and PC3 can distinguish between samples related to cut 1 and 2 
(negative values of PC2 and positive values of PC3) with respect to samples related to cut 3 and 
4. The possibility to discriminate different cuts is relevant for the company, as younger basil plants 
generally give a higher quality product. However, observing the two plots simultaneously, it is 
evident that only certain suppliers, namely number 3 and 4, have delivered samples characterized 
by low cuts. In Figure 7.9a and Figure 7.9b are reported the loadings plots of PC2 and PC3, 
respectively, that show the NIR bands responsible of these differences. Even if it is not possible 
to assess if suppliers or cuts influence them, PCA resulted to be a valuable tool to assess if 
incoming information about raw material could be linked to the intermediate product 
characteristics, obviously a more systematic planning of the next harvesting campaigns could 
clarify if cut or supplier is the influential factor. 
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Figure 7.8. Results of the Exploratory Data Analysis performed on NIR data. PC2 vs PC3 Scores plots coloured by 
different suppliers (a) and cuts (b). 

 
Figure 7.9. Loadings plot of PC2 and PC3, respectively. 

7.3.3 On-line NIR monitoring (MSPC charts and predictive models). 

As pointed out in the introduction for details refer to publication number 3. 
 
The PCA model to build the MSPC charts, which explains 93% of the data variance with 4 

Principal components, was calculated inserting in the calibration set (294 samples) only the 
samples that are considered in NOC according to plant experts, whereas test set (165 samples) 
comprised both NOC and anomalous samples. The T2 chart, reported in Figure 7.10a, describes 
the distance of each sample from the origin within the model space. Black circles represent the 
calibration samples used to build the PCA model, whereas red diamonds represent the test 
samples projected on the model. This chart detected five groups of samples with high T2 value, 
which again correspond to the NIR spectra acquired at the different restarts of the production. No 
other test sample exceeds the T2 limit. Regarding the Q chart (Figure 7.10b), which describes the 
distance of each sample from the model space, the same samples corresponding to the restart 
are seen anomalous as for T2 chart, meaning that the model does not describe properly these 
samples. Few not consecutive samples and inside the nominal 5% of the total are above the 
charts’ limits. 

Samples were also coloured according to cut, supplier, consistency, and lipids values to 
observe if their behaviour was related to these distinctive features, but no specific trends were 
detected. 

Nonetheless, the results obtained show how these charts are efficient in detecting possible 
departure from NOC, which translate to differences in intermediate products, accelerating the 
identification of possible plant issues or, as in this case, the adaptation of the process while 
returning to NOC conditions after a stop period. NIR is a very sensible technique to signal any 
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variability occurring in intermediate production samples that can be due to process resetting 
(actual case), to process drift, or also to variation of NIR instrumentation setting/performance. 
Interpretation of loadings and analysis of previous production campaigns data may help 
discerning the different situations. 

 

 
Figure 7.10. T2- (a) and Q-(b) based MSPC charts. 

NIR spectra acquired on-line can also be used to obtain multivariate calibration models to 
predict the quality pesto parameters, to then implement real-time prediction to get an early 
estimation of the pesto quality before process is finished. A main issue to take care in this case 
is to match the intermediate product sample (at a given production time), on which the NIR 
spectrum is acquired, with the correct finished pesto product at the end of production line (on 
which quality parameters are assessed by reference methods off-line), i.e. considering the 
residence time as explained in section 2.1 of paper 3. 

Another, critical issue is spectral preprocessing for which the reader is referred to the section 
2.4.1 of paper 3. 

The main results are reported in Table 7-1. 
 
The models for Consistency and Lipids are discussed in detail in the published paper. 
 
The pH model shows close value of RMSECV and RMSEP, analysing the residuals plot (not 

shown for sake of brevity) it was possible to check the absence of bias and their random 
distribution, apart from 2 samples, all other samples are within a range of ± 0.15, an acceptable 
error for estimating the on-line quality of an intermediate product. The model commits an average 
percentage error of 1.1 %. The most influential bands for predicting the pH of pesto were identified 
through the analysis of the regression coefficients and VIP four main spectral regions were 
important: 1210 nm first overtone of the stretching of the C-H bond of the CH2 group of oleic and 
linoleic acid in olive oil and cheese; 1407 nm first overtone of the O-H bond stretching of the ROH 
group of lignin; 1444 nm C-H bond combination bands of the aromatic compounds in basil;1527 
nm first overtone of the N-H bond stretching. 

 
In the water activity model, the test set samples are predicted with a much higher error than 

the calibration set samples (RMSECV 0.001 while RMSEP 0.004). However, when analysing the 
residuals, a random distribution is evident and most of the samples show residue values between 
±0.01, an acceptable range for the company to consider the product in specification. The model 
commits an average percentage error of 0.37%. Again, regression coefficients and VIPs were 
used to identify the most influential bands for water activity, pointing coherently to the first 
overtone of the O-H bond stretching (region around 1450 nm).  

 
Finally, the dry residue model shows comparable RMSECV and RMSEP values and commits 

an average percentage error of 0.63%, while this is considered acceptable by the company to 
check whether the product is in specification for this parameter. The prediction residuals, in this 
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case showed a tendency to a linear trend, as if the model suffered by underfitting. The most 
influential bands are located at 1200 nm, 1350nm (linked to C-H bond stretching of the CH2 and 
CH3) and 1577 nm (first overtone of the N-H stretching of the CONH group). 

 

Table 7-1 PLS regression results for multivariate calibration of pesto quality parameters by using on-line NIR (70/30 % 
calibration/validation split by duplex) 

Quality parameters LVs RMSECV RMSEP % average error 

Consistency (cm) 9 0.64 0.68 9.88 

pH 8 0.056 0.065 1.1 

Lipids (w/w%) 5 1.6 2.0 2.5 

Water activity 4 0.001 0.0044 0.37 

Dry residue (w/w %) 4 0.4254 0.5745 0.63 

 
These preliminary prediction models were built as a first attempt to evaluate the possibility of 

predicting the properties of the final product in real time from on-line analysis of the intermediate 
product, showing promising results despite the limited usable data. These prediction models, 
being constructed with NIR spectra placed at an intermediate stage of production do not "see" 
the variability introduced with the addition of the final ingredients, therefore, they may not be 
effective when these have a strong influence on the finished product, on the other hand having a 
prediction albeit with a fairly significant % error but well in advance allows timely intervention in 
the event of estimates deviating from the required specifications. A limitation in the construction 
of these models is the limited range of variability of the responses which is obviously bound to the 
specification conditions, on the other hand there is no possibility of extending the calibration 
domain. Thus, these models should be viewed not so much with a view to correctly estimating 
the value of the property, but as tools capable of providing a preliminary assessment as to whether 
the tolerated ranges around the product specification are met. With this in mind, the predictive 
models obtained showed very good capabilities for each property, committing a percentage error 
acceptable to the company to consider if the product is inside specification range. 

7.4 Conclusions 

This part of the study presents two feasibility studies. 
 
The first was related to the possibility to predict the pesto emulsion stability by a NIR system 

and demonstrate that NIR is capable to predict pesto structure instability. Its application in a 
production plant should be further tested. 

 
The second part was related towards the real-time monitoring of an industrial food process line 

(pesto production). Since historical data were not available, the obtained results referred to a 
single basil harvesting campaign. The modelling effort concerned both latent variables based 
multivariate control charts, aimed at monitoring the stability of process conditions and the eventual 
detecting of fluctuations exceeding the natural variability of the process. Even though the collected 
data were limited, the results gave interesting insights, which are summarized below. 

NIR-based multivariate control charts could detect restarts after temporary production 
stoppages, underlining that some changes occur in the intermediate product. On one hand, this 
is an indication of how sensible NIR spectroscopy is to monitor any changes, and, on the other 
hand, a monitoring system can clearly indication of how sensible NIR spectroscopy is to monitor 
any changes, and, on the other hand, a monitoring system can clearly indicate when process 
fluctuations return to natural process variabilities and to the constancy of the product. 

The preliminary predictive models obtained showed good capabilities for each property, 
committing a percentage error acceptable to the company to consider the product in specification 
in each parameter. Their application and implementation on the line would allow in the future the 
early identification of intermediates that would give products that are not in specification, giving 
the operator the possibility of planning a verification analysis in the product laboratory (in advance 
of the routine scheduled time), carrying it out on specific target samples and if necessary, stopping 
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production or correcting it by varying the quantities of ingredients. To strengthen and validate the 
prediction models, it would be necessary to increase the number of samples, monitoring 
campaigns over few years and consider to calibrate with a mixed data set of plant and laboratory 
samples in order to enlarge the response variability in the calibration set. Anyhow, results show 
the feasibility of real-time quality monitoring to complement off-line laboratory analyses, thus 
reducing costs and performing quality control on all jars of pesto and not only on some samples. 
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8 FINAL CONCLUSIONS 
8.1 Final remarks 

The main objective of this PhD thesis was to improve and increase the possibility of evaluating 
the quality of crucial raw material and the correlated finished products. The “Pesto alla Genovese” 
has been a good benchmark to try several analytical and statistical approaches both in the lab 
and the industrial plant contexts. 

 
Starting from the basil, (chapter 4) a crucial raw material for the pesto quality, a deep focus 

has been posed on the flavour characterization in an R&D context where is necessary to evaluate 
new basil chemotypes. The classical analytical methods used to evaluate the flavour found in the 
support of chemometrics a new faster, easier, and more effective way to evaluate if a flavour 
bouquet of a new basil chemotype is similar to a well-known basil bouquet and why it is different. 
It is understandable how this could help in the agronomic research. 

Moreover, the study has been carried out in two modalities: with target analysis where the 
molecules to be measured are known, and with untargeted analysis, where no information on the 
expected molecules is available. The first modality is useful to control well established products, 
just to check their behaviour. The second modality instead is more dedicated to research situation 
where very new products are under exploration, as happens in R&D context. 

 
The basil has been also evaluated for other characteristics (chapter 6) like its colour or the 

ratio between the leaves and the stems at the industrial production plants. This in related to the 
availability of a vision system that has been installed in the pesto industrial plant aiming in 
perspective at achieving real-time raw materials monitoring. In fact, the Quality by Desing, that is 
increasing in its application also in food industry contemplate that raw material should have 
precise characteristics. Not always easy to be sure of that with “live” row materials like basil. So, 
an image analysis strategy has been studied. Promising preliminary results were obtained.  

 
In the industrial context another challenging topic has been the study undertaken to evaluate 

if the on-line NIR probe installed at the pesto plant monitoring a semifinished product could be, 
coupled to chemometrics, used to develop predictive models of the quality characteristics of the 
final product “Pesto alla Genovese”. 

This is a very important possibility because in an industrial process having information that the 
final quality is not going to be the expected one, in an early stage of the process, permits to quickly 
intervene to correct the process. 

This task has been very challenging because the production process is not as fixed as we 
might think, and there are pauses, stops, and restarts, minor changes in flows or in times that 
introduces variability difficult to control and which render the building of predictive models very 
challenging. Nonetheless, there are pre-processing tools which can help to study and remove the 
effect introduced by unwanted variability sources. On the other side, an improvement in process 
data storage and retrieval and automatic registration of additional information is needed.   

 
Another relevant part of the thesis verted around the final product “Pesto alla Genovese” quality 

characteristics, in terms of flavour and structure. 
In chapters 5 and 7 some methods have been tested with chemometrics support to evaluate 

both the aroma and the structure stability. Results indicate promising possibilities for techniques 
like NIR that has more potentiality respect to the other techniques used to be exported in a routine 
quality control context for its easiness of use. 

 
Innovative analytical approaches like hyperspectral imaging (chapter 6) have been tested on 

Pesto to evaluate new possible tools to be exported from a research environment to a quality 
control lab. Also in this case, the chemometrics is essential to manage the complexity of this data. 
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8.2 Future perspectives 

 
The future of the quality design is in the direction on what the Industry 4.0 expect, with the 

number of sensors increasing along all the production processes, connected to huge databases 
where big data will be then properly managed and elaborated to properly drive the production 
process. 

On the other hand, in the Laboratories, the develop of more sophisticated techniques (i.e. 
GCxGC-MS or the multi-sensors hyphenated techniques), will require more and more 
sophisticated way to analyse the data. 

This is a challenging and uphill path that will be done step by step. The explored possibilities 
of evaluation quality parameters done in this thesis are steps in this complex path. 

 

8.3 To conclude 

 
The initial idea to develop a “chemometric toolbox” to be applied in my everyday job as chemist 

and researcher has been successfully reached. All the studied cases have been approached with 
chemometric mindset and tools, that increased, or in some cases made possible, the extraction 
of information, the elaboration of complex data and at the end a clearer understanding of the 
studied topic. 

It has been interesting to me to observe how wide are the possible applications of the 
chemometric tools: from the classical laboratory data obtained by largely used gas-
chromatographs, that increase their descriptive capabilities when enhanced by chemometric, to 
techniques like the hyperspectral imaging, more and more used for its powerful capacity to join 
the morphology description of the image to punctual chemical information. 

And leaving the R&D laboratory to move to the production plant, the power of chemometrics 
became more relevant considering the huge quantity of collected data in a context rapidly moving 
towards the Industry 4.0, with the spread of sensors and measure instruments. 

 
 
I know that for me this journey into the chemometrics world is just started, but I have now more 

awareness of the huge possibilities of its use and of the pitfalls that are always round the corner. 
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