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Abstract: In this study, a new anisotropic elastic shell model with a nonlocal strain gradient is devel-
oped to investigate the vibrations of simply supported single-walled carbon nanotubes (SWCNTs).
The Sanders–Koiter shell theory is used to obtain strain–displacement relationships. Eringen’s nonlo-
cal elasticity and Mindlin’s strain gradient theories are adopted to derive the constitutive equations,
where the anisotropic elasticity constants are expressed via Chang’s molecular mechanics model.
An analytical method is used to solve the equations of motion and to obtain the natural frequen-
cies of SWCNTs. First, the anisotropic elastic shell model without size effects is validated through
comparison with the results of molecular dynamics simulations reported in the literature. Then, the
effects of the nonlocal and material parameters on the natural frequencies of SWCNTs with different
geometries and wavenumbers are analyzed. From the numerical simulations, it is confirmed that the
natural frequencies decrease as the nonlocal parameter increases, while they increase as the material
parameter increases. As new results, the reduction in natural frequencies with increasing SWCNT
radius and the increase in natural frequencies with increasing wavenumber are both amplified as the
material parameter increases, while they are both attenuated as the nonlocal parameter increases.

Keywords: carbon nanotubes; vibrations; nonlocal elasticity; strain gradient; anisotropic model;
elastic shells

1. Introduction

It is well known in the scientific community that the use of classical continuum
mechanics models in studying the dynamics of carbon nanotubes (CNTs) can lead to
inaccurate results. This is due to CNTs’ discrete structure and small size. Therefore, to
accurately study the vibrations and stability of carbon nanotubes, non-classical continuum
mechanics models based on anisotropic and size-dependent theories must be adopted.

To this end, researchers have developed various anisotropic elastic shell theories.
A very effective theory is the one proposed by Chang [1,2], in which the prediction of
the chirality and size-dependent elasticity properties of single-walled carbon nanotubes
was achieved via a molecular mechanics model. The most important result obtained
by Chang is that for CNTs, the classical relationship of the isotropic elasticity theory of
continuum mechanics between the Young’s modulus and shear modulus no longer holds,
and, therefore, a more refined relationship has been proposed to account for the effects of
the tubes’ diameter and chiral angle.

Starting from this theory, Ghavanloo and Fazelzadeh [3] proposed an anisotropic
elastic shell model, including the chirality effect, to study the vibrational characteristics of
SWCNTs. Considering Flügge’s shell theory, they investigated the effects of the chirality
and tube diameter on the natural frequencies of SWCNTs, together with the influence of
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external loads. Using the anisotropic elastic shell model [3], the authors of the present work
carried out in Ref. [4] a comparison between different shell theories for the vibrational
analysis of SWCNTs, in particular, Donnell’s, Sanders’s, and Flügge’s shell theories. Taking
the molecular dynamics results available in the literature as a reference, they obtained that
Flügge’s shell theory is not only the most accurate but also the most expensive from a
computational point of view; on the other hand, they found that Donnell’s shell theory is
not accurate, while Sanders’s shell theory is very accurate in modeling the vibrations of
SWCNTs for all geometries and wavenumbers.

In addition to anisotropic models, several size-dependent theories have been intro-
duced in the literature, the first of which is the nonlocal elasticity theory developed by
Eringen [5,6]. In Eringen’s nonlocal differential constitutive relations, the stress tensor at the
reference point of a body is written as a function of the strain tensor not only at that point
but also at all the other points of the body. For this purpose, a nonlocal parameter is inserted
into Eringen’s nonlocal elasticity equations, in the form of a small-length-scale constant
appropriate to each material, for which the value must be obtained through comparisons
with the results of molecular dynamics simulations.

Starting from Eringen’s nonlocal theory and considering the anisotropic model [3],
Fazelzadeh and Ghavanloo [7] proposed a nonlocal anisotropic elastic shell model to study
the linear vibrations of CNTs with arbitrary chiralities. They studied the effects of the
nonlocal parameter on the natural frequencies of zigzag, armchair, and chiral SWCNTs
with different geometries and wavenumbers.

Another important size-dependent theory is the strain gradient theory developed
by Mindlin [8,9], which represents an extension of the classical theory of elasticity by
considering additional higher-order strain gradient terms other than the stress tensor.
Specifically, Mindlin’s strain gradient theory assumes that materials cannot simply be
modeled as sets of points but must be considered as atoms with higher-order deformation
mechanisms at small scales (micro/nano).

For size-dependent structures, constitutive equations that consider both the nonlocal
elasticity and strain gradient were first proposed by Aifantis et al. [10–12] to capture the
dynamic behaviors of CNTs in the frameworks of shear-nondeformable Euler–Bernoulli
and shear-deformable Timoshenko beam theories.

Later, Lim [13] developed a refined nonlocal strain gradient theory, in which two
different small-length-scale parameters, i.e., nonlocal and strain gradient parameters, are
adopted to account for the size-dependent characteristics of CNTs. Dispersion relations
with different values of nonlocal and material parameters are analyzed.

The nonlocal strain gradient theory developed by Lim [13] was adopted to study the linear
dynamics of beams in the framework of an isotropic elastic beam model in Refs. [14–17]. The
effects of the nonlocal and material parameters on the vibrations and stability of beams were
analyzed, where the nonlocal parameter was introduced to consider the influence of the
nonlocal elasticity, and the material parameter was introduced to consider the significance
of the strain gradient. It was found that when the material parameter is lower than the
nonlocal parameter, the beam has stiffness-softening effects on the critical buckling load
and natural frequencies, while, in the opposite case, the beam has stiffness-hardening
effects on the critical buckling load and natural frequencies. Some interesting reviews of
size-dependent continuum mechanics models for the analysis of the linear vibrations of
nanostructures can be found in Refs. [18–20].

Mehralian et al. [21] developed an isotropic elastic shell model with a nonlocal strain
gradient to study the effects of the nonlocal and material parameters on the linear vibrations
of SWCNTs. The model reported in Ref. [21] is similar to that of the present work. However,
there is a relevant difference, namely, the use of an isotropic (rather than an anisotropic)
model, and it was proved that adopting an isotropic model to simulate SWCNT vibrations
is inaccurate owing to the intrinsic anisotropic characteristics of the nanostructures [22,23].

The adoption of classical theories of continuum mechanics to model the dynamic be-
haviors of nanostructures requires the careful choice of equivalent parameters. Specifically,
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in the case of SWCNTs, their effective discrete structures can be modeled by continuous
cylindrical shells if equivalent parameters, namely, the Young’s modulus, Poisson’s ra-
tio, and thickness, are appropriately selected. To this end, Yakobson et al. [24] obtained
equivalent parameter values by comparing them with the strain energy values of discrete
SWCNTs derived through molecular dynamics simulations. Interesting results for molecu-
lar dynamics simulations for SWCNT vibrational analysis can be found in Refs. [25–29].

Readers interested in learning more about shell theories are invited to refer to the fun-
damental books [30–35]. In particular, Leissa [30] studied the linear vibrations of cylindrical
shells for different geometries, boundary conditions, and wavenumbers. Furthermore,
readers interested in nonlinear vibrations and energy exchanges in CNTs are invited to
refer to related papers [36–44], where the effects of resonance interactions between differ-
ent vibrational modes are also studied, e.g., radial breathing and circumferential flexural
modes, together with the influences of anisotropy and nonlocality. Finally, static models of
CNTs, which consider the effects of nonlocal elasticity along with pull-in buckling issues,
can be found in Refs. [45,46].

The main aim of the present work is to develop an advanced elastic shell model for
the vibrational analysis of SWCNTs that is capable for simultaneously considering all three
previously reported fundamental effects inherent to nanostructures, namely, the anisotropy,
nonlocal elasticity, and strain gradient. This, in the authors’ opinion, is very important
because a hybrid model that is both anisotropic and size-dependent can lead to more
realistic and, therefore, accurate results.

Specifically, in this paper, the Sanders–Koiter shell theory is adopted to obtain the
strain–displacement relationships; Eringen’s nonlocal elasticity and Mindlin’s strain gra-
dient theories are used to obtain the constitutive equations, and the anisotropic elasticity
constants are expressed using Chang’s molecular mechanics model. The dynamic equations
of motion are solved analytically, and the natural frequencies of SWCNTs under simply
supported boundary conditions are obtained.

The present model is first validated in the anisotropic form (i.e., without size-dependent
effects) through comparisons with molecular dynamics simulation results from the litera-
ture. Then, a parametric analysis is performed on the developed comprehensive model to
investigate the influences of the size-dependent effects (i.e., nonlocal and material parame-
ters) on the natural frequencies of SWCNTs with different geometries and wavenumbers.

2. Sanders–Koiter Shell Theory for SWCNTs

In the present paper, the actual discrete SWCNT is modeled by an equivalent con-
tinuous cylindrical shell, see Figure 1a,b, with radius R, length L, and thickness h. A
cylindrical coordinate system (O, x, θ, z) is used, where the origin (O) of the reference
system is located at the center of one end of the shell. Three displacements are measured:
longitudinal u(x, θ, t), circumferential v(x, θ, t), and radial w(x, θ, t), where the positive
radial displacement (w) is assumed to be toward the outside; (x, θ) are the longitudinal
and circumferential coordinates of an arbitrary point on the middle surface of the shell,
respectively; z is the radial coordinate along the thickness (h) of the shell; and t is the time.
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In this paper, the Sanders–Koiter linear shell theory is used to model SWCNT dynamics.
The linear relationships between strains and displacements in the Sanders–Koiter theory
are based on “Kirchhoff–Love assumptions”, see Ref. [30] for details.

The consequences of these geometric assumptions are that in the presence of a thin
cylindrical shell, the transverse shear strains can be neglected (γxz = γθz = 0) in the expres-
sions of the constitutive equations, and the rotational inertia of the shell can be neglected in
the expression of the kinetic energy. Considering the previous assumptions, in the Sanders–
Koiter linear shell theory, the middle surface strains (εx,0, εθ,0, γxθ,0) of the cylindrical shell
are written as functions of the displacements (u, v, w) in the following form [30]:

εx,0 =
∂u
∂x

εθ,0 =
1
R

∂v
∂θ

+
w
R

γxθ,0 =
1
R

∂u
∂θ

+
∂v
∂x

(1)

Again, considering the previous assumptions, in the Sanders–Koiter linear shell theory,
the middle surface changes in the curvature and torsion (kx, kθ , kxθ) of the cylindrical shell
are expressed as follows [30]:

kx = −∂2w
∂x2 kθ =

1
R2

∂v
∂θ

− 1
R2

∂2w
∂θ2 kxθ = − 2

R
∂2w
∂x∂θ

+
1

2R

(
3

∂v
∂x

− 1
R

∂u
∂θ

)
(2)

According to the Sanders–Koiter shell theory, the strain components (εx, εθ , γxθ) at
an arbitrary point on the surface of the cylindrical shell are related to the middle surface
strains and changes in curvature and torsion via the radial coordinate (z) by means of the
following relationships [30]:

εx = εx,0 + zkx εθ = εθ,0 + zkθ γxθ = γxθ,0 + zkxθ (3)

The adoption of the Sanders–Koiter shell theory to model SWCNT dynamics in the
present work is justified based on the results obtained by the same authors in a previous
paper, see Ref. [4]. In that paper, shell theories for the vibrational analysis of SWCNTs based
on an anisotropic elastic shell model were compared, specifically for Donnell’s, Sanders’s,
and Flugge’s shell theories, where the molecular dynamics simulation results available in
the literature were considered as references to verify the accuracy of the three different
shell theories. Flügge’s shell theory was found to be the most accurate and, in fact, this
theory was adopted in several papers studying the linear vibrations of SWCNTs based
on anisotropic elastic shell models, see Refs. [3,7]. On the other hand, it was shown that
the additional terms present in the expressions of the force and moment resultants, which
give Flügge’s shell theory greater accuracy than those of Sanders’s and Donnell’s shell
theories, involve a very large computational effort in the numerical simulations of the
dynamic behaviors of SWCNTs. Furthermore, based on the parametric analyses that were
performed, it was found that Donnell’s shell theory is not accurate for several geometries
and wavenumbers, while Sanders’s shell theory is very accurate for all the geometries
and wavenumbers. This is why in the present paper, Sanders’s shell theory is adopted
instead of the more accurate, but also more complex, Flügge shell theory for modeling the
vibrations of SWCNTs.

Within the Sanders–Koiter linear shell theory, in the next section, a new advanced
model of an anisotropic elastic shell will be proposed, considering both the nonlocal elastic-
ity and the strain gradient, i.e., two relevant small-length-scale effects that characterize the
dynamic behaviors of SWCNTs.

3. Nonlocal-Strain-Gradient-Based Anisotropic Elastic Shell Model

According to the nonlocal strain gradient theory developed by Li et al. [15], the general
constitutive equation for size-dependent structures is expressed as follows:(

1 − µ2∇2
)

t = C : ε − l2∇C : ∇ε (4)
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where t is the stress tensor; C is the fourth-order elasticity tensor; ε is the strain tensor;
∇C is the elasticity gradient tensor; ∇ε is the strain gradient tensor; ∇2 is the Laplace
operator; µ is the nonlocal parameter, which is introduced to study the effect of the nonlocal
elasticity; and l is the material parameter, which is introduced to investigate the effect of the
strain gradient.

For shell-type structures, the size-dependent behavior must be considered along the
longitudinal, circumferential, and radial directions. Therefore, starting from the general
form of Equation (4), the constitutive equation of the anisotropic elastic shell theory with a
nonlocal strain gradient is given by:

(1 − µ2∇2)t =
1
h
(1 − l2∇2)Yε (5)

where t and ε are the stress and strain vectors, respectively, which, for an elastic shell-type
structure under the planar stress hypothesis, are, respectively, expressed as follows:

t = [σx, σθ , τxθ ]
T ε = [εx, εθ , γxθ ]

T (6)

where h is the shell thickness, Y is the corresponding anisotropic elasticity matrix, and

∇2 =
∂2

∂x2 +
1

R2
∂2

∂θ2 (7)

is the Laplace operator represented in the polar coordinate system.
The constitutive Equation (5) can be projected in the (x, θ) plane in the following form:

(1 − µ2∇2)σx =
1
h
(1 − l2∇2)(Y11εx + Y12εθ + Y13γxθ)

(1 − µ2∇2)σθ =
1
h
(1 − l2∇2)(Y21εx + Y22εθ + Y23γxθ) (8)

(1 − µ2∇2)τxθ =
1
h
(1 − l2∇2)(Y31εx + Y32εθ + Y33γxθ)

The surface elasticity constants, Yij (8), as elements of the anisotropic elasticity matrix,
Y, are given by [1]

Yij =
2

3
√

3

(
KρGliGl j +

2Kθ

a2 Hli Hl j

)
i, j, l = 1, 2, 3 (sum over l) (9)

where a is the carbon–carbon bond length, and
(
Kρ, Kθ

)
are force constants associated with

the stretching and angular distortion of the carbon–carbon bond, respectively, see Ref. [1]
for details.

The corresponding matrices, G and H, can be, respectively, calculated as follows [3]:

G = B−1(I − DF), H = QF (10)

where I is the identity matrix, matrix F is given by [3]

F =

[
UB−1D −

(
2Kθ

Kρa2 VA + W
)]−1

UB−1 (11)

and matrices (A, B, D, U, V, W, and Q) are, respectively, given by [2]

A =
{

Aij
}
=

{
−cos ωikcos ωjk

}
i, j, k = 1, 2, 3 (sum over k) (12)
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B =
1

3
√

n2 + nm + m2

(2n + m)cos ϕ1 −(n − m)cos ϕ2 −(n + 2m)cos ϕ3√
3 msin ϕ1 −

√
3(n + m)sin ϕ2

√
3 nsin ϕ3

(2n + m)sin ϕ1 −(n − m)sin ϕ2 −(n + 2m)sin ϕ3

 (13)

D =
1

3
√

n2 + nm + m2

−(2n + m)sin ϕ1 (n − m)sin ϕ2 (n + 2m)sin ϕ3√
3 mcos ϕ1 −

√
3(n + m)cos ϕ2

√
3 ncos ϕ3

(2n + m)cos ϕ1 −(n − m)cos ϕ2 −(n + 2m)cos ϕ3

 (14)

U =

 sin ϕ1 sin ϕ2 sin ϕ3
cos ϕ1 cos ϕ2 cos ϕ3

mcos ϕ1 −(n + m)cos ϕ2 ncos ϕ3

 (15)

V =

−cos ϕ1 −cos ϕ2 −cos ϕ3
sin ϕ1 sin ϕ2 sin ϕ3

0 0 0

 (16)

W =

 0 0 0
0 0 0

−msin ϕ1 (n + m)sin ϕ2 −nsin ϕ3

 (17)

Q =
{

Qij
}
=

{
−cos ωji

}
i, j = 1, 2, 3 (18)

where [2]

cos ωij =

{(
cos ϕisin ϕkcos φj − sin ϕicos ϕk

)
/sin θj

0
i ̸= j ̸= k

i = j
(19)

and (n, m) are the chirality indices of the SWCNT, which define its radius via the following
relation [1]:

R =

√
3 a

2π

√
n2 + nm + m2 (20)

The structural parameters of the SWCNT, i.e., chiral angles (ϕ1, ϕ2, ϕ3), torsion angles
(φ1, φ2, φ3), and bond angles (θ1,i, θ2,i, θ3,i), can be, respectively, calculated by means of the
following equations [1]:

ϕ1 = arccos
2n + m

2
√

n2 + nm + m2
ϕ2 =

4π

3
+ ϕ1 ϕ3 =

2π

3
+ ϕ1 (21)

φ1 = π√
n2+nm+m2 cos ϕ1 φ2 = π√

n2+nm+m2 cos
(

π
3 + ϕ1

)
φ3 = π√

n2+nm+m2 cos
(

π
3 − ϕ1

) (22)

cos θi = sin ϕjsin ϕkcos φi + cos ϕjcos ϕk i, j, k = 1, 2, 3 i ̸= j ̸= k (23)

4. Force and Moment Resultants

In the present anisotropic elastic shell model with the nonlocal strain gradient, the
force (Nx, Nθ , Nxθ) and moment (Mx, Mθ , Mxθ) resultants per unit of length are found by
integrating the stress components of the constitutive Equation (8) and considering the
thin-shell hypothesis (z/R ≪ 1) of the Sanders–Koiter shell theory as follows:(

1 − µ2∇2)Nx =
(
1 − l2∇2)·[Y11

∂u
∂x+

+Y12
R

(
∂v
∂θ + w

)
+ Y13

(
∂v
∂x + 1

R
∂u
∂θ

)] (24)

(
1 − µ2∇2)Nθ =

(
1 − l2∇2)·[Y21

∂u
∂x+

+Y22
R

(
∂v
∂θ + w

)
+ Y23

(
∂v
∂x + 1

R
∂u
∂θ

)] (25)
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(
1 − µ2∇2)Nxθ =

(
1 − l2∇2)·[Y31

∂u
∂x+

+Y32
R

(
∂v
∂θ + w

)
+ Y33

(
∂v
∂x + 1

R
∂u
∂θ

)] (26)

(
1 − µ2∇2)Mx =

(
1 − l2∇2)·[−X11

∂2w
∂x2 + X12

R2 ·

·
(

∂v
∂θ − ∂2w

∂θ2

)
+ X13

(
− 2

R
∂2w
∂x∂θ −

1
2R2

∂u
∂θ + 3

2R
∂v
∂x

)] (27)

(
1 − µ2∇2)Mθ =

(
1 − l2∇2)·[−X21

∂2w
∂x2 + X22

R2 ·

·
(

∂v
∂θ − ∂2w

∂θ2

)
+ X23

(
− 2

R
∂2w
∂x∂θ −

1
2R2

∂u
∂θ + 3

2R
∂v
∂x

)] (28)

(
1 − µ2∇2)Mxθ =

(
1 − l2∇2)·[−X31

∂2w
∂x2 + X32

R2 ·

·
(

∂v
∂θ − ∂2w

∂θ2

)
+X33

(
− 2

R
∂2w
∂x∂θ −

1
2R2

∂u
∂θ + 3

2R
∂v
∂x

)] (29)

where the elements of the bending stiffness matrix (X) can be defined as follows [3]:

Xij =
Yijh2

12
i, j = 1, 2, 3 (30)

It should be emphasized that the force (Nx, Nθ , Nxθ) and moment (Mx, Mθ , Mxθ) re-
sultants per unit of length written considering the Sanders–Koiter shell theory are different
from those of the Flügge shell theory because in the latter theory, the ratio z/R is not
neglected, i.e., the thin-shell hypothesis is not taken into account, see Ref. [30] for details.

5. Equations of Motion

The classical dynamic equilibrium equations in terms of force and moment resultants
are expressed as follows, where external forces and moments are neglected [3]:

∂Nx

∂x
+

1
R

∂Nxθ

∂θ
− 1

2R2
∂Mxθ

∂θ
− ρh

∂2u
∂t2 = 0 (31)

1
R

∂Nθ

∂θ
+

∂Nxθ

∂x
+

3
2R

∂Mxθ

∂x
+

1
R2

∂Mθ

∂θ
− ρh

∂2v
∂t2 = 0 (32)

∂2Mx

∂x2 +
2
R

∂2Mxθ

∂x∂θ
+

1
R2

∂2Mθ

∂θ2 − Nθ

R
− ρh

∂2w
∂t2 = 0 (33)

where ρh is the mass density per unit of area (i.e., surface density) of the SWCNT.
By applying the nonlocal elasticity operator

(
1 − µ2∇2) to the dynamic equilibrium

Equations (31)–(33) and then substituting Equations (24)–(29) into the modified forms of
Equations (31)–(33), we obtain(

1 − l2∇2){[Y11
∂2

∂x2 +
2Y13

R
∂2

∂x∂θ +
(

Y33
R2 + X33

4R4

)
∂2

∂θ2

]
u

+
[
Y13

∂2

∂x2 +
(

Y12+Y33
R − 3X33

4R3

)
∂2

∂x∂θ +
(

Y23
R2 − X23

2R4

)
∂2

∂θ2

]
v

+
[

Y12
R

∂
∂x + Y23

R2
∂
∂θ +

X13
2R2

∂3

∂x2∂θ
+ X33

R3
∂3

∂x∂θ2 +
X23
2R4

∂3

∂θ3

]
w
}

= ρh
(

∂2u
∂t2 − µ2 ∂4u

∂x2∂t2 − µ2 1
R2

∂4u
∂θ2∂t2

)
(34)

(
1 − l2∇2){[Y13

∂2

∂x2 +
(

Y12+Y33
R − 3X33

4R3

)
∂2

∂x∂θ +
(

Y23
R2 − X23

2R4

)
∂2

∂θ2

]
u

+
[(

Y33 +
9X33
4R2

)
∂2

∂x2 +
(

2Y23
R + 3X23

R3

)
∂2

∂x∂θ +
(

Y22
R2 + X22

R4

)
∂2

∂θ2

]
v

+
[

Y23
R

∂
∂x + Y22

R2
∂
∂θ −

3X13
2R

∂3

∂x3 −
(

X12+3X33
R2

)
∂3

∂x2∂θ
− 7X23

2R3
∂3

∂x∂θ2

−X22
R4

∂3

∂θ3

]
w
}
= ρh

(
∂2v
∂t2 − µ2 ∂4v

∂x2∂t2 − µ2 1
R2

∂4v
∂θ2∂t2

)
(35)
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(
1 − l2∇2){[−Y12

R
∂

∂x − Y23
R2

∂
∂θ −

X13
2R2

∂3

∂x2∂θ
− X33

R3
∂3

∂x∂θ2 − X23
2R4

∂3

∂θ3

]
u

+
[
−Y23

R
∂

∂x − Y22
R2

∂
∂θ +

3X13
2R

∂3

∂x3 +
(

X12+3X33
R2

)
∂3

∂x2∂θ
+ 7X23

2R3
∂3

∂x∂θ2

+X22
R4

∂3

∂θ3

]
v +

[
−Y22

R2 − X11
∂4

∂x4 − 4X13
R

∂4

∂x3∂θ
−

(
2X12+4X33

R2

)
∂4

∂x2∂θ2

− 4X23
R3

∂4

∂x∂θ3 − X22
R4

∂4

∂θ4

]
w
}
= ρh

(
∂2w
∂t2 − µ2 ∂4w

∂x2∂t2 − µ2 1
R2

∂4w
∂θ2∂t2

)
(36)

which represent the equations of motion for an arbitrary chiral SWCNT in terms of the
longitudinal (u), circumferential (v), and radial (w) displacements of the middle surface of
the SWCNT.

From the equations of motion (34)–(36), it can be observed that the strain gradient
operator

(
1 − l2∇2) is applied to strains and changes in curvature and torsion, while the

nonlocal elasticity operator
(
1 − µ2∇2) is applied to accelerations.

6. Solution Method

In this paper, simply supported boundary conditions are considered. These specific
boundary conditions impose the geometrical conditions v = w = 0 on the displacements
and the natural conditions Nx = Mx = 0 on the forces and moments at both edges
x = (0, L) of the SWCNT.

A displacement field that satisfies the previous boundary conditions can be written by
means of the following expansions:

u(x, θ, t) = Ucos
( qπx

L
)
cos(sθ)cos(ωt)

v(x, θ, t) = Vsin
( qπx

L
)
sin(sθ)cos(ωt)

w(x, θ, t) = Wsin
( qπx

L
)
cos(sθ)cos(ωt)

(37)

where
(
U, V, W

)
are the displacement amplitudes along the longitudinal (u), circumferen-

tial (v), and radial (w) directions, respectively; q is the number of longitudinal half-waves; s
is the number of circumferential waves; and L is the length and ω is the natural frequency
of the SWCNT.

Substituting expansions (37) into Equations (34)–(36), a set of algebraic equations for
the displacement amplitudes

(
U, V, W

)
is obtained, which can be rewritten in the following

matrix form [7]:

E(q, s, ω)3×3

U
V
W

 =

0
0
0

 (38)

where E is a non-symmetric matrix, for which the elements are reported in Appendix A.
For a non-trivial solution, i.e., different from

(
U = V = W = 0

)
, the determinant of

matrix E (38) must be equal to zero:

detE(q, s, ω)3×3 = 0 (39)

Solving Equation (39), we obtain a third-degree algebraic equation in ω2; this last
equation provides three different eigenfrequencies for each number of waves (q, s) that give
three different vibrational modes (i.e., longitudinal, torsional, and radial modes). Because
the highest natural frequency corresponds to the radial vibrational mode, in the numerical
results, only the radial natural frequencies will be calculated.

7. Numerical Results

In this paper, the effects of the nonlocal and material parameters on the natural fre-
quencies of SWCNTs are considered. The Sanders–Koiter shell theory is used to obtain
strain–displacement relationships. An anisotropic elastic shell model is adopted to con-
sider the intrinsic chirality effects of CNTs. Simply supported boundary conditions are
imposed. Vibrational modes with different numbers of waves along the longitudinal and
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circumferential directions are analyzed. SWCNTs with different chiralities and geometries
are studied.

Table 1 shows the values of the carbon–carbon bond parameters
(
a, kρ, kθ

)
and equiva-

lent parameters (h, ρ) retrieved from the pertinent literature. In particular, parameters kρ

and kθ , which are force constants related to the variances in the carbon–carbon bond length
(a) and angle (θ), respectively, are considered to obtain the surface elasticity constants (Yij)
(9) of the SWCNT, using the molecular mechanics model developed by Chang [1,2].

Table 1. Mechanical parameters of the anisotropic elastic shell model [1,2,24].

Carbon–carbon bond length, a (nm) 0.142

Carbon–carbon bond elongation, Kρ (nN/nm) 742

Carbon–carbon bond angle variance, Kθ (nN·nm) 1.42

Equivalent thickness, h (nm) 0.0665

Equivalent mass density, ρ (kg/m3) 11,700

SWCNT radius, R (nm) 1.34

Furthermore, to study the dynamics of a discrete SWCNT by considering a continuous
cylindrical shell, an equivalent thickness (h) obtained from molecular dynamics simulations
and an equivalent mass density (ρ) resulting from graphite’s surface density are used, see
Ref. [24] for details.

Finally, in the parametric analyses, an SWCNT with radius R = 1.34 nm (i.e., thickness
ratio R/h = 20) will be considered. This specific value of the thickness ratio was chosen
because it respects the hypothesis underlying the thin-shell theories (in this paper, the
Sanders–Koiter shell theory), which is R/h > 10, see Ref. [30] for the details.

It should be underlined that in the numerical results, the natural frequencies of the
SWCNTs are expressed in the unit of cm−1, where 1 Hz = 2.998 × 1010 cm−1.

7.1. Validation of the Anisotropic Elastic Shell Model

The first step in the present work is the validation of the anisotropic elasticity model
based on the Sanders–Koiter shell theory, which will be subsequently adopted to analyze
the effects of the nonlocal and material parameters on the natural frequencies of SWCNTs.

This validation is carried out by comparing the results of the present anisotropic
elastic shell model with those of molecular dynamics simulations available in literature [25].
The natural frequencies of the radial breathing mode (i.e., the nondeformed vibrational
mode with no longitudinal and circumferential waves, which is characteristic of CNTs with
free–free boundary conditions) for SWCNTs with different chirality indices are considered.

From the comparisons, it can be noted that the percentage difference is relatively low
(maximum value ≈ 2.7%; average value ≈ 1.6%) for all the chirality indices that were
considered, see Table 2, and, therefore, the present anisotropic elastic shell model is proven
to be accurate.

Table 2. Natural frequencies of the radial breathing mode (q = 0; s = 0) of the SWCNT in Table 1 with
aspect ratio L/R = 10. Comparisons between anisotropic elasticity model (Sanders’s shell theory) and
molecular dynamics simulations.

Natural Frequency, ωRBM (cm−1) Difference (%)

Chirality Indices
(n, m)

Anisotropic Elasticity
Model (Sanders’s

Shell Theory)

Molecular Dynamics
Simulation [25]

(10, 0) 294.310 290.810 1.20

(6, 6) 284.460 278.450 2.16
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Table 2. Cont.

Natural Frequency, ωRBM (cm−1) Difference (%)

Chirality Indices
(n, m)

Anisotropic Elasticity
Model (Sanders’s

Shell Theory)

Molecular Dynamics
Simulation [25]

(12, 0) 245.868 242.576 1.36

(7, 7) 244.074 239.020 2.11

(8, 8) 213.709 209.323 2.10

(14, 0) 211.067 207.980 1.48

(16, 0) 184.870 181.960 1.60

(10, 10) 171.104 167.644 2.06

(18, 0) 164.443 161.773 1.65

(20, 0) 148.073 145.577 1.71

(12, 12) 142.650 139.778 2.05

(25, 0) 118.551 116.439 1.81

(15, 15) 114.161 111.878 2.04

(30, 0) 98.835 97.013 1.88

(18, 18) 95.153 93.253 2.04

(33, 0) 89.865 87.507 2.69

(20, 20) 85.645 83.935 2.04

On the other hand, it should be emphasized that the development and implementation
of the anisotropic elastic shell model present a high degree of analytical complexity and
considerable computational effort. Therefore, it is useful to check whether the correspond-
ing isotropic elastic shell model, which has a low degree of analytical complexity and less
computational effort, can provide similar results.

From the comparison of the results for the isotropic elastic shell model and molecular
dynamics simulations [25], it can be observed that the percentage difference is higher for
the anisotropic elastic shell model (maximum value ≈ 3.6%; average value ≈ 2.9%) for all
the chirality indices that were considered, see Table 3.

Because the anisotropic elastic shell model has proven to be significantly more accu-
rate than the corresponding isotropic one, it will be adopted in the following parametric
analyses. Readers interested in learning more about molecular dynamics simulations and
the related processes can find a detailed explanation in Ref. [36].

Table 3. Natural frequencies of the radial breathing mode (q = 0; s = 0) of the SWCNT in Table 1 with
aspect ratio L/R = 10. Comparison between isotropic elasticity model (Sanders’s shell theory) and
molecular dynamics simulations.

Natural Frequency, ωRBM (cm−1) Difference (%)

Chirality Indices
(n, m)

Isotropic Elasticity
Model (Sanders’s

Shell Theory)

Molecular Dynamics
Simulation [25]

(10, 0) 299.083 290.810 2.84

(6, 6) 288.075 278.450 3.46

(12, 0) 249.447 242.576 2.83

(7, 7) 246.812 239.020 3.26

(8, 8) 215.923 209.323 3.15
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Table 3. Cont.

Natural Frequency, ωRBM (cm−1) Difference (%)

Chirality Indices
(n, m)

Isotropic Elasticity
Model (Sanders’s

Shell Theory)

Molecular Dynamics
Simulation [25]

(14, 0) 213.955 207.980 2.87

(16, 0) 187.002 181.960 2.77

(10, 10) 172.925 167.644 3.15

(18, 0) 166.287 161.773 2.79

(20, 0) 149.741 145.577 2.86

(12, 12) 144.037 139.778 3.05

(25, 0) 119.753 116.439 2.85

(15, 15) 115.183 111.878 2.95

(30, 0) 99.772 97.013 2.84

(18, 18) 96.003 93.253 2.95

(33, 0) 90.665 87.507 3.61

(20, 20) 86.396 83.935 2.93

7.2. Effects of Nonlocal and Material Parameters

In this section, the effects of the nonlocal and material parameters on the natural
frequencies of the simply supported SWCNT in Table 1 are studied. Different chiralities and
geometries of the SWCNT are analyzed. Vibrational modes with different wavenumbers
along the longitudinal and circumferential directions are investigated.

The first goal is to analyze the effects of the nonlocal and material parameters on
the natural frequencies of the simply supported SWCNT in Table 1 for a generic chirality,
geometry, and wavenumber. This first analysis is carried out to study the deviation in the
model with size effects compared to the one without size effects.

In Figure 2, the natural frequencies of the vibrational mode (q = 1; s = 2) with one
longitudinal half-wave and two circumferential waves are presented. The chirality indices
(n = 34; m = 0) (i.e., zigzag SWCNT) are considered. The thickness ratio R/h = 20 and
aspect ratio L/R = 10 are adopted. It is observed that for a fixed value of the material
parameter (l), the natural frequencies decrease as the nonlocal parameter (µ) increases. In
contrast, for a fixed value of the nonlocal parameter (µ), the natural frequencies increase as
the material parameter (l) increases. There are, therefore, opposite effects between the two
small-length-scale parameters on the natural frequencies. This first analysis confirms the
results obtained in previous papers, see, for example, Ref. [21], thus providing a validation
of the model developed in this work.

The second goal is to study the effects of the nonlocal and material parameters on
the natural frequencies of the simply supported SWCNT in Table 1 for different chiralities.
This second analysis is carried out to understand if there is a relationship between the size
effects and chirality of the SWCNT.

In Figure 3, the natural frequencies of the same vibrational mode (q = 1; s = 2) as in
Figure 2 are shown. A SWCNT with the same geometry but with different chirality indices
(n = 20; m = 20) (i.e., an armchair SWCNT) is considered. From Figure 3, it can be observed
that the effects of the nonlocal (µ) and material (l) parameters on the natural frequencies of
the vibrational mode (q = 1; s = 2) are the same as those in Figure 2. It can, therefore, be
deduced that the effects of the two small-length-scale parameters on the natural frequencies
are independent of the chirality of the SWCNT. Starting from this result, the chirality indices
(n = 34; m = 0) (i.e., zigzag SWCNT) will be considered in the following simulations.
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The third goal is to analyze the effects of the nonlocal and material parameters on the
natural frequencies of the simply supported SWCNT in Table 1 for different geometries.

Figure 4 shows the natural frequencies of the same vibrational mode (q = 1; s = 2)
as in Figure 2. A SWCNT with the same aspect ratio (L/R = 10) but different thickness
ratios (R/h) is analyzed. Without considering the size effects, it is observed that a reduc-
tion in the natural frequencies occurs as the value of the thickness ratio increases within
the entire interval 20 < R/h < 100. On the one hand, for relatively low thickness ratios
(20 < R/h < 50), this reduction is amplified as the value of the material parameter (l) in-
creases, while it is attenuated as the value of the nonlocal parameter (µ) increases. On the
other hand, for relatively high thickness ratios (R/h > 80), the reduction is very small, and
the natural frequencies are similar for all the values of the nonlocal and material parameters.
It can, therefore, be deduced that the effects of the two small-length-scale parameters on
the natural frequencies of the SWCNT are strongly dependent on the radius at relatively
low thickness ratios, while they are independent at relatively high thickness ratios (i.e.,
when the equivalent cylindrical shell is very thin).

Figure 5 shows the natural frequencies of the same vibrational mode (q = 1; s = 2)
as in Figure 2. A SWCNT with the same thickness ratio (R/h = 20) but different aspect
ratios (L/R) is considered. From Figure 5, it can be observed that for each value of the
nonlocal (µ) and material (l) parameters, the natural frequencies are constant as the value
of the aspect ratio (L/R) increases. It can, therefore, be deduced that the effects of the two
small-length-scale parameters on the natural frequencies are independent of the length of
the SWCNT. It is important to underline that this last result is valid for an SWCNT as a
very long tube, with an aspect ratio (L/R) usually between 20 and 100. On the contrary, for
a generic cylindrical shell as a tube of medium length, the effects of the small-length-scale
parameters on the natural frequencies may become dependent on the length of the shell,
see Ref. [30] for details.
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Figure 4. Natural frequencies of the vibrational mode (q = 1; s = 2) of the simply supported SWCNT
in Table 1. Chirality indices (n = 34; m = 0). Aspect ratio L/R = 10. Effects of nonlocal (µ) and material
(l) parameters for different values of the thickness ratio (R/h).
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The last goal is to investigate the effects of the nonlocal and material parameters on
the natural frequencies of the simply supported SWCNT in Table 1 for vibrational modes
with different wavenumbers.

First, the number of longitudinal half-waves is evaluated.
In Figure 6, the natural frequencies of the axisymmetric modes (s = 0) of the SWCNT

in Table 1 for thickness ratio R/h = 20 and aspect ratio L/R = 10 are considered. The effects
of the nonlocal (µ) and material (l) parameters for different numbers of longitudinal half-
waves (q) are investigated. We first see that the natural frequency of the nondeformed mode
(q = 0; s = 0) is independent of the two small-length-scale parameters (i.e., it is constant).
Without considering the size effects, an almost-constant value of the natural frequencies
is observed as the number of longitudinal half-waves increases in the interval q = (0–3),
and a subsequent increase is observed by further increasing the number of longitudinal
half-waves. On the one hand, by increasing the value of the nonlocal parameter (µ), a
small decrease in the natural frequencies is found as the number of longitudinal half-waves
increases in the interval q = (0–3), and a subsequent small increase is found by further
increasing the number of longitudinal half-waves, where for µ = 1 nm, the value of the
natural frequency at q = 5 is very similar to that at q = 0. On the other hand, by increasing the
value of the material parameter (l), a small increase in the natural frequencies is observed as
the number of longitudinal half-waves increases in the interval q = (0–3), and a subsequent
strong increase is observed by further increasing the number of longitudinal half-waves.

In Figure 7, the natural frequencies of the beam-like modes (s = 1) of the SWCNT
in Table 1 for thickness ratio R/h = 20 and aspect ratio L/R = 10 are considered. The
effects of the nonlocal (µ) and material (l) parameters for different numbers of longitudinal
half-waves (q) are investigated. Without considering the size effects, a small increase in the
natural frequencies is observed as the number of longitudinal half-waves increases in the
interval q = (0–5). On the one hand, by increasing the value of the nonlocal parameter (µ), a
very small decrease in the natural frequencies is observed as the number of longitudinal
half-waves increases in the interval q = (0–3), and a subsequent very small increase is
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observed by further increasing the number of longitudinal half-waves, where for µ = 1 nm,
the value of the natural frequency at q = 5 is very similar to that at q = 0. On the other hand,
by increasing the value of the material parameter (l), an increase in the natural frequencies
is obtained as the number of longitudinal half-waves increases in the interval q = (0–5).
However, this latter increase due to the material parameter is lower in amplitude than the
corresponding one obtained in Figure 6 for the axisymmetric modes (s = 0) in the interval
q = (3–5).

C 2024, 10, x FOR PEER REVIEW 16 of 24 
 

 
Figure 6. Natural frequencies of the axisymmetric modes (s = 0) of the simply supported SWCNT in 
Table 1. Chirality indices (n = 34; m = 0). Thickness ratio R/h = 20. Aspect ratio L/R = 10. Effects of 
nonlocal (𝜇) and material (l) parameters for different numbers of longitudinal half-waves (q). 

In Figure 7, the natural frequencies of the beam-like modes (s = 1) of the SWCNT in 
Table 1 for thickness ratio R/h = 20 and aspect ratio L/R = 10 are considered. The effects of 
the nonlocal (µ) and material (l) parameters for different numbers of longitudinal half-
waves (q) are investigated. Without considering the size effects, a small increase in the 
natural frequencies is observed as the number of longitudinal half-waves increases in the 
interval q = (0–5). On the one hand, by increasing the value of the nonlocal parameter (µ), 
a very small decrease in the natural frequencies is observed as the number of longitudinal 
half-waves increases in the interval q = (0–3), and a subsequent very small increase is ob-
served by further increasing the number of longitudinal half-waves, where for µ = 1 nm, 
the value of the natural frequency at q = 5 is very similar to that at q = 0. On the other hand, 
by increasing the value of the material parameter (𝑙), an increase in the natural frequencies 
is obtained as the number of longitudinal half-waves increases in the interval q = (0–5). 
However, this la er increase due to the material parameter is lower in amplitude than the 
corresponding one obtained in Figure 6 for the axisymmetric modes (s = 0) in the interval 
q = (3–5). 

Figure 6. Natural frequencies of the axisymmetric modes (s = 0) of the simply supported SWCNT in
Table 1. Chirality indices (n = 34; m = 0). Thickness ratio R/h = 20. Aspect ratio L/R = 10. Effects of
nonlocal (µ) and material (l) parameters for different numbers of longitudinal half-waves (q).

In Figure 8, the natural frequencies of the shell-like modes (s = 2) of the SWCNT in
Table 1 for thickness ratio R/h = 20 and aspect ratio L/R = 10 are considered. The effects
of the nonlocal (µ) and material (l) parameters for different numbers of longitudinal half-
waves (q) are investigated. Without considering the size effects, a very small increase in the
natural frequencies is observed as the number of longitudinal half-waves increases in the
interval q = (0–5). On the one hand, by increasing the value of the nonlocal parameter (µ), an
almost-constant behavior in the natural frequencies is found as the number of longitudinal
half-waves increases in the interval q = (0–5). On the other hand, by increasing the value of
the material parameter (l), an increase in the natural frequencies is obtained as the number
of longitudinal half-waves increases in the interval q = (0–5). Again, this latter increase due
to the material parameter is lower in amplitude than the corresponding one obtained in
Figure 7 for the beam-like modes (s = 1) in the interval q = (0–5).

Therefore, comparing Figures 6–8, an increase in the natural frequencies is observed
as the number of longitudinal half-waves increases. This increase is amplified as the
material parameter increases, while it is attenuated as the nonlocal parameter increases.
Furthermore, the increase in the natural frequencies due to the material parameter is
attenuated as the number of circumferential waves increases.
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Then, the number of circumferential waves is considered.
In Figure 9, the natural frequencies of the vibrational modes for q = 0 longitudinal half-

waves of the SWCNT in Table 1 for thickness ratio R/h = 20 and aspect ratio L/R = 10 are
considered. The effects of the nonlocal (µ) and material (l) parameters for different numbers
of circumferential waves (s) are evaluated. It is confirmed that the natural frequency
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of the nondeformed mode (q = 0; s = 0) is independent of the two small-length-scale
parameters (i.e., it is constant). Without considering the size effects, an increase in the
natural frequencies is observed as the number of circumferential waves increases in the
interval s = (0–5). On the one hand, by increasing the value of the nonlocal parameter (µ), a
small increase in the natural frequencies is found as the number of longitudinal half-waves
increases in the interval s = (0–5). On the other hand, by increasing the value of the material
parameter (l), a strong increase in the natural frequencies is observed as the number of
circumferential waves increases in the interval s = (0–5).
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In Figures 10 and 11, the natural frequencies of the vibrational modes for, respectively,
q = 1 and q = 2 longitudinal half-waves of the SWCNT in Table 1 for thickness ratio
R/h = 20 and aspect ratio L/R = 10 are considered. The effects of the nonlocal (µ) and
material (l) parameters for different numbers of circumferential waves (s) are evaluated.
From these figures, for the natural frequencies, a behavior very similar to that in Figure 9 is
obtained; i.e., by increasing the value of the nonlocal parameter (µ), the natural frequencies
increase slightly as the number of circumferential waves increases, while, by increasing the
value of the material parameter (l), they increase strongly as the number of circumferential
waves increases.

Therefore, comparing Figures 9–11, an increase in the natural frequencies is observed
as the number of circumferential waves increases. This increase is amplified as the material
parameter increases, while it is attenuated as the nonlocal parameter increases. Furthermore,
this behavior is independent of the number of longitudinal half-waves.
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8. Conclusions

The main novelty of this paper is the development of an anisotropic elastic shell
model with a nonlocal strain gradient to analyze the linear vibrations of SWCNTs. Based
on Eringen’s nonlocal elasticity theory, Mindlin’s strain gradient theory, and Chang’s
molecular mechanics model, the combined effect of the nonlocal and material parameters on
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the natural frequencies of simply supported SWCNTs with different chiralities, geometries,
and wavenumbers is investigated.

From the numerical simulations, it is confirmed that for a generic vibrational mode,
the natural frequencies decrease as the nonlocal parameter increases, while they increase as
the material parameter increases. As new results, the reduction in the natural frequencies
with increasing SWCNT radius and the increase in the natural frequencies with increasing
wavenumber are both amplified as the material parameter increases, while they are both
attenuated as the nonlocal parameter increases. Finally, it is found that the effects of
nonlocal and material parameters on the natural frequencies are independent of the SWCNT
chirality and length.

The model proposed in this paper has two important limitations. First, because the
effects of the nonlocal and material parameters on the natural frequencies of the SWCNT
were found to be strongly radius-dependent at relatively low thickness ratios, it would be
interesting to study the linear vibrations of relatively thick SWCNTs, and toward this aim,
a first-order shear-deformation shell theory should be used instead of a thin-shell theory
(e.g., the Sanders–Koiter shell theory in this paper). The second important limitation of
this paper, as in most of the works available in the literature, is that only the effects of the
nonlocal and material parameters were analyzed and not those of the surface parameter,
which is a very relevant small-length-scale parameter because it can strongly influence the
stress and strain characteristics of the SWCNT.

Therefore, to fill these two gaps, the authors of this work are planning to write a new
paper on the combined effects of the nonlocal elasticity, strain gradient, and surface stress
on the linear vibrations of SWCNTs in the framework of the first-order shear-deformation
shell theory.
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Appendix A

The elements of matrix E (38) are reported below.

E11 =
[
Y11λ2

q +
2Y13

R λqs +
(

Y33
R2 + X33

4R4

)
s2
]

·
[
1 + l2

(
λ2

q +
s2

R2

)]
− ρhω2

[
1 + µ2

(
λ2

q +
s2

R2

)] (A1)

E12 = −
[
Y13λ2

q +
(

Y12+Y33
R − 3X33

4R3

)
λqs

+
(

Y23
R2 − X23

2R4

)
s2
]
·
[
1 + l2

(
λ2

q +
s2

R2

)] (A2)



C 2024, 10, 24 20 of 21

E13 = −
(

Y12
R λq +

Y23
R2 s − X13

2R2 λ2
qs − X33

R3 λqs2

− X23
2R4 s3

)
·
[
1 + l2

(
λ2

q +
s2

R2

)] (A3)

E21 = −
[
Y13λ2

q +
(

Y12+Y33
R − 3X33

4R3

)
λqs

+
(

Y23
R2 − X23

2R4

)
s2
]
·
[
1 + l2

(
λ2

q +
s2

R2

)] (A4)

E22 =
[(

Y33 +
9X33
4R2

)
λ2

q +
(

2Y23
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R3
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λqs +
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·
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[
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+ 7X23
2R3 λqs2 + X22

R4 s3
]
·
[
1 + l2

(
λ2

q +
s2

R2

)] (A6)
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(
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2R2 λ2
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[
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(
λ2

q +
s2
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E33 =
[
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where λq = qπ/L.
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