
OR I G I N A L P A P E R

Artificial intelligence methods for a Bayesian
epistemology-powered evidence evaluation

Francesco De Pretis PhD1,2 | Jürgen Landes PhD3 | William Peden PhD4,5

1Department of Biomedical Sciences and

Public Health, School of Medicine and Surgery,

Marche Polytechnic University, Ancona, Italy

2Department of Communication and

Economics, University of Modena and Reggio

Emilia, Reggio Emilia, Italy

3Munich Center for Mathematical Philosophy,

Faculty of Philosophy, Philosophy of Science

and Study of Religion, Ludwig-Maximilians-

Universität München, Munich, Germany

4Erasmus Institute for Philosophy and

Economics, Erasmus School of Philosophy,

Erasmus University Rotterdam, Rotterdam,

The Netherlands

5Department of Philosophy, Durham

University, Durham, UK

Correspondence

William Peden, PhD, Department of

Philosophy, Durham University, 50 Old Elvet,

DH1 3HN Durham, UK.

Email: w.j.peden@durham.ac.uk

Funding information

Deutsche Forschungsgemeinschaft, Grant/

Award Numbers: 405961989, 432308570;

Horizon 2020 Framework Programme, Grant/

Award Number: 639276

Abstract

Rationale, aims and objectives: The diversity of types of evidence (eg, case reports,

animal studies and observational studies) makes the assessment of a drug's safety

profile into a formidable challenge. While frequentist uncertain inference struggles in

aggregating these signals, the more flexible Bayesian approaches seem better suited

for this quest. Artificial Intelligence (AI) offers great promise to these approaches for

information retrieval, decision support, and learning probabilities from data.

Methods: E-Synthesis is a Bayesian framework for drug safety assessments built on

philosophical principles and considerations. It aims to aggregate all the available

information, in order to provide a Bayesian probability of a drug causing an adverse

reaction. AI systems are being developed for evidence aggregation in medicine, which

increasingly are automated.

Results: We find that AI can help E-Synthesis with information retrieval, usability

(graphical decision-making aids), learning Bayes factors from historical data, assessing

quality of information and determining conditional probabilities for the so-called

‘indicators’ of causation for E-Synthesis. Vice versa, E-Synthesis offers a solid method-

ological basis for (semi-)automated evidence aggregation with AI systems.

Conclusions: Properly applied, AI can help the transition of philosophical principles

and considerations concerning evidence aggregation for drug safety to a tool that

can be used in practice.
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1 | INTRODUCTION

Every day, doctors, hospitals, pharmaceutical companies, and others in

healthcare face the complexities of the human body and the

healthcare environment. There are huge masses of diverse possibly

relevant data which, if harnessed properly, can improve the quality of

treatment, and if used poorly, can lead to disasters like thalidomide

and Lyodura. Given the challenge of interpreting such varieties of

data, it is clear that AI has an important role to play in healthcare. In

fact, it has already had a major impact. Telehealth agencies such as the

NHS 24 Self-Help guide* use automated reasoning to help patients

self-diagnose. An AI system powered by Google LLC predicted hospi-

tal inpatient death risks with 95% accuracy.1 In January 2020, the first

AI-developed drug, DSP-1181 (a treatment for obsessive compulsive

disorder) entered clinical trials.† AI can also make a contribution to

diagnostic procedures by doctors2 (see Amato et al3 for a general

Received: 18 May 2020 Revised: 9 December 2020 Accepted: 1 January 2021

DOI: 10.1111/jep.13542

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons Ltd

504 J Eval Clin Pract. 2021;27:504–512.wileyonlinelibrary.com/journal/jep

https://orcid.org/0000-0001-8395-7833
https://orcid.org/0000-0003-3105-6624
https://orcid.org/0000-0002-3474-7861
mailto:w.j.peden@durham.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jep
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjep.13542&domain=pdf&date_stamp=2021-02-11


overview of AI for medical diagnoses). The idea of a ‘smart’ hospital,
with programs and devices coordinated by AI, is no longer just science

fiction.4 AI also has roles to play in identifying drug interactions, inter-

preting possibly minute details in images, logging and processing

health records, and more. Still, rigorous research into the performance

of AI in many of these areas is still in its infancy.5,6 AI's use for public

health more widely is at more of a prospective stage, but its potential

is obvious.7

In this article, we focus on pharmacosurveillance. We explore how

AI can contribute to the continuous assessment of putative Adverse

Drug Reactions (ADRs). This manuscript is organized as follows: in the

Methods section, we briefly present E-Synthesis, a framework for com-

bining different types of evidence in pharmacovigilance, based on

Bayesian epistemology, as well as AI methodology for evidence aggre-

gation in medicine. In the Results section, we show how E- Synthesis

and AI can be intertwined to the benefit of both. Finally, in the Discus-

sion section, we offer some concluding remarks and provide an outlook

on a possible research agenda in drug safety assessment.

2 | METHODS: E-SYNTHESIS AND AI

The synthesis of evidence from multiple sources providing different

kinds of information (randomized studies, observational studies, case

reports, in vitro evidence), with the aim of evaluating hypotheses and

making decisions, plays a fundamental role in in many areas of medi-

cine. In pharmacosurveillance, for instance, relevant evidence only

becomes available in an unsystematic and motley way, so that evalu-

ating hypotheses is far from the textbook ideal of interpreting a neat

result from a randomized controlled trial (RCT). Thus, there is a need

for methods of synthesis that assess the significance of heteroge-

neous evidence in a systematic, well-grounded, and manageable way.

Since traditional frequentist statistical methods struggle with aggre-

gating different kinds of information, a more flexible approach is

required here. We next present a Bayesian approach to drug safety

assessment, and then we outline how AI methods can serve evidence

aggregation. The interaction between AI and this Bayesian approach

will be explored in the Results section.

2.1 | E-Synthesis: Bayesian epistemology for
evidence aggregation in pharmacovigilance

E-Synthesis is a Bayesian framework for evidence aggregation in

pharmacosurveillance to support timely decision making based on all

the available ‘safety signals’.8-12 The framework rests on Bayesian

epistemology, which unlike Bayesian statistics enables representation

of and reasoning with uncertainties attaching to arbitrary

propositions.

In previous papers, we have presented its philosophical

foundations,8 studied the incorporation of evidence qualities,11 inves-

tigated the aggregation of knowledge concerning biological mecha-

nisms and dose-response,9,10 and made strides towards applying E-

Synthesis in personalized medicine.12 In this subsection, we give a

brief overview of E-Synthesis.

2.1.1 | Motivation and goal

The risk-benefit profile of a drug is assessed and updated throughout

the development process: after its formula is proposed, during its syn-

thetization, and in the post-marketing period. There is no point at

which its safety is definitively established: its developers and drug

regulators must make multiple judgements at different phases of

development, using heterogeneous evidence, such as whether to

withdraw the drug. Currently, these decisions are made using system-

atic reviews that combine the wide variety of available evidence (pre-

clinical studies, clinical trials, spontaneous reports, basic research etc.)

to justify or undermine hypotheses about the presence or absence of

causal relations between the drug and harms. However, it is difficult

to combine heterogeneous data with various sources, modalities

(observational vs experimental) and different degrees of external and

internal validity. The ultimate objective of E-Synthesis is to surmount

this difficulty, by providing a systematic, epistemologically principled,

and usable method for combining evidence.

This framework rests on the paradigmatic philosophical account

of uncertain inference (Bayesian epistemology) in order to provide a

theoretically justified probability of a drug causing a harm on the basis

of all the available evidence. It employs a Bayesian network13 incorpo-

rating indicators of causality derived from the Bradford-Hill guide-

lines14 as well as evidence qualities and uncertainties attaching to

these evidence qualities. Unlike the GRADE approach, which is not

straight-forwardly applicable to decision problems,15 the probability

produced by E-Synthesis has been designed to be used for making

decisions via the maximization of expected utilities.

2.1.2 | Bayesian networks

In order to have an inferential mechanism that can handle heteroge-

neous types of evidence, E-Synthesis utilizes the tools of Bayesian net-

works and Bayesian epistemology. We provide a brief introduction to

these ideas and the rationale of their implementation in E-Synthesis.

Bayesian epistemology is a philosophical theory about (a) what

sort of beliefs and strength (‘degree’) of beliefs can be rational in a

particular context and (b) how those beliefs should be revised upon

learning new evidence. Bayesianism formalizes degrees of beliefs as

probabilities; it thereby inherits the formal constraints of the probabil-

ity calculus. Thus, P(H) represents a researcher's degree of belief in a

hypothesis, while P H Ej Þð represents their degree of belief in H condi-

tional on acquiring evidence E . In the case where our hypothesis is

that of the drug causing an ADR (denoted by ©), this conditional prob-

ability can be determined using Bayes' Theorem:

P ©jEð Þ= P ©ð Þ �P Ej©ð Þ
P ©ð Þ �P Ej©ð Þ+PN

i=2P Hið Þ �P E Hij Þð
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where the hypotheses Hi and © = H1 constitute a mutually inconsis-

tent and exhaustive partition.‡

With this mathematical formula, the posterior probability of the

hypothesis given the evidence, P © Ej Þð , only depends on prior proba-

bilities P(Hi), and likelihoods P E Hij Þð .§ Bayesian epistemology focuses

on updating (or “conditionalizing”) for propositions or events in gen-

eral, whereas Bayesian statistics focuses on testing statistical models

using conditional probabilities.

It is generally very difficult to calculate conditional probabilities

directly or to make a long and complex series of inferences using

them. Bayesian networks offer a convenient means for graphically dis-

playing and reasoning with probability functions.13,16 We can use

them to specify and read-off conditional independencies from a graph.

Technically, a Bayesian network is defined on a set of pairwise differ-

ent variables by a directed acyclic graph (which means that the edges

are directed such that the graph does not contain a directed cycle,

that is, it has no path of directed edges which leads back to its starting

point). Secondly, a probability distribution specifying the conditional

probabilities of all variables given their parent variables (all other vari-

ables which directly point to this variable). See Figure 1 for an exam-

ple graph.

Technically, this works as follows. Denoting the parents of a vari-

able Y by X1, …, Xn one specifies P(Y = yj X1 = x1, …, Xn = xn) ∈ [0, 1]

for all possible values y, x1, …, xn under the condition that
P

y ∈ YP

(Y = yj X1 = x1, …, Xn = xn) = 1. This condition ensures that we have

defined a probability function that satisfies the standard probability

calculus. To calculate conditional and unconditional probabilities of

interest, one may use the so-called ‘chain rule’.

2.1.3 | Indicators of causation

Bayes' theorem is essential in Bayesian epistemology, but it is by no

means clear how to determine the likelihoods P E Hij Þð in

pharmacovigilance. To facilitate this task, we employ abstract indicators

of causality that are derived from Bradford Hill Guidelines: (a) difference

making, (b) probabilistic dependence, (c) dose-response relationship,

(d) rate of growth, (e) temporal precedence, and (f) mechanistic knowl-

edge. Conceptually, indicators of causality are testable (probabilistic)

consequences of the causal hypothesis. For example, we can test

whether there is a dose-response relationship between a drug and an

adverse effect, such that higher dosages lead to a more and/or stronger

adverse effect. However, note that a causal relationship might lack a

dose-response relationship (anaphylaxis) and a dose-response relation-

ship might exist without a causal relationship, due to confounding. The

indicators are probabilistic consequences in the sense that their truth is

more likely, if the hypothesis is also true, than if the latter is false, that

is, P Ind ©j Þ>P Indð Þ>P Ind �©
�� ���

. In turn, P © Indj Þ>P ©ð Þ>P © �Ind
�� ���

.

Therefore, there is an association between each relevant experi-

mental study, observational study, case series, case report or basic sci-

ence finding with a set of causal indicators which it is informative

about.8,11,17 E-Synthesis thus analyses the inferential process from the

raw data to the hypothesis that a causal link holds between a drug

and an ADR into two steps: (a) from data (study reports) to causal indi-

cators and (b) from causal indicators to causality.

A core idea of Bayesian epistemology is that the confirmatory

value of evidence with respect to hypotheses is degree-valued. The

same holds here with respect to evidence for or against our causal

indicators. We use evidential modulators to make this fine-grained

and incremental element in Bayesian reasoning explicit, by determin-

ing the quality of evidence as a function of various choices in study

design and data analysis (blinding, randomization, sample size, study

duration, stratification), see Figure 1.

2.1.4 | Evidential modulators

One key feature of E-Synthesis is the possibility of assessing the qual-

ity of items of evidence. The assessed quality of evidence then modu-

lates the degree to which the item of evidence (dis-)confirms

indicators of causation. This is achieved by first creating a ‘report’ var-
iable, Rep, for every item of evidence and then creating for every such

variable a set of pertinent modulator variables Q1, …, Qk, for example,

duration of a study, sample size and blinding. In the Bayesian network,

these modulator variables are, together with a set of indicator vari-

ables, the parents of the report variable. According to the Bayesian

approach one then needs to set the conditional probabilities of

observing the evidence given their qualities and given the values of

the indicator variables, P(Rep = repj Ind = ind, Q1 = q1, …, Qk = qk).
¶

An application of Bayes' Theorem enables one then to calculate the

posterior probability of causal indicators. In turn, this posterior probabil-

ity can be used to calculate the posterior probability of the causal

hypothesis that the drug causes an ADR in the population of interest.

F IGURE 1 Graph structure of the Bayesian network for one

randomized controlled trial (RCT) which informs us about difference
making (Δ) which in turn informs us about the causal hypothesis. The
information provided by the reported study is modulated by how well
the particular RCT guards against random and systematic error. The
evidential modulators for an evidence report are SS, Sample Size; D,
Study Duration; A, Adjustment for covariates or subgroup analyses
and the like; SB, Sponsorship Bias; B, Blinding; and R, Randomization11
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2.2 | AI and evidence aggregation in medicine

As outlined in the Introduction, AI already has a growing impact on

healthcare. However, its potential for evidence synthesis is still under-

developed.** This is despite cautious interest within parts of the

healthcare industry.†† Greater use of AI in evidence synthesis could

have many benefits, which we detail in Section 4.2.

We stress that the automation of the entire evidence synthesis

process is not a currently realistic goal. Instead, a plausible ambition is

what has been called ‘semi-automated evidence synthesis’20 in which

parts (perhaps even a majority) of the evidence synthesis process are

automated using AI software. This would make evidence synthesis

more manageable and transparent, while preserving vital roles for

human judgement in many parts of the process. Some researchers are

already pursuing such goals on a grand scale.21

The semi-automation research program has already produced

some results. For instance, inference of causality from heterogeneous

data have been explored,22 so as semi-automatic transferring of

knowledge from one field to another by analogy.23,24 Moreover, spe-

cific efforts have been deployed on machine learning. Machine learn-

ing focuses on computer algorithms such that the computers can

perform tasks without being expressly compiled to do as such. This AI

field utilizes different methodologies. There is a particular interest in

two perspectives: supervised and unsupervised learning.25 Supervised

learning algorithms build a mathematical model of a set of data that

contains both the inputs and the desired outputs. Through iterative

optimization of an objective function, supervised learning algorithms

learn a function that can be used to predict the output associated with

new inputs. An algorithm that improves the precision of its outputs

after some time is said to have learned how to play out that task. In

contrast, unsupervised learning algorithms take a set of data that con-

tains only inputs, and find structure in the data, like grouping or clus-

tering of data points. The algorithms, therefore, learn from test data

that has not been labelled, classified or categorized. Unsupervised

learning is usually considered the most advanced edge of research in

this field. For example, machine learning methods like text mining can

help to screen studies for relevance.26 There is also research on auto-

mating the extraction of relevant data from particular studies.27 It

might even be possible to create what has recently been dubbed ‘liv-
ing systematic reviews’: once an evidence synthesis has been com-

pleted, there will be automated identification of relevant subsequent

research and extraction of the data that directly addresses the subject

of the evidence synthesis. Human input would only be required to

check the results of this process (which will be imperfect) once it has

been completed.28

3 | RESULTS

In this section, we explore in detail what may come out from the inter-

actions of E-Synthesis and AI. We investigate both directions, that is,

what E-Synthesis can provide for a better working of AI and how AI

itself can improve E-Synthesis.

3.1 | E-synthesis for AI

As outlined in the previous section, E-Synthesis offers a methodologi-

cally sound approach for evidence aggregation tasks in general. The

methodological choice of a Bayesian network lends itself to further

applications in AI, since Bayesian network algorithms are designed to

be easily implemented within AI systems. Moreover, we deem that E-

Synthesis can contribute to strengthen AI use in digital health applica-

tions at least in two ways:

1. It is a formal evidence synthesis procedure. Hence, the procedure

should ultimately be amenable to semi-automation.

2. Its Bayesian basis aids transparency. The Bayesian methodology

requires that we define the prior probabilities of possible events

and their interrelations within our model, as a precondition of mak-

ing inferences using E-Synthesis. The elements of this process are

standard Bayesian tools, adapted to the particular case of pharma-

cological evidence synthesis. Therefore, prior to applying E-Synthe-

sis, we must articulate our assumptions in a way that those familiar

with Bayesian modelling can understand them.

We shall expand on the second point. A significant concern in

contemporary AI design is transparency, especially for AI involved in

decisions that affects people's lives. Where possible, it is ethical that

decision-making processes are understandable for the people affected

by them, so that these people can enter into the relevant delibera-

tions, articulate their own viewpoints in an informed manner, and oth-

erwise hold AI designers to account. For instance, if an AI algorithm

has features that systematically bias decisions against a particular race

or gender, we want this bias to be open to challenges by the groups

who are negatively affected or experts working on their behalf. The

extent to which AI is understandable for users and stakeholders will

vary among contexts, but even when users lack the expertise required

to understand some AI's reasoning, the comprehensibility of that rea-

soning is often possible for experts who are accountable to those

users. Transparency of an AI's decision-making process widens the

scope of users and stakeholders who can understand (directly or indi-

rectly) the system and the depth of their understanding.

However, some types of AI have limited transparency even for

those with relevant expertise. For example, recently, concerns have

been raised with respect to medical decision algorithms.29-32 Many

early applications of computer reasoning in AI used relatively simple

if-then reasoning procedures, where the link between the inputs and

the decisions was clear.33,p. 3032 Yet machine learning functions that

use neutral networks are distributed over all the neurons, with no

unique functional form. The neural network approach offers great

gains in the accuracy of inferences made using the AIs, but at the cost

of relatively low transparency.

By contrast, the decisions about drug safety that are made by E-

Synthesis will ultimately be formalizable in algorithms. It is true that

there could be some exogenous elements. One example is that, at the

input level, the selection of data for the evidential modulators could

be decided by non-transparent neural network machine learning. At

DE PRETIS ET AL. 507
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the output level, we are not proposing the complete automation of

drug safety decisions, but instead just semi-automation, and therefore

there will still be human judgements that could be opaque, depending

on how the regulators make their choices.

However, E-Synthesis shares a common Bayesian advantages that

it forces us to make our probabilistic assumptions explicit, and thus

open to criticism.34,Chapter 11 Therefore, in comparison to some types

of AI, using E- Synthesis would improve transparency. Note that this

superior transparency holds even if we think that the priors are ulti-

mately ‘subjective’ in an epistemological sense: users can still raise

challenges on criteria such as alignment of the prior probabilities with

well-tested physical probabilities, the liability of priors to help us avoid

catastrophic choices,35 and other desiderata that users might have for

priors.

For the capacity of E-Synthesis to improve pharmacological pre-

dictions, we can point to some promising precedents in which AI has

been used to improve predictive power.36,37 AI is especially promising

for orphan drugs38 where the quantity and quality of data cannot

compare with largely used medications. We think that E-Synthesis may

contribute in improving these AI methods with a more sophisticated

evidence aggregation and evaluation, favouring a better understand-

ing of causal underpinnings in drug safety management.

3.2 | AI for evidence synthesis

As we have seen, AI methods are already employed in the realm of

evidence aggregation and may effectively contribute to a better func-

tioning of E-Synthesis (Section 2.2). That framework puts forward a

decision-making model to support drug safety assessments, which are

usually performed in a collective way by advisory committees, panels

of experts consulting drug agencies.39 However, significant parts of E-

Synthesis are still left to experts and are not automated. For instance,

the strengths of how strongly different evidential modulators

(Section 2.1.4) influence confirmation is still input manually by the

introduction of an ad hoc weighting scheme. The application of

machine learning and other AI techniques could lead to remarkable

improvements of the quality of decisions.

In the following, we pin down three main areas of interaction

between E-Synthesis and AI: machine learning, information retrieval

and graphical decision aids. We conclude that evidence synthesis for

pharmacosurveillance can be enhanced by AI, (cf. Section 4.2).

3.2.1 | Machine learning

Machine learning can greatly strengthen E-Synthesis, creating auto-

mated systems that make better use of the vast amount of accumulat-

ing publications and promoting the uptake of that evidence into a

wide range of contexts. Using machine learning, E-Synthesis will be

enhanced in identifying, extracting, synthesizing and interpreting rele-

vant information, converting this into knowledge that can answer

complex questions over causal associations. We identify two main

applications of machine learning for improving E-Synthesis:

(a) estimation of conditional probabilities of causal indicators and

learning the weighting schemes of the evidential modulators from

data and (b) modelling the ‘linkage between a direct molecular initiat-

ing event […] and an adverse outcome at a biological level of organiza-

tion relevant to risk assessment’.40,p. 731 The latter occurs through an

adverse outcome pathway (AOP), that is, a conceptual construct—

expressed in terms of flow-charts—that portrays existing knowledge

concerning the linkage between that initiating event at a molecular

level and the adverse outcome that can be macroscopically observed.

Such ‘mechanisms’ play an important inferential role.41

3.2.2 | Assessing probabilities and predictive
powers

As shown above, E-Synthesis delivers a probability of causal associa-

tion between a drug and an ADR, based on a Bayesian updating of

evidence that accrues through causal indicators. Machine learning

could help E-Synthesis in:

Learning the weighting scheme of the evidential modulators

The task determining how likely it is that a study (observational or an

RCT) correctly identifies the absence or presence of a causal relation-

ship between a drug and an ADR given the characteristics of the study,

for example, duration and sample size. Machine learning can be used to

estimate frequencies from past studies, since we know whether the

causal link was present and the values of the modulator variables.

Note that, while machine learning can help us to obtain values for

the evidential modulators, we still face ‘The Problem of the Reference

Class’: the challenge of selecting the set of studies from which to infer

these frequencies.42 Which studies should we learn these frequencies

from? Do we include all studies of the same/similar drug, similar/same

adverse event (reaction), same type of sponsor of study (commercial or

institutional),43 beneficial and/or adverse effects? There does not seem

to be an obvious answer. Considering only studies which are similar to

the study under consideration leads to a small set of specific studies

(little but specific data) while considering many, some of which less

similar, studies leads to a large set of studies (much but unspecific data).

Ample data is the tool of choice to decrease statistical noise while spe-

cific data helps ensuring that the actual phenomenon of interest is

studied. In our world of limited specific data, it is impossible to say how

to optimally strike a balance between the value of these tools in gen-

eral. However, a Bayesian framework like E-Synthesis helps us make

our answers to the methodological questions (in the form of our Bayes-

ian probabilities for particular events) more rigorously formulated and

open to scrutiny than if choice among reference classes is left implicit.

Learning the conditional probabilities of indicators of causation

The goal is to estimate the conditional probability of an indicator vari-

able given © or its negation (and its other parent variables, if there are

any). The predictive power of the causal indicators may be inferred

from past drugs with a suspected ADR, such that (1) we now know

508 DE PRETIS ET AL.

 13652753, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jep.13542 by U

niversity M
odena, W

iley O
nline L

ibrary on [15/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



whether each of those drugs causes the ADR and (2) which of the

indicators they had. Concrete learning applications again face a refer-

ence class problem. The set of causal indicators was distilled from

Hill's Guidelines and the set of modulators was determined from a

study of current medical methodology literature. E-Synthesis has

always been developed with future possible modifications of these

sets in mind. Unsupervised machine learning algorithms may discover

further predictors, which could give rise to new indicators and/or evi-

dential modulators. Possible new predictors might include the number

of authors of published study and/or affiliation of the study's authors.

3.2.3 | Modelling mechanisms

Machine learning could play a fundamental role also in modelling

mechanisms within E-Synthesis. There is already an abundant literature

on its use in pharmacokinetics and pharmacodynamics44,45 to figure

out possible and impossible biochemical mechanisms, bypassing

in vitro and in vivo checks by fast and efficient deployment of in silico

analyses. Likewise, a better understanding of absorption, distribution,

metabolization mechanisms—which prove critical for dose-response

and drug concentration estimation in drug delivery processes—has

been highly accelerated by computer simulations46 and machine learn-

ing.47,48 Some steps towards such a direction have been already taken

in Abdin et al9 and De Pretis and Osimani,10 where—in the latter—

dose-response algorithms, usually employed in clinical phase II, have

been translated to pharmacovigilance.

3.2.4 | Information retrieval

Given larger and larger amount of publications available, the need for

advanced information retrieval (IR) systems increases. AI may also help

here. At present, most IR systems, such as general search engines (eg,

Google and Yahoo) and scientific literature search engines (eg, PubMed

and ACM Digital Library), use keywords to query and index documents.

However, this traditional keyword-based IR model provides little

semantic context for the understanding of user information needs. For

example, a keyword usually has several senses and its meaning is

ambiguous without context. In addition, one meaning can be expressed

by many keywords.49 There is a long-running research program of try-

ing to addressing these problems.50,51 The push towards integration of

semantic context according to the user's information need and the

user's understanding of documents in the collection into IR systems is

one of the main topics of current IR research.49 On the medical side,

knowledge extraction may prove fundamental for accelerating the

bench to bedside passage in pharmacological research.52 With respect

to E-Synthesis, evidence retrieval may boost its performances, by query-

ing databases for all known names for a drug (alike what is done in

databases like VigiBase‡‡), for similar drugs (similarity in terms of active

ingredient, drug carrier, chemical structure) and similar reactions, as well

as disentangling mechanisms of putative causal connections with

respect to different drugs causing the same ADR.§§

3.2.5 | AI-powered graphical decision aids

Facing an increasing amount of information puts pressure not only on

the way such data must be analysed,54 but also on the way those data

have to be presented for an effective decision making. In fact,

researchers with limited information processing capability are usually

unable to cope with an exponentially increasing amount of informa-

tion, leading to a phenomenon called ‘information overload’. This phe-
nomenon has widely been recognized to have adverse effects on

decision quality.55 The use of graphs as decision aids to reduce the

adverse effects of information overload on decision quality has been

positively investigated both in management56 and communicating

risks between patients and physicians.57 AI could aid these goals by

making it easier to visualize the confirmatory impact of (hypothetical)

evidence and the confirmatory impact of indicators. An interactive

graphical representation of strengths of associations may lead to bet-

ter decisions based on E-Synthesis.

4 | DISCUSSION

We have shown how AI may contribute to pharmacovigilance by

improving a Bayesian framework for evidence synthesis. We think

that such applications will also benefit other approaches to evidence

synthesis. The prospects for AI supported inference in medicine seem

bright, yet we stress that AI will not cure all ills.

4.1 | Limitations: AI is not a panacea

AI can reduce some of the limitations of E-Synthesis, yet some will

remain. For instance, while machine learning can help in making the

weighting scheme of evidential modulators, as well as the probabilities

of the causal indicators more objective, it is still a human who chooses

the algorithm for these machine learning operations. There will hence

continue to be room for subjective choice and disagreement about

these choices. Furthermore, while graphical decision aids can improve

the usability and explainability of decision processes, good decision

making under uncertainty is a complicated task at which we routinely

fail to be optimal.58

One current limitation of E-Synthesis is its concept of causation.

Consider the (simplified) case of taking a drug D and an adverse drug

reaction A. Currently, E-Synthesis treats causation as categorical and

binary: either D causes A or it does not. This reflects the traditional

approach to causation in philosophy.59-64 For some decisions, binary

causation might be sufficient: for example, if we regard a causal rela-

tion from D to A as sufficient for rejecting the use of D in medicine,

then all we need to determine is the presence or absence of that

causal relation. However, policymakers, doctors, patients and scien-

tists are often interested in the question of the strength of a causal

relation. E-Synthesis does not commit us to any particular account of

causal strength. There are many options in the literature that might be

explored.65-69
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4.2 | AI and human judgements

We have assumed that that AI can improve human decision making.

While we do not think that AI always improves our decision making,

there are good reasons and evidence that, in medicine, AI is already

improving decision qualities and that AI support will lead to even bet-

ter decisions in the future.

Firstly, AI can perform tasks on large data sets we are simply not

able to do, for example, searching, summarizing and revising probabil-

ity distributions. AI thus expands the computational capacity of evi-

dence evaluators. The accelerating increase in medical data means

that the application of AI in evidence synthesis is increasingly difficult.

Insofar as evidence syntheses depend on a lot of human input, it will

be hard to keep track of the ever-greater flow of evidence such as

case reports and clinical trials. Automation via AI can help alleviate

some of these information processing strains in the evidence synthe-

sis process.

Secondly, AI can make the decision-making procedure more

transparent. Such systems can offer graphical decision aids which

can be used by evidence evaluators when explaining their decisions

to patients, policymakers, and other stakeholders. Additionally, all

outputs of AI systems depend ultimately in a formal and

(in principle) traceable matter on the input. In some cases, AI rea-

soning can be summarized in terms of algorithms that are accessible

for many users and groups affected by the reasoning. Human

decision-making procedures are by contrast most often not open to

inspection.

It is true that the superior transparency of AI is not guaranteed.

We noted above that machine learning systems are often incompre-

hensible, in some sense, even for experts. Yet, even in these cases,

it is not clear that AI is any less transparent than human reasoning,

since the latter might involve intuitive judgements that are also

impossible to articulate formally.70,p. 7 Furthermore, while a neural

network's learning algorithm might have no explicit representation,

the network's overall dynamics can be articulated and scrutinized—

something far beyond what we can currently do with the

human mind.

Thirdly, AI offers us the possibility to better understand our

judgements by performing hypothetical analyses of how different

judgements influence decision-making procedures. Let us recall the

Reference Class Problem (Section 3.2.1). Applying AI systems to dif-

ferent reference classes allows us to perform sensitivity analyses,

thereby shedding light on how our judgements of relevance influence

decision making. Depending on our answer to the Reference Class

Problem, such analysis might even help in finding an appropriate ref-

erence class.

4.3 | Future work

While we can understand causal relations between binary variables

by how much (in some sense) the presence of the cause variable cau-

ses the probability of the effect variable to increase, there is also a

pertinent graded sense of causation between many valued variables:

how strong an ADR does a particular dosage cause? AI holds great

promise to squeeze such more fine-grained information from evi-

dence, which will require continued interaction between stakeholders

and scientists from numerous areas. We echo the call for an increase

of such interactions to improve pharmacovigilance for the good of us

all.9,71,72
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ENDNOTES

* https://www.nhs24.scot.
† https://www.exscientia.ai/news-insights/sumitomo-dainippon-pharma-

and-exscientia-joint-development.
‡ For convenience, we use the same symbol denoting a variable and the

variable being true.
§ In basic statistical applications of Bayesianism, the likelihoods are often

(but not always) easy to determine, because the content of the hypothe-

sis will often determine a probability for the evidence due to logical or

mathematical reasons. For example, if a hypothesis (with a non-zero

prior probability) implies the evidence, then the likelihood must be

1. Meanwhile, determining the likelihood of the evidence given a statisti-

cal hypothesis Hi often just requires using purely mathematical reason-

ing, for example, calculating the probability of a particular series of

independent and identically distributed binomial trials given the hypoth-

esis of a population frequency. However, in more complex applications,

determining the likelihoods can be very difficult, as we discuss later.
¶ Uncertainty about study qualities is represented by probabilities in the

fashion usual in Bayesian statistics, for example, P(Qi = qi).

** The first automated evidence synthesis system was only published in

2019[18]. See O'Connor et al[19] for a recent overview of evidence syn-

thesis automation.
†† https://blog.evidencepartners.com/past-present-and-future-

automation-in-systematic-review-software.
‡‡ https://www.who-umc.org/vigibase/vigibase/.
§§ There are known examples of linking different drugs to the same

ADR[53]. Such evidence can help to exonerate a drug under consider-

ation by putting the blame on a different drug causing the ADR. How-

ever, such evidence may also incriminate the drug under consideration

by elucidating the mechanism between the drug under consideration

and the ADR.
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