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Abstract: Integrated power electronics for photovoltaic applications has attracted increasing interest,
due to the possibility of having grid-connected photovoltaic modules with independent maximum
power point tracking and high reliability. In this paper, a single-phase Current Source Inverter (CSI)
is discussed for a photovoltaic application. The basic CSI topology will be explained for the sake
of completeness, highlighting its main features and analyzing the ground leakage current problem,
an important benchmark for photovoltaic application. A novel topology, called CSI5, is proposed
in this work. The main feature is the presence of additional switches for ground leakage current
reduction. The performance of the proposed topology is assessed by numerical simulation, and the
experimental results confirm that this solution is able to strongly reduce the ground leakage current
and conduction power losses.

Keywords: power electronics; current source inverter; photovoltaic power system

1. Introduction

Photovoltaic (PV) energy production has witnessed a steady increase in the past 15 years.
The growth has been fueled by technological advancements and the support of incentive programs
from the world’s governments. Nowadays, the scenario for power electronics is well-established [1,2],
and several possibilities are present for different power levels, ranging from (Megawatt) MW
-scale centralized inverters (for very large solar arrays), to the medium-power solution (single and
three-phase) to the micro-inverter type, also called a string inverter or module-integrated converter
(MIC). They are usually single-phase converters which are directly connected to the grid. This latter
type has been in the spotlight due to its unique advantages, including:

1. Individual Maximum Power Point Tracking (MPPT) is possible, where this allows for better
extraction efficiency, preventing the partial shading phenomena.

2. High availability of the system, since the failure of a power electronics module would minimally
impact the performance of a bigger system.

3. Since the module would have an AC output, the installation and protection system would
be cheaper, due to the absence of a high-voltage DC distribution, as in some centralized
inverter solutions.

An initial classification of the MICs has been proposed in [3]. One of the peculiar problems of the
photovoltaic systems is the possibility of ground leakage current insurgence [1], due to the parasitic
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capacitance between the photovoltaic cells and the ground and the electric distribution. The typical
solutions imply a transformer (either high-frequency or low-frequency), but transformerless solutions
normally feature better efficiency and lower weight. For years, the main topologies have been based
on the Voltage Source Inverter paradigm, and modifications to the unidirectional full-bridge or to
the three-phase bridge with additional switches were proposed to reduce the common mode voltage
generation, which causes the ground leakage current [4–6]. Recently, the Z-source or quasi-Z-source [7]
have been employed for MICs, due to the advantage of low ground leakage current and intrinsic
boost capability.

This article critically analyses a modified Current Source Inverter topology, named CSI5, that is
able to improve the performance of the basic single-phase CSI in terms of efficiency and is also capable
of reducing the ground leakage current to almost zero. Recently, PV CSI architectures have been
proposed for full-sized PV arrays, both in single-phase [8,9] and three-phase [10] architectures, but also
for MIC solutions for three-phase distribution grids [11]. The CSI5 topology was proposed for the first
time in [12], where the present work further expands the theoretical and simulation analysis, offering a
comprehensive coverage of the benefits and drawbacks of single-phase CSI for PV applications, and in
particular of the proposed solution. These improvements are analyzed in the following sections in
order to verify the effectiveness of this power converter employed as a PV MIC. The contribution of
this paper is a thorough analysis of the CSI5 topology with active decoupling devices, which clamp
the output of the H-bridge stage during the zero states of the pulse width modulation, allowing for
extremely low levels of ground leakage current.

2. Basic Single-Phase CSI Topology

Figure 1 shows the basic single-phase Current Source Inverter (CSI) for a photovoltaic grid
connected system: it is worth noticing that the schematic features the equivalent parasitic capacitance,
CPV , of the PV string connected between the earth and the frame of the PV panels [13]; resistance RG
represents the ground resistance between the neutral connection and the earth. For simplicity’s sake,
only a lumped capacitor connected to the negative DC rail of the panels is considered, and it holds the
overall capacitance of the panels. The capacitance connected to the positive rail of the panel (the panel
not shown in Figure 1) is not drawn, because the capacitance of both DC rails are connected in parallel
in the equivalent common-mode circuit. Since for the PV converter, the main source of capacitance to
the ground is the panel parasitic one, the capacitance of the devices to the heatsink and then to the
ground are not considered for this work.
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Figure 1. Basic single-phase CSI topology.

This topology, like all single-phase PV topologies, faces the drawback of matching a pulsating
power to a constant power source. For the CSI, this is even more critical, since the energy would need
to be stored in the DC inductor, which would imply unacceptable values in terms of weight and size.
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This issue will be discussed later in the manuscript, and in this section the assumption of a
constant DC current source will be made for the operating principle explanation.

2.1. CSI Operating Principle

The basic principle of the CSI is that a constant current source (for example, by employing an
inductor) is modulated to synthesize an arbitrary current waveform at the output. To reduce distortion
in the output current waveform, a filter comprising a capacitor, or a capacitor and an inductor,
is placed to realize the coupling to the grid. In the case of a simple capacitive filter, the inductance
of the grid would act as an inductive element to limit the high-frequency current harmonics injected
into the grid. However, to prevent excessive voltage distortion at the point of common coupling
(PCC), a physical inductor is preferred. The immediate advantages of this topology is the ease of
current control (the current is directly controlled via the modulation index), the intrinsic voltage boost
capabilities, the high reliability due to the low failure rate of the inductor if compared to an electrolytic
capacitor, as well as the intrinsic short-circuit protection inherent of the topology.

On the other hand, the presence of two devices connected in series (the diode and the transistor)
to realize a bi-directional voltage blocking device has a strong impact on the efficiency due to increased
conduction losses, an aspect which has limited the widespread adoption of CSI topologies.

The command sequence of the four transistors in the unidirectional full-bridge (T1, T2, T3, and T4)
is obtained with the strategy shown in Figure 2. Considering grid-tied operation, the sinusoidal
waveform shown in Figure 2 represents the reference shape of the current, which can be extracted with
a Phase-Locked Loop (PLL) or can be obtained from the grid voltage measurement.
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Figure 2. Basic single-phase CSI control. c©2016 IEEE [12].

The basic operation implies that for each grid-voltage half-wave, a diagonal of the H-bridge is
switched on for a time, depending on the reference (active state), providing the DC-link current to
the grid. During the remaining switching period, a shoot-through state (zero state) is applied to the
H-bridge. In this latter case, zero current is provided to the grid [12].

Similarly to the dead-time that is applied between the switches of a VSI, an overlap time is
introduced in the commutation of the CSI to prevent the DC-link open-circuit, as shown in Figure 3.
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Figure 3. Overlap time insertion. c©2016 IEEE [12].
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The result of the commutation process is shown in the exemplified condition of Figure 4, where the
grid current and a zero-phase filtered version [14] of the bridge output current are shown. It can be
seen that a small phase shift and amplitude difference exists, due to the current absorbed by the output
filter. This effect can be compensated for by properly adjusting the reference to compensate for the
current absorbed by the output C-L filter.
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Figure 4. Comparison between the output full-bridge current, zero-phase filtered to remove the Pulse
Width Modulation (PWM) components (orange) and an actual injected grid current (blue) in order to
highlight the phase shift introduced by the output Capacitive-Inductive CL filter.

2.2. Common Mode Voltage Analysis for the CSI Topology

The theoretical tool used for the analysis of the ground leakage current in grid-connected Pulse
Width Modulation (PWM) is usually the common mode voltage evaluation, as shown in the relevant
literature for the VSI [15,16].

For the CSI application, due to the different operating principles, the analysis of the ground
leakage current is performed with the evaluation of the ground voltage Cground, that is, the voltage
between the neutral conductor of the grid generator and the negative terminal of the DC power source.

Since the impedance of Cpv against high-frequency voltage components is very low,
the high-frequency component of ground voltage has to be minimized. For simplicity’s sake,
the assumption of a unity power factor will be made.

Referring to Figure 1, Vground is analytically computed in the case of positive and negative
semi-periods of the grid voltage, respectively, during both Active and Zero states. Figure 5 shows
a possible waveform of vground when the parasitic capacitor is neglected, since the ground voltage
depends on the CPV value, contrary to the VSI case [17].
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Figure 5. Basic CSI topology vground waveform with zero CPV .
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It can be seen that the ground voltage envelope follows the same shape of the grid voltage with
the additional high-frequency harmonic component due to the switching of the power electronics.
This level of ground voltage is not acceptable for transformerless PV applications, and the following
sections will explain the mitigation strategies, both for ground leakage current reduction and for
efficiency improvement.

3. Proposed CSI5 Topology

In order to address the main drawback of the CSI topology, two main modifications were
performed, which will be detailed in the following.

The first improvement was obtained by adding a switch to the basic CSI topology and obtaining
the CSI5 converter, as shown in Figure 6. The additional power device (T5 and D5) was used to
provide the zero state to the output [12], strongly reducing the conduction loss of the topology
(where only two devices carry the current, instead of four). As a matter of fact, during overlap time,
the input current always flows through T5 and D5 instead of one leg of the full-bridge. This way,
all commutations of the full-bridge switches are zero-current commutations (ZCS). This results in all the
commutations of T5 being hard-switching, but the switching power losses are also concentrated only
on this device. In order to maximize the converter efficiency, T5 should be chosen with different criteria
than the other transistors—for example, a SiC device would be preferred, but this would come at the
price of additional cost. The control for the additional switch T5 is shown in Figure 7. The efficiency
improvement consequent to the addition of the zero-state switch has been addressed in previous works
by the authors [18].
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Figure 6. CSI5 topology with active clamp.
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Figure 7. PWM command generation for T5.

A further modification to the basic CSI topology is also shown in Figure 6. The two low-power
switches, Tad1 and Tad2, were adopted to obtain a strong reduction of the ground leakage current.
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The operating principle relies on the joint action of T5 and the low-power devices. During the zero
state, T5 is on and the H-bridge devices are switched off. This operating point effectively decouples the
electrical grid from the DC source, and reduces the ground leakage current. However, the full-bridge
output terminals remain floating with respect to the grid generator. For this reason, the two additional
switches Tad1 and Tad2 connect the output terminals to the negative side of the DC panel, with the
objective of limiting the high-frequency oscillation across the parasitic capacitance represented by Cpv.
Only one of the two additional switches is active for each half-wave: Tad2 is used during the positive
half-wave, and Tad1 during the negative half-wave, respectively. Since some reactive power handling
capability is often required for the MICs, a bidirectional device is preferred for the decoupling devices
Tad1 and Tad2. Figure 8 shows the schematic block diagram for the generation of the PWM commands
for Tad1 and Tad2. For the sake of clarity, the PWM signals for a grid voltage period are depicted in
Figure 9 where all full bridge signals of the CSI5 (T1-T5) and the additional switches (Tad1 and Tad2)
are shown.
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Figure 8. Block diagram of the signal generation for Tad1 e Tad2.
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Figure 9. PWM modulation of the proposed CSI5 topology.

Considering the additional features of the proposed solution, the ground voltage can be computed
for all the converter states, and it is detailed in Table 1.

Table 1. Summary of ground voltage depending on the modulation states and output half-wave.

Positive Half-Wave Negative Half-Wave

Active State vground = +vL f 2AS + vD4 + vT4 vground = −vL f 1AS − vgrid + vD2 + vT2

Zero State vground = +vL f 2ZS + vTad2 vground = −vC f − vL f 2ZS + vTad1

As an example, Figure 10 shows the expected ground voltage waveform. During the positive
half-wave its value is very low, and it is mainly determined by the voltage across the semiconductor
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devices in on-state and the inductive part of the output filter. During the negative half-wave, the grid
voltage shape can be recognized, but without the high-frequency switching components.
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Figure 10. CSI5 topology vground waveform with zero CPV .

The overall control of the proposed solution, considering the pre-stage and the gate signal
generation for all devices, is shown in Figure 11. The ideal current source is substituted by a PV panel
and a DC–DC synchronous buck converter.
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Figure 11. Schematic of the proposed CSI5 topology and control.

The task of the pre-stage is to control the CSI inductor current, effectively reducing the inductance
requirement for LDC and to decouple the PV source from CSI5. Differently from the three-phase
PV CSI, in single-phase operation, the pre-stage is needed in order to manage the fluctuation of
the instantaneous electric power output with the mandatory low variations of PV source voltage
and current.

Different kinds of converters can be chosen for the pre-stage, and a synchronous buck was chosen
for its simplicity. It is to be noted that, for this manuscript, the task of the pre-stage was not to control
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the input current, since the focus is on the CSI5 topology, and the input current control issues are
common to all single-phase PV applications. A DC capacitor was adopted at the input of the pre-stage
to reduce the oscillation of the panel operating point. This represents the main drawback for the use in
actual PV microinverters of single-phase CSI topologies—to keep the small dimensions and weight,
there is the need to manage the output pulsating power through a capacitor. However, different
solutions, based on active capacitors [19], can be employed.

It is worth repeating that a single-phase converter would always need some kind of active
decoupling connected either in parallel or in series, to match the different power flow of the panels
and grid. It is also worth noting that having a continuous fixed current in the inductor is not necessary,
since the current value can be changed even without a front-end [20], and inductor current oscillation
can be compensated for with proper Pulse Area Modulation [21]. For simplicity’s sake and to better
focus on the ground leakage current problem, these aspects have not been introduced in this paper,
and a simple DC–DC buck converter is used, although it would not represent a practical application.

4. Simulation Results

The performance and operation of both the basic CSI and the CSI5 topology were assessed and
compared via numerical simulations in the PLECS environment. The converter topologies are the
same as that showed in Figures 1 and 11, and Table 2 summarizes the simulation parameters.

Table 2. Parameters used in the simulations.

Name Description Value Unit

I∗dc DC current reference 6 A
vgrid Grid Voltage (50 Hz) 230 VRMS

L f 1, L f 2 Inductor output Filter 0.5 mH
L f dc Inductor input Filter 0.1 mH
LDC DC Inductor 1 mH
C f Capacitor output Filter 2.2 µF

Cpv
Equivalent PV parasitic

capacitance 330 nF

RG Ground resistance 3 Ω
tov Overlap time 0.5 µs
fsw CSI Switching frequency 30 kHz

fswpre Pre-stage Switching frequency 100 kHz
CDC Pre-stage Input Capacitance 2200 µF

The control strategy implemented in the simulation environment for the two solutions are those
showed in Figures 2 and 8 and no additional dedicated power factor correction was employed.

The simulations were carried with four BP365PV panels in series and the parameters are
summarized in Table 3.

Table 3. BP365 PV panel parameters.

Name Description Value Unit

Pmax Maximum Power 65 W
VPmax Voltage at Pmax 17.6 V
IPmax Current at Pmax 3.69 A
VOP Open-circuit voltage 22.1 V
ISC Short-circuit current 3.99 A

The overlap time (see Figure 3) was inserted before the transition command of every transistor.
In the simulations, the modulation index K (see Figure 2) was kept equal to 0.23. No common-mode
filters were introduced in the electric circuit. Without any degradation of the power quality caused by
equivalent parasitic capacitance, the injected power into the grid is equal to 221 W. Figure 12 shows
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that the grid voltage and injected grid current were characterized by a strong distortion due to the
presence of an unacceptably high ground leakage current in the case of basic topology.

Figure 13 shows the same signals of Figure 12 in the case of a proposed CSI5 topology. The strong
reduction of the ground leakage current is clearly visible, together with noticeably lower distortion in
the injected current. The phase displacement of the injected current with respect to the grid voltage is
due to the output filter reactive power, as previously discussed. The asymmetry in the peaks of the
ground leakage current is caused by the asymmetry of the ground voltage, as described in Table 1.
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Figure 12. Ground leakage current waveform (top), injected grid current waveform (×100), and grid
voltage waveform (bottom) in the case of CSI basic topology. The Root Mean Square RMS of the ground
leakage current is equal to 1.83 VRMS.
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The currents of the clamping switches Tad1 and Tad2 are very low, as Figure 14 shows, together
with their blocking voltage. The RMS current flowing on Tad1 and Tad2 are equal to 32 mARMS and
27 mARMS, respectively. The two current levels are different because of different resulting current
paths, shown in Figure 11.
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(blue trace) and Tad2 (red trace).

Another set of simulations was conducted in order to verify the robustness of the CSI5
solution when taking into account the inductance asymmetry between L f 1 and L f 2, such as due
to manufacturing tolerances; in particular, considering the worst case scenario with a difference of 20%
(L f 1 = 450 µH and L f 2 = 550 µH), the RMS value of the iground results are equal to the previous value
(50 mARMS), while the RMS current that flowed in Tad1 and Tad2 were respectively equal to 30 mARMS

and 26 mARMS—the difference is negligible.
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Figure 15. Simulation results with PV panel and DC input current regulation. From top to bottom: PV panel
voltage; PV panel current; current on LDC; grid voltage (blue) and output current (red) waveforms.
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Figure 15 shows an acceptable variation of the PV input current that could be exploited for MPP
tracking of the PV panel. As it can be seen, the variation of the current that flows in the DC inductance
LDC did not result in excessive distortion in the current waveform injected into the grid. In the case
of a larger variation, such as in order to exploit the LDC inductor for power decoupling, the injected
current THD can be kept under control by employing PAM modulation [22].

5. Low Voltage Experimental Validation

A laboratory scale prototype and test set-up was developed in order to perform experimental
measurements of the CSI5 topology with aims of assessing the feasibility of the proposed solution and
to validate the ground leakage current capability of CSI5 compared to the basic CSI solution.

Figure 16 shows the experimental test set-up, where the CSI5 solution is realized from an
existing three-phase CSI7 converter [17]. A basic CSI topology is obtained by disabling in the control
firmware the additional bidirectional and clamp switches. Table 4 summarizes the experimental
operating parameters.

Figure 16. Experimental setup.

Table 4. Experimental test-bed parameters.

Name Description Value Unit

DC Voltage VDC 30 V
DC source resistance RDC 30 Ω
CSI DC Inductance LDC 1 mH

Output Filter Inductance L f 1 = L f 2 1 mH
Output Filter Capacitance C f 1.5 µF

Switching Frequency fsw 30 kHz
Ground Resistance RG 5 Ω

Equivalent PV parasitic capacitance Cpv 250 nF
Load Resistance Rload 42 Ω

In the preliminary experimental evaluation, the tests were carried out in stand-alone mode,
and the grid was substituted by a load resistor Rload. The converter was supplied by a DC power
supply with a resistor RDC connected in series in order to emulate the PV source I/V characteristic
when operating in current control mode. A capacitor with the value described in Table 4 connected
between the neutral and the negative terminal of the DC supply was used to simulate the effect of
the parasitic capacitance. The ground leakage current was measured with a current probe on the wire
connecting this capacitor.
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Figure 17 shows the ground leakage current performance of the basic CSI topology. Output voltage
and current waveforms, as well as ground voltage and current waveforms are shown. As can be seen,
the ground voltage presents large high-frequency components, and the value of ground leakage current
is high.

Figure 18 shows the same waveforms of the previous Figure, but with the CSI5 solution without
clamping, that is, the presence of the two additional switches Tad1 and Tad2. As can be seen, the ground
voltage waveform is different than in Figure 17, and there is a consequent reduction of ground
leakage current.

Finally, Figure 19 shows the relevant results for the proposed solution, that is, CSI5 and the
additional clamping switches, Tad1 and Tad2. The high-frequency ground voltage oscillation is further
reduced, and the ground leakage current is minimized. Overall, the ground current was reduced from
22.7 mARMS to 6 mARMS by adopting the proposed solution.

Figure 17. Experimental results of the basic CSI solution. From top to bottom trace: output voltage
(red trace, 10 V/div), output current (blue trace, 500 mA/div), ground voltage (yellow trace, 10 V/div),
and ground leakage current (green trace, 50 mA/div). c©2016 IEEE [12].

Figure 18. Experimental results of CSI5 solution without clamp. From top to bottom trace: output
voltage (red trace, 10 V/div), output current (blue trace, 500 mA/div), ground voltage (yellow trace,
10 V/div), and ground leakage current (green trace, 50 mA/div).
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Figure 19. Experimental results of proposed CSI5 solution. Trace list from top to bottom: output
voltage (red trace, 10 V/div), output current (blue trace, 500 mA/div), ground voltage (yellow trace,
10 V/div), and ground leakage current (green trace, 50 mA/div). c©2016 IEEE [12].

6. Conclusions

This paper has thoroughly analyzed the main benefits and disadvantages of a novel Current
Source Inverter topology, named CSI5, applied to transformerless photovoltaic single-phase systems.
The main advantage is the extremely low ground leakage current, demonstrated theoretically,
both by simulations and experimental verification and the ease of control. Furthermore, the CSI5
topology presents the intrinsic boost capability of the CSI and the additional switch T5, dedicated to
obtain the output zero state and which allows to strongly reduce the conduction losses with respect to
the basic CSI topology.

The main drawback, common to all the single-phase integrated converter solutions, is the power
matching between the single-phase grid (characterized by a fluctuating power) and the photovoltaic
source (characterized by constant power). In order to decouple the DC PV source requiring almost
constant current and voltage at MPP and the instantaneous pulsating output power, an additional
pre-stage must be inserted for single-phase CSI.

Another aspect that is worth pointing out for future works is that a certain percentage of power
decoupling could be obtained by suitably varying the current of the DC input inductor LDC without
compromising the THD of the injected current, thanks to the use of the Pulse Area Modulation.
To conclude, the CSI5 topology can be employed for module integrated application, although a
thorough evaluation of the final application requirement should be carried out to weigh the drawbacks
described in this manuscript.
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Abbreviations

The following abbreviations are used in this manuscript:

PV Photo-voltaic
CSI Current Source Inverter
VSI Voltage Source Inverter
MIC Module Integrated Converter
MPP Maximum Power Point
MPPT Maximum power Point Tracker
PLL Phase Locked Loop
PAM Pulse Area Modulation
PWM Pulse Width Modulation
PCC Point of Common Coupling
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