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Abstract: Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides 
widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition ele-
ments. With proper design, aptamers are able to bind to a specific target molecule with high selec-
tivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is 
employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming 
procedures. In silico methods comprising machine learning models have been recently proposed to 
reduce the time and cost of aptamer design. In this work, we present a new in silico approach al-
lowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here 
represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, 
a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally 
proved by choosing the best five aptamer candidates obtained from the design process and applying 
them as functional elements in an electrochemical sensor to detect, as the target molecule, ammo-
nium at different concentrations. We observed that the use of five different aptamers leads to a 
significant difference in the sensor’s response. This can be explained by considering the aptamers’ 
conformational change due to their interaction with the target molecule. We studied these confor-
mational changes using a molecular dynamics simulation and suggested a possible explanation of 
the experimental observations. Finally, electrochemical measurements exposing the same sensors 
to different molecules were used to confirm the high selectivity of the designed aptamers. The pro-
posed in silico SELEX approach can potentially reduce the cost and the time needed to identify the 
aptamers and potentially be applied to any target molecule. 

Keywords: aptamer; aptasensor; biosensor; machine learning; molecular dynamic simulation;  
in silico design 
 

1. Introduction 
The development of novel binders for specific targets (e.g., viruses, toxins, patho-

gens, proteins, cell receptors linked to cancer, etc.) is a continuously growing research 
area [1] with the goal to simplify the diagnosis and treatment of diseases, detection of 
contaminants and toxins, as well as quality control [2–9]. Moreover, during the last two 
years, the ongoing COVID-19 pandemic has underlined the importance of rapid and reli-
able methods for the large screening of public health [10–14]. Traditional methods to per-
form such screenings are mainly based on antibodies, although their use presents major 

Citation: Douaki, A.; Garoli, D.; 

Inam, A.K.M.S.; Angeli, M.A.C.; 

Cantarella, G.; Rocchia, W.; Wang, J.; 

Petti, L.; Lugli, P. Smart Approach 

for the Design of Highly Selective 

Aptamer-Based Biosensors.  

Biosensors 2022, 12, 574. https:// 

doi.org/10.3390/bios12080574 

Received: 4 June 2022 

Accepted: 25 July 2022 

Published: 27 July 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Biosensors 2022, 12, 574 2 of 19 
 

drawbacks such as high production time and cost, bad thermal stability, etc. Alternative 
tools have been proposed [15], in particular, nucleic acid (NA) aptamers have demon-
strated selective binding properties toward a broad spectrum of ligands thanks to their 
three-dimensional (3D) structure. Aptamers derive their name from Latin “Aptus” mean-
ing “to fit” and Greek “meros”, meaning “region” [16]. They are chemically synthesized 
short single-stranded deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) that serve 
as selective biorecognition elements [17]. The specific sequence of the aptamers gives them 
a 3D folding shape that allows them to bind to their targets with high selectivity [18–23]. 
With respect to antibodies, aptamers are cost-effective, easier to synthesize, thermally sta-
ble, and simpler to use. Of note, aptamers are now finding more and more applications in 
nanoscale devices for therapeutic [24–26] and sensing applications [27–31]. In particular, 
the combination of nanopores and aptamers has been demonstrated to be an interesting 
method for the development of the next generation of highly selective and multiplexed 
single-molecule sensing devices [28,29,32–35].  

Aptamers are typically selected in vitro, starting with a random pool of RNA or DNA 
molecules using a process called the systematic evolution of ligands by exponential en-
richment (SELEX) [36,37]. The SELEX process consists of multiple cycles of selection and 
amplification, typically requiring up to 15 rounds and taking a few days to months to be 
completed [38]. Even if, from their introduction in 1990 [16], the interest in scientific re-
search linked to aptamers has continuously grown, to date, the SELEX method still has 
some major drawbacks: (i) the maximum theoretical number of sequences in the initial 
library is limited at 1015, thus, it does not enumerate every possible sequence [37,39,40]; 
(ii) the SELEX may be biased towards certain sequences even though they might present 
a weak-binding aptamer [39,41–43]; and (iii) the presence of an immobilization matrix to 
which the target is immobilized during SELEX may interact with the NA sequences and 
give a false-positive result [39,44]. This is why procedures to reduce the number of rounds 
have been extensively studied. In particular, the use of next-generation sequencing (NGS) 
and statistical analysis at the end of each cycle have been proposed. Unfortunately, these 
methods present the drawbacks of increasing the process costs and complexity [37,45,46]. 
Machine learning models have been recently proposed as an additional tool for aptamer 
design, but up to now, only a few examples of aptamer-protein analyses have been re-
ported [47–49]. To the best of our knowledge, no machine learning models for small ap-
tamer molecules have been reported and they can have a significant impact on several 
applications such as DNA, toxin, heavy metal, antibiotic, ion, molecular marker, and virus 
detection.  

In recent years, several papers have reported methods to complement the volumi-
nous SELEX technique [45,50,51]. In particular, in silico design and development of ap-
tamers have been proposed to enable the identification of high-affinity aptamers mainly 
using 3D structural modeling via computer simulations [52]. Different bioinformatics 
techniques such as docking programs and molecular dynamics simulation (MDS) can be 
used to study the effect of sequence and structure on function in aptamer design to im-
prove binding affinities [53–56]. Although these approaches still require a known se-
quence of aptamer [50,53,57] or performing the traditional SELEX process for at least some 
rounds followed by NGS [58,59], they may hold the keys to overcoming the drawbacks of 
the traditional SELEX process in terms of time, cost, and feasibility. Hence, isolating ap-
tamers for a specific target by employing bioinformatics, machine learning, and a rational 
design represents a challenge with huge potential.  

Here, we investigated an extended in silico approach to perform a rational (“smart”) 
design of aptamers for a test target, represented in this work by ammonium (NH4+) dis-
solved in water. We developed, by means of bioinformatics tools and machine learning, a 
deep learning model able to learn the complex features of an aptamer-target system start-
ing from training data obtained from previously isolated sequences (through standard 
SELEX). Moreover, we applied molecular docking to the obtained aptamer candidates 
considering both positive (in this work, NH4+) and negative targets (trimethylammonia—
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TMA and dimethylammonia—DMA; two example molecules that can be present with 
NH4+ in the food spoilage process). This step of analysis enables only the selection of se-
quences with a high binding affinity towards the positive target and low binding affinity 
towards the negative ones. Finally, in order to experimentally prove the performance of 
the investigated Smart-SELEX method, we selected the top five aptamer candidates ob-
tained from our design procedure, and we used them as recognition elements in a simple 
electrochemical sensor to detect NH4+ in water. Electrochemical sensors are extensively 
used in the field of biosensing due to the low cost of fabrication and their rapid detection 
time [60–63]. The use of aptamers as a biorecognition element in electrochemical biosen-
sors (aptasensor) has been previously reported [64–67]. Here, we explored its use for the 
detection of ammonia dissolved in water as an ammonium ion at different concentrations. 
Ammonia is a water-soluble gas that, in a specific range of pH values, dissociates to NH4+ 
and OH- (for example, 0.2 ppm of gaseous NH3 yields a 2.8 mM ammonia solution [68] 
which contains 0.2 mM of solvated NH3 and 2.6 mM of NH4+). Consequently, monitoring 
the ammonium concentration in water could be an indirect measurement of ammonia gas, 
a well-known toxic gas related to several processes such as food spoilage [68]. We ob-
served that the use of different aptamer sequences in similar electrochemical sensors leads 
to different responses in terms of electrochemical impedance vs. ammonium concentra-
tion. This behavior can be explained by investigating the specific aptamer conformational 
changes in response to NH4+. In particular, we used molecular dynamic simulations to 
correlate the experimental data with the conformational change of the aptamers. Moreo-
ver, the high selectivity of the proposed sequences to the positive target with respect to a 
set of negative experimental targets (in particular, TMA and DMA) has been verified, 
demonstrating the robustness of the used design. The Smart-SELEX method here pro-
posed can be, in principle, applied to any target molecule, extending the number of nega-
tive targets in order to obtain a high selectivity toward multiple analytes. This method can 
help to accelerate and reduce the cost of aptamer selection, moreover, it can improve the 
development of diagnostic tool kits and point-of-care devices in terms of cost, time, and 
precision.  

2. Materials and Methods 
2.1. The Smart-SELEX Approach 

Figure 1 displays a schematic diagram of the proposed in silico Smart-SELEX pipe-
line. Machine learning, docking, and molecular simulations were used to predict the ap-
tamer sequence towards the specific targets (the workflow is described in (Supporting 
Note #1 and Schematic S1). In particular, a Deep Neural Network (DNN) algorithm was 
trained using a data set of aptamer sequences selected from the literature considering only 
aptamers isolated for small target molecules (molecular weight <900.0 g/mol) such as these 
reported aptamers [69–72] (Figure 1a). The size of the data set was 1456 (621 positives and 
835 negatives) (Supporting Note 2# explains how the data was selected). Then, a random 
library (candidate list) of 108 RNA sequences (each 27 nucleotides long) was generated 
and the repeated RNA sequences were deleted to ensure that all the RNAs of this library 
are unique (Figure 1b) (Supporting Note #3). Afterward, the candidate list was filtered 
based on two conditions: (i) the free energy of the self-hybridized structures of the RNA 
aptamer sequences being higher than −5 Kcal/mol and (ii) the RNA being folded with a 
maximum number of 20 not bounded nucleotides [73] (Figure 1c) (Supporting Note #4). 
Then, the trained DNN model was used to predict the binding state (yes or no) between 
each candidate in the filtered random library and the target (NH4+) (Figure 1b). Finally, in 
order to obtain high selectivity towards the target molecule, the free binding energy be-
tween the obtained sequences and the positive target is calculated and compared to the 
same values obtained considering two negative target molecules (such as TMA and 
DMA). The sequences with a high binding affinity towards NH4+ and low binding towards 
the negative targets were kept (Figure 1a).  
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Figure 1. Predicting aptamer sequence using Smart-SELEX: (a) training the machine learning model 
using data collected from the literature data, (b) generating the initial RNAs library (108), (c) filtering 
the sequences by calculating the free energy and increasing the number of the loops, (d) using the 
machine learning model developed to predict the binding probability of each sequence with the 
analyte and ranking them from high to low, (e) docking the sequences with the positive and nega-
tive analytes and calculating the binding energy, and (f) the final aptamer with high affinity towards 
the target. 

2.2. Machine Learning Model  
2.2.1. Data Processing 

In our model, aptamer sequences were encoded using the one-hot encoding scheme 
by assigning the codes {1000}, {0100}, {0010}, and {0001} to the nucleotides A, C, G, and U, 
respectively. Then, the length of the input aptamers was set for all the data set at 100 base 
which corresponds to the length of the longest aptamer extracted from the literature. For 
the aptamers in the data set with a length below 82 bases, we modified the sequence by 
adding null labels ($) in order to reach the desired length. For the target’s chemical struc-
ture representation, the Molecular ACCess System (MACCS) fingerprint was used to con-
vert the molecular structure of the target to a binary vector that can be used as an input 
for training the machine learning model. The MACCS fingerprint analyzes molecules as a 
graph, thus, it gives information on the 2D-structural properties of the molecules. RDKit 
V2 (Open-Source Cheminformatics Software, Landrum, G. 2010, www.rdkit.org/) was 
used to extract the MACCS fingerprints from the raw SMILES of the targets which repre-
sented each target molecule as a length of 166 binary vectors [74]. Then, a correlation ma-
trix was obtained considering the specific aptamer sequence for a target, both as binary 
vectors. The binding affinity between the set of aptamer sequences and target molecules 
has been defined with an additional label as “1” or “0” as a function of the reported affinity 
from the literature (i.e., if a paper reports a specific sequence for a target molecule, we 
assign 1 to the combination; in contrast, if the aptamer was demonstrated not to be able to 
bind to the molecule we assign 0). Consequently, the machine learning process took into 
consideration both positive and negative training data. This enabled us to get a procedure 
for aptamer-target binding prediction. Finally, the data set was split into a training set and 
test set, 80% and 20%, respectively.  
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2.2.2. Model Architecture—Machine Learning 
The model learns how a specific sequence can have more or less affinity towards a 

specific family of targets and consequently enable us to predict affinity towards new tar-
gets as in our investigated case (i.e., small molecules). In this approach, a machine learning 
model was adopted to reduce the number of RNA candidates by predicting the binding 
probability between the analyte and each RNA candidate. The molecular weight of the 
small molecules considered here is <900.0 g/mol. These molecules include heavy metals, 
antibiotics, toxins, ions, drugs, and molecular markers. The model has been treated as a 
regression problem with the aim of predicting the binding or non-binding state starting 
from the data obtained from the literature with a decision threshold of 0.5. The Convolu-
tional Neural Network (CNN) was used as a prediction model [75]. The convolutional 
layers were obtained from the matrix of generated sequences and binary vectors repre-
senting the selected small target molecules. The output of the convolutional layers was 
used as input of the pooling layer with the aim of down-sampling the features learned by 
the filters [76]. The output of the convolutional and pooling layers was fed to the Fully 
Connected (FC) layers [77,78]. The CNN model was chosen due to the powerful ability of 
the filters to extract the local dependencies in the inputs. Therefore, the number and size 
of the filters affect positively the recognition patterns of the model (Supporting Note #5 
and Figure S2) [79,80]. 

The CNN prediction model adopted in our approach consisted of two separated 
CNN blocks, one representing the aptamer sequences and the other representing the tar-
get molecule fingerprints. This enabled us to learn representations of target molecules’ 
“MACCS fingerprints” (that represent the physicochemical properties) and how they re-
late to the aptamers’ sequences. Each CNN block was composed of three one-dimension-
convolutional layers in series with several filters of 32, 64, and 96, respectively [81], which 
were followed by the max-pooling layer. The extracted features were then concatenated 
and used as inputs to the three FC layers block, where the first two FC layers have 1050 
nodes. To avoid the model over-fitting, the first two layers were followed by a dropout 
layer (regularization technique) of rate 0.1 that set the activation of some of the neurons 
to 0 [82]. Finally, the last layer of 512 nodes was fed into the output layer (Figures 2 and 
S2).  
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Figure 2. Deep Smart-SELEX model with CNN blocks to learn from aptamer sequences targets 
MACCS fingerprints and physicochemical properties. 

2.2.3. Optimization of Hyperparameters 
In the adopted deep learning model, different hyperparameters (shown in Table S3), 

such as the number of filters, length of the filter size, the learning rate, dropout ratio, and 
aptamer windows, were tuned by employing grid search five-fold cross-validation. Ac-
cording to [83], to check the performance of the developed model, an independent dataset 
and the following metrics were used: accuracy (Acc.), sensitivity (Sen.), precision (Pre.), 
and specificity (Spe.): 

Acc =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 

Sen =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 

Spe =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 

Pre =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 

where TN is true negative, TP is true positive, FP is false positive, and FN is false negative.  

2.3. Preparing the Library File 
Once the machine learning model was defined, the random (108) RNA sequence li-

brary was generated by means of an R script. Each candidate in the library has a length of 
27 nucleotides. The choice for this length (27 nucleotides, i.e., about 6 nm) is related to the 
limited sensing distance typically presented in electrochemical sensors (Debye length) 
which will be used to experimentally prove the proposed method [72,84]. The Vienna 
RNA package [85] was then used to evaluate the free energy of the secondary structure of 
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the proposed candidates. The free energy and the number of free nucleotides in the se-
quence (not hybridized) were used to filter the candidates considering the following con-
ditions: free energy lower than −5 Kcal/mol and a maximum number of 20 nucleotides in 
a single strand configuration (Supporting Note #4. Smart-SELEX for sequence design).  

2.4. Docking 
Docking is the final step in the proposed procedure of “smart”-SELEX. Once the set 

of filtered RNA aptamer sequences was obtained from the previous steps, we made them 
interact with the target molecule, i.e., NH4+. To do so we used the Autodock Tools (ADT) 
and AutoDock Vina program [86]. Before starting the docking process, polar hydrogen 
atoms were added to the target and the aptamer molecules. Then the Gasteiger charges 
were added, and the targets and the RNA aptamer files were converted into pdbqt format 
using Chimera 1.14. The grid box coordination was (1, 50, and 10) with 128, 50, and 66 
points in X, Y, and Z directions, respectively [87]. Moreover, to overcome the receptor 
flexibility, the binding pocket was selected as a flexible part.  

To reduce the docking time, a Message Passing Interface (MPI) scheme was imple-
mented [88]. After 10 runs of docking between the target and the aptamer, an average was 
taken [55]. Finally, the candidates were ranked based on their binding free energies. A 
large number of candidates (1896 candidates) were obtained from this procedure. Ranking 
them by the function of the binding affinity towards the specific target investigated (here 
NH4+) and the negative targets (DMA and TMA) enables us to perform proof-of-concept 
sensing experiments on a small number of candidates. In particular, we selected the first 
five ranked sequences (other potential sequences obtained from the Smart-SELEX proce-
dure are reported in Supporting Note #6).  

2.5. Materials and Reagents 
Ammonium hydroxide, dimethylamine, trimethylamine, methanol, ethanol, propan-

2-ol (IPA), N(3-dimethylaminopropyl)N ethylcarbodiimide (EDC), 11-mercaptoundeca-
noic acid (11-MUA), N-Hydroxysulfosuccinimide sodium salt (NHS), potassium chloride 
(KCl), ]), potassium ferricyanide II trihydrate (K4[(Fe(CN)6]x3H2O), and potassium ferri-
cyanide III (K3[(Fe(CN)6 were obtained from Sigma Aldrich (Munich, Germany). All 
chemicals used in this work are analytical grade and were used without any further puri-
fications. The aptamers with the amine group at the 5′-end were ordered from Biomers 
(Ulm, Germany). Ink pastes, silver chloride ECI 1011, and silver ECI 6038E were pur-
chased from LOCTITE E&C (California USA). The polyethylene terephthalate (PET) flex-
ible substrate with a 125-micron thickness was purchased from Mylar (Chester, VA, USA). 

2.6. Fabrication of the Aptasensor 
The top five aptamers that resulted from the Smart-SELEX approach were purchased 

and used as biorecognition elements in the aptasensor for ammonium detection. The sen-
sors were fabricated by screen-printing (semi-automatic screen-printing machine -Aurel 
C920-, Italy) the electrodes on a flexible polyethylene terephthalate (PET) substrate. Figure 
3a shows a schematic of a screen-printed flexible electrode, consisting of a silver (Ag) 
Counter Electrode (CE), an Ag-working electrode (WE), and an AgCl reference electrode 
(RE), with a total length of 22 mm and a width of 8 mm. The sensor was fabricated as 
follows: firstly, CE, WE, and the lower half part of the RE were screen-printed and cured 
at 120 °C for 15 min, afterward, the upper half of the RE was screen-printed using the 
AgCl ink. Finally, the electrodes were passivated with a screen-printed dielectric layer in 
order to contain the electrolyte droplet to ensure a reproducible working area size. After 
that, the electrodes were ultrasonically cleaned in IPA and then ultrapure water for 3 min 
5 min, respectively. After that, the Ag working electrodes were immersed in 1 mM 11-
MUA for 24 h to form the SAM-COOH layer. The 11-MUA has a thiol group on one side 
and a carboxylic group on the other side, where the terminal -SH group of 11-MUA was 
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attached to the Ag electrode, leaving a free carboxylic group to be attached covalently 
with the amine group at −5′ end of the aptamers. Furthermore, 8 µL of 1 µM aptamers, 
300 mM EDC, and 35 mM NHS pH 7.0 were drop-casted on top of the working electrode 
and air-dried for 2 h. 

 
Figure 3. Fabrication flow of aptasensor. (a) Screen printing of electrodes, (b) immobilization of the 
aptamers using a self-assembled-monolayer, (c) final aptasensor cover by a PDMS chamber, and (d) 
testing of the performance of the aptasensor by using [Fe (CN)6]3−/4− as an electrolyte. 

2.7. Electrochemical Measurements 
VersaStat 4 potentiostat galvanostat (Princeton applied research, Ametek scientific 

instruments, Oak Ridge, USA) controlled by VersaStat studio was used for all cyclic volt-
ammetry (CV) sweeps. The working area (CE, WE, and RE) was covered with 50 µL of 1 
mM [Fe (CN)6]3–/4– containing 0.1 M KCl + 3 mM Mg2+ (MgCl2) in PBS buffer, while the 
measurements were performed with a scan rate of 100 mV/s and a scan potential between 
−0.8 to 0.8 V. Electrochemical impedance spectroscopy (EIS) measurements were per-
formed in a frequency range of 10 mHz–1 MHz, an AC amplitude of 50 mV and a sam-
pling rate of 60 points using [Fe (CN)6]3–/4– as an electrolyte. The aptamers affinity values 
(Kd) values were also calculated by nonlinear regression analysis from the calibration 
curve (employing the Langmuir–Hill equation). 

2.8. Chemical Analysis 
Infrared spectra were obtained with a Fourier Transform Infrared Spectrometer (In-

venio FTIR, Bruker) using a diamond crystal. The spectra were recorded in the range of 
500–4000 cm−1, and a resolution of 4 cm−1. 

2.9. Molecular Dynamics Simulations 
The MD simulations of the NH4+-aptamer interaction were performed in Gromacs 

using the AMBER99SB-ildn force field. The aptamer was placed in the center of a water 
box of suitable dimensions according to the size of the different aptamers, then NH4+ was 
inserted into the box, with a distance between the box and the surface of the aptamer of 1 
Å. Afterward, water molecules of the TIP3P model and Na+ ions for charge neutrality 
were inserted into the box. AmberTools in Gromacs was used to generate the analytes 
topology files. By applying the steepest descent algorithm and considering periodic 
boundary conditions (PBC) in all directions, energy minimization was performed. Then, 
the systems were equilibrated in NVT (where the constant number (N), volume (V), and 
temperature (T), respectively) and NPT (constant number (N), pressure (P), and temper-
ature (T), respectively) and assembled with a time step of 2 fs for 100 ps. Finally, the sim-
ulation was performed at a pressure and temperature of 1.01 atm and 294 K for 100 ns, 
respectively. The equilibrated system was simulated in the NPT ensemble for 10 ns 82.  

The molecular dynamic simulations were performed with Intel(R) Xeon(R) W-2255 
CPU @ 3.70 GHz (Intel Corporation, Santa Clara, CA, USA) and the GPU NVIDIA Quadro 
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RTX 4000 (Nvidia Corporation, Santa Clara, CA, USA) with Ubuntu 18.04. LTS. Gromacs 
tools were used to analyze the trajectories (e.g., Radius of gyration, RMSD) of the MD 
simulations. 

3. Results 
3.1. Smart-Selex 

The machine learning stage employed in this work enabled the improvement of the 
design of aptamer sequences, reducing the number of candidates, and hence, decreasing 
the computational time required by docking and molecular dynamic simulations. As pre-
viously mentioned, the adopted CNN prediction model consisted of two separated CNN 
blocks, one representing the aptamer sequences and the other representing the target mol-
ecule fingerprints. Figure 2 shows the general workflow of the aptamer sequence and tar-
get one-hot encoding, cross-validation, and final training. Grid search cross-validation 
was used to tune the hyperparameters of ‘DeepSelex’, as follows: first, a grid of hyperpa-
rameters was created containing a wide range of values, then five-fold cross-validation 
was used to evaluate the model performance. The model performance before and after 
tuning the hyperparameter was evaluated in terms of different metrics. The model before 
tuning had an Acc:0.804, Spe:0.816, Sen: 0.812, and Pre: 0.808, however, these metrics after 
tuning were improved with an Acc: 0.835, Spe: 0.829, Sen: 0.845, and Pre: 0.831. The se-
lected values of hyperparameters for DeepSelex are summarized in Table S3. Moreover, 
by increasing the hidden neuron size to more than three layers we obtained an over-fit-
ting. Hence, the number of layers was set to three with 1024 neurons for the first two layers 
and 512 for the third layer, respectively. The training performance of this model was meas-
ured as categorical cross-entropy loss. After 25 epochs, an average validation loss of 0.71 
± 0.08 was obtained, hence, the number of epochs for training the model was set at 25. The 
final optimized model with the best performance was saved and used for predicting the 
binding probability of the RNA candidates towards NH4+. 

Table 1 reports the top five sequences obtained from the proposed Smart-SELEX 
method with the binding energy towards NH4+, DMA, and TMA. As discussed in the 
method section and reported in detail in SI, the procedure comprises three successive 
steps of computation: (i) initial sequence library selection and filtering; (ii) machine learn-
ing-based prediction of binding towards target molecules; and (iii) docking (Figure S3 
shows the evolution of the number of RNA candidates). The first step, namely the filtra-
tion of candidates based on the free energy of the self-hybridized structures and a maxi-
mum number of 20 nucleotides in a single strand configuration, enabled the reduction in 
the number of RNA sequence candidates from 108 down to 106 potential sequences. After-
ward, 106 ± 71,992 candidates (average of three runs) were fed into the machine learning 
model to predict the binding probability with a threshold of 0.5; this step reduced the 
number of RNA candidates to 38,327 ± 1099 potential candidates. Finally, positive docking 
(towards NH4+) was performed on the 38,327 RNA candidates; 1896 ± 71 RNA candidates 
passed this step, then negative docking (towards TMA and DMA) was performed on the 
1896 RNA candidates. At the end of the process, it was possible to select a few candidates 
with binding energy towards the target (NH4+) in the range between −9.85 and −6.6 
Kcal/mol. To note, the docking procedure allows for selection among sequences with a 
good affinity towards NH4+ and at the same time with a bad affinity towards the other 
tested targets (not desiderated analytes—TMA and DMA) (shown in Figure S4). Moreo-
ver, Supporting Note #7 shows the required time for each step in the Smart-SELEX ap-
proach. 
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Table 1. Top five candidates selected by the Smart-SELEX. 

Rank Candidate Sequences 

Binding En-
ergy 

(kcal/mol) 
NH4+ from 

MDS 

Binding En-
ergy 

(kcal/mol) 
DMA from 

MDS 

Binding En-
ergy 

(kcal/mol) 
TMA from 

MDS 

Kd 
(mM) 

Detec-
tion 

Range 
(mM) 

Limit of 
Detec-

tion 
(mM) 

Ap-
tamer 1 

CCAUGUAAGCGCGGUACU-
CUUACGUGA 

−9.85 −3.8 −3.21 36.59 1–1000 0.08 

Ap-
tamer 2 

UCGCGUCUAGCCCAU-
UGAUAGGCCCGA 

−9.67 −4.46 −3.53 16.11 1–500 0.37 

Ap-
tamer 3 

UCCACGUGGUG-
CCAUACUCCGGCGUGG 

−9.37 −5.26 −4.21 131 1–1000 0.61 

Ap-
tamer 4 

CCUCUCAGGCUUGUA-
CUGCCACGAGGA 

−8.66 −4.86 −4.78 6,6 1–500 0.40 

Ap-
tamer 5 

GCCCUGGGCCGCUCAUUCCCU-
CUGGCU 

−8.31 −5.02 −5.43 50 1–500 0.16 

3.2. Aptasensor Performance 
The five aptamers were tested for sensitivity and selectively towards NH4+ by using 

a simple electrochemical sensor functionalized with the designed aptamer sequences. A 
direct comparison between the selected sequences and a random “control” sequence from 
the initial candidate list was also done by using an additional control sensor.  

To monitor the fabrication process of the aptasensor and to confirm the proper im-
mobilization of the aptamers on the surface of the electrode, two electrochemical tech-
niques (EIS and CV) were applied to investigate the change induced by the aptamer’s 
immobilization on the WE in terms of electrode surface resistance and electron transfer 
rate. Moreover, FTIR was performed after the addition of 11-MUA and immobilization of 
the aptamers to monitor the chemical bonding formation. The results of this characteriza-
tion can be seen in Supporting Note #8.  

The sensitivity of the developed aptasensor was evaluated with various concentra-
tions of NH4+ in water at a pH close to 7. Figure 4 shows the relative impedance modulus 
|Z|c defined as |Z|f − |Z|0/|Z|0 of the aptasensor’s responses to different target concen-
trations (from 1 mM up to 500 mM), where |Z|0 is the impedance modulus of the blank 
solution for each device and |Z|f is the final impedance modulus after 15 min incubation 
with the desired target concentration taken at the modulus at 5 Hz. To note, at the used 
pH, 1mM of ammonia dissolved in water can be an indirect measure of ammonium in the 
gas phase at concentrations below 1 ppm [68]. As can be observed in Figure 4, the imped-
ance modulus change exhibits a good linear correlation with the logarithmic value of the 
target concentration for the tested aptasensors. The correlated linear equations of the ap-
tasensors are reported in Table 2.  

Table 2. Linear equations of the aptasensors. 

Aptamer nr. |Z|c Paerson’s r 
Control (Random sequence) (−0.01) × logC + 0.01 0.978 

Aptamer 1 (Apt1) (−1.30) × logC + 3.96 0.995 
Aptamer 2 (Apt2) (0.632) × logC + 0.098 0.99 
Aptamer 3 (Apt3) (−0.416) × logC + 1.838 0.987 
Aptamer 4 (Apt4) (0.106) × logC + 0.151 0.983 
Aptamer 5 (Apt5) (−0.26) × logC + 1.27 0.968 
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As shown in Figure 4a, the sensor functionalized with an aptamer with a random 
sequence (control) showed no significant change in the responses of the device towards 
the target. In contrast, the measurements performed using the five selected sequences (ap-
tamer candidates) presented good linear responses in the explored range of concentra-
tions. It is very important to note that significant differences were obtained from the dif-
ferent sensors. In particular, while the sensors functionalized with Apt1, Apt3, and Apt5 
(Figure 4b,d,f) show a decreasing |Z|c as a function of increasing NH4+ concentration, the 
sensors that used Apt2 and Apt4 (Figure 4c,e) show the opposite behavior. In order to 
explain these phenomena, we need to consider the working principle of an aptamer-based 
electrochemical sensor. As previously demonstrated [89,90], the change in impedance is 
due to different aptamers’ conformational change (Figure S7). In the presence of the ana-
lyte, the aptamer undergoes a conformational change that can extend or shorten its length. 
Consequently, it can get more distant or closer from the surface of the electrode. Hence, 
the behaviors observed experimentally can be reasonably due to some different confor-
mational responses of the aptamers used during the interaction with the target molecule. 
Considering the effect of a negatively charged molecule (aptamer) on the Z value, we hy-
pothesized that Apt1, Apt3, and Apt5 get farther from the working electrode, in contrast, 
Apt2 and Apt4 get closer when interacting with NH4+. To confirm this hypothesis, we 
performed a set of MD simulations and calculated the gyration radius (Rg) values which 
give us information on the elongation/conformation change of the aptamers in the absence 
and presence of the analyte. 

 
Figure 4. (a–f) Sensors’ response vs. Log ammonium concentrations for the five aptamers obtained 
from the Smart-SELEX. Comparison with a Control random sequence. N = 3 samples. (a) Control 
aptamer, (b) aptamer 1, (c) aptamer 2, (d) aptamer 3, (e) aptamer 4, and (f) aptamer 5. 
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3.3. Molecular Dynamic Simulation 
Figure 5 illustrates the gyration radius (Rg) of the different aptamers as obtained from 

the molecular dynamic simulations performed for 10 ns. The duration of the MDS was 
chosen based on the RMSD plot (Figure S8), as can be observed, a simulation of 10 ns was 
enough for the system to reach a stable state. 

 
Figure 5. (a–f) The radius of gyration (Rg) for the different aptamers with (blue) and without (or-
ange) the target molecule (NH4+); (a) Control aptamer, (b) aptamer 1, (c) aptamer 2, (d) aptamer 3, 
(e) aptamer 4, and (f) aptamer 5. 

As it can be observed, while the aptamers are rather stable in conformation before 
the interaction with the target molecule, all the designed molecules change their confor-
mation once NH4+ is included in the simulation. Figure S9 shows the 3D structure of Ap-
tamer1 extracted at the end of the MDS simulation, illustrating the various components of 
aptamers. According to the diagram, the binding site is located at the stem-loop (or hair-
pin loop). Therefore, the ammonia molecule was interacting and binding with the stem-
loop. The observed conformational changes were in good agreement with the experi-
mental results. Indeed, Apt1, Apt3, and Apt5 (Figure 5b,d,f) showed an increasing value 
of Rg in response to NH4+, demonstrating a less compact structure in the presence of the 
target. This is a clear indication of a conformational change and a consequent different 
distance from the surface of the electrode [72,91,92]. In fact, the curves reported in Figure 
4b,d,f for these three aptamers show that the impedance changes decreased when the con-
centration of ammonium increased. A complementary effect can be observed for Apt2 and 
Apt4 (Figure 5c,e), in these cases, the Rg decreases once NH4+ interacts with the aptamer 
sequences. This suggests that the observed results from the experimental electrochemical 
measurements are related to this different behavior of the functional molecule [92,93]. To 
note, the random sequence used in our experiment does not change its conformation 
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(Figure 5a) during the interaction with NH4+, hence confirming the quality of the designed 
sequences. 

Moreover, to better confirm the binding site, the Root Means Square Fluctuation 
(RMSF) of the best performing aptamer (Aptamer1) in the absence and presence of the 
analyte was also calculated. RMSF is used to evaluate the flexibility and the fluctuation of 
atoms. The RMSF was calculated for the 100 ns trajectory of Aptamer1- NH4+ (Figure S10). 
The bases (nucleotides) of the Aptamer1 binding site (binding pocket) are C12-C19. The 
RMSF values for the single bases were decreased in the absence and presence of ammonia 
which is an indication of a formation of a rigid binding site. 

3.4. Selectivity 
The final aspect to be considered and verified in our method regards the ability of 

the proposed sequences to selectively detect the target molecule with respect to other mol-
ecules considered during the computation optimization. This is a major aim in the smart 
design of aptamer sequences for sensing. Indeed, during the computational optimization, 
interfering molecules were considered, dimethylamine and trimethylamine, in particular, 
that react with NH3 as major contaminants in food spoilage [94,95]. In order to verify that 
the developed devices are highly selective toward the specific target, experimental tests 
were performed on the selected aptamers. Figure 6 shows the results, where methanol 
and ethanol have also been included in the analyses. These two additional molecules are 
known to be involved during food spoilage processes, similar to NH3, TMA, and DMA 
[96]. As expected, the different aptamers were detected with different sensitivity to the 
target and non-target analytes (DMA, TMA, methanol, and ethanol). While the non-selec-
tivity to NH4+ in the case of the control aptamer (Figure 6a) is clear, with the five sequences 
obtained from our design method the sensitivity towards NH4+ was always significantly 
higher with respect to the other analytes. In particular, for Apt1, Apt2, and Apt3 (Figure 
6b–d), the |Z|c measured with NH4+ were about 15 times the values obtained with TMA 
and DMA. This is not the case for Apt4 and Apt5 (Figure 6e,f) where the performance in 
terms of selectivity was decreased. Notably, the set of sequences obtained from the Smart-
SELEX was ranked in agreement with a binding affinity towards the three analytes, so we 
can expect that only the top sequences show very good performances (in our case, the top 
three). In all the cases, the aptamers were only partially selective towards methanol and 
ethanol. This is partially justified since, during the Smart-SELEX process, methanol and 
ethanol were not taken into consideration (only TMA and DMA were considered), hence, 
by including more positive or negative targets the selectivity can be improved and we can 
also tune the aptamer based on the desired application. Moreover, the aptamers were 
more sensitive toward methanol than ethanol and this may be due to the high solubility 
of methanol compared to ethanol and ammonia, with Henry’s law solubility constant of 
230 (mol × kg−1 bar−1), 190 (mol × kg−1 bar−1), and 59 (mol × kg−1 bar−1), respectively [97]. 
Moreover, the low selectivity of Apt4 and Apt5 was further explored. It is hypothesized that 
Apt4 and Apt5 possessed more than one binding site, allowing the TMA and DMA to bind. 
Therefore, we examined the secondary structure of the five aptamers (Figure S4) which re-
vealed that Apt1, Apt2, and Apt3 have only one binding site. In contrast, APT4 and APT5 have 
two binding sites, which might enable TMA and DMA to bind. In order to confirm this, the 
binding site of TMA on APT4 and APT5 was investigated in terms of MDS. As depicted in 
Figure S12, TMA is bound to the second pocket rather than the first that ammonIa is bound to. 
Additionally, the fact that APT4 and APT5 had a lower ranking indicates that the machine 
learning model learned that the presence of more than one binding site affects the selectivity 
of an aptamer. 
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Figure 6. (a–f) Selectivity test for the detection of ammonium. (a) Control aptamer, (b) aptamer 1, 
(c) aptamer 2, (d) aptamer 3, (e) aptamer 4, and (f) aptamer 5. The concentrations of ammonium and 
non-target chemicals were 100 µM. Data are expressed as means ± SE; Statistical significance was 
assessed with a two-way ANOVA with Dunnett’s multiple comparison test for ammonium and 
other analytes, * p ≤ 0.5, ** p ≤ 0.05, *** p ≤ 0.0001, ns—not significant. 

4. Conclusions 
In summary, this paper demonstrated that an in silico approach for aptamer selection 

towards small organic molecules targets is a feasible and promising strategy. We named 
this method Smart-SELEX, as it represents an improvement over the conventional SELEX 
process and can be completely performed in silico. The computational method illustrated 
here allowed the design of specific oligo sequences with optimized binding energy to-
wards a set of targets (positive and negative). Although only three molecules were con-
sidered during the optimization, namely, NH4+, DMA, and TMA, the method allows for 
the inclusion of more positive or negative targets in order to improve the selectivity and 
tune the aptamer based on the application. As expected, the different aptamers used in 
our experiments had different responses to the analyte. By using electrochemical meas-
urements, it has been possible to investigate the conformational changes of the used ap-
tamers by combining experimental measurements with molecular dynamic simulations. 
The selectivity has been verified towards the analytes considered during the optimization 
of the design. The use of two additional analytes suggested that, in order to obtain high 
selectivity, more molecules must be considered in the in silico process. Our work shows 
that the Smart-SELEX approach could hold the keys to overcoming the drawbacks of the 
traditional SELEX process in terms of time, cost, and the feasibility to isolate aptamers for 
sensing by employing bioinformatics, machine learning, and a rational design. Future 
work would be to increase both the number of positive and negative targets and the can-
didates’ library from 108 to 1015 to cover all the possible sequences. These may improve 
the performance of the selected aptamers to be used in multiple aptasensors in nanoscale 
devices such as single-molecule detectors and nanopores. Finally, building a pipeline to 
make the approach automatic will improve the performance in terms of accuracy and 
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speed by reducing human intervention. The proposed method can be, in principle, ex-
tended to different families of targets, such as proteins, viruses, etc. As is well known, in 
the development of a diagnostic tool for a specific target, a biorecognition element (anti-
body or aptamer) is needed. The isolation of antibodies or aptamers can take days or even 
months and it is an expensive process. A smart in silico method makes this development 
less expensive, in fact, the approach proposed in this work has almost zero cost except for 
the computational power. 

Supplementary Materials: Details on the machine learning model, experimental procedure, and 
aptasensor characterization. The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/bios12080574/s1, Supporting Note #1. Smart-SELEX work-
flow, Schematic 1. Smart-SELEX workflow, Supporting Note #2. Preparing the positive and negative 
data, Table S1. An example of positive and negative data was collected from the literature, Support-
ing Note #3. Generation of RNA candidates, Supporting Note #4. Smart-SELEX for sequence design, 
Table S2. The free energy secondary structure of RNA aptamers binding different ligands, Figure 
S1. 3D structure of aptamer1 extracted from molecular dynamic simulation, Figure S2. Deep-selex 
model structure, Table S3. selected values of hyperparameters for DeepSelex, Supporting Note #6. 
Docking, Table S4. Top 10 candidates sequences, Supporting Note #7. Required time, Figure S3. 
Evolution of the number of RNA candidates through the Smart-Selex approach, Figure S4. The sec-
ondary and tertiary structures of five top aptamers, Supporting Note #8. Sensor characterization, 
Table S5. The sequences of the aptamers and their modifications, Figure S5. (a) Cyclic voltammo-
gram curves, and (b) EIS spectra of the stepwise modified electrode in 1 mM [Fe (CN)6]3/4- an aque-
ous solution containing 0.1 M KCl: bare (in blue), (b) bare-aptamer (in orange), Figure S6. IR spectra 
of the stepwise modified electrode, Figure S7. different conformational changes of the aptamers and 
the effect on the electron transfer charge (ETR). A) after the interaction with the analyte the aptamers 
become less compact and bend far from the surface of the working electrode hence, increasing the 
ETR. B) after the interaction with the analyte the aptamers undergo a conformational change and 
bend closer to the surface of the working electrode hence the ETR decreases, Supporting Note #9. 
Molecular Dynamics Simulation, Figure S8. RMSD values of aptamer1, aptamer2, and aptamer3, 
Figure S9. 3D structure of aptamer1 interacted with Ammonia extracted from molecular dynamic 
simulation, Figure S10. RMSF of aptamer I atoms during 25 ns MD simulation. RMSF comparison 
between Aptamer (orange line) and Aptamer1+NH4+ (blue line), Figure S11. 3D structure of 5 top 
aptamers interacted with Ammonia extracted from molecular dynamic simulation. a) aptamer1, b) 
aptamer2, c) aptamer3, d) aptamer4, e) aptamer5, Figure S12. 3D structure of a) aptamer4 and b) 
aptamer5 (b) interacted with TMA, Supporting Note #10. Sensors regeneration and stability, Figure 
S13. The change in Aptasensor 1 response after different cycles of regenerations (detecting 100 mM 
of ammonia), Figure S14. The stability of aptasensor 1 overtime (detecting 100 mM of ammonia), 
Supporting Note #11. Detection of real sample, Table S5. NH4+ detection in a real sample.  
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