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Abstract

This paper deals with the equilibrium problem of non-circular cylin-
ders subjected to finite torsion. A three-dimensional kinematic model is
formulated, where, in addition to the rigid rotation of the cross sections,
the large twist of the cylinder also generates in- and out-of-plane pure
deformation of the cross sections and the variation of the cylinder length.
Following the semi-inverse approach, the displacement field prescribed by
the above kinematic model contains an unknown constant, which governs
the elongation of the cylinder, and three unknown functions which de-
scribe the pure deformation of the cross sections. A Lagrangian analysis
is then performed and the compressible Mooney-Rivlin law is assumed for
the stored energy function. Once evaluated the Piola-Kirchhoff stresses,
the boundary value problem is formulated. Nevertheless, the governing
equations assume a coupled and nonlinear form which does not allow to
apply standard solution methods. Therefore, the unknown functions are
expanded into power series using polynomial terms in two variables. These
series contain unknown constants which are evaluated applying the iter-
ative Newton’s method. With this procedure an accurate semi-analytical
solution has been obtained, which can be used to compute displacements,
stretches and stresses in each point of the cylinder. For the elliptical
and rectangular sections, the results provided by the proposed solution
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method are shown by a series of graphs. Finally, the Poynting effect was
investigated by varying the section shape of the cylinder.

Keywords: Finite elasticity; Hyperelasticity; Compressible materials; Torsion;
Warping function; Poynting effect.

1 Introduction
The key difference between a circular and a non-circular cylinder subjected to
torsion is that while in the former case all cross sections remain plane when
the cylinder is twisted, in the latter case these cross sections always undergo
out-of-plane warping.

In the context of linear theory, the torsion of cylinders with (full) circular
cross section was studied by Coulomb in 1784 [1]. This problem was then gen-
eralized to non-circular sections in Saint-Venant’s impressive and fundamental
work of 1855: Mémoire sur la torsion des prismes [2]. Saint-Venant was the first
to understand the difference in deformation behavior between circular (the only
one that does not warp) and non-circular sections. And the astonishment in
him was so great that when he mentions the case studied by Coulomb he refers
to it as the old theory. Using the semi-inverse method, Saint-Venant studied the
equilibrium problem by considering a great variety of cross sections. In partic-
ular, he provided the solutions for the elliptical, rectangular, triangular bases
and for sections with two orthogonal symmetries, whose contours are described
by transcendental or algebraic functions. For the elliptical section, the solution
is expressed in closed form. For the other sections, solutions are generally ex-
pressed by infinite polynomials or by series of exponential and transcendental
functions. After twenty-four years, Saint-Venant returned to the case of the el-
liptical section in a brief note [3], obtaining formulae of great practical interest,
still used today, for the determination of the unit angle of torsion and of the
torsional stiffness of the cylinder.

The research undertaken by Saint-Venant for non-circular sections is still
ongoing. In fact, it is easy to find recent papers on this subject in the Literature,
where the problem is mainly tackled with numerical methods (see, for example,
[4], [5], [6] and [7]).

When the torsional rotation is not very small, it is necessary to abandon the
linear theory and formulate the problem in the fully nonlinear context of the
finite elasticity. In this framework, however, only the case of circular cylinders
has been treated. The main contributions were provided by Seth [8] in 1935 and
by Rivlin [9], [10], and [11] in 1948-49. A detailed reconstruction of the historical
development of the theory for circular cylinders is reported in [12]. Two well-
known models were derived from Rivlin’s studies: the pure torsion and the
simple torsion, which are still used today. In simple torsion, after deformation,
the cylinder retains its shape and volume. In pure torsion, the cylinder does
not change its diameter. These models, even if they simplify the mathematical
formulation of the torsion problem, are in contrast with Poynting’s experiments
[13], [14] and [15], according to which the length, diameter and volume of the
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Figure 1: Deformation of a cylinder with elliptical base subjected to large tor-
sion. (a) Initial configuration. (b) Final configuration generated by a twisting
equal to 4π.

cylinder change. Recently, on the basis of the works of Poynting and Seth,
the problem of torsion of circular cylinders has been tackled in [12], without
assuming a priori kinematic and constitutive constraints. In this latest paper,
it has been shown that, when a circular cylinder undergoes large twisting, it
contracts transversely and extends longitudinally, changing its volume.

As already mentioned, no work formulated in the context of finite theory for
non-circular cylinders seems to be found in the Literature. This may be due to
the complexity of the mechanical phenomenon. To fix the ideas on the kinematic
aspects, for example, observe the case illustrated in Fig. 1, where a cylinder
with an elliptical section is twisted through an angle equal to 4π. In addition
to rigidly rotating by a finite angle, cross sections exhibit pure deformation in
and out (warping deformation) of their plane (the out-of-plane warping does not
occur in the case of circular cylinders whose cross sections remain plane [12]).
Furthermore, the solid changes its length. Note from Fig. 1b the intricate shape
that the cylinder assumes after deformation.

This paper is organized as follows. Section 2 is devoted to the general for-
mulation of the finite torsion problem for non-circular cylinders. On the basis
of three physical assumptions, the shape of the displacement field is established.
This field contains three unknown functions, which allow to evaluate the pure
in-plane deformation of the sections and the warping function. Among the un-
knowns there is also the stretch of the torsion axis which governs the Poynting
effect [13], [14] and [15]. By applying the material gradient operator to the
displacement field, the deformation gradient tensor was obtained and then it
was used in Section 3 to derive the Piola-Kirchhoff stress tensor. Then, assum-
ing the compressible Mooney-Rivlin form for the stored energy function, the
equilibrium problem is formulated. In Section 4, introducing the assumptions
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Figure 2: Non-circular cylinder B̄. (a) Torsional center and centroid of a generic
cross section. (b) Undeformed configuration and reference system adopted.

of smallness of both deformations and displacements and a linear constitutive
law, it is shown how the linearization of the boundary value problem yields
the classical results of the linear theory. The governing equations are strongly
nonlinear and coupled, therefore they cannot be solved with standard analytical
methods. Therefore, in Section 5, a specifically devised solution techniques for
this class of problems is presented. The three unknown functions are developed
in power series through polynomial terms in two variables. All constants of the
aforementioned three series are then evaluated by applying Newton’s iterative
method. Assessed the constants, semi-analytical expressions of the displacement
field are obtained and, subsequently, deformation and stress tensors can be di-
rectly computed. The stresses thus determined can then be substituted into all
the equations of the boundary value problem and a checking of the accuracy
of the solution obtained can be carried out a posteriori. The applications for
the elliptical section are carried out in Section 6, where the displacement field,
stretches, Cauchy stresses and twisting moment, generated by varying the tor-
sion angle, are calculated and shown in some graphs. As a special case also the
circular section is investigated. In Section 7, what was done for the elliptical
section is repeated for the rectangular section. In Section 8, it is shown how the
shape of the cylinder section affects the Poynting effect. Section 9 closes the
paper summarizing the results obtained.

2 General problem formulation
Let us consider a hyperelastic body composed of a homogeneous, isotropic and
compressible material, having the shape of a right cylinder. The cross section
A of the cylinder is assumed to be limited, compact and simply connected1.
The shape of the cross section is left completely arbitrary, requiring only that
its boundary ∂A be composed of sufficiently regular curves that meet with-
out forming cusps (Lipschitz contour). No requirement of slenderness for the
cylinder is introduced.

Reference is made to a Cartesian coordinate system {O, X, Y, Z} having
1Dealing with multiply connected domains does not reserve particular difficulties.
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the origin O positioned in the centroid of the left face of the body (see Fig.
2b). Thus, the body can be identified with the closure of the following regular
region:

B = {(X, Y, Z) | (X, Y ) ∈ A, 0 < Z < L}

of the three-dimensional Euclidean space E . The symbol L denotes the length
of the cylinder. The cylinder axis coincides with the Z axis and all the centroids
of the different cross sections belong to it.

The undeformed configuration B̄ of the body is assumed as the reference
configuration, whereas the deformed configuration is given by the deformation
f : B̄ → V.2 The deformation f is a smooth enough, injective and orientation-
preserving vector field (in the sense that det (Grad f) > 0). The deformation of
a generic material point P can be expressed by the well-known relationship

f(P ) = s(P ) + id(P ), (1)

where id(P) and
s(P ) = u(P )i + v(P )j + w(P )k (2)

are the position and displacement vectors of the point P. In the vectorial equa-
tion (2), the functions u(P), v(P) and w(P) denote the scalar components of
s(P), whereas i, j and k are the unit vectors. The application of the material
gradient operator Grad(·) to (1) gives

F = H + I, (3)

where F : B̄ → Lin+ and H : B̄ → Lin (3) are the deformation and displace-
ment gradients, respectively. The symbol I denotes the identity tensor. In the
following, a notation similar to that of the companion paper [12] will be used.

To derive the displacement field generated by the twisting of cylinders, four
assumptions, which focus on the deformations that the cross sections can un-
dergo, are described below.

1. Each cross section rotates rigidly around a point called torsional center
C, generally distinct from the centroid G (see, Fig. 2a)4. The torsional centers
are aligned and belong to a line parallel to the axis of the cylinder, which
remains rectilinear during twisting and which will be called torsional axis in the
following. The rotation, characterized by a large angle, depends on the variable
Z and is measured by the function θ(Z). Therefore, as the cylinder is twisted
the longitudinal fibers, including the cylinder axis, are transformed into helices.
This except the torsional axis that can only undergo length variations.

2. The longitudinal displacement w(X, Y, Z) can be thought as consisting of
two terms. The cross sections can translate rigidly along the Z axis, that is, all
the points of a given cross section undergo the same longitudinal displacement.

2V is the vector space associated with E.
3Lin is the set of all (second order) tensors whereas Lin+ is the subset of tensors with

positive determinant.
4The coordinates of the torsional center Xc and Yc are obtained from the condition u =

v = 0.
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Figure 3: Composition of the displacements in the plane of a generic cross
section.

This first contribution will be described by the function f(Z)−Z, and it governs
the so-called Poynting effect. Once the position indicated by f(Z) is reached,
the cross sections undergo a further longitudinal displacement field, this time
variable inside the cross sections. That is the cross sections warp. This second
contribution is described by the warping function ψ(X, Y ). All the cross sections
warp in the exact same way. Function ψ is sufficiently smooth and it vanishes
at the torsional center, ψ(Xc, Yc) = 0.5

3. The cross sections deform in their own plane all in the same way. Gen-
erally, this plane deformation is a non-uniform contraction that grows as one
moves towards the outer edge. The two functions U(X, Y ) and V (X, Y ) are
used to describe this latter deformation.6

4. Cross sections with two orthogonal axes of symmetry are considered.
On the basis of the transformations described in points 1 and 3, a generic

material point P (X,Y, Z) belonging to any cross section, identifiable by the
variable Z, undergoes a plane displacement moving to P 1(X+U, Y +V, Z). At
the same time, a rigid rotation occurs and the point P 1 assumes the position
P ′(X ′, Y ′, Z), where{

X ′ = (X + U −Xc) cos θ(Z)− (Y + V − Yc) sin θ(Z),

Y ′ = (X + U −Xc) sin θ(Z) + (Y + V − Yc) cos θ(Z).
(4)

These new variables, resulting from the finite rotation around the torsional
center C, are calculated by applying a two-dimensional orthogonal tensor. The
composition of displacements just described which carries, within the same cross

5For the restrained torsion problem (studied in [12] for the case of circular cylinders):
f(Z) = Z and ψ(X, Y ) ≡ 0 for any shape of the cross section. Since the longitudinal
displacements w are prevented, cross sections do not warp and reactive stresses, varying
inside the cross sections, arise.

6This third transformation quite complicates the mathematical formulation of the problem.
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section, the point P in P ′ is illustrated by Fig. 3. Given the assumption in point
4, Xc = Yc = 0 and the torsional center coincides with the centroid, C ≡ G.
Simultaneously with the displacement above mentioned, the material point P
undergoes an out-of-plane displacement, governed by the two functions ψ and
f introduced at the point 2.

Based on the previous four assumptions, the displacement field can be de-
rived by evaluating the final position occupied by a generic point P (X, Y, Z)

u(X, Y, Z) = (X + U) cos θ(Z)− (Y + V ) sin θ(Z)−X,
v(X, Y, Z) = (X + U) sin θ(Z) + (Y + V ) cos θ(Z)− Y,

w(X, Y, Z) = ψ(X, Y ) + f(Z)− Z.
(5)

To twist the cylinder, the first cross section (Z = 0) can be fixed (retaining
however the freedom to have a pure deformation), θ(0) = 0, and a finite rotation
α0 can be prescribed to the final cross section (Z = L), θ(L) = α0. In this
situation, as shown in [12], a uniform state of torsion is generated along the
axis of the cylinder (which is not altered by the non-linearities of the problem).
It is then possible to attribute linear forms to the θ(Z) and f(Z) functions:

θ(Z) = θ1Z, and f(Z) = CZ, (6)

where θ1 = α0/L is the twist angle for unit length and C is a constant to be
determined (physically, it represents the stretch of the torsion axis).

For the finite torsion problem of non-circular cylinders, the displacement
field (5), obtained on the basis of the kinematics described by the above four as-
sumptions, contains three unknown functions, U(X, Y ), V (X, Y ) and ψ(X, Y ),
and the unknown constant C, which will be determined in the sequel.

By applying the material gradient to (5) and using (3), the components of
the deformation gradient F are calculated

[F]11 = (1 + U,X) cos θ1Z − V,X sin θ1Z,
[F]12 = U,Y cos θ1Z − (1 + V,Y ) sin θ1Z,
[F]13 = −θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z] ,
[F]21 = (1 + U,X) sin θ1Z + V,X cos θ1Z,
[F]22 = U,Y sin θ1Z + (1 + V,Y ) cos θ1Z,
[F]23 = θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z] ,
[F]31 = ψ,X ,
[F]32 = ψ,Y ,
[F]33 = C.

(7)

Knowing the tensor F, the right Cauchy-Green strain tensor C = FTF can
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be evaluated directly

[C]11 = (1 + U,X)
2

+ V 2
,X + ψ2

,X ,

[C]12 = (1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ,
[C]13 = −θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ,
[C]21 = [C]12 ,

[C]22 = U2
,Y + (1 + V,Y )

2
+ ψ2

,Y ,

[C]23 = −θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ,
[C]31 = [C]13 ,
[C]32 = [C]23 ,

[C]33 = θ2
1

[
(X + U)

2
+ (Y + V )

2
]

+ C2.

(8)

The tensor C is symmetric, C = CT, but it is not diagonal. This means
that the reference system adopted is not principal. Orientation of the principal
coordinate system varies with the point considered. It is important to note that
the tensor C does not depend on the variable Z, since all the cross sections
experience the same state of pure deformation.

The principal invariants of the tensor C are7

I1 =‖ F ‖2= tr (C) =

(1 + U,X)
2

+ (1 + V,Y )
2

+ V 2
,X + U2

,Y + θ2
1

[
(X + U)

2
+ (Y + V )

2
]

+ψ2
,X + ψ2

,Y + C2,

I2 =‖ F? ‖2= tr (C∗) =

[(1 + U,X) (1 + V,Y )− U,Y V,X ]
2

+ [(1 + U,X)ψ,Y − U,Y ψ,X ]
2

+ [(1 + V,Y )ψ,X − V,Xψ,Y ]
2

+ θ2
1 [(X + U) (1 + U,X) + (Y + V )V,X ]

2

+ [(1 + U,X)C + θ1ψ,X (Y + V )]
2

+ [V,XC − θ1 (X + U)ψ,X ]
2

+θ2
1 [(X + U)U,Y + (Y + V ) (1 + V,Y )]

2
+ [U,Y C + θ1 (Y + V )ψ,Y ]

2

+ [C (1 + V,Y )− θ1 (X + U)ψ,Y ]
2
,

I3 = (detF)2, with detF =
C [(1 + U,X) (1 + V,Y )− U,Y V,X ] + θ1 [(Y + V ) (1 + V,Y ) + (X + U)U,Y ]ψ,X

−θ1 [(X + U) (1 + U,X) + (Y + V )V,X ]ψ,Y .
(9)

3 Lagrangian stresses and formulation of the bound-
ary value problem

Constitutive properties of a hyperelastic material are described by the stored
energy function ω. If the function ω is frame-indifferent, homogeneous and
isotropic, then it depends only on the principal invariants Ii, with i = 1, 2

7The following notations: ‖ A ‖=
(
trATA

)1/2 for the tensor norm in the linear tensor
space Lin and A? = (detA)A−T for the cofactor of the tensor A (if A is invertible) are used.
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and 3. With these assumptions, the constitutive law (TR = ∂ω/∂F) takes the
following form:

TR = 2

(
∂ω

∂I1
+ I1

∂ω

∂I2

)
F− 2

∂ω

∂I2
BF + 2I3

∂ω

∂I3
F−T, (10)

where the tensor TR denotes the (first) Piola-Kirchhoff stress tensor. In the
above expression, B = FFT is the left Cauchy-Green strain tensor. Being
BF = FC, this product can be calculated by means of (7) and (8). While the
inverse of F is[

F−1
]
11

detF = C [U,Y sin θ1Z + (1 + V,Y ) cos θ1Z]
−ψ,Y θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z] ,[
F−1

]
12

detF = −C [U,Y cos θ1Z − (1 + V,Y ) sin θ1Z]
−ψ,Y θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z] ,[
F−1

]
13

detF = θ1 [(X + U)U,Y + (Y + V ) (1 + V,Y )] ,[
F−1

]
21

detF = −C [(1 + U,X) sin θ1Z + V,X cos θ1Z]
+ψ,Xθ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z] ,[
F−1

]
22

detF = C [(1 + U,X) cos θ1Z − V,X sin θ1Z]
+ψ,Xθ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z] ,[
F−1

]
23

detF = −θ1 [(X + U) (1 + U,X) + (Y + V )V,X ] ,[
F−1

]
31

detF = ψ,Y [(1 + U,X) sin θ1Z + V,X cos θ1Z]
−ψ,X [U,Y sin θ1Z + (1 + V,Y ) cos θ1Z] ,[
F−1

]
32

detF = −ψ,Y [(1 + U,X) cos θ1Z − V,X sin θ1Z]
+ψ,X [U,Y cos θ1Z − (1 + V,Y ) sin θ1Z] ,[
F−1

]
33

detF = (1 + U,X) (1 + V,Y )− U,Y V,X .

(11)

Therefore, having F, BF and F−1, the tensorial equation (10) provides the
Lagrangian stress components. The expressions of each single component of the
stress tensor TR are reported in the Appendix.

Equilibrium requires that the following vectorial equation be satisfied locally:

DivTR + b = o, (12)

where Div(·) denotes the material divergence and b the density of body forces
in the undeformed configuration. This last function will be assumed equal to
zero in the following.

To complete the mathematical formulation, the boundary conditions must be
added to field equations (12). Boundary conditions can be imposed by requiring
the lateral surface of the cylinder to be traction-free

tR = TR nL = o, for ∀(X, Y ) ∈ ∂A and ∀Z ∈ [0, L] , (13)

where tR denotes the Piola-Kirchhoff stress vector and [nL] = (αX , αY , 0), with
α2
X + α2

Y = 1, the outward unit normal. Let Γ(X, Y ) = 0 be the equation of
the boundary of the cross section ∂A. Then, the direction cosines of nL are

αX =
∂Γ
∂X√(

∂Γ
∂X

)2
+
(
∂Γ
∂Y

)2 , αY =
∂Γ
∂Y√(

∂Γ
∂X

)2
+
(
∂Γ
∂Y

)2 . (14)
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The boundary conditions on the two cylinder bases (i.e., for the two cross sec-
tions with Z = 0 and Z = L) are specified below. The initial cross section
(Z = 0) does not rotate, θ(0) = 0, and its torsional center does not move longi-
tudinally w(Xc, Yc, 0) = 0. The terminal cross section (Z = L) undergoes the
prescribed overall torsional rotation α0. Orthogonally, a static condition can be
assigned by requiring that both end bases of the cylinder be free from normal
stresses. This last condition is expressed as follows:

k ·TR k = 0, for ∀(X, Y ) ∈ A and Z = 0, L. (15)

By writing of the field equations (12) and the boundary conditions (13) and
(15), the formulation of the equilibrium boundary value problem for non-circular
cylinders subjected to finite torsion can be considered formally completed.

To proceed it should now be assigned a specific law to the stored energy
function ω. For it the compressible Mooney-Rivlin form is assumed:8

ω(I1, I2, I3) = a I1 + b I2 + c I3 − (a+ 2b+ c) ln I3, (16)

where the constants a, b and c are strictly positive quantities. It is well known
that the above stored energy function, which depends on all three deformation
invariants, describes properly the constitutive behavior of rubbers and rubber-
like materials.9 However, also with reference to other types of materials, other
choices can be made by selecting different stored energy functions. Obviously,
even with different choices of the energy ω, the analysis proposed in this paper
can be applied. From (16) the following derivatives can be computed:

ω,1 = a, ω,2 = b, ω,3 = c− a+ 2b+ c

I3
, (17)

where ω,i = ∂ω
∂Ii

, for i = 1, 2 and 3. With these three derivatives, the final
form of the boundary-value problem is achieved. In particular, by substituting
(17) into stress components (47) and then these into (12), the field equations
in terms of displacement derivatives are obtained. These take the form of a
coupled nonlinear system of three partial differential equations, with maximum
degree equal to two. Similarly (47) and (17) must be introduced in the boundary
conditions (13) and (15).

In the next Section 4, all the derived governing equations will be linearized,
whereas in Section 5 a solving technique for the nonlinear boundary value prob-
lem, formulated in this Section, will be proposed.

4 Linearization of the mathematical formulation
In the present Section, invoking the hypotheses of smallness of both the defor-
mation and displacement fields, the theory exposed in the previous Section 3

8This function is polyconvex and satisfies the growth conditions: ω → ∞ as λ → 0+ or
λ→ +∞. It was used, for example, in [16], [17], [18] and [19].

9For an extensive discussion of the terms related to the volume change in the stored energy
function see the recent paper by M. Pelliciari et al. [20].
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will be linearized, retrieving the classical results of the linear theory for non-
circular cylinders subjected to torsion. In the linear theory, the torsional ro-
tation θ(Z) = θ1Z is very small and essentially regarded as an infinitesimal
quantity.10 In linear torsion, the cross sections rotate rigidly around the tor-
sional center through an infinitesimal angle and do not undergo pure deforma-
tion in their own plane. Moreover, the cylinder axis does not change the length.
Therefore, U(X, Y ) = V (X, Y ) = 0 and C = 1. The longitudinal displacements
generated by the twisting of the cylinder are small and with them the warping
function ψ(X, Y ) is also small. The following position for sake of convenience
is introduced:11

ψ(X, Y ) ' −θ1ψ̄(X, Y ) + o(θ1), (18)

where ψ̄ and its partial derivatives ψ̄,X and ψ̄,Y are bounded functions. Based on
the previous observations, the linearization of the displacement field (5) gives12

u(X, Y, Z) ' −θ1Y Z + o(θ1Z),
v(X, Y, Z) ' θ1XZ + o(θ1Z),

w(X, Y, Z) ' ψ(X, Y ) + o(θ1Z).
(19)

By applying the material gradient operator to (19) the linearized displace-
ment gradient H is obtained13

[H] '

 0 −θ1Z −θ1Y
θ1Z 0 θ1X
ψ,X ψ,Y 0

 . (20)

Using the additive decomposition theorem, the tensorH can be split into its skw-
symmetric part W = 1

2

(
H−HT

)
and its symmetric part E = 1

2

(
H + HT

)
,

that is H = W + E,14

10Obviously, given the boundless of the length L, the density θ1 is also an infinitesimal
quantity.

11The Landau symbols are used.
12Using the Taylor series expansions, the following approximations are employed:

sin θ1Z ' θ1Z + o(θ1Z),

cos θ1Z ' 1 + o(θ1Z).

13In the following the infinitesimals of higher order will be omitted.
14The following well-known definitions hold:

ωx =
1

2

(
∂w

∂y
−
∂v

∂z

)
, ωy =

1

2

(
∂u

∂z
−
∂w

∂x

)
, ωz =

1

2

(
∂v

∂x
−
∂u

∂y

)
,

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
,

γxy =
1

2

(
∂u

∂y
+
∂v

∂x

)
, γxz =

1

2

(
∂u

∂z
+
∂w

∂x

)
, γyz =

1

2

(
∂v

∂z
+
∂w

∂y

)
.
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[W] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ' 1

2

 0 −2θ1Z − (θ1Y + ψ,X)
2θ1Z 0 (θ1X − ψ,Y )

(θ1Y + ψ,X) − (θ1X − ψ,Y ) 0

 ,
(21)

[E] =

 εx
1
2γxy

1
2γxz

1
2γxy εy

1
2γyz

1
2γxz

1
2γyz εz

 ' 1

2

 0 0 −θ1Y + ψ,X
0 0 θ1X + ψ,Y

−θ1Y + ψ,X θ1X + ψ,Y 0

 .
(22)

Tensor W represents infinitesimal rigid rotations. As (21) shows, rotations
are present at every point of the cylinder. Tensor E represents the infinitesimal
strains. As (22) shows, the linearized strain state is biaxial and does not depend
on Z.

Using (3), it is immediate to obtain from (20) the linearized deformation
gradient15

[F] '

 1 −θ1Z −θ1Y
θ1Z 1 θ1X
ψ,X ψ,Y 1

 , (23)

Knowing the linearized tensor F, the tensors F−1, C, BF and the invariants I1,
I2 and I3, previously determined for the nonlinear theory, can be recalculated
for the linear theory, getting 16

[
F−1

]
'

 1 θ1Z θ1Y
−θ1Z 1 −θ1X
−ψ,X −ψ,Y 1

 , (24)

[C] '

 1 0 −θ1Y + ψ,X
0 1 θ1X + ψ,Y

−θ1Y + ψ,X θ1X + ψ,Y 1

 , (25)

[BF] = [FC] '

 1 −θ1Z −2θ1Y + ψ,X
θ1Z 1 2θ1X + ψ,Y

−θ1Y + 2ψ,X θ1X + 2ψ,Y 1

 , (26)

I1 = I2 ' 3 and I3 ' 1, (27)

being detF ' 1. In addition, using (17), the constitutive quantities present in
the Piola-Kirchhoff stress expression (10) reduce to

2 (ω,1 + I1 ω,2) ' 2 (a+ 3b) ,
2ω,2 = 2b,

2I3 ω,3 ' −2 (a+ 2b) .
(28)

15The same tensor is obtained by linearizing the relations (7).
16Obviously, by linearizing the corresponding tensors and invariants of the previous Section,

the same results are attained.
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Given (10), (23), (24), (26) and (28), the linearized Piola-Kirchhoff stress
tensor assumes the following form:

[TR] ' 2 (a + b)

 0 0 −θ1Y + ψ,X
0 0 θ1X + ψ,Y

−θ1Y + ψ,X θ1X + ψ,Y 0

 . (29)

This tensor is now symmetric and biaxial. As is well known, in the linear
theory, the two measures of Lagrangian and Eulerian stress coincide. In fact,
if the Cauchy stress tensor T is computed by means of its definition, TR =
(detF)TF−T, the same form of tensor (29) is achieved for it.

In the linear theory, as established in [16] (see also [21] and [22]), 2 (a+ b) =
G, where G is the first Lamè constant (or the shear modulus) and the twist
angle for unit length θ1 is usually expressed in the following form: θ1 = q mZ

GIp
,

where q is the torsion factor (it is dimensionless and depends solely on the shape
of the cross section), Ip is the polar moment of inertia and mZ is the external
torque applied on the two bases of the cylinder and able to generate the overall
rotation θ1L.

Once the stress tensor (29) has been obtained, the linearized boundary value
problem can be formulated. The material divergence of the linearized stress
tensor (29) gives

[DivTR] ' 2 (a+ b)

 0
0

ψ,XX + ψ,Y Y

 . (30)

The boundary condition on the lateral surface of the cylinder (13) becomes

[tR] ' 2 (a+ b)

 0
0

(−θ1Y + ψ,X)αX + (θ1X + ψ,Y )αY

 =

 0
0
0

 , (31)

where, setting αX = dX
dn and αY = dY

dn , the third component can be rewritten
as

dψ

dn
=
∂ψ

∂X

dX

dn
+
∂ψ

∂Y

dY

dn
= −θ1X

dY

dn
+ θ1Y

dX

dn
, (32)

where dψ
dn denotes the directional derivative. The boundary condition (15),

which requires that the normal stresses vanish at the end base of the cylinder,
is automatically satisfied, since the normal stress TR33 is even zero at every
point of the cylinder. In conclusion, taking into account (30) and (32), the
linearization of the nonlinear boundary problem (12), (13) and (15) provides

∆ψ = 0,
dψ
dn = −θ1X

dY
dn + θ1Y

dX
dn ,

(33)

where the warping function ψ remains the only unknown function. The warping
function usually employed in linear theory is ψ̄, which is proportional to ψ, as
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shown by (18). Therefore, using (18), the equilibrium problem (33) transforms
into

∆ψ̄ = 0,
dψ̄
dn = X dY

dn − Y
dX
dn .

(34)

The classic linearized value problem, expressed by (34) in the mathematical
form of a Neumann problem, must be solved by taking into consideration the
particular shape of the cross section. Once the warping function ψ̄ has been
determined, the equilibrium problem of a non-circular cylinder subjected to
torsion, in the context of linear theory, is solved. In fact, known ψ̄, the displace-
ments (19), the infinitesimal rigid rotations (21), the infinitesimal strains (22)
and the stresses (29) can be computed in each point of the cylinder.

This Section can be concluded by observing that, through the linearization
of the field equations and boundary conditions reported in Section 3, the classic
boundary value problem for infinitesimal torsion of non-circular cylinders is fully
retrieved.

5 Solving method
The solution of the equilibrium boundary value problem for non-circular cylin-
ders subjected to finite torsion (in its general formulation given by field equations
(13) and boundary conditions (14) and (16)) is the displacement field. Once this
is known, in fact, the stretches and stresses at each point of the cylinder can then
be calculated. Applying the semi-inverse method, the kinematics of the problem
led directly to the displacement field (5), which can be thought of mathemat-
ically as a representation form of the equilibrium solution. The displacement
field (5) contains three unknown functions, U(X, Y ), V (X, Y ) and ψ(X, Y ),
and the unknown constant C. The two function U(X, Y ) and V (X, Y ) describe
the plane pure deformation of the cross sections (the same for all cross sections
of the cylinder). The function ψ(X, Y ) is the warping function, and it governs
the variation of longitudinal displacement of each point of the cross section with
respect to the longitudinal displacement of the torsional center. The constant C
represents the stretch of the torsion axis. The three unknown functions, together
with their partial derivatives, and the constant C appear in expressions of the
Piola-Kirchhoff stresses (47). These stresses are used to enforce the boundary
conditions (13) and (15). While to derive the field equations these stresses have
to be derived further to calculate the divergence as required by the local equi-
librium equations (12). The field equations thus take the form of a system of
three partial differential equations of the second order in the three unknown
functions U , V and ψ. This system is strongly nonlinear and coupled, in the
sense that all the unknowns appear in each equation. Similar considerations
also concern the boundary conditions. Obviously, ordinary analytical methods
cannot be applied to this boundary value problem, therefore in the following
to compute the displacement field we will have to resort to iterative numerical
procedures.
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From the mechanical nature of the considered equilibrium problem, it can
be assumed that the unknown functions are very smooth and bounded. More-
over, the unknown functions are characterized by symmetry properties.17 The
function U(X, Y ) is an even function of the X coordinate and an odd function
of the Y coordinate, while the converse is true for the function V (X, Y ). On
the other hand, the warping function ψ(X, Y ) turns out to be skew-symmetric
with respect both the X and Y axes. In addition, we can keep in mind that,
when the twist angle α0 is small, the linearized elastic solution, illustrated in
Section 4, is a good tentative solution.

Taking into account the previous symmetry properties and assuming for the
unknown functions a polynomial dependence on the Lagrangian coordinates,
the following approximated general expressions are proposed:

U(X, Y ) '
(
1 + ay1Y

2 + ay2Y
4 + ...+ aynY

2n
) (
ax1X + ax2X

3 + ...+ axmX
2m−1

)
−X;

V (X, Y ) '
(
1 + bx1X

2 + bx2X
4 + ...+ bxnX

2n
) (
by1Y + by2Y

3 + ...+ bymY
2m−1

)
− Y ;

ψ(X, Y ) ' X
(
c11Y + c12Y

3 + ...+ c1nY
2n−1

)
+X3

(
c21Y + c22Y

3 + ...+ c1nY
2n−1

)
+ ... ;

(35)
with n = 1, .., N and m = 1, .., M . The constants ayn, axm, bxn, bym and
cmn have to be determined. The number of terms in the above expressions
(35) are necessarily truncated for practical matters. Obviously, the constants
in (35) refer to a specific case and depend on the geometrical and constitutive
characteristics of the cylinder, but above all on the entity of the angle α0. As
the applications in the following Sections 6 an 7 will show, the first constants
are numerically more important. Typically, a large number of constants is not
required to obtain an accurate displacement field. However, the number of
constants increases if the angle α0 increases and if the cross section is not very
compact.

Using (35), the first and second partial derivatives of the three unknown
functions can be computed. By substituting these derivatives in the field equa-
tions (12), the initial system of three partial differential equations is transformed
into a system of three nonlinear algebraic equations, which we will denote with
the following vectorial notation: F(x) = 0, where x is the vector of unknown
constants. Similarly, the boundary conditions (13) can be rewritten as g(x) = 0
and (15) as h(x) = 0. Therefore, the boundary value problem simplifies in

F(x) = 0 inB
g(x) = 0 in ∂A and Z ∈ [0, L]

h(x) = 0 inA and Z = 0, L

(36)

To apply the numerical methods for solving problems (36), the domain B and its
boundary ∂B are replaced with a grid of discrete points, in which all equations
(36) will have collocation. Given the geometric symmetries of the cross section,

17Since all the cross sections undergo the same pure deformation, to better understand the
symmetry properties of the unknown functions, it may be convenient to refer to the first cross
section of the cylinder (Z = 0) which does not rotate.
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only a quarter of it can be considered and discretized. The number of grid nodes
can be increased as the angle α0 increases.

Among the various numerical methods, Newton’s method is one of the most
popular [23]. It originates from the Taylor’s series expansion about a point
taking into account only the first order derivative. Newton’s iterative formula
applied to (36)1 gives

x(k+1) = x(k) − JF(x(k))−1F(x(k)), (37)

where the index k represents the interation and JF is the Jacobian matrix. As
the iterations begin to have the same repeated values, that is when x(k+1) ∼=
x(k), the zeroes of the vector-valued function F(x) are found. Newton’s method
converges quadratically, and, in general, with this method the system converges
quite rapidly once the approximation is close to the actual solution of the nonlin-
ear system. At each iteration, (37) together with (36)2 and (36)3, constituting a
nonlinear system for calculating the constant unknowns: ayn, axm, bxn, bym, cmn
and C. The total number of nodes in the grid, considering internal points and
boundary points, must be equal to the number of constants to be calculated.18

To perform the analysis of the case studies reported in the next Sections
6 and 7, the solution provided by the linearized theory of torsion has been
taken as starting point of the Newton’s method. Then, the twist angle α0 has
been increased through steps of π/10, until convergence has been reached. On
average, 10 iterations are requested to find the right coefficients in expressions
(35) to satisfy system (36), with a prescribed tolerance of about 10−15 in all
the collocation points. This iterative approach allows obtaining an accurate
solution for the whole domain of the cylinder and for its boundary.

Definitely, expressions (35), with the constants determined with the itera-
tive procedure, can be introduced in the displacement field (5) to obtain the
equilibrium solution of non-circular cylinders subjected to large twisting. Once
obtained a semi-analytic form of the displacement field (5), the deformation
gradient F and the right Cauchy-Green strain tensor C can be calculated ac-
cording to (7) and (8) for any point in the cylinder. Then, the Piola-Kirchhoff
stress tensor TR follows from (10). In this way, displacements, stretches and
stresses for any point of the cylinder are determined.

By substituting the Piola-Kirchhoff stresses in equations (12), (13) and (15),
a check about the accuracy of the solution obtained with the iterative procedure
can be performed a posteriori by verifying that for each single equation the
difference from zero is very small.

18When the numerical values of the unknown constants are too small, it is convenient to
impose the boundary conditions not in local but in global form, obtaining average values.
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6 Applications. The case of the elliptical cross
section

For the first set of numerical computations a cylinder with elliptic cross section is
considered. This cylinder has semi-diameters A = 40 [mm] and B = 62.5 [mm],
and length L = 600 [mm]. The cylinder is made up of neoprene. For this type of
material the following constitutive constants have recently been estimated [19]:
a = 456.9, b = 381.08 and c = 317.58 [kPa]. In the following this example will
be considered as the reference case study. For the overall torsion angle α0 the
following values are assumed: π/4, π and 3π.

For the most severe situation, α0 = 3π, the application of the iterative
procedure, described in the previous Section, provides the following expressions:

U(X, Y ) '
(
1− 7.076 · 10−6Y 2 − 2.828 · 10−9Y 4

) (
0.91X + 5.305 · 10−6X3 + 3.318 · 10−9X5

)
−X;

V (X, Y ) '
(
1− 6.464 · 10−7X2 − 6.967 · 10−9X4

) (
1.01Y − 1.614 · 10−5Y 3 + 1.009 · 10−9Y 5

)
− Y ;

ψ(X, Y ) ' −5.405 · 10−3XY − 3.257 · 10−7X3Y + 9.27 · 10−8XY 3.
(38)

For the intermediate situation, α0 = π, the application of the iterative pro-
cedure provides the following expressions:

U(X, Y ) '
(
1− 2.119 · 10−6Y 2

) (
0.988X + 1.809 · 10−6X3

)
−X;

V (X, Y ) '
(
1− 1.822 · 10−6X2

) (
1.003Y − 1.572 · 10−6Y 3

)
− Y ;

ψ(X, Y ) ' −2.109 · 10−3XY − 1.706 · 10−8X3Y + 2.774 · 10−9XY 3.
(39)

As regards the smallest angle, α0 = π/4, a situation for which linear theory
cannot be applied anyway, the expressions are

U(X, Y ) '
(
1− 1.679 · 10−7Y 2

)
X −X;

V (X, Y ) '
(
1− 1.2512 · 10−7X2

) (
Y − 9.919 · 10−8Y 3

)
− Y ;

ψ(X, Y ) ' −5.376 · 10−4XY.
(40)

Note that ax1 � ax2 � ..... � axn; ay1 � ay2 � ..... � ayn and similarly for
the other constants of (35). This shows that few terms are needed to accurately
reproduce (even in the case of elongated sections and/or of large values of twist-
ing) the three unknown functions. From the previous expressions also observe
how fewer terms are needed to represent the unknown functions, always with a
preassigned precision, as the angle α0 is reduced.

The nine expressions (38), (39) and (40) are displayed in Fig. 4 using color
maps. In the first row of the figure, Fig. 4(a), (b) and (c), the three unknown
functions U, V and ψ are shown, in the same order, for the case with the smallest
angle. The second row concerns the intermediate angle and the third the largest
angle. The three functions plotted in each row of Fig. 4 are the same for all
cross sections of the cylinder subjected to the prescribed torsion angle α0. The
first column of Fig. 4, i.e. Fig. 4(a), (d) and (g), shows the effects of the U
function. The sections contract in the X direction losing the shape of the ellipse.
These contributions to the in-plane displacement are very small for α0 = π/4,
cf. Fig. 4(a) (in the linear theory they are identically null), and grow up to a

17



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Plots of unknown functions, U(X, Y ), V (X, Y ) and ψ(X, Y ) (in
[mm]), determined with the iterative procedure for the case study. (a), (b) and
(c) Color maps of the expressions (40), α0 = π/4. (d), (e) and (f) Color maps
of the expressions (39), α0 = π. (g), (h) and (i) Color maps of the expressions
(38), α0 = 3π.
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few millimeters for α0 = 3π, cf. Fig. 4(g). The maximum values occur at the
ends of the smaller semi-diameter. The second column of Fig. 4, i.e. Fig. 4(b),
(e) and (h), shows the effects of the V function. The sections contract in the
Y direction losing the shape of the ellipse. These contributions to the in-plane
displacement are very small for α0 = π/4, cf. Fig. 4(b) (in the linear theory
they are identically null), and grow up to a few millimeters for α0 = 3π, cf. Fig.
4(h). The maximum values occur at the ends of the largest semi-diameter. The
values of V are smaller than those of U, because the elliptical section has greater
stiffness in the Y direction. The third column of Fig. 4, i.e. Fig. 4(c), (f) and
(i), shows the planar projections of the warping function ψ. Geometrically, the
warping function is a hyperbolic paraboloid (saddle). In absolute value, the
maximum values of the warping function occur at the edge of the section and
these increase as the torsion angle α0 increases. In linear theory, the expression
of the warping function for the elliptical section is (cf. (18))

ψ(X, Y ) = −α0

L

B2 −A2

B2 +A2
XY. (41)

For the case study with α0 = π/4, this formula provides ψ(X, Y ) = −5.483 ·
10−4XY , that is an expression close to (40)3, highlighting how for small (but
not infinitesimal) angles the expression of the linear theory retains a certain
validity.

Fig. 5 illustrates the stretches λX , λY and λZ , by means of color maps, for
all points of a generic cross section of the cylinder (the tensor C does not depend
on the variable Z ). These stretches, plotted for each point of the cross section
and for axes parallel to the axes of the reference system, are not principal, since
the axes of the reference system adopted are not principal. The only exception
is the centroid, where the stretches are principal. As in the previous figure, the
images of the first row relate to the minor angle, those of the second row to the
intermediate angle and those of the third row to the major angle. In the first
column of Fig. 5, Fig. 5(a), (d) and (g), the λX values are shown. These are
always less than one. The cross sections are contracted not uniformly, with the
greatest contraction occurring in a central and vertical strip. For α0 = π/4, the
values of λX are very close to one, namely to an undeformed situation, typical
of linear theory. In the second column of Fig. 5, Fig. 5(b), (e) and (h), the
values of the λY stretch are shown. Except for a central area, where there is
a slight dilatation, the sections are contracted. As in the case of the previous
stretch, Fig. 5(b) also illustrates a practically undeformed situation. In the
third column of Fig. 5, Fig. 5(c), (f) and (i), the λZ values are displayed. Since
they are all greater than one, the stretches λZ show that there is non-uniform
dilation in the direction of the cylinder axis. The maximum values occur at the
ends of the major semi-diameter. Fig. 5(c) shows a slightly deformed situation.
As the α0 angle grows, however, these values become more important. To make
the images of Fig. 5 more comprehensible, the graphs of the stretches along one
of the two semi-diameters are also reported.

Among the six components of the Cauchy stress tensor T,19 the most im-
19The Cauchy stress tensor T does not depend on the variable Z. In this circumstance,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Plots of stretches for the case study. (a), (b) and (c) Color maps of
λX , λY and λZ respectively for α0 = π/4. (d), (e) and (f) Color maps of λX , λY
and λZ respectively for α0 = π. (g), (h) and (i) Color maps of λX , λY and λZ
respectively for α0 = 3π.
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portant for the torsion problem are Txz and Tyz. For the case study, these two
components are illustrated in Fig. 6 for the usual three angles α0 = π/4, π and
3π. As can be seen from Fig. 6(a) and (b), the stress diagrams have a shape
similar to those of the linear theory, where the stresses are zero at the cen-
troid and then grow linearly up to the outer edge of the section. By increasing
the α0 angle these diagrams take on curved shape as shown by Fig. 6(e) and
(f). The maximum stress value always occurs at the outer end of the shortest
semi-diameter.

The torsion moment mt can be calculated with the following formula:

mt =

∫
A′

(Tyz x−Txzy) da. (42)

The torsion moment is constant along the axis of the deformed cylinder. For
the case study the variation of mt with respect to the α0 angle is shown in
Fig. 7. As can be seen from this figure, initially the mt graph is characterized
by a quasi-linear law. As an alternative to applying the α0 angle (boundary
condition of geometric type), the twisting to the cylinder can be prescribed by
the corresponding torsion moment mt (boundary condition of static type).

Having finished the analysis of a compact elliptical section, we now turn to
two limit situations, the elongated elliptical section and the circular section.

The following semi-diameters are assigned to the elongated elliptical section:
A = 25 [mm] and B = 100 [mm]. In this way, the area of this new section is equal
to that of the previous compact elliptical section. For the case with α0 = π, the
iterative procedure provides the following expressions of the unknown functions:

U(X, Y ) '
(
1− 1.114 · 10−5Y 2

) (
0.997X + 3.086 · 10−6X3

)
−X;

V (X, Y ) '
(
1 + 1.796 · 10−6X2

) (
1.008Y − 1.411 · 10−6Y 3

)
− Y ;

ψ(X, Y ) ' −4.386 · 10−3XY − 5.36 · 10−8X3Y + 4.783 · 10−8XY 3.
(43)

Using these expressions, the stretches and stresses were calculated and displayed
in Fig. 8. Comparing the Fig. 8(a), (b) and (c) with the Fig. 5(d), (e) and
(f), it can be seen that in the central part of the elongated section the stretches
λX and λY increase their values, evolving towards a situation with greater
dilatation. Instead, the λZ stretch highlights how, unlike the previous case,
the points belonging to this central area undergo a longitudinal shortening. A
similar comparison for the stresses shows that the graph of the component Txz
along the y axis no longer has a quasi-linear trend.

By equating the area of the previously studied compact elliptical section
with the area of a circular section, the radius of the latter is obtained: R = 50
[mm]. For the case with α0 = π, the iterative procedure provides the following
expressions of the unknown functions:

U(X, Y ) '
(
1− 3.265 · 10−7Y 2

) (
0.994X − 3.246 · 10−7X3

)
−X;

V (X, Y ) '
(
1− 3.265 · 10−7X2

) (
0.994Y − 3.246 · 10−7Y 3

)
− Y ;

ψ(X, Y ) ' 0.
(44)

sometimes, the torsion is called uniform.
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By interchanging the variables X and Y, the first two expressions have the same
form. This is caused by the axisymmetry of the circular section. Furthermore,
as is well known [12], for the circular section the warping function is zero. For
this type of section, the longitudinal displacement field is uniform within each
cross section and linearly variable along the axis of the cylinder. Using (44),
the stretches and stresses were calculated and displayed in Fig. 9. Fig. 9(a)
and (b) show the same graph for the λX and λY stretches (moreover, this
graph is the same also for each diameter of the cross section). Actually, the
variations of these stretches in the cross section are very limited. The λX and
λY stretches show a slight non-uniform contraction of the section, likewise the
longitudinal stretch λZ shows small elongations (cf. Fig. 9(c)). In [12], given its
modest radial variation, the transversal stretch is assumed directly as a constant
quantity. This assumption allows to obtain closed-form solutions. In particular,
equations (28) and (25) of [12] give λ = λX = λY = 0.992 and λZ = 1.007 for
the points belonging to the axis of the cylinder.

At the end of this Section, a check can be carried out to evaluate the accuracy
of the solution obtained. Having determined the Piola-Kirchhoff stress tensor,
it can be verified whether the components of this tensor satisfy the equilibrium
equations (12) and the boundary conditions (13) and (15). With reference to
the first cross section of the cylinder (Z = 0), Fig. 10 shows the results of this
analysis. The first three images of Fig. 10 show that the three components of
DivTR are actually very close to zero at every point of the cross section.20

In the last three images of Fig. 10, the components of the stress vector
along the edge of the section are plotted (given the symmetry only half the
contour is drawn). As can be seen, these stress values are very small. In
particular, the maximum deviation from zero is reached by the tR,Y component,
which numerically equals 3% of the maximum value of the stress component
Tyz. The tR,Z component is very small at the edge and is even smaller at the
internal points of the section. Therefore, also the boundary condition (15) can
be considered accurately satisfied.

Fig. 10 is plotted for the intermediate angle α0 = π. By increasing the α0

angle until the case α0 = 3π, the situation just presented on the evaluation of
the accuracy of the solution remains practically the same. It can therefore be
concluded that the solution obtained satisfactorily meets the local equilibrium
equations (12) and the boundary conditions (13) and (15).

7 Applications. The case of the rectangular cross
section

In linear theory, the resolution of the boundary value problem (34) allows the
computation of the warping function. In the case of the elliptical section, this

20For a comparison with scalar zero, the values of DivTR should be made dimensionless, for
example by multiplying by a characteristic geometric dimension of the section and dividing
by a stress value. However, considering the very low values of DivTR, any normalization is
omitted.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Plots of the Cauchy stresses (in [MPa]) for the case study. (a) and
(b) Color maps of components Txz and Tyz for α0 = π/4. (c) and (d) Color
maps of components Txz and Tyz for α0 = π. (e) and (f) Color maps of stress
components Txz and Tyz for α0 = 3π.
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Figure 7: Torsion moment (in [Nm]) versus α0 angle for the case study.

(a) (b) (c)

(d) (e)

Figure 8: Plots of stretches and Cauchy stresses for the elongated elliptical
section. Case with α0 = π. (a), (b) and (c) Color maps of λX , λY and λZ
respectively. (d) and (e) Color maps of stress components Txz and Tyz.
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(a) (b) (c)

(d) (e)

Figure 9: Plots of stretches and Cauchy stresses for the circular section. Case
with α0 = π. (a), (b) and (c) Color maps of λX , λY and λZ respectively. (d)
and (e) Color maps of stress components Txz and Tyz.

function can be obtained in closed form. As indicated by (41), it has the shape
of a hyperbolic paraboloid. This no longer applies when switching to the rect-
angular section. The warping function in this case takes on a more complex
form, and it is generally represented by a double power series. In the nonlinear
theory, for any shape of the cross section, the warping function (cf. (35)3), and
consequently the equilibrium solution, is represented by power series.

The rectangular section is chosen in such a way as to circumscribe the pre-
vious compact elliptical section. Therefore, the cylinder has base B̄ = 80 [mm],
height H̄ = 125 [mm] and length L = 600 [mm]. For the case with α0 = π, the
iterative procedure provides the following expressions of the unknown functions:

U(X, Y ) '
(
1 + 1.29 · 10−6Y 2

) (
0.987X − 3.143 · 10−6X3

)
−X;

V (X, Y ) '
(
1 + 1.363 · 10−6X2

) (
1.006Y − 2.605 · 10−6Y 3

)
− Y ;

ψ(X, Y ) ' −2.802 · 10−3XY − 7.071 · 10−7X3Y + 5.974 · 10−7XY 3.
(45)

Using these expressions, the stretches and stresses were calculated and displayed
in Fig. 11. The rectangular section is more stiff than the elliptical, because it
has more area, but certain similarities (also in numerical values) with Fig. 5(d),
(e) and (f) and with Fig. 6(c) and (d) remain. In the rectangular section the
stress diagrams traced for the two axes of the section always have a curved
trendline. In the corners of the section the stresses tend to zero.

By equating the area of the previously studied rectangular section with the
area of a square section, the side of the latter is obtained: Ã = 100 [mm]. For

25



(a) (b) (c)

(d) (e) (f)

Figure 10: Accuracy of the equilibrium solution obtained for the compact ellipti-
cal section. Case with α0 = π. Color maps of components of vector field DivTR.
(a) Plot of the component (DivTR)X . (b) Plot of the component (DivTR)Y .
(c) Plot of the component (DivTR)Z . Stress vector tR at the boundary. (d)
Plot of the component tR,X . (e) Plot of the component tR,Y . (f) Plot of the
component tR,Z .
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(a) (b) (c)

(d) (e)

Figure 11: Plots of stretches and Cauchy stresses for the rectangular section.
Case with α0 = π. (a), (b) and (c) Color maps of λX , λY and λZ respectively.
(d) and (e) Color maps of stress components Txz and Tyz.
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(a) (b) (c)

(d) (e)

Figure 12: Plots of stretches and Cauchy stresses for the square section. Case
with α0 = π. (a), (b) and (c) Color maps of λX , λY and λZ respectively. (d)
and (e) Color maps of stress components Txz and Tyz.
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Figure 13: Poynting effect for the elliptical sections as a function of the pre-
scribed angle of twist and for different ratio of the semi-diameters.
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the case with α0 = π, the iterative procedure provides the following expressions
of the unknown functions:

U(X, Y ) '
(
1 + 3.29 · 10−6Y 2

) (
0.996X − 3.052 · 10−6X3

)
−X;

V (X, Y ) '
(
1 + 3.29 · 10−6X2

) (
0.996Y − 3.052 · 10−6Y 3

)
− Y ;

ψ(X, Y ) ' −7.534 · 10−7X3Y + 7.534 · 10−7XY 3.
(46)

By interchanging the variables X and Y, the first two expressions have the same
form, while the third changes only in sign. These symmetries are evident from
the images of Fig. 12. The variations of the stretches λX and λY are very
limited, showing a slight contraction of the cross section, while the longitudinal
stretch λZ points out small elongations, with values greater than one for each
point of the section (cf. Fig. 12(c)).

8 The Poynting effect
Starting in 1909, for the finite torsion of steel wires and rubber cords, J. H.
Poynting [13], [14] and [15], conducted experimental campaigns highlighting the
appearance of normal longitudinal strains responsible for the sample elongation.
This nonlinear aspect of the problem would later become known as the Poynting
effect. In [12], for circular cylinders, it has been shown that a positive Poynting
effect occurs, in the sense that increasing the twist angle also increases the
elongation of the cylinder. The analysis developed in the present paper provides
the possibility to investigate the influence of the shape of the cross section on
the Poynting effect.

For sections with two axes of symmetry, in which the center of torsion co-
incides with the centroid, the Poynting effect is measured by the value of the
longitudinal stretch λZ at the centroid of the cross section. For the uniform
torsion problem (considered in this paper), the stretch λZ is constant along the
torsion axis (i.e. it does not depend on the variable Z ). As highlighted in the
applications carried out in Sections 6 and 7, the centroidal stretch λZ can be
greater or less than one. In particular, for compact sections it is greater than
one (positive Poynting effect), while for elongated ones it can become less than
one (negative Poynting effect).

By varying only the ratio between the semi-diameters, Fig. 13 shows the
change in sign of the Poynting effect in the case of the elliptical section (the
thick lines in Fig. 13 are related to the studied sections). Starting from the
circular section, it can be seen that by increasing the torsion angle α0, the
axis of the cylinder lengthens and the same occurs for the axis of cylinders
with compact elliptical section. Conversely, when the section has an elongated
shape (ratio A/B < 0.5), by increasing the α0 angle, the axis of the cylinder
contracts. The change in sign of the Poynting effect, as the ratio between the
semi-diameters of the ellipse varies, is thus highlighted.
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Conclusions
In the fully nonlinear context of finite elasticity, this paper investigated the
equilibrium problem of non-circular cylinders under torsion. This issue appears
to have not been studied previously. One of the main difficulties lies in the fact
that the cross sections of the cylinder, unlike the case with a circular section,
now warp out of their plane.

Using the semi-inverse approach, a three-dimensional kinematic model has
been defined, where, in addition to the rigid rotation of the cross sections, the
large twist of the cylinder also generates in- and out-of-plane pure deformation of
the cross sections and the change in length of the torsion axis. The displacement
field prescribed by the kinematic model contains an unknown constant and three
unknown functions. These functions depend on two variables and are used to
describe the in-plane displacements of the cross sections and the out-of-plane
displacements (warping function). The unknown constant physically represents
the stretch of the torsion axis which governs the Poynting effect.

After calculating the deformation gradient and assuming the compressible
Mooney-Rivlin form for the stored energy function, the Piola-Kirchhoff stress
tensor has been derived. Then, the boundary value problem has been formulated
for non-circular cylinders subjected to finite torsion. The first cross section of
the cylinder is prevented from rotating (but can freely deform) and the last
cross section undergoes the overall torsional rotation. Under these conditions,
each section of the cylinder deforms in the same way (uniform torsion).

However, this equilibrium problem from a mathematical point of view takes
on a complicated form. The field equations are a system of three partial differen-
tial equations of the second order in the three unknown functions, which depend
on two variables. This system is strongly nonlinear and coupled, in the sense
that all unknowns appear in each equation. Given its complexity, the boundary
value problem formulated for the finite torsion of non-circular cylinders can-
not be solved with standard analytical methods. Therefore, a specific solution
technique for this class of problems has been proposed. The three unknown
functions are developed in power series using polynomial terms in two variables.
All constants of the above three series are evaluated through a iterative proce-
dure based on Newton’s method. Assessed the constants, the displacement field
can be expressed in a semi-analytical form and, successively, deformation and
stress tensors can be directly computed. The Piola-Kirchhoff stress tensor, thus
evaluated, can therefore be substituted into all the equations of the boundary
value problem and a checking of the accuracy of the solution obtained can be
carried out a posteriori.

Invoking the hypotheses of smallness of both the deformation and displace-
ment fields, and using Navier’s classical linear constitutive law, the theory ex-
posed for the finite torsion has been linearized, retrieving the classical results of
the linear theory for non-circular cylinders.

Numerous applications have been carried out for cylinders with circular,
elliptical (both compact and elongated), square and rectangular base. For each
single case the three unknown functions, the stretches and the Cauchy stresses
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were evaluated. The most important results were shown in graphs using color
maps. The numerical verifications of the accuracy of the equilibrium solutions
obtained gave very satisfactory results.

A specific study on the Poynting effect has shown that it is positive (the
torsion axis lengthens) in the case of compact sections, whereas it becomes
negative (the torsion axis contracts) in the case of elongated sections.
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Appendix. Components of the Piola-Kirchhoff stress
tensor
Using (7), (8), (11) and (17), the components of the Piola-Kirchhoff stress tensor
(10) assume the following expressions:

TR11
= 2 [(1 + U,X) cos θ1Z − V,X sin θ1Z] (ω,1 + I1ω,2)

−2
{

[(1 + U,X) cos θ1Z − V,X sin θ1Z]
[
(1 + U,X)

2
+ V 2

,X + ψ2
,X

]}
ω,2

−2 {[U,Y cos θ1Z − (1 + V,Y ) sin θ1Z] [(1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ]}ω,2
+2 {θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z] [−θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ]}ω,2
+2 {C [U,Y sin θ1Z + (1 + V,Y ) cos θ1Z]− ψ,Y θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z]} I3ω,3 1

detF ,

TR12 = 2 [U,Y cos θ1Z − (1 + V,Y ) sin θ1Z] (ω,1 + I1ω,2)
−2 {[(1 + U,X) cos θ1Z − V,X sin θ1Z] [(1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ]}ω,2

−2
{

[U,Y cos θ1Z − (1 + V,Y ) sin θ1Z]
[
U2
,Y + (1 + V,Y )

2
+ ψ2

,Y

]}
ω,2

+2 {θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z] [−θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ]}ω,2
+2 {−C [(1 + U,X) sin θ1Z + V,X cos θ1Z] + ψ,Xθ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z]} I3ω,3 1

detF ,

TR13 = −2θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z] (ω,1 + I1ω,2)
−2 {[(1 + U,X) cos θ1Z − V,X sin θ1Z] [−θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ]}ω,2
−2 {[U,Y cos θ1Z − (1 + V,Y ) sin θ1Z] [−θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ]}ω,2

+2
{
θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z]

[
θ2

1

[
(X + U)

2
+ (Y + V )

2
]

+ C2
]}

ω,2

+2 {ψ,Y [(1 + U,X) sin θ1Z + V,X cos θ1Z]− ψ,X [U,Y sin θ1Z + (1 + V,Y ) cos θ1Z]} I3ω,3 1
detF ,

TR21
= 2 [(1 + U,X) sin θ1Z + V,X cos θ1Z] (ω,1 + I1ω,2)

−2
{

[(1 + U,X) sin θ1Z + V,X cos θ1Z]
[
(1 + U,X)

2
+ V 2

,X + ψ2
,X

]}
ω,2

−2 {[U,Y sin θ1Z + (1 + V,Y ) cos θ1Z] [(1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ]}ω,2
−2 {θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z] [−θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ]}ω,2
+2 {−C [U,Y cos θ1Z − (1 + V,Y ) sin θ1Z]− ψ,Y θ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z]} I3ω,3 1

detF ,
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TR22 = 2 [U,Y sin θ1Z + (1 + V,Y ) cos θ1Z] (ω,1 + I1ω,2)
−2 {[(1 + U,X) sin θ1Z + V,X cos θ1Z] [(1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ]}ω,2

−2
{

[U,Y sin θ1Z + (1 + V,Y ) cos θ1Z]
[
U2
,Y + (1 + V,Y )

2
+ ψ2

,Y

]}
ω,2

−2 {θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z] [−θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ]}ω,2
+2 {C [(1 + U,X) cos θ1Z − V,X sin θ1Z] + ψ,Xθ1 [(X + U) sin θ1Z + (Y + V ) cos θ1Z]} I3ω,3 1

detF ,

TR23
= 2θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z] (ω,1 + I1ω,2)

−2 {[(1 + U,X) sin θ1Z + V,X cos θ1Z] [−θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ]}ω,2
−2 {[U,Y sin θ1Z + (1 + V,Y ) cos θ1Z] [−θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ]}ω,2
−2
{
θ1 [(X + U) cos θ1Z − (Y + V ) sin θ1Z]

[
θ2

1

[
(X + U)

2
+ (Y + V )

2
]

+ C2
]}

ω,2

+2 {−ψ,Y [(1 + U,X) cos θ1Z − V,X sin θ1Z] + ψ,X [U,Y cos θ1Z − (1 + V,Y ) sin θ1Z]} I3ω,3 1
detF ,

TR31
= 2ψ,X (ω,1 + I1ω,2)

−2
{
ψ,X

[
(1 + U,X)

2
+ V 2

,X + ψ2
,X

]}
ω,2

−2 {ψ,Y [(1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ]}ω,2
−2 {C [−θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ]}ω,2

+2 {θ1 [(X + U)U,Y + (Y + V ) (1 + V,Y )]} I3ω,3 1
detF ,

TR32 = 2ψ,Y (ω,1 + I1ω,2)
−2 {ψ,X [(1 + U,X)U,Y + (1 + V,Y )V,X + ψ,Xψ,Y ]}ω,2

−2
{
ψ,Y

[
U2
,Y + (1 + V,Y )

2
+ ψ2

,Y

]}
ω,2

−2 {C [−θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ]}ω,2
+2 {−θ1 [(X + U) (1 + U,X) + (Y + V )V,X ]} I3ω,3 1

detF ,

TR33
= 2C (ω,1 + I1ω,2)

−2 {ψ,X [−θ1 (1 + U,X) (Y + V ) + θ1 (X + U)V,X + Cψ,X ]}ω,2
−2 {ψ,Y [−θ1 (Y + V )U,Y + θ1 (X + U) (1 + V,Y ) + Cψ,Y ]}ω,2

−2
{
C
[
θ2

1

[
(X + U)

2
+ (Y + V )

2
]

+ C2
]}

ω,2

+2 {(1 + U,X) (1 + V,Y )− U,Y V,X} I3ω,3 1
detF ,

(47)

where ω,i = ∂ω
∂Ii

, for i = 1, 2 and 3. The last three components do not depend
on the variable Z.
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