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ABSTRACT
Grassland and forage crops are a domain where the application of precision agriculture techniques has been less intensive so 
far, compared to grain crops. This is especially evident in the case of variable yield assessment, the step that prompts the adop-
tion of precision management techniques once farmers are faced by unexpectedly high yield spatial variation. Much work has 
been devoted to forage, grassland and pasture yield assessment since the early 2000's; evaluating the established achievements 
alongside the existing drawbacks and limitations is seen the best way to lay the foundation for future research work in this field. 
Self- propelled forage harvesters received most attention in the quest for on- the- go yield assessment. Both volumetric flow (feed-
roll displacement sensing) and mass flow (impact force and torque sensing) assessments were tested prior to be developed into 
commercial applications. Nonetheless, their performances vary depending on harvested product characteristics (density, mois-
ture, texture, etc.). Integrating multiple sensor technologies has emerged as the most effective solution to reduce this variability, 
despite the higher costs involved. Forage handling machines (mowers conditioners, waggon trailers and balers) were also largely 
addressed. Balers in the static weighing mode are one of the simplest and most reliable yield assessing platforms, although at the 
expenses of spatial discretization and positional lag of the yield data. Remote sensing based on spectral reflectance data from the 
standing crop is rapidly gaining interest, especially if performed from satellites. Multiple data sources (e.g., Landsat and MODIS 
images), sometimes processed through machine learning or neural network techniques, have demonstrated to provide more reli-
able yield assessments than single data sources. A cross cutting issue in all these techniques is the assessment of forage moisture. 
At the ground level, near infra- red sensors are gaining popularity over capacitance sensors, thanks to their ability to determine 
also quality parameters of the harvested biomass. Overall, the need for calibration and maintenance of all sensor types represents 
a critical point that requires to be carefully evaluated before selecting an appropriate system.

1   |   Introduction

Grasslands and forage crops provide a wide range of ecosys-
tem services by producing feed for livestock and conservation 
of the environment. The main purpose when dealing with for-
ages and grassland communities is to maximise their utilisa-
tion and profit through advanced management practises on 

a sustainable basis. Sustainable livestock production involves 
meeting animal feed requirements with farm production ob-
tained during the growing season. Planning feed production 
is the premise for balanced fresh grass intake per animal 
(Wilkinson et  al.  2020), while assuring the most economi-
cal feed source for ruminant livestock production (Finneran 
et al. 2012). Furthermore, monitoring yield traits (quantity and 
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quality) is the best premise to maximise utilisation and produc-
tion in forage and grassland farming (Hanrahan et al. 2017; 
Beukes et al. 2019). This important agricultural sector could, 
therefore, benefit from accurate yield measurement systems 
for planning farm activity (Shalloo et al. 2018), owing to the 
circumstance that, mainly in grassland, the yields fluctuate 
very strongly (Köhler et al. 2017). In general, little information 
is available on the yields of forages and grasslands, as fodder is 
usually only used internally. Nonetheless, Köhler et al. (2017) 
evidenced a yield fluctuation by at least a factor of two for the 
different plots within a farm in Bavaria.

Therefore, the yield map definition is the starting point for the 
introduction of precision and digital agriculture in grassland 
management and represents the fundamental information to be 
used in decision making related to grassland and forage crop 
management.

To increase their widespread distribution, the yield estima-
tion methods should not only be low cost but also easily imple-
mented by growers (Sanderson et al. 2001; Matos et al. 2022). 
Unfortunately, there are a limited number of precision agri-
culture (PA) technologies commercially available in grass and 
crops, and the instruments to spatially manage inputs are 
scarcely used in forage and pasture- based farms (Rayburn 
et al. 2007; Shalloo et al. 2018). Many causes are at the basis 
of the low adoption of PA technologies, but certainly, the pres-
ence of high plant species diversity and their temporal varia-
tion, especially in grassland environments, play a decisive role 
(Schellberg et  al.  2008). Traditional methods for grass yield 
determination are based on manual measurements of, for ex-
ample, canopy height or crop sample weights in selected field 
positions, or the measurement of the mass of trucks and wag-
gons filled in the field (Monteiro, Santos, and Gonçalves 2021). 
These systems do not allow actual yields to be accurately de-
termined because of the heterogeneity typically found in per-
manent grasslands. Additionally, they require a lot of time and 
effort (Köhler et al. 2017).

Moreover, manual methods are not applicable in large areas be-
cause time and costs are strong limitation in biomass measure-
ment (Villalobos and WingChing- Jones 2020; Matos et al. 2022). 
All this calls for the adoption of digital tools which allow mea-
surements to be made economically and fast.

As with other crops in PA, two approaches for estimating grass 
yields and their field variability are available. The first approach 
involves determining the yield during the harvesting phase: 
in this case, the machines will be equipped with specific sen-
sors for determining the mass or volumetric flow. The second 
approach is based on yield prediction during crop growth, gen-
erally using optical sensors for detecting crop spectral proper-
ties (Askari et al. 2019; Barnett and Shinners 1998; Gholizadeh 
et al. 2019; Grüner et al. 2020; Gholizadeh et al. 2019; Morais 
et al. 2021; Muro et al. 2022; Oliveira et al. 2020; Théau et al. 
2021; Sibanda, Mutanga, and Rouget 2016; Wengert et al. 2022; 
Wijesingha et al. 2020).

Increasing the production and quality of fodder crops involves 
an adequate and well balanced nutrient supply. Nitrogen (N) 
is the most important nutrient as, beside supporting yields, 

determines increases in the crude protein (CP) content. Farm 
production systems that adopt variable rate N fertilisation can 
increase plant nitrogen use efficiency while maximising the util-
isation of forage and grassland biomass (McCarthy et al. 2015; 
Dentler et  al.  2020). The differentiated management of nitro-
gen would, therefore, combine increased farm profitability and 
more efficient nutrient exploitation with positive consequences 
from the environmental viewpoint. PA has a great potential 
to maximise the utilisation and accuracy in forage and grass-
land measurement systems. Within PA, spatio- temporal data 
allow farmers to monitor forage and grass variations, and con-
sequently apply differentiated crop inputs in site- specific man-
ner, for increasing profits and reducing environmental impacts 
(Schellberg et al. 2008). The diffusion of hay yield monitoring 
technologies is thought to determine a remarkable impact on 
forage cultivation: Beukes et al. (2019) reported a potential for a 
15% increase in farm profitability through regular herbage mea-
surements. Farmers who rely on pasture as primary feed source 
for their animals require accurate real- time measurement of 
pasture herbage mass and quality to optimise grazing and an-
imal nutrition management. Each additional 1000 kg increase 
of pasture dry matter (DM) used per hectare was associated 
with a €173 greater profit per hectare in dairy farms (Hanrahan 
et al. 2018).

The continuous advancement of electronics applied on agri-
cultural machinery is providing an important contribution to 
the ability to precisely map the quantity and quality of most 
crops, even those which, until now, have been less frequently 
focused among grassland and forage crops. The increase in 
the quantity and quality of information obtainable from the 
integration between electronic sensors and acquisition sys-
tems applicable to harvesting and handling machines pro-
vides a wealth of automatically acquired data to improve the 
management of these specific crops. The standardisation of 
the information transfer between agricultural tractors, im-
plements, harvesters and on- board computers, thanks to the 
implementation of the ISO 11783 (ISOBUS) communication 
protocol, allows multiple automated acquisition data to be 
jointly used (Fountas et al. 2015) and will encourage greater 
diffusion of digitised survey technologies to improve the man-
agement of this crop group.

Based on the fragmented, sometimes inconsistent information 
available for this vast topic, the main aim of this review is to 
summarise the monitoring technologies in forage and grass-
land measurements, the available sensors, the potential role of 
remote sensing (RS) technologies in biomass yield and quality 
estimation, and the evaluation of field heterogeneity in the per-
spective of creating reliable decision support systems (DSS) for 
precision forage and grassland management.

2   |   Mass Yield Measure Technologies Applied on 
Farm Machinery

The research has progressively been engaged in the study of 
technologies that could be applied directly on harvesting ma-
chines as self- propelled harvesters (SPFHs), mowers, windrow-
ers, trailers transporting fodder and silage and balers through 
sensors and their combinations that allow the mass/volumetric 
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flow of biomass to be directly measured/indirectly estimated 
(Lussem, Schellberg, and Bareth 2020).

The system used to determine the instant yield during har-
vest with SPFHs is a yield monitor that was initially designed 
for grain combine harvesters and was subsequently adopted in 
other harvesting machines (Queiroz et al. 2021).

The yield monitor system requires the integration of a series 
of technologies: (i) one or more sensors for yield measure; (ii) 
GNSS (Global Navigation Satellite System) receiver for georef-
erencing the yield data; (iii) control unit for data storage and 
processing; (iv) virtual terminal for displaying information 
and interacting with the operator. In addition, generally other 
sensors to measure the speed of the machine and crop mois-
ture are adopted.

Within the yield monitoring technology, the most critical item 
is represented by the sensors for measuring the mass or volu-
metric flow during harvesting. The operating principle depends 
on the crop the sensor operates on; however, determining the 
accuracy and precision of the measurement often represents 
a critical issue. Different available sensors can be employed 
successfully on forage harvesters to measure biomass traits 
(Maughan et  al.  2012; Cherney, Digman, and Cherney  2021). 
They include linear potentiometers (measuring feedroll dis-
placement/volume flow), capacitance sensors (measuring mois-
ture and mass flow rate), NIR spectrometers (measuring crop 
spectral properties and quality traits including DM content of 
hay and silage), torque sensors (determining torque and shaft 
speed), load cells (measuring weight of materials, crop flow and 
feedroll displacement), strain gauges (assessing crop weight and 
flow) and curved impact plates (measuring crop impact force).

Yield monitors can be used on SPFHs to measure yield and 
moisture data of lucerne (Medicago sativa L.; alfalfa), grass spe-
cies and maize (Zea mays L.) silage (Long et al. 2016; Worek and 
Thurner  2021). But sensors for indirect mass estimation have 
also been applied on forage harvesting waggons, round and 
square balers and windrowers during swathing in the haymak-
ing process. The sensors can determine a mass flow or a volu-
metric flow. While load cells applied to SPFHs are adopted to 
determine the mass flow of particles, the volumetric flow can 
be measured by installing transducers as a linear potentiometer 
(Shinners, Huenink, and Behringer  2003), a vertical displace-
ment transducer (Savoie, Lemire, and Theriault 2002), and fixed 
load cells relying on springs (Forristal and Keppel 2001).

When transducers are used to provide a volumetric flow mea-
surement, adjustment of yield data based on biomass density 
must be performed. To obtain the right dry biomass value and 
accurate sensor calibration, crop moisture must also be deter-
mined. The yield per hectare is obtained by considering the 
travelling speed of the harvester and its working width, and 
combining the mass flow value (or volumetric flow also assess-
ing the density of the material) with the harvester's precise posi-
tion detected through a GNSS with an adequate degree of signal 
correction.

Based on the design, operating principle, type of information and 
machine on which yield measurement systems are installed, an 

attempt to classify the mass flow measuring applications in for-
age crops according to the recent literature points is reported in 
Table 1, where a summary of the most relevant technologies to 
obtain mass or volumetric flow values for evaluating field yields 
in forage harvesters is shown.

2.1   |   Flow Measure Systems on Harvest Machines

2.1.1   |   Volumetric Flow Measure via Feedroll Sensing

The level of forage throughput is related to the volumetric flow 
of the biomass passing through the machine during harvesting. 
It represents a parameter that can be indirectly estimated in 
SPFHs or balers, by measuring the feedroll displacement that 
adjusts its position to accommodate different volumes of grass. 
Displacement can be measured in several ways: with linear 
transducers, vertical displacement sensors, linear potentiome-
ters and load cells. Martel and Savoie (2000) evaluated different 
sensor types to assess mass- flow rate on a pull- type forage har-
vester during field and laboratory tests. Field tests conducted on 
chopped whole- plant maize harvest showed good correlations 
between the estimated mass flow rate and the feedroll displace-
ment (R2 = 94%) measured using a vertical displacement trans-
ducer located at the feedroll.

However, in other studies, the relationship between the measure-
ment of the feedroll displacement and the volumetric flow did 
not show such encouraging results. Forristal and Keppel (2001) 
used load cells connected to retaining springs to measure the 
effort recorded during feedroll movement. Based on their pre-
liminary trial, the feedroll position did not significantly contrib-
ute to determine output. The authors attributed this result to the 
excessive oscillation of the feedroll due to the irregular flow of 
grass, which was transmitted to the measuring sensors. Savoie, 
Lemire, and Theriault (2002) highlighted results consistent with 
those of Forristal and Keppel (2001) when they instrumented a 
forage harvester with a transducer to measure feedroll displace-
ment during harvesting of wilted grass with moisture between 
45% and 78%. Feedroll displacement exhibited a good correla-
tion with mass flow rate (R2 = 0.86).

2.1.2   |   Mass Flow Measure Based on Impact Force

The sensors used for measuring the mass flow by determin-
ing the impact force of the biomass are quite similar to those 
mounted in a combine harvester for grain yield monitoring. 
They consist of an impact plate hit by the flow of biomass during 
its passage. The grass is delivered from the forage harvester by 
the impelling force of the cylinder, which throws and blows the 
grass through the delivery chute to the trailer. The force exerted 
by the grass passing through the chute is proportional to the 
grass biomass. In the SPFHs generally, the load cell, connected 
to a strain gauge, is placed in the spout of the harvester, and 
the measured force is directly correlated with the forage mass 
flow (Maughan et al. 2012). In the tests conducted by Martel and 
Savoie  (2000) in chopped whole- plant maize, the crop impact 
force against a hinged plate connected to a load cell inserted 
above the blower of a forage harvester showed a high correlation 
with the mass- flow rate (R2 = 0.95). In any case, the efficiency 
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of the yield measurement system depends on the type of sensor 
actually used (Bailey, Higgins, and Jordan 2000).

Similar results were obtained by Forristal and Keppel  (2001). 
They adopted a rectangular plate placed in the path of the grass 
flow in the upper section of the harvester delivery chute fitted 
to an externally mounted shear- strain type load cell. The mea-
surement system was tested during harvesting at three forward 
speeds. The plate sensor in the chute provided a very good re-
lationship between sensed and measured throughput, with re-
gression coefficients (R2) between 0.88 and 0.96. Similar results 
were found by Savoie, Lemire, and Theriault (2002) who, with 
a curved impact plate connected with a load cell on a hinged 
plate in the harvester spout, measured the mass flow rate of 
the hay material with a 5% error, based on the moisture data 
through prediction modelling. Authors concluded that impact 
sensors are more reliable in measuring grass flow than feedroll 
displacement sensors, but not so durable (Savoie, Lemire, and 
Theriault 2002). The ability of impact sensors to represent actual 
mass flow varied from R2 = 0.84 (Forristal and Keppel 2001) to 
R2 = 0.95 (Savoie, Lemire, and Theriault 2002). Improvement of 
results can be obtained adding moisture values provided by a 
dedicated sensor in the prediction model (Savoie, Lemire, and 
Theriault 2002).

2.1.3   |   Flow Measurement Based on Torque Sensors

An alternative approach proposed in some studies for the 
measurement of mass flow is based on the amount of torque 
needed to drive the machine as it is conditioned by the amount 
of crop flowing through the harvester (Wild, Ruhland, and 
Haedicke  2005; Maughan et  al.  2012; Savoie, Lemire, and 
Theriault 2002). Torque sensors were applied on the power take- 
off (PTO) drive shaft, platform drive and cutter head (Maughan 
et al. 2012).

Savoie, Lemire, and Theriault  (2002) instrumented a forage 
harvester with two sensors to measure torque at the PTO shaft 
and cutter head. The torque readings while operating on wilted 
grass with moisture between 45% and 78% showed a closer re-
lationship for dry mass flow (R2 = 0.865) than fresh mass flow 
(R2 = 0.705). The authors underlined the need for moisture ad-
justments to improve the correlation between torque sensor 
reading and mass flow rate.

2.1.4   |   Other Mass- Flow Sensors

Auernhammer, Demmel, and Pirro  (1995) evaluated the mass 
flow measurement on 140 ha of chopped maize using a radar 
sensor applied on the chopper spout in SPFHs. The device mea-
sured the speed of the material while a second radar sensor 
determined SPFH speed. Based on these data and the working 
width, the actual yield (t/ha) was assessed every second, with a 
mean error of + 3.06% (calibration offset).

Mechanical and electronic pasture sensors are available to mea-
sure standing pasture biomass before harvesting. Sanderson 
et  al.  (2001) used a non- destructive pasture meter to estimate 
standing biomass and compare the results with hand- clipped M
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samples. According to this study. It was concluded that these 
methods to predict forage mass and bio- volume were quite in-
accurate, with errors ranging from 26% to 33% (Sanderson 
et al. 2001).

Investigations with radiometric systems were conducted by 
Kormann (2004), measuring the mass flow based on X- ray ab-
sorption in the spout of choppers. Systems based on X- ray emis-
sion showed higher accuracies than other methods. However, 
due to concerns about a radioactive source on a harvesting ma-
chine, these systems have been dismissed.

Kviz, Kumhala, and Prosek (2007) evaluated mass- flow by pass-
ing the material between capacitor plates and subsequently mea-
suring of sensor output voltage. The amount of material passing 
between plates was significantly correlated with the circuit out-
put voltage, with a coefficient of determination ranging from 
R2 = 0.87 to R2 = 0.98, depending on the type and moisture of the 
material. A capacitive sensor was also employed by Kumhála 
et al. (2008); Kumhála, Prosek, and Kroulik (2010) for mass flow 
determination on forage crops and sugar beet (Beta vulgaris L.), 
to obtain yield maps. A parallel plate capacitive throughput sen-
sor was used in laboratory tests where a conveying belt carried 
a known amount of material through the sensor, which was 
equipped with an electronic measurement device. The resulting 
coefficients of determination ranged around R2 values of 0.96 for 
different forage crops, indicating a strong linear relationship be-
tween the feed rates of plant material passing through the sen-
sor and the output signal of the measuring sensor circuit.

Ramsey IV (2015) measured the mass flow of grass hay based 
on the measurement of the standing plant height using two dif-
ferent sensor types, infrared and ultrasonic, applied on a SPFH. 
Despite a good level of accuracy obtained, the author concluded 
that the use of these sensors is impracticable (except for research 
purposes), due to the rapid wearing of the infrared sensor and 
the difficulty of adapting the ultrasonic sensor for commercial 
adoption.

2.1.5   |   Multiple Sensor Fusion

Many forage crop species have different structural and morpho-
logical characteristics also depending on their harvest conditions 
(e.g., green, wilted grass, hay or straw, perennial ryegrass, etc.). 
To obtain useful information for evaluating field- scale heteroge-
neity, some researchers have developed mass flow measurement 
systems with a multi- sensor approach to obtain multiple infor-
mation that can be used across a wide range of plant diversity.

A multi sensor approach was adopted by Savoie, Lemire, and 
Theriault (2002), who instrumented a forage harvester to mea-
sure mass flow rate during harvest of wilted grass at a mois-
ture between 45% and 78%. A load cell was used to measure 
impact force against a hinged plate in the spout, in parallel to a 
capacitance- controlled oscillator placed at the end of the spout, 
whose changes in frequency depended on mass flow rate. The 
integration of load values with signals of frequency drop of the 
oscillator allowed the estimate of mass flow rate to be improved 
(R2 = 0.98), based on single measurements related only to the im-
pact force provided by a load cell.

Shinners, Huenink, and Behringer (2003) evaluated the combina-
tion of multiple sensors applied to forage harvesters to measure 
mass- flow of hay and forage of wilted alfalfa and whole plant 
maize for silage. The measurements included: feedroll displace-
ment with linear potentiometer, feedroll and blower speed with 
speed sensors; impact force in the spout with a load cell and thick-
ness of crop stream in the spout with ultrasonic sensors. Authors 
reported more accurate measurements in maize for silage than 
wilted alfalfa, mainly because the former forage was fed much 
more uniformly to the sensors. They concluded that multiple sen-
sors need to be integrated into the estimation models because the 
values of feedroll displacement were highly correlated to mass- 
flow at high flow rates, but less correlated at low flow rates when 
feedroll displacement was quite small. Conversely, crop thickness 
measurements in the spout were well correlated at low through-
puts when the crop stream was well defined, but poorly correlated 
at high throughputs when the spout became filled with material.

Kumhála, Kroulík, and Prošek (2007) combined the torque sen-
sors and curved impact type yield sensors on a mowing machine 
for the measurements of forage yields. They found very good 
coefficients of determination (0.95) between the conditioner's 
power, impact force and material flow rate for assessing mass 
flow and delineating spatial yield maps.

Mohsenimanesh et al. (2015) proposed a mass flow measuring 
technology by instrumenting a pull prototype forage harvester 
with a multisensor system. A hydraulic pressure sensor mea-
sured the pressure at the input and output lines of the feedroll 
and at the header motors, while an inductive proximity sensor 
measured motor speed, and a potentiometer the crop mass flow. 
Two harvester forward speeds and two cut lengths were tested. 
The measurement of the hydraulic pressure and the calculated 
torque under various treatments on the header and feedroll mo-
tors highlighted a linear relationship between harvester power 
use and the rate of forage throughput.

2.2   |   Sensors on Handling Machines for Flow Mass 
Determination

Much of the research on hay and silage mass flow measure-
ments has been performed by instrumenting forage harvesters. 
However, some studies have focused on the use of sensors on the 
waggons for crop transport, mowers-  conditioners and baling 
machines (Table 2).

2.2.1   |   Waggons

Wheeler et  al.  (1997) first described the basic requirements for 
crop yield mapping systems based on continuous weighing of wag-
gons. Subsequently, Godwin et  al.  (1999) continued research on 
this area using a trailer fitted with load cells which allowed mass 
flow rate and cumulated mass into the trailer to be measured. Lee, 
Schueller, and Burks (2005) proposed the definition of silage yield 
maps based on a continuous weighing of waggons equipped with 
load cells using Bluetooth technology for wireless transmission of 
harvester position and moisture sensor data to a host computer; the 
authors found a very high relationship (R2 = 0.99) between silage 
mass measured by load cells versus a platform scale (Figure 1).
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2.2.2   |   Mowing Machines

Demmel et al. (2002) instrumented the belt in the windrowing de-
vice of a mower. The system involved measuring biomass in the 
mower through continuous weighing of the loaded windrower 
belt. The results obtained from the measurement showed that the 
sensors needed further improvement. Kumhála and Prosek (2003) 
adopted a multi sensor approach for the feed rate measurement 
of the cut fodder in a modern mowing machine equipped with a 
conditioner. The applied sensors consisted of a torque meter and 
a strain gauge placed on the conditioner shaft integrated with an 
RPM optical counter. The mowing machine was also equipped 
with a curved impact plate mounted at the forage output. The 
tests carried out in the laboratory on a mixture of grass and al-
falfa showed a very high linear correlation between the condition-
er's power input, output frequency of the impact force measuring 
apparatus, and feed rate through the mowing machine. Sensor 
fusion allowed a material feed rate difference of 0.5 kg s−1 to be 
highlighted. Shinners, Huenink, and Behringer  (2003) instru-
mented a self- propelled haymaking machine performing the cut-
ting, swathing and conditioning of grass for the measurement of 
mass flow and yield. The technology used a multi- sensor approach 
involving the use of a pressure sensor for the load of the platform 
driving motor, a sensor for the conditioning roll speed, an incli-
nometer for platform pitch, a load cell for crop impact on swath 
shaping shield, rotary potentiometers for crop volumetric flow past 
the swath shaping shield and, finally, a radar for ground speed. 
Grass biomass yield was measured by quantifying the torque and 
pressure on a windrowing device of a mower conditioner (Wild, 
Ruhland, and Haedicke 2005). The study involved the application 
of a torque sensor on the windrowing device and a pressure sen-
sor at the hydraulic motor driving the windrowing device. Under 
laboratory conditions, a high accuracy was found between signal 
intensity and the amount of grass biomass, while in field trials the 
higher deviations from the actual grass biomass was observed.

2.2.3   |   Balers and Other Applications

The implementation of yield monitoring systems has also con-
cerned the fodder baling machines (Table 3). Load cells and strain 
gauges have been used both in round and square balers as methods 
to determine bale mass, and data were used to generate yield maps 
(Kayad et al. 2015). Wild and Auernhammer (1999) developed a 
system of mass measurement for round balers by equipping them 
with a load cell in the drawbar and strain gauges on each side of 
the baler axle (Figure 2). The accuracy of this system depended 
on whether a static or dynamic weight was focused. The weighing 
static method during vehicle stops produced errors lower than 1%, 
compared with 10% for continuous dynamic weighing (Wild and 
Auernhammer 1999). For measuring forage mass during baling, 
Shinners, Barnett, and Schlesser (2000) used a star wheel- driven 
rotary encoder measuring the bale forming time in a large square 
baler. Once the average mass of the square bales and the time of 
their formation were known, it was possible to calculate forage 
yield. The star wheel was located at the end of the bale chamber to 
reduce the effect of hay re- expansion. The results indicated that the 
displacement of the encoder was well correlated to the mass- flow of 
dry alfalfa (R2  from 0.88 to 0.96). In subsequent studies, Shinners, 
Huenink, and Behringer (2003) measured the bale weight in dry 
alfalfa using a large square baler. The baler was instrumented with 
different sensors: star wheel- driven encoder to measure bale dis-
placement rate; load cells in the bale chute to measure dynamic 
bale weight; radar to measure ground speed. The use of dynamic 
bale weight and speed of bale formation produced a very accurate 
estimate of the mass flow rate through the baler, demonstrating 
that the dynamic bale weighing method estimated the mass flow 
rate with high prediction accuracy (R2 = 0.99). Huenink  (2003) 
used a large square baler relying on feedroll displacement (flow 
speed) and bale weight assessment to measure mass flow rate. 
An alternative approach for measuring forage crop yields is that 
proposed by Masek et  al.  (2011), who placed a potentiometer to 

TABLE 2    |    Summary of the most relevant yield measurement systems applied on handling machines.

Machine Crop Target Technology and sensors Source

Trailer Hay crops Forage yield 
maps

Trailer instrumented with load 
cells to estimate the cumulated 

mass within the trailer.

Godwin et al. 1999

Trailer waggons Forage crops Yield maps Continuous weighing of trailer waggons 
equipped with load cells, Bluetooth 

data transmission of harvester 
position to obtain yield maps.

Lee, Schueller, 
and Burks 2005

Mowing machine Forage Mass flow 
measure

Continuous weighing of the conveying 
belt of a mower conditioner.

Demmel et al. 2002

Mower 
conditioner

Mixture of 
grass and 

alfalfa

Mass flow 
measure

Multi sensor approach: torque meter and 
strain gauge placed on conditioner shaft to 
measure the power input required; curved 
impact plate mounted at the output of the 
grass material to measure impact force.

Kumhála and 
Prosek 2003 and 

Kumhála, Kroulík, 
and Prošek 2007

Mower 
conditioner

Grass crops Yield 
monitoring 

system

Laboratory and field test via multi- sensor 
approach: sensor for torque measure of 
the windrowing device, and sensor to 
measure the pressure of the hydraulic 

motor which drives the windrowing belt.

Wild, Ruhland, and 
Haedicke 2005
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sense the belt tension roller position in a round pick- up baler with 
a variable chamber. The system was used for hay and straw yield 
assessment. The potentiometer measured the position of the belt 
tension roller during chamber filling. The results showed a strong 
dependence of the tension roller position on the amount of the 
pressed hay or straw (R2 = 0.99). Ramsey in his PhD thesis (2015) 
developed a measurement system based on two types of ultrasonic 
sensors installed on a John Deere 458 baler. The sensors allowed 
to estimate the windrow height and relate it to hay mass being fed 
to the baler, leading to a crop yield estimate showing errors of the 
order of 10%. An alternative weighing system for round hay bal-
ers equipped with a hydraulic kicker plate was also proposed by 
the same author (Ramsey IV 2015), involving the use of a pressure 
transducer installed in the hydraulic bale kicker circuit. The data 
provided by the transducer on two different round balers were cor-
related to bale weight to provide on- the- go bale weight estimates. 
Average absolute errors remained below 10%.

Finally, other studies have reported surveys involving standing 
biomass estimation directly in the field (Sanderson et al. 2001); 
mass flow measurement by applying sensors on forage wind-
rowers (Shinners, Huenink, and Behringer  2003) and yield 
monitoring systems based on laboratory tests and data standard-
isation protocols (Table 4).

2.3   |   Flow Mass Measure Accuracy From 
Harvesting and Handling Machines

2.3.1   |   Moisture Sensors

Almost all the authors who have evaluated the mass through 
sensor impact force agree in considering it essential to include 
moisture values in the prediction model to improve the pre-
diction quality. Therefore, for most applications an accurate 
on- harvester DM sensor has been deemed necessary (Forristal 
and Keppel 2001) (Table 5). This point is not only important for 
the calibration of mass flow measurements in SPFHs. In fact, 
Savoie, Lemire, and Theriault (2002) underlined how the mois-
ture content can affect, for example, the accuracy of the torque 
meter in a forage harvester. As in combine harvesters equipped 

with moisture sensors, also in SPFHs capacitance sensors (lo-
cated in the spout) are commonly adopted to determine crop 
moisture content, and much research has been conducted in 
this area (Barnett and Shinners 1998; Martel and Savoie 2000; 
Savoie, Lemire, and Theriault  2002). The use of near infra-
red (NIR) moisture sensing systems is the current alternative 
to resistivity sensors, compared with the added advantage 
of providing, beside moisture values, an assessment of crop 
composition in real- time (Digman and Shinners 2008; Akins, 
Dobberstain, and Shaver  2012; Long et  al.  2016; Amiama, 
Bueno, and Pereira  2018; Kharel et  al.  2019). Vomax  (2012) 
reported that microwave sensing method (Figure 3) was more 
accurate in moisture measurement, compared to NIR sens-
ing. However, NIR spectroscopy showed optimal results in 
monitoring DM contents under field conditions (Digman and 
Shinners 2008) as well as in laboratory tests (Welle et al. 2003; 
Akins, Dobberstain, and Shaver 2012).

2.3.2   |   Calibration

Sensor adoption to assess crop mass always requires prelim-
inary calibration, which often represents a critical point for 
yield estimation (Forristal and Keppel 2001; Matos et al. 2022). 
Calibration can be accomplished manually or with machinery 
operating over a small land area (Mannetje 2000; Sanderson 
et al. 2001). The actual weight of the collected biomass is used 
to evaluate the data quality of the automatic sensor systems 
and carry out their calibration (Rayburn et  al.  2007; López- 
Guerrero, Fontenot, and García- Peniche 2011), through linear 
or multiple regressions (Rayburn et al. 2017; Cho et al. 2007). 
However, repeated calibration, by weighing trailer loads, is 
not readily available during the normal forage harvesting 
routine (Forristal and Keppel  2001). Furthermore, calibra-
tion should be implemented for a single, evenly distributed 
and consistently growing forage species (Auernhammer, 
Demmel, and Pirro  1995; Sanderson et  al.  2001), which fur-
ther complicates the process in the case of mixed, inconsis-
tent forage stands. Furthermore, to improve signal quality 
from the acquisition sensors, calibration must be performed 
based on different field conditions and at least once a day in 
case of changes of forage density during harvesting opera-
tions (Rayburn et al. 2017). Therefore, a precise calibration for 
adaptive management during field operations should always 
be implemented (Anderson et al.  2011). The calibration pro-
cedure is slow and tedious. In practise, it is rarely carried out 
in full, resulting in poor application accuracy (Forristal and 
Keppel 2001).

2.3.3   |   Data Cleaning

Raw yield data originating from sensors require a cleaning phase 
(Queiroz et al. 2021), as they may be subjected to systematic er-
rors (Driemeier et al. 2016; Leroux et al. 2019; Kharel et al. 2019). 
The main error causes may depend on the delay in signal ac-
quisition (lag error) versus the actual harvest point; incorrect 
setting of harvester working width; errors in GNSS receiver, in 
sensor accuracy and calibration (Chung et al. 2016; Sudduth and 
Drummond 2007). These errors can sum up to 10%–30% of the 
data, requiring much effort to limit their actual extent.

FIGURE 1    |    Silage yield mapping system diagram proposed by Lee, 
Schueller, and Burks (2005).
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2.4   |   Manufacturers' Applications

Commercial implementation of mass flow sensors for yield mea-
surement has been limited to forage harvesters and square bal-
ers; however, the square baler applications at present do not allow 
yield to be spatially determined. Some manufacturers, since 
2005, have adopted mass flow and yield detection systems based 
on the measurement of the displacement of the feedroll (volume 
flow assessment system), as option for their self- propelled forage 
choppers (Schmidhalter et al. 2008). A subsequent step consisted 
in implementing the machines with GNSS systems to associate 
the mass values measured by the sensors with the field position, 
to obtain maps of yield data spatial variation.

2.4.1   |   Forage Harvesters

The adoption of forage yield monitors on SPFHs has been slow, 
due to the cost of equipment and lack of confidence in both the 
performance of the equipment and the economic return on the 
investment (Digman and Shinners 2012). However, large man-
ufacturers such as John Deere, Krone, New Holland have now 
integrated mass flow technology into their forage harvesters as a 
component of yield monitor systems. Most manufacturers adopt 
a multi- sensor approach, which allows for greater accuracy in 
measuring data. Mass- flow estimate based on feedroll displace-
ment and impact force measured at the spout of choppers by 
means of curved or flat plates are the established solutions by 
manufacturers for mass- flow measurement.

The John Deere forage harvest equipment consists in a virtual 
terminal for yield data visualisation, mass- flow measures based 
on feedroll displacement, feedroll speed sensor, moisture sensor 
(HarvestLab, HL), GNSS and a computer that works out the in-
formation from sensors to be displayed (Deere & Company, 2002 
John Deere, Moline, IL, USA). The HL sensor measures DM 
using NIR technology and is placed in the discharge chute of the 
machine. The mass flow sensor is placed in the cutter head and 
measures feedroll displacement with potentiometers. This dis-
placement is correlated to the mass of crop flow, and this infor-
mation is combined with the width and speed of the harvester, 
its flow rate (feedroll speed), moisture data and GNSS position. 
The information can then be stored and subsequently processed to 
obtain a DM yield map of the forage crop. Similarly, New Holland 
proposes, for its SPFH models, a yield monitoring and mapping 
system based on sensors located in the feedroll linkage contin-
uously measuring the opening of the feedroll (Figure 4) and ac-
counting for the width and speed of crop flow. In this case, the 
yield data are displayed on the Intellivoice IV display. The DM is 
measured by real- time moisture sensing based on a resistive type 
of sensor using three replaceable hardened contact pads to con-
stantly measure the moisture in the feed flowing though the spout 
(New Holland, SPFHs). The harvester can be furnished with a 
NIR crop analyser NutriSense that monitors and records crop 
moisture and a variety of nutritional parameters in real time.

2.4.2   |   Balers

Bale weighing systems are technologies integrated into large 
square balers by manufacturers such as New Holland, John T
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Deere, Hesston and Challenger. Combined with a GNSS, bale 
weight data could be used to delineate a yield map that shows 
spatial differences in yield. Bale weighing is carried out at the 
chute of machines, and one of the key points is the system abil-
ity to systematically separate the determination of each indi-
vidual bale.

Bale weighing systems of New Holland are integrated into the 
bale discharge chute of the BigBaler, and register bale weight at 
the point at which the bale is set free from the chute, just before 
it drops to the ground (New Holland, Large Square Balers). The 
Active Weigh system allows each bale to be weighed without 

slowing working speed, as the bale weight is collected ‘on- 
the- go’ and is independent of the bale length. Data of single bale 
weights and tons per hour are displayed on the IntelliView dis-
play (Figure 5).

The John Deere bale weighing system adopts sensors mounted 
at the pre- compression chamber floor that provide bale 
weights throughout the baling process, allowing the opera-
tor to continuously monitor bale density. Both New Holland 
and John Deere allow large square balers to be equipped with 
sensors to provide bale moisture levels throughout the baling 
process.

FIGURE 2    |    Round baler instrumentation, from Wild and Auernhammer (1999).

TABLE 4    |    Summary of other yield measurement systems.

Machine Crop Target Technology and sensors Source

Standing 
system

Forage yield Predicting 
forage mass 
in the field

Non- destructive pasture meter 
to estimate standing biomass

Sanderson et al. 2001

Windrower Alfalfa Measuring 
mass- flow and 

yield data

Multi- sensor approach: pressure 
sensor for load of platform driving 
motor, sensor for conditioning roll 
speed, inclinometer for platform 

pitch, load cell for crop impact, rotary 
potentiometers for crop volumetric flow.

Shinners, Huenink, 
and Behringer 2003

— Forage crops Mass flow 
measure

Laboratory tests with capacitive sensors. Kviz, Kumhala, and 
Prosek 2007

— Forage crops, 
chopped maize 
and sugar beet

Mass flow 
determination

Laboratory tests with capacitive 
sensors to measure crop mass flow.

Kumhála et al. 2008 
and Kumhála, Prosek, 

and Kroulik 2010

— Maize for silage Development 
of yield data 

cleaning 
protocol

Evaluation of yield monitoring 
data quality introducing a data 

cleaning standardisation protocol 
of raw data processing.

Kharel et al. 2019
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3   |   Optical Sensing Technologies for Yield and 
Quality Measurements

In recent years, sensor systems have been developed for biomass 
measurements in limited time and with reduced labour (Ali 
et al. 2016; Aquilani et al. 2021; Thapa, Lovell, and Wilson 2023). 
Satellite and proximal sensing technologies, operating at more 
than two meters from the earth surface (Rossel et al. 2011), can 
provide useful information on soil and crop conditions, and po-
tential yields (Table 6).

Development of homogeneous field zones based on remote 
data plays an imperative role in precision forage and grassland T
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FIGURE 3    |    Hay moisture meter for large square balers based on 
transmission of high frequency electromagnetic waves (https:// vomax. 
com. au).

FIGURE 4    |    Yield monitoring system based on continuously mea-
suring of the opening of the feedrolls proposed by New Holland in his 
FR series forage harvesters. (New Holland 2024a, 2024b)

https://vomax.com.au
https://vomax.com.au
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farming (Cicore et  al.  2016; Jin et  al. 2017; Breunig et  al.  2020; 
Raab et  al.  2021; Badreldin, Prieto, and Fisher  2021). However, 
field zones under mixed grassland do not allow users to differen-
tiate among plant species. Therefore, methods of delineating such 
zones should be plant specific and reflect topological characteris-
tics (Atkinson et al. 2005; Andrieu, Josien, and Duru 2007). In this 
framework, high resolution maps of forage yields were produced 
based on aerial and satellite sensing data for precision grassland 
management (Liu et  al.  2021). Raab et  al.  (2020) combined the 
Sentinel- 1 and Sentinel- 2 images into successful prediction of for-
age quantity and quality for the management of semi- natural grass-
lands. Hill (2004) used soil data at low resolution with vegetation 
indices at high resolution for grassland management. Slaughter 
et al. (2008) used the high- resolution data from airborne imager-
ies for precision grassland management. Spectral techniques have 
also been successfully used for mapping grassland plant diversity 
based on spectral and functional data (Zhao et al. 2021).

Multi- spectral data can be used in forage and grassland assess-
ments. However, a knowledge gap affects multi- spectral sensing 
techniques, as they are provided with an insufficient number of 
bands for determining plant biochemical or physiological traits 
(Carlson et  al.  2007). Moreover, occurrence of mixed species 
in grasslands increases the difficulty in assessing the grass-
land biodiversity by means of high- resolution data (Gholizadeh 
et  al.  2019). Consequently, spatial information from a reduced 
number of bands reduces the quality of the image and the ensu-
ing information (Øvergaard et al. 2010; Øvergaard, Isaksson, and 
Korsaeth 2013). One main advantage of multi- spectral sensors is 
that they are quite cheaper than hyperspectral sensors.

The issues among spatial, temporal and spectral resolution can 
be epitomised by hyperspectral imaging (Asner et  al.  2005). 
Rahman et al. (2003) demonstrated that 6 m resolution might be 
enough for monitoring spatial biomass, chlorophyll and water 
contents of shrubs and grass species.

Hyperspectral RS through Un- manned Aerial Vehicles (UAVs) 
has been employed efficiently in yield monitoring systems 

(Wachendorf, Fricke, and Möckel 2018). Oliveira et al. (2020) 
stated that an integration of hyperspectral sensing and 3D 
imagery can be used to obtain reliable multi- spectral infor-
mation of Finish swards. This sensing system, equipped with 
high resolution camera can be used to monitor grassland bio-
diversity (Gholizadeh et al. 2019). Fresh biomass and DM con-
tent of grassland species can be measured through UAV- borne 
hyperspectral imagery (Wengert et  al.  2022). Wijesingha 
et  al.  (2020) analysed the forage quality through UAV- 
hyperspectral sensing. Capolupo et  al.  (2015) performed the 
multivariate analysis on hyperspectral imagery to determine 
the canopy structure and quality traits of grass species. They 
stated that adding spectral resolution in hyperspectral data, 
through high signal to noise ratio (SNR) imaging technique, 
has potential in measuring quantitative traits of grass and 
pasture species. Furthermore, integration of hyperspectral 
thermal sensors and low- noise sensors improves soil moisture 
measurement in view of site- specific irrigation. Beside these 
studies, a push- broom instrument mounted on a manned 
aerial vehicle was shown successful in monitoring yield and 
quality traits (Cho et  al.  2007; Pullanagari, Kereszturi, and 
Yule 2018).

Light detecting and ranging (LiDAR) technique in combination 
with RS data can be used for the measurement of biomass in 
grassland farming. Obanawa et al. (2020) used the LiDAR data 
for the prediction of Italian ryegrass biomass.

Small- sat technology is another option for assessing bio-
mass data. For example, Compact High Resolution Imaging 
Spectrometer (CHRIS) could be applied for determining the 
structural components of plant species (Chopping, Laliberte, and 
Rango  2004). However, latest hyperspectral missions such as 
The Environmental Mapping and Analysis Program (EnMAP) 
(Kaufmann et al. 2015) and the Italian PRISMA (Pignatti et al. 
2013) are more rapid, cost- effective and accurate in monitoring 
grassland ecosystem properties as physical and chemical vari-
ables under different CO2 concentrations and weather condi-
tions (Obermeier et al. 2019).

Satellite- based high resolution remote data have been efficiently 
used to measure biomass, yield and quality traits of grass spe-
cies (Sibanda, Mutanga, and Rouget 2016; Askari et al. 2019). A 
synthetic aperture radar (SAR) is an advanced technology that 
can overcome cloud effects in measuring biomass height of grass 
species (Barnett and Shinners 1998).

4   |   Discussion and Conclusions

Precision management technologies are rapidly advancing in 
many agricultural sectors worldwide. The greater the economic 
return and the wider the application field, the bigger the efforts 
in implementing new ideas, methods, approaches. It results that 
PA development proceeds at a variable speed, and sectors pos-
sessing to a lesser degree the above characteristics risk to receive 
less attention than needed.

This may be the case of forage crops and pastures with respect 
to arable crops as cereals, pulses and oilseeds. These latter crops 
share the same equipment especially in the harvest phase: their 

FIGURE 5    |    New Holland baler Active WeighTM System integrated 
with the roller bale chute.
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TABLE 6    |    Potential applications of optical sensing technologies in precision forage and grassland agriculture.

Target applications Methods and results

Grassland cut detection, 
mowing events, start of season

• Dujakovic et al. (2024) used the Sentinel- 2 time series through integration of Sentinel- 1 SAR 
and weather data for precision grassland cut detection in view of modelling grassland yield and 

quality traits.

• Sentinels- 2 time series data were used for in- season harvesting decisions (Watzig et al., 
2023).

• Combination of Sentinel- 2 and Landsat time series for the survey of grassland cut intensity 
at national scale (Griffiths et al., 2020).

• Mowing events were detected using Sentinel- 1 and Sentinel- 2 time series (De Vroey et al., 
2022).

• Lobert et al. (2021) integrated the Sentinel- 1, Sentinel- 2, and Landsat 8 time series data for 
detecting mowing events in permanent grasslands.

• Integration of remote sensing (MODIS NDVI at 250 m) with weather data to evaluate the 
actual time of grassland cuts for hay and silage production (Dujakovic et al., 2024).

Monitoring grassland 
biodiversity

• Hyperspectral remote sensing for identifying grassland vegetation species (Lucas and Carter, 
2008) and attributes, such as leaf physiological traits for functional biodiversity (Zhao et al., 

2021).

• Airborne remote sensing potential use for spectral biodiversity (Jackson et al., 2022).

• UAV- based hyperspectral imagery used for assessing plant functional traits in alpine 
meadows (Zhang et al., 2022).

• Multiscale remotely sensed hyperspectral data for monitoring diversity of grassland species 
(Gholizadeh et al., 2022).

• Fusion of various satellite sensors data effectively used to improve the monitoring of 
grassland biodiversity (Kong et al., 2023).

Biomass measurement • Fresh and DM yield of grassland using machine learning to process UAV- borne 
hyperspectral data (Wengert et al., 2022).

• Alfalfa yield estimation for precision management based on hyperspectral images of UAV 
through machine learning method (Feng et al., 2020).

• Yield variability in alfalfa was determined by Landsat- 8 images and hay yield monitor 
data, where yield monitors were mounted on a rectangular baler to measure ground truth 

actual yield. Highest correlations between actual and predicted yield were found with the soil 
adjusted vegetation index (SAVI) (Kayad et al., 2016).

• Machine learning methods were used for the prediction of alfalfa yield based on weather, 
satellite and drone data. The research concluded that the most prominent results were shown 

by random forest algorithm (Sadenova et al., 2022).

• Liu et al. (2021) combined the Landsat and MODIS images into fused NDVI index, and the 
FAPAR index was developed through the APSIM model. Finally, forage yield was estimated in 

terms of spatial variability of absorbed photosynthetically active radiation (APAR).

• High resolution digital camera was used to measure the biomass of short grassland 
(Vanamburg et al., 2006).

Dry matter yield estimation • Integrated structural and spectral datasets from UAV- based sensors were used to estimate 
dry matter yield in paddock pasture (Karunaratne et al., 2020), and perennial ryegrass herbage 

yield in breeding trials (Pranga et al., 2021).

• Fusion of satellite- sensing, ground measurements and the BASGRA model were employed 
in dry matter yield assessment in grassland plants (Persson et al., 2024).

• Dusseux et al. (2022) estimated the grass height and density using Sentinel- 2 data in terms of 
accurate estimation of dry matter yield in agricultural plots.
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Target applications Methods and results

Prediction of vegetation 
parameters

• Integration between RS (LiDAR, hyperspectral- based indexes) and weather data to predict 
sorghum biomass using a recurrent neural network (RNN) model (Masjedi et al., 2019).

• Remotely sensed and field data with the APSIM model were used to predict sorghum 
biomass based on phenology and yield- related traits (Yang et al., 2021).

• Leaf area index was determined using Landsat- 2 data for permanent grassland grown under 
irrigated conditions (Abubakar et al., 2022); fusion of Sentinel- 2 data with radiative transfer 

modelling (RTM) was used for the estimation of leaf area index (Klingler et al., 2020).

• Grassland mowing events were established by integrating Sentinel- 1 and Sentinel- 2 images, 
using RGB camera, and enhanced vegetation index (EVI) developed by threshold- based 

algorithm (Reinermann et al., 2022).

• Above- ground biomass of grassland species estimated through SAVI vegetation index (Ren 
et al., 2018); and NDVI index (Clementini et al., c).

• Liu et al. (2021) used the NDVI data to determine productivity levels in mixed grassland, 
while Zhang et al. (2019) addressed fractional vegetation cover of typical grassland species, 

and Karimi et al. (2018) determined the grassland leaf area index using satellite based NDVI 
index.

• Pamploni and Sarabandi (2004) stated that canopy biomass measured by SAR imaging 
technique is affected by various attributes as soil properties, plant moisture and varied degree 

of spectral wavelength, so these factors must be considered in canopy biomass detection.

Plant height and canopy 
parameters

• Canopy height, cumulative growing degree units and nutrient contents of alfalfa were 
measured using RS and air temperature data through LiDAR and covariate modelling based 

approach (Noland et al., 2018).

• Landsat thematic maps and SAR images were merged for canopy structure assessment based 
on greenery, thickness and uniformity (Hill et al., 2005).

• Advanced very high- resolution radiometer (AVHRR)- based NDVI and thematic maps were 
used for land cover classification based on canopy structure (Hill and Aspinall, 2000).

• Chopping et al. (2004) measured the height and canopy width of shrubs through multi- angle 
remote imageries for precision farming applications.

• Automated plant height was measured through visible light spectrum (Bendig et al., 2013; 
Borra Serrano et al., 2017).

• Gross primary product was developed using Moderate Resolution Imaging 
Spectroradiometer (MODIS) data (Zhu et al., 2018).

• Vegetation height was measured by UAV images through linear model and multivariate 
linear regression method (Lussem et al., 2019).

• Obanawa et al. (2020) successfully used the Light Detection and Ranging (LiDAR) technique 
for the prediction of Italian ryegrass height.

Mixed species (i.e., grasses/
legumes)

• Cherney et al. (2021) used the handheld NIR sensors in monitoring biomass and nutrient 
contents of mixed hay and maize silage.

• Remotely sensing data from Sentinel- 1, 2 and MODIS technology was used to develop spatial 
maps of mixed grassland, for precision farming in grassland agriculture (Badreldin et al., 

2021).

• Xie et al. (2008) determined the vegetation types and relationships among species by 
processing spectral properties of remotely sensed images

• Hyperspectral imageries were utilized in developing grass floristic gradients (Schmidtlein 
and Sassin, 2004).
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dry grains/seeds require to be separated from the residual plant 
portion using combine harvesters as the sole kind of machinery 
suited for the task. Despite a certain variation amid types of com-
bine harvesters and yield sensors, the task of assessing instant yield 

is facilitated by a reduced number of combinations in commercial 
applications. Not surprisingly, there is unequivocal consensus that 
reliable yield assessment can be achieved in grain crops, provided 
that suitable operational conditions are ensured.

Target applications Methods and results

Soil moisture contents • Soil moisture contents were determined using SAR imaging (Wagner and Scipal, 2000) and 
advanced microwave scanning radiometer (Moran et al., 2004).

• Optical and microwave technology were widely applied in soil moisture measurements 
(Njoku et al., 2002; Chauhan, 2003).

• Soil moisture was measured by optical indices such as soil adjusted vegetation index (SAVI) 
and normalized difference moisture index (NDMI) (Cahyono et al., 2022).

Fertilizer management zones • Nitrogen management zones were developed based on chlorophyll indices (Gitelson et al., 
2006); they could be useful in precision grassland management.

• Combination of remotely sensed and ground level data was used to supply precision 
fertilizers for bee forages (Adgaba et al., 2017).

• Coupling of AVIRIS and Spectro- radiometric data in nutrient management for floristic 
measurements including grassland species (Asner et al., 2005).

Determination of homogeneous 
management areas

• Hyperspectral images were used to determine the stressed areas in halophyte vegetation 
(Day et al., 2006).

• Nutrient management (phosphorus, potassium, calcium and magnesium contents) for 
rangeland species using band depth analysis(Mutanga et al., 2005).

• Spectral and topographic pattern of grassland vegetation intensity were developed based 
on stepwise clustering, and classes for the management of meadows and pasture species were 

defined (Stumpf et al., 2020).

• Vegetation indices were developed through airborne videography for precision crop and 
pasture management (Metternicht, 2003).

Precision fodder biomass, soil 
carbon and organic matter 
contents

• Spectro- radiometers were used for on- farm measurements of grassland yield and quality 
contents (Schut et al., 2006).

• Landsat thematic imageries were used to measure biomass and growth rate of fodder species 
(Edirisinghe et al., 2002).

• Application of AVHRR for net primary productivity (NPP) (Wang et al., 2005).

Plant growth efficiency • AVHRR and MODIS were used to determine pasture growing rate (Hill, 2004; Pineiro et al., 
2006).

• MODIS imageries were used for vegetation growth (Reeves et al., 2006).

Determining plant water 
content

• Based on short wave infrared (SWIR) bands, the SWIR water stress index was developed 
using MODIS near-  and shortwave infrared data (Fensholt and Sandholt, 2003)

• Bhoutika et al. (2022) used the evapotranspiration index to determine the crop water 
efficiency through developing actual evapotranspiration (AET) model.

• Hyperspectral imageries and SAR water cloud models were used for water contents at 
canopy level (Roberts et al., 2004).

Identification of Invasive 
species

• Hyperspectral imaging of perennial herbaceous plants (Williams and Hunt, 2002).

• Papp et al. (2021) used hyperspectral data produced by UAV platform, based on algorithm 
developed by Support Vector Machine (SVM) and deep learning method for the detection of 
common milkweed, using field reference data as a target; higher accuracy was achieved by 
Artificial Neural Network (ANN) method (99.6% prediction accuracy) than SVM (92.9%).

Detection of Contaminants • Ferwerda (2005) used the airborne hyperspectral images for the prediction of Sideroxylonal, 
a secondary metabolite of Eucalyptus, in rangeland foliage (Dury et al., 2001).

TABLE 6    |    (Continued)
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Hopefully, some systems devised for grain crops can also be ap-
plied to biomass crops including forages. This is especially true 
in the case of mass flow sensors which are in principle the same 
as those mounted on combine harvesters. However, their appli-
cation in forage harvesters is less standardised and their reliabil-
ity more critical owing to a quite higher amount of fresh biomass 
impacting the sensors, compared to the amount of almost dry 
product in the case of grain crops.

One of the main difficulties in obtaining reliable yield data 
through machine sensing is the occurrence of several factors 
that contribute to reducing measurement accuracy. Firstly, the 
machines are designed to operate on multiple crop types (maize 
for silage, immature cereals, fresh or wilted grass, straw, etc.), 
so the sensors must be able to detect such variability. Secondly, 
the same crop may be harvested at a different growth stage cor-
responding to differences in DM content, fibre structure and 
strength. These factors reflect on the amount of power required 
to obtain data related to mass flow. Finally, the species, density 
and growth heterogeneity that characterises mixed grasslands.

Implementing moisture sensors in parallel to mass flow sensors 
is also more critical in forage harvest, owing to the wider range 
of moisture in forages that may be harvested freshly cut (~80% 
moisture), wilted (~50% moisture) or under different conditions. 
The NIRS technologies make it necessary to perform accurate 
and repeated calibrations, which are specific for each crop plant 
also depending on the type of sensor installed and the technical 
configuration of the harvesting machine (Schellberg et al. 2008). 
This routine represents the main limitation for the practical use 
of these sensors.

Forage texture (stem size, with/without reproductive organs, 
simply cut, cut and conditioned, chopped, etc.) is another source 
of uncertainty in reliably assessing forage yield, in comparison 
with grain yield.

However, difficulties of a higher order arise in the case of yield 
monitoring systems specifically devised for forages. Among them, 
volumetric flow sensors based on feedroll sensing represent a large 
category of experimental and commercial applications. The incon-
sistent reliability of these sensors among literary sources not only 
depends on the different ways to assess feedroll displacement; the 
kind of forage and its moisture can also be responsible, owing to 
the fact that more uniform forage conditions as those found in 
chopped maize for silage (Martel and Savoie  2000) and wilted 
grass (Savoie, Lemire, and Theriault  2002) compared to fresh 
grass (Forristal and Keppel 2001) are conducive to more reliable 
results. According to the last authors, operating in grassland farms 
intrinsically poses more difficulties than operating in arable farms 
where maize and other seasonal forages are grown. It is perceived 
that the rougher soil surface often found in grassland farms con-
tributes to the excessive feedroll oscillations, which are blamed for 
the unsatisfactory performance in yield assessment.

Torque sensors as proxy method to assess mass flow have shown 
some promising results (Savoie, Lemire, and Theriault 2002), al-
though also in this case the concurrent assessment of moisture 
is considered a fundamental step to improve yield data reliabil-
ity. The use of torque sensors to measure the power absorbed by 
the engine or the hydraulic motors driving the forage harvester's 

equipment is generally associated with a multi- sensor approach, 
as these sensors' reliability is linked to crop maturity, moisture 
content, cut length and the degree of sharpness of the knives.

It may not pass unnoticed that in both volumetric flow sensors 
and torque sensors, the principal literary sources date back to 
15–20 years ago, indicating that perhaps the weak points evi-
denced in those works are difficult to overcome, and interest 
in further research has declined. Typically, measuring yields 
using a volumetric approach is not as reliable as using a mass 
flow approach. This is because determining mass from volume 
always requires assessing the density of the material, a param-
eter prone to fluctuate under several influences (e.g., in field 
wilting of cut grass). As a result, frequent determination of the 
biomass density is necessary. It is therefore felt that a more de-
pendable assessment of forage yield could be based on multiple 
sensor fusion, an approach where the reciprocal advantages 
and disadvantages of different systems could be compensated, 
leading to response models accounting for differences in har-
vest conditions (Shinners, Huenink, and Behringer 2003). This 
echoes the fusion of multiple plant and soil sensors which is 
frequently practised during crop growth. However, it may not 
pass unnoticed that more sensors based on different princi-
ples involve higher costs and the need for calibration, main-
tenance, etc.

Another step towards easier yield assessment is equipping with 
mass flow sensors the handling machines instead of harvesting 
machines. In mowers, which also perform the conditioning and/
or windrowing, the same sensor types were tested as in forage har-
vesters, obtaining also in this case a certain inconsistency between 
sensed and actual grass biomass (Kumhála and Prosek 2003; Wild, 
Ruhland, and Haedicke 2005). To overcome single sensor limita-
tions, the multi- sensor approach is seen a winning strategy also 
for mowing machines (Shinners, Huenink, and Behringer 2003), 
although the same disadvantages apply as in forage harvesters.

If the objective is simply to obtain a measurement of crop 
yield, this can be achieved by equipping waggon trailers and 
balers with load cells that allow the harvested biomass to be 
continuous weighed. This can be associated with trailer or 
baler positioning through GNSS- receiver systems directly 
applied on them. Reported errors with respect to actual yield 
are generally lower than 2% (Wild and Auernhammer  1999; 
Godwin et al. 1999).

Balers are a category that has been extensively focused in view 
of equipping them with yield sensors. Both direct (load cells and 
strain gauges) as well as indirect methods (bale forming time 
and average mass) were tested, with yield prediction perfor-
mances from satisfactory to very good. It is perceived that the 
consistently low moisture at which hay or, alternatively, straw is 
baled helps in obtaining reliable yield estimates. However, also 
in balers combined sensors provide the most accurate predic-
tions (Shinners, Huenink, and Behringer 2003), at the expenses 
of a higher degree of complexity and costs. Additionally, the 
yield data obtained by balers may refer to a field position differ-
ent from that the record is attributed to; this is due to rakes and 
windrowers dragging the forage during machine displacement, 
so the measurement of baled mass may not correspond to the 
position where that mass was produced.



17 of 21

Yield sensing based on proximal and remote assessments with-
out any contact with forage crops, grasslands and pastures 
represents the other big family of sensing technologies. The 
physical drawbacks that have been quite often reported in direct 
assessment methods are avoided, in exchange for different chal-
lenges and constraints.

Among the principal platforms available for the task (Table 1), 
the satellites and other far- reaching instruments (e.g., the 
LiDAR) play a prominent role with respect to imaging sys-
tems operating closer to the surveyed scene as optical sensors 
mounted on UAVs. UAVs equipped with multispectral/hyper-
spectral cameras provide data on crop canopy reflectance which 
can be processed into spectral vegetation indices and, poten-
tially, yield prediction models.

Depending on the optical apparatus they are equipped with, 
UAVs can also provide 3D images of the plant community struc-
ture helping to understand crop growth pattern. This sort of in-
formation retains a non- negligible interest in tree crops as fruit 
orchards and vineyards, where the shape and thickness of tree 
crowns during the growing season can be an important clue to 
the final yield performance. Conversely, this information is soon 
lost during the growing season of forages, grasslands and pas-
tures, as their biomass becomes so dense that single plants can 
no longer be distinguished. This makes any image from low dis-
tance and low angles on the horizon modestly useful in the case of 
thick plant stands that are commonly found in these crop types.

Compared to remote/aerial imaging systems, ground- based sys-
tems (e.g., tractor mounted sensors) have generally been tested 
at experimental level but have not been extensively employed 
so far.

Whether they are obtained from satellites or aerial vehicles, 
canopy reflectance data are primarily used to assess crop 
growth status and provide valuable information about forage 
yield and quality. More accurate yield predictions quite often 
rely on multiple data sources as Landsat and MODIS images 
(Liu et al. 2021), as in the case of multiple sensor fusion in yield 
measuring systems mounted on forage harvesting and handling 
machines. However, in the case of RS this does not involve the 
burden associated with multiple systems applied to a single 
machine. This, in turn, prompts the attempts to combine var-
ious RS data sources, which have quite often proved success-
ful (Masjedi et al. 2019; Clementini et al. 2020; Liu et al. 2021; 
Sadenova et  al.  2022). In several cases, data originating from 
single/multiple image acquisition systems are processed 
through machine learning or neural network techniques that 
have proved their ability in turning raw data into reliable yield 
assessments (Masjedi et  al.  2019; Feng et  al.  2020; Sadenova 
et al. 2022; Wengert et al. 2022).

However, proximal and RS methods can hardly discriminate 
plant species in mixed stands, although some combinations as 
satellite and SAR images have proved useful in canopy struc-
ture assessment (Hill et al. 2005). Therefore, attempts have been 
made to run a compositional analysis of mixed stands from re-
mote (Xie, Sha, and Yu 2008; Badreldin, Prieto, and Fisher 2021). 
This would be a useful means to better assess the nutritional 
potential of grasslands and pastures.

In conclusion, the analysis of the scientific literature address-
ing the topic of yield and quality mapping in forage crops and 
grasslands, from a precision farming perspective has shown 
that the most critical points are the response of the sensors to 
the variation of crop species and related properties. This also 
depends on the type of forage focused (fresh, hay, silage …), 
and harvesting stage. Furthermore, the need to assess forage 
moisture using NIRS sensors as the instrument of choice, in-
troduces the need for correct calibration, which is a limitation 
for the practical use of the system, especially under variable 
field conditions such as in the case of mixed grasslands. The 
last difficulty, when monitoring systems are applied to han-
dling machines as waggon trailers and balers, is to precisely 
associate product mass with the field position where that mass 
was obtained.
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