
29/04/2024 16:33

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems / Ferrando,
Angelo; Dennis, Louise; Cardoso, Rafael; Fisher, Michael; Ancona, Davide; Mascardi, Viviana. - In: ACM
TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY. - ISSN 1049-331X. - (2021), pp. 1-44.

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

Towards a Holistic Approach to Verification and Validation of Autonomous
Cognitive Systems

ANGELO FERRANDO, LOUISE A. DENNIS, RAFAEL C. CARDOSO, and MICHAEL FISHER,The
University of Manchester

DAVIDE ANCONA and VIVIANA MASCARDI, University of Genova

When applying formal verification to a system that interacts with the real world we must use a model of the environment. This model
represents an abstraction of the actual environment, so it is necessarily incomplete and hence presents an issue for system verification.
If the actual environment matches the model, then the verification is correct; however, if the environment falls outside the abstraction
captured by the model, then we cannot guarantee that the system is well-behaved. A solution to this problem consists in exploiting
the model of the environment used for statically verifying the system’s behaviour and, if the verification succeeds, using it also for
validating the model against the real environment via runtime verification. The paper discusses this approach and demonstrates its
feasibility by presenting its implementation on top of a framework integrating the Agent Java PathFinder model checker. A high-level
Domain Specific Language is used to model the environment in a user-friendly way; the latter is then compiled to trace expressions
for both static formal verification and runtime verification. To evaluate our approach, we apply it to two different case studies, an
autonomous cruise control system, and a simulation of the Mars Curiosity rover.

CCS Concepts: • Software and its engineering→ Formal software verification.

Additional Key Words and Phrases: Runtime Verification, Model Checking, Autonomous Systems, Trace Expressions,
MCAPL

ACM Reference Format:
Angelo Ferrando, Louise A. Dennis, Rafael C. Cardoso, Michael Fisher, Davide Ancona, and Viviana Mascardi. 2021. Towards a Holistic
Approach to Verification and Validation of Autonomous Cognitive Systems. ACM Trans. Softw. Eng. Methodol. 1, 1 (January 2021),
44 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The development of autonomous systems to control physical objects such as cars, unmanned aircrafts or robots is
undergoing a period of rapid development fuelled in part by advances in machine learning. Many such systems will
operate in close proximity to humans, thus, these systems will need to be reliable and safe in their operations, and able
to explain the decisions they make.

Satisfying these requirements can be difficult for systems that aim to pursue their goals successfully in dynamic
and non-deterministic real-world environments. Such systems were named “autonomous cognitive systems” by Tjeerd

Authors’ addresses: Angelo Ferrando, angelo.ferrando@manchester.ac.uk; Louise A. Dennis, louise.dennis@manchester.ac.uk; Rafael C. Cardoso,
rafael.cardoso@manchester.ac.uk; Michael Fisher, michael.fisher@manchester.ac.uk, The University of Manchester, Manchester, United Kingdom, M13
9PL; Davide Ancona, davide.ancona@dibris.unige.it; Viviana Mascardi, viviana.mascardi@dibris.unige.it, University of Genova, Genova, Italy, 16146.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 A. Ferrando, et al.

Andringa and Vincent C. Müller in a meeting of the 2nd European Network for Cognitive Systems, Robotics and
Interaction1 that took place in 2011.

According to Müller, “the distinguishing feature of ‘cognitive’ artificial systems is not so much the use of higher level,

traditionally called ‘cognitive’ features, but rather flexibility in pursuing the goals of the system” [74]. However, he
recognises that “one way to achieve this flexibility is through higher level features”.

Safety, reliability and transparency have paramount importance for cognitive robotic systems too [72], based on a
questionnaire developed as part of the RockEU2 Robotics Coordination Action2, and answered by thirteen developers
with industrial background and experience. The interviewed developers confirmed that “cognitive robots will be able to
operate reliably and safely around humans and they will be able to explain the decisions they make, the actions they have

taken, and the actions they are about to take” [94].
This paper addresses the issue of ensuring safety and reliability of autonomous cognitive systems by combining in a

holistic way two techniques that are widely used for safety critical systems: model checking (MC [33, 34]) and runtime
verification (RV [45, 46]). We contribute to moving a step forward in that direction in the following ways:

• mitigating the risk of making assumptions – during the model checking stage – on the environment where the
system will operate, leading to a structured abstraction of the environment, by interleaving model checking with
runtime verification;
• providing a Domain Specific Language, called Environment Assumptions for Autonomous Systems Language
(EAASL), to model such assumptions in a user friendly way;
• providing a compiler from EAASL to a lower level formalism, trace expressions, that can be used both during the
model checking and the runtime verification stages.

In this paper we use “autonomous system” [35], “cognitive agent” [96], and “autonomous cognitive systems” in-
terchangeably, although in general they have different flavours. We also assume that the reasoning component of
such agents is specified in a declarative way. An example of such agency is the well known Belief-Desire-Intention
(BDI) [24, 86] model. BDI agents use these mental attitudes to reason and react to changes in the world. Although
in this paper we validate our approach using a BDI language, it could also be applied to other similar autonomous
cognitive systems.

Dennis et al. [40] advocate the use of model-checking for verifying declarative decision-making components within
such autonomous systems. These components take input from sensors (potentially including images classifiers developed
using machine learning) as perceptions, transform these into ground predicates (equivalent to propositions) which
we will refer to as environmental predicates and then reason explicitly about such inputs in order to decide upon
high-level courses of actions. This model-checking takes place statically in advance of system deployment. In order to
reason over possible inputs the technique requires a model of the world. Dennis et al. recommend using the simplest
environment model, in which any combination of the environment predicates that correspond to possible perceptions
of the autonomous system is possible.

Consider an intelligent cruise control in an autonomous vehicle that perceives the environmental predicates safe,
meaning it is safe to accelerate, at_speed_limit, meaning that the vehicle reached its speed limit, driver_brakes and
driver_accelerates, meaning that the driver is braking/accelerating. During model-checking, each time the decision-
making component would query its sensors for input, the model-checker instead generates all possible subsets of these

1http://www.eucognition.org/, accessed on December 2020.
22016-2018 RockEU2 - Robotics Coordination Action for Europe Two, https://www.eu-robotics.net/eurobotics/about/projects/rockeu2.html, accessed on
December 2020.

Manuscript submitted to ACM

http://www.eucognition.org/
https://www.eu-robotics.net/eurobotics/about/projects/rockeu2.html

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 3

four predicates. Each subset forms a branch of the state space to be explored during verification so that, ultimately, all
possible combinations are verified.

This model is an unstructured abstraction of the world, as it makes no specific assumptions about the world behaviour
and deals only with the possible incoming perceptions that the system may react to. Unstructured abstractions can lead
to significant state space explosion. The state space explosion problem can be addressed by making assumptions about
the environment. For instance, we might assume that the driver of a car will not both brake and accelerate at the same
time. Therefore when we are statically verifying the agent, it should never be sent subsets of environmental predicates
containing both driver_brakes and driver_accelerates as a possible input from perception on any path through the model
as they do not correspond to situations that we believe that can happen in the actual environment. This structured
abstraction of the world is grounded on assumptions that help prune the possible perceptions and hence control state
space explosion. Structured abstractions have advantages over unstructured ones, provided that the assumptions they
rely on are correct. Let us suppose that the cruise control system crashes if the driver is accelerating and braking at
the same time. If the subsets of environmental predicates generated to verify it never contain both driver_brakes and
driver_accelerates, then the static formal verification succeeds but if one real driver, for whatever reason, operates both
the acceleration and brake pedals at the same time, the real system crashes.

In this paper, which extends our AAMAS’18 extended abstract [49] and RV’18 full paper [51], we propose an
approach for exploiting the advantages of structured abstractions, while mitigating their risks. Our approach consists
of modelling the structured abstraction in a formalism that can be used both for statically verifying the autonomous
system’s behaviour via model checking and for validating the model against the real environment by means of runtime
verification. This RV could take place either during a testing phase in order to identify erroneous assumptions about
the environment to be fed back to developers or after system deployment in conjunction with an appropriate failsafe
system.

Differently from [49, 51], in this work the structured abstractions are defined using a novel Domain Specific Language
(DSL) that we call EAASL. EAASL makes the definition of constraints more intuitive and easier to learn and maintain.
As we are going to show, the introduction of a DSL did not change how our approach works, since it is compiled
to the same formalism we used to generate the environment model and the runtime monitor. From an engineering
perspective, we added an additional step of abstraction to make our approach more user-friendly, preserving the
low-level implementation at the same time.

To demonstrate the feasibility of the proposed approach, we implemented it on top of the MCAPL framework
developed by Dennis et al. [37, 41] (which provides a model-checker for cognitive agents) using trace expressions
developed by Ancona et al. [5, 10, 11] as the formalism to generate both the environment model and the runtime monitor.
We choose trace expressions instead of more widely used formalisms for model checking such as Linear Temporal Logic
(LTL [80]) for three main reasons:

(1) we are familiar with the formalism, and this is relevant when choosing a development language or framework
among many options that present similar features: being familiar with trace expressions helped us to develop
the code described in this paper in less time and with less errors;

(2) trace expressions are supported by tools that allow system developers and testers to automatically generate
runtime monitors, without writing any additional code: the ease of runtime monitor generation was a mandatory
requirement for reaching our goal of implementing an integrated working approach to verification and validation,
in an acceptable amount of time and with a limited effort;

Manuscript submitted to ACM

4 A. Ferrando, et al.

(3) trace expressions are able to express and verify sets of traces that are context-free, being more expressive than
LTL in the context of runtime verification [10]: while their expressive power has not been exploited in this paper,
it opens up many possibilities in the future, as discussed in the conclusions.

The paper is organized as follows. Section 2 introduces the necessary background: the MCAPL framework, a running
example, trace expressions, and the AJPF model checker. Section 3 presents EAASL, how a specification using such
DSL can be compiled to a trace expression, and how trace expressions can be used to support both static and runtime
verification inside MCAPL. Section 4 presents the experiments we carried out. Section 5 compares our proposal with
related work and Section 6 concludes the paper and describes future work.

2 BACKGROUND AND RUNNING EXAMPLE

MCAPL: model checking BDI agents. The Belief-Desire-Intention (BDI) model, originally proposed by Bratman
[24] as a philosophical theory of practical reasoning, inspired both architectures [87] and programming languages [23,
82, 85] for agents. BDI languages are based on cognitive agency [86]. Beliefs represent the agent’s (possibly incorrect)
information about its environment, desires represent the agent’s long-term goals, and intentions represent the goals
that the agent is actively pursuing. The MCAPL framework3 [22, 37, 41] supports model checking of programs in
BDI-style languages via the implementation of interpreters for those languages in Java. The framework implements
program model-checking in which the actual program to be verified, not a model of it, is checked, and contains the Agent
Java PathFinder (AJPF) model checker which customises the Java PathFinder4 (JPF) model checker for Java bytecodes.
We use the Engineering Autonomous Space Software (EASS) variant of Gwendolen [36], a language developed for
programming agent-based autonomous systems and verifying them in AJPF. EASS assumes an architecture in which
the cognitive agents are partnered with an abstraction engine that discretises continuous information from sensors
in an explicit fashion [38, 39]. Model checking is used to demonstrate that the agent always tries to act in line with
requirements and never deliberately chooses options that lead to states the agent believes to be unsafe.

Running Example: Autonomous Cruise Control. The (slightly simplified) EASS code in Example 1 is for an
agent implementing intelligent cruise control in an autonomous vehicle. It uses standard syntactic conventions from
BDI agent languages: +!g indicates the addition of a goal, g; +b indicates the addition of a belief, b; and −b indicates the
removal of a belief. Plans follow the pattern trigger : guard ← body; with the trigger representing the addition of a
goal or a belief (beliefs may be acquired via perceptions from the environment or as a result of internal deliberation);
the guard states conditions about the agent’s beliefs (or goals – not used in this example) which must be true for the
plan to be selected for execution; and the body is a stack of deeds the agent performs in order to execute the plan. These
deeds typically involve the addition or deletion of goals and beliefs, as well as actions (e.g. perf(accelerate), meaning
“perform the action of accelerating”) which indicate code delegated to non-rational parts of the system, such as low-level
control of actuators or the environment model.

According to the operational semantics of Gwendolen [36], the agent moves through a reasoning cycle polling an
external environment for perceptions; converting these into beliefs and creating intentions from new beliefs; selecting
an intention for consideration; if the intention has no associated plan body, then the agent seeks a plan that matches the
trigger event and places the body of this plan on the deed stack; the agent then processes the first deed, and places the
intention at the end of the intention queue before again polling for perceptions. An intention may be suspended while

3https://github.com/mcapl/mcapl, accessed on December 2020.
4https://github.com/javapathfinder, accessed on December 2020.

Manuscript submitted to ACM

https://github.com/mcapl/mcapl
https://github.com/javapathfinder

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 5

it waits for some belief to become true. We use *b to indicate a deed that suspends processing of an intention until b is
believed. Plan guards are evaluated using Prolog-style reasoning with reasoning rules of the form h :− body and literals
drawn from agent’s belief base. Negation is indicated with ~ and its semantics is negation by failure as in Prolog.

Example 1. (Cruise Control Agent). When the car has an initial goal to be at the speed limit (line 8), +! at_speed_limit,

it can accelerate if it believes it to be safe, that there are no incoming instructions from the human driver, and it does not

already believe it is accelerating or is at the speed limit (line 11) — it does this by removing any belief that it is braking,

adding a belief that it is accelerating, performing acceleration, then waiting until it no longer believes it is accelerating (line

12). If it does not believe it is safe, believes the driver is accelerating or braking, or believes it is already accelerating, then it

waits for the situation to change (lines 13-16). If it believes it is at the speed limit, it maintains its speed having achieved its

goal (which will be dropped automatically when it has been achieved).

If new beliefs arrive from the environment that the car is at the speed limit (line 17), no longer at the speed limit (line 19),

no longer safe (line 20), or the driver has accelerated or braked (line 22), then it reacts appropriately. Note that even if the

driver is trying to accelerate, the agent only does so if it is safe.

1:name :
2car
3

4: Reasoning Rules :
5can_accelerate :− safe , ~ d r i ve r_acce le ra tes , ~ dr i ve r_brakes ;
6

7: I n i t i a l Goals :
8a t_speed_ l im i t
9

10: Plans :
11+! a t_speed_ l im i t : { can_accelerate , ~acce le ra t i ng , ~at_speed_l im }
12← −braking , +acce le ra t i ng , pe r f (acce le ra te) , *~ acce le ra t i n g ;
13+! a t_speed_ l im i t : {~ safe } ← * safe ;
14+! a t_speed_ l im i t : { d r i ve r_acce le ra tes } ← *~ d r i ve r_acce le ra tes ;
15+! a t_speed_ l im i t : { d r i ve r_brakes } ← *~ dr i ve r_brakes ;
16+! a t_speed_ l im i t : { acce le ra t i ng } ← *~ acce le ra t i n g ;
17+at_speed_l im : { can_accelerate , at_speed_l im }
18← −acce le ra t i ng , −braking , pe r f (maintain_speed) ;
19−at_speed_l im : {~ at_speed_l im } ← +! a t_speed_ l im i t ;
20−safe : {~ dr iver_brakes , ~safe , ~brak ing } ← −acce le ra t i ng , +braking ,
21pe r f (brake) ;
22+ d r i ve r_acce le ra tes : { safe , ~dr iver_brakes , d r i ve r_acce le ra tes , ~ acce le r a t i ng }
23← +acce le ra t i ng , −braking , pe r f (acce le ra te) ;
24+dr ive r_brakes : { dr iver_brakes , ~brak ing } ← +braking , −acce le ra t i ng ,
25pe r f (brake) ;

The cruise control agent has to be connected to either a physical vehicle or a simulation. Similar EASS agents have
been connected to both detailed simulations of ground vehicles and physical vehicles [38, 62]. Here we will consider
embedding the agent within a multi-lane, multi-vehicle motorway (highway) simulation. The agent is connected to
the simulator via a Java environment that communicates using sockets. The environment reads simulated speeds of
the vehicles from the socket and publishes values for acceleration to the socket. The information from sensors is then
passed on to an abstraction engine that converts it to discrete representations, shared with the agent as logical predicates.
The agent accesses these shared beliefs as perceptions. Previously, the model of the combined behaviour of simulator,
Java environment, and abstraction engine used for verification was unstructured: all the possible combinations of the

Manuscript submitted to ACM

6 A. Ferrando, et al.

(ε -empty)
ε(ε)

(ε -or-l)
ε(τ1)

ε(τ1∨τ2)
(ε -or-r)

ε(τ2)

ε(τ1∨τ2)
(ε -shuffle)

ε(τ1) ε(τ2)

ε(τ1 |τ2)

(ε -cat)
ε(τ1) ε(τ2)

ε(τ1·τ2)
(ε -and)

ε(τ1) ε(τ2)

ε(τ1∧τ2)
(ε -cond)

ε(τ)

ε(ϑ≫τ)

Fig. 1. Empty trace containment

(prefix)
ϑ :τ

e
→ τ

e ∈ϑ (or-l)
τ1

e
→ τ ′1

τ1∨τ2
e
→ τ ′1

(or-r)
τ2

e
→ τ ′2

τ1∨τ2
e
→ τ ′2

(and)
τ1

e
→ τ ′1 τ2

e
→ τ ′2

τ1∧τ2
e
→ τ ′1∧τ

′
2

(shuffle-l)
τ1

e
→ τ ′1

τ1 |τ2
e
→ τ ′1 |τ2

(shuffle-r)
τ2

e
→ τ ′2

τ1 |τ2
e
→ τ1 |τ ′2

(cat-l)
τ1

e
→ τ ′1

τ1·τ2
e
→ τ ′1 ·τ2

(cat-r)
τ2

e
→ τ ′2

τ1·τ2
e
→ τ ′2

ε (τ1) (cond-t)
τ

e
→ τ ′

ϑ≫τ
e
→ ϑ≫τ ′

e ∈ϑ (cond-f)
ϑ≫τ

e
→ ϑ≫τ

e<ϑ

Fig. 2. Operational semantics of trace expressions

shared beliefs were explored. This is where our proposal for modeling structured abstractions as trace expressions and
validating them via RV, as well as using them for model checking, can be applied (described in Section 3).

Trace expressions. Trace expressions are a specification formalism specifically designed for RV and constrain the
ways in which a stream of events may occur. An event trace over a fixed universe of events E is a (possibly infinite)
sequence of events from E. The juxtaposition, e u, denotes the trace where e is the first event, and u is the rest of the
trace. A trace expression denotes a set of event traces over E. More generally, trace expressions are built on top of
event types (chosen from a set ET), rather than single events; an event type denotes a subset of E. A trace expression, τ ,
represents a set of possibly infinite event traces, and is defined on top of the following operators:

• ε , the set containing only the empty event trace.
• ϑ :τ (prefix), denoting the set of all traces whose first event e matches the event type ϑ (e ∈ ϑ), and the remaining
part is a trace of τ .
• τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating the traces of τ1 with those of τ2.
• τ1∧τ2 (intersection), the intersection of traces τ1 and τ2.
• τ1∨τ2 (union), denoting the union of traces of τ1 and τ2.
• τ1 |τ2 (shuffle), denoting the union of the sets obtained by shuffling each trace of τ1 with each trace of τ2 (see [27]
for a more precise definition).
• ϑ≫τ (filter), denoting the set of all traces such that their restrictions to events in ϑ are in τ .

Trace expressions can be easily represented as Prolog terms. To support recursion without introducing an explicit
construct, trace expressions are regular terms which can be represented by a finite set of syntactic equations, as happens
in most modern Prolog implementations where unification supports cyclic terms. The semantics of trace expressions
is specified by the transition relation δ ⊆ T × E × T, where T denotes the sets of trace expressions. As customary, we
write τ1

e
→ τ2 to mean (τ1, e, τ2) ∈ δ . If the trace expression τ1 specifies the current valid state of the system, then an

event e is valid iff there exists a transition τ1
e
→ τ2; in such a case, τ2 specifies the next valid state of the system after

event e . Otherwise, the event e is not valid in τ1. The rules for the transition functions are reported in Figure 2. While
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 7

in Figure 1, we report the semantics of the empty containment predicate used to denote when a trace expression can
terminate.

To demonstrate how trace expressions work, let us consider the example

τ = (ϑ1:τ1) ∨ (ϑ2:τ)
τ1 = (ϑ3:ϵ) | (ϑ4:ϵ)

where ϑ1 = {e1}, ϑ2 = {e2}, ϑ3 = {e3}, and ϑ4 = {e4}. To make the example easier, event types ϑ1,ϑ2,ϑ3,ϑ4 are
singleton; in general, they can contain multiple events such as in ϑ5 = {e5.1, e5.2, e5.3} where e5.1, e5.2, e5.3 all match ϑ5.
In the example, the trace expression defining the expected behaviour of the system w.r.t. observed events e1, e2, e3, e4
is τ ; τ1 is an auxiliary trace expression, as trace expressions may be defined in terms of other trace expressions. τ is
composed by a union of two trace expressions; which means only one of the two operands can be selected at a time. On
the left, if an event matching the event type ϑ1 (namely, the event e1 since ϑ1 = {e1}) is observed – or “consumed”,
using a common terminology in the RV field [45] – τ moves to τ1. On the right, by consuming an event matching ϑ2, τ
moves to τ again (τ is cyclic). The trace expression τ1 is not cyclic, and is composed by a shuffle of two trace expressions;
which means we do not enforce any order on the events matching ϑ3 and ϑ4 (namely e3 and e4, respectively). On the
left, one event matching ϑ3 can be consumed; while on the right, an event matching ϑ4 can be consumed. Both trace
expressions combined by the shuffle end in the terminal state ϵ , meaning that the trace can terminate there.

The trace expression τ recognises the language of event traces

{ e1e3e4, e1e4e3, (1)
e2e1e3e4, e2e1e4e3, (2)

e2e2e1e3e4, e2e2e1e4e3, (3)
. . .

en2 e1e3e4, e
n
2 e1e4e3, (4)

eω2 } (5)

The traces at line (1) derive from matching the left operand of the union in τ (e1 ∈ ϑ1), and then the two operands of
the shuffle in τ1, in any order (in fact we have one trace when we first go left by consuming e3, and the other one, when
we first go right by consuming e4 in the shuffle). The traces at line (2) derive from consuming the right operand in the
union in τ (e2 ∈ ϑ2), which brings us back to τ (since τ is cyclic). After that, the trace continues as in line (1). The traces
at line (3) derive from an additional step, where e2 is consumed twice by expanding the right operand of the union in τ .
Since τ is cyclic, the event e2 can be consumed any finite number of times n before concluding with the same sequence
e1e3e4 or e1e4e3, at line (4). Finally, since the right operand of the union can be consumed infinitely times, we also have
the infinite trace eω2 , containing only e2 events, at line (5).

An example involving the · operator is the following

τ2 = (ϑ6:ϵ) ∨ (ϑ7:ϵ)·τ2

Manuscript submitted to ACM

8 A. Ferrando, et al.

where ϑ6 = {e6} and ϑ7 = {e7}. Union has the precedence over concatenation, so if the first event to be consumed is e6,
the first branch of the union is picked and τ2 moves into ϵ ·τ2, namely τ2 again. The same happens if the first event is e7.
Upon observation of the first event, that may be either e6 or e7, the trace expression transition mechanism starts again
from τ2. The set of traces described by τ2 consists in all the infinite traces that contain e6 and/or e7, in any possible
ordering.

In these artificial examples events and event types carry no meaning, but in the real setting they do. In a “polite com-
munication” scenario we might define the дreet event type as {cheer ,hello,дood_morninд,дood_af ternoon}, meaning
that any observed (or heard) utterance among cheer, hello, etc, is considered as a valid polite greeting. In an “abstract
data type” context we might define the sa f e_queue_op event type as {enqueue, empty}, meaning that the enqueue and
empty operations on a queue are safe and can be used whatever the state of the queue, and the unsaf e_queue_op event
type as {dequeue, f irst}, which raises an exception if the queue is empty and is, hence, unsafe. These definitions would
help us define a safe pattern of operations on queues, or a polite conversation protocol, where we do not need to stick
to a specific operation or utterance, but we can group them according to features relevant for the specification of safe
(resp. polite) traces of events.

In this paper we will define and use domain specific events, which are suitable in the context of verification
of autonomous systems. More specifically the events will be beliefs, determined by perceptions generated by the
environment, and actions, performed by an agent to interact with the environment. As an example, a variant of τ2,
Belj = (bel(belief j) : ϵ) ∨ (not_bel(belief j) : ϵ) · Belj , will be introduced in Section 3.2.1.

A Prolog implementation exists which allows a system’s developer to use trace expressions for RV by automatically
building a trace expression-driven monitor able to both observe events taking place in the environment, and execute
the δ transition rules. If the observed event is allowed in the current state – which is represented by a trace expression
itself – it is consumed and the δ transition function generates a new trace expression representing the updated current
state. If when observing an event no δ transition can be performed, the event is not allowed in the current state. In
this situation an error is “thrown” by the monitor. When a system terminates, if the trace expression representing the
current state can halt (formally meaning that it contains the empty trace), the RV process ends successfully; otherwise
an error is again “thrown” since the system should not stop here.

The time and space complexity of the monitor synthesised by a trace expression depend on the kind of trace
expression we defined. In this paper, the trace expressions that we are going to use allow monitoring the system in
linear time in terms of the length of the event trace analysed. This can be intuitively understood by observing that
a trace expression, representing the current state of a trace expression, is never rewritten to a trace expression with
a bigger size; where the size of a trace expression is determined by counting the number of operators, subterms and
cycles. Because of this, to check if a trace expression accepts a specific event in its current state requires only constant
time, since the size of the term is limited to a maximum number of subterms to analyse (which does not change by
increasing the size of the event trace). For further information we refer the reader to [10].

AJPF Static Formal Verification. The EASS implementation provides a Java class supporting the creation of
abstract environment models. Models can be created by overriding, in a subclass, the add_random_beliefs method of
this class which is called when the agent requests an action execution or sleeps. This method should return a set of
beliefs. These are then added to the environment’s percept base which the agent polls as part of its reasoning cycle.
Implementations of unstructured environments will randomly generate all possible sub-sets of the beliefs relevant
to the agent. For static verification, therefore, we want to generate this subclass from our trace expression. Once the
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 9

abstract environment is created, AJPF performs model checking of LTL properties extended with modalities for BDI
concepts. In normal operation, EASS abstraction engines communicate with the agent-based reasoning engine (the
‘agent’) by performing assert_belief and remove_belief actions. These actions are implemented by Java environments
which also connect to sensors and simulators. There are four such actions: assert_belief (b) asserts a belief for all agents
in the system and remove_belief(b) removes belief b from all beliefs. assert_belief (a, b) and remove_belief(a, b) alter
the available beliefs for a specific agent a. Our runtime monitor needs to observe these events and any action performed
by an agent.

3 RECOGNISING ASSUMPTION VIOLATIONS

In this section we discuss how trace expressions can be suitably adopted for specifying structured abstractions of the real
world for use in AJPF. The idea is to generate both a suitable Java model for AJPF model checking and a runtime monitor
from the same trace expression. The monitor can detect if the real (or simulated) environment violates the assumptions
used during the static verification. Figure 3 gives an overview of this system. A EAASL specification is compiled into
a trace expression τ , which is then used to generate an abstract environment model in Java used to verify an agent
(Reasoning Engine) in AJPF (the dashed box on the right of the Figure). Once this verification is successfully completed,
the verified agent is used with an abstraction engine, a Java environment, and the real world or external simulator. This
is shown in the dashed box on the left of the Figure. If, at any point, the monitor observes an inconsistent event, then
the abstraction used during verification was incorrect. Depending on the development stage reached different measures
are possible, ranging from refining the trace expression and re-executing the verification-validation steps, to involving
a human or a failsafe system in the loop.

Event Types for AJPF Environments. We have identified the assertion and removal of beliefs and the performance
of actions as the “events of interest” in our Java environments. Our runtime monitor receives notification of all actions
in the environment as events. It is possible to flexibly create a number of different event types (remember that an event
type is a set of events) on top of this structure: bel(b) and not_bel(b) are singleton sets and model events involving
beliefs. They are defined as bel(b) = {assert_belief (b)} and not_bel(b) = {remove_belief (b)}. In the rest of the paper
we also denote these event types as opposite. Given bel(b), its opposite is not_bel(b), and vice versa. We coalesce these
as event set Eb and define event types action(any_action) where e ∈ action(any_action) iff e < Eb ; not_action where
e ∈ not_action iff e ∈ Eb ; action(A) where e ∈ action(A) iff e < Eb and e = A; not_action(A) where e ∈ not_action(A) iff
e ∈ Eb or e , A. We use a free variable A representing any possible action. e ∈ Eb and e = A are mutually exclusive.

Representing Abstract EnvironmentModels in AJPF. Abstract environment models in AJPF can be represented
as automata where each state is represented as a set of environmental predicates which will be supplied to the agent
when it polls for perception. The automaton states can be divided into two parts: initial beliefs and beliefs that follow

actions. Initial Beliefs represent all the beliefs that may be asserted before the system starts executing. After an action
is performed, more beliefs may be asserted. In the unstructured abstractions used by the “standard” AJPF system the
initial beliefs, and the beliefs after each action, were generated at random. Essentially the automaton representing the
abstract environment model consisted of a state for every possible subset of environmental predicates and each state
could transition to any other state in the model. Transitions occurred each time the model was polled for perception
and the model-checking process searched over all possible transitions. Any structured abstraction will be one that
places constraints upon the possible transitions in the automaton. In order to capture constraints related to actions, we

Manuscript submitted to ACM

10 A. Ferrando, et al.

Abstract
Engine

Reasoning
Engine

Real
Environment

Java
Environment

perceptions

perceptions

beliefs

actions

actions

AJPF

Java
Abstract Environment

actions

beliefs

ˉ

compile

m

Model Checking

yes/no

LTL

is valid?

Execution

Trace expressionmonitor

DSL specification

Fig. 3. General overview of the process.

also store the last action performed by the agent in each state of the abstract environment model (this is empty in the
initial state).

3.1 EAASL, a Domain Specific Language to define Abstract Models

As mentioned before, by structuring the environment abstractions we can reduce the number of states to be analysed at
static time by the model checker. In [51], we presented a first approach where we defined the abstract model using the
trace expression formalism. As we already anticipated in the introduction, one of the reasons for the choice of this
formalism is its ease of use to automatically generate runtime monitors. Nonetheless, its use as a formalism to represent
the abstract model was not intuitive and difficult for non-expert users. As a result, we have added an intermediate step:
a high-level formalism for specifying environment models in a user-friendly fashion. This high-level specification will
then be automatically translated into the low-level formalism used for achieving both static and runtime verification of
the agent – trace expressions.

The components of EAASL are:
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 11

3.1.1 Who is the agent involved in the verification? First we specify which agent is involved in the verification
process by giving the agent’s name:

1agent :
2name

In Example 1, the agent is called car:

1agent :
2car

3.1.2 Which beliefs are perceived by the environment? After defining the name of the agent we are interested
in verifying, the next piece of information required is the set of beliefs the agent can gain through perceiving the
environment. The set of beliefs is defined as follows:

1bel ie fs :
2b e l i e f 1
3b e l i e f 2
4. . .
5b e l i e fn

These are the beliefs which are going to be perceived by the agent from the abstract model of the environment.
In Example 1, we have the following set of beliefs:

1bel ie fs :
2safe
3d r i ve r_acce le ra tes
4a t_speed_ l im i t
5dr ive r_brakes

EAASL addresses the specification of structured abstractions of environments for autonomous cognitive systems,
and for this reason has explicit statements for addition/removal of beliefs; it does not describe the procedural behaviour
of an autonomous cognitive system, that is defined via plans and goals encapsulated within the agent’s code, and not
directly related with the external environment representation.

3.1.3 Which actions can the agent perform on the environment? Next, we specify the actions which can be
performed by the agent in the abstract model of the environment. As with the beliefs, we report a set of the possible
actions as follows:

1actions :
2ac t i on 1
3ac t i on 2
4. . .
5ac t i onn

In this way, we can specify how the agent interact with the environment.
In Example 1, we could have the following set of actions:

1actions :
2acce le ra te
3brake

Manuscript submitted to ACM

12 A. Ferrando, et al.

3.1.4 How is the abstraction structured? The final step is the most important one. Until now we have just specified
the agents involved, the beliefs perceived by the agent through the environment, and the actions. With this information,
we could already define an abstract model of the environment, but without any constraint on how beliefs and actions
interact. Practically speaking, the information provided so far only allows us to define an unstructured abstraction.
But, what we are really interested in is structured abstractions, where we can reduce the number of possibilities by
introducing constraints on how the beliefs and actions appear together.

When constraint. The first constraint we present is the when constraint that allows us to enforce when some beliefs
can be generated.

We designed different versions of the constraint:

1when agent believes belief i i t believes belief j
2when agent believes belief i i t does not believe belief j
3when agent does not believe belief i i t believes belief j
4when agent does not believe belief i i t does not believe belief j

The notation used to represent the when constraint is high-level and user-friendly. What the when constraint enforces
is very intuitive. For example, in the first case (the others are similar) we say that the environment makes belief i
perceptible to the agent only when belief j is already perceptible. Thanks to this constraint, we do not have to consider
all the scenarios where belief i appears and belief j is not present. This constraint does not only concern the order in
which beliefs are observed; in fact, it would not be enough to observe belief j before observing belief i , but it would
also be required that belief j keeps being satisfied as long as belief i is. The when constraint is used to restrict “when” a
belief belief i can be observed; which in the first case is when belief j is currently satisfied5. In Example 1, we could
have the following when constraint:

1when car believes d r i ve r_acce le ra tes i t believes safe

This constraint states that a driver will only accelerate when it is safe. This constraint prevents the abstract environment
from generating scenarios in which the car perceives that the driver is accelerating in an unsafe situation.

Before constraint. The second constraint we designed is before. With the before constraint we enforce the order of the
appearance of beliefs/actions.

The constraint can assume different forms:

1agent believes belief i before bel ieving belief j
2agent believes belief i before not bel ieving belief j
3agent does not believe belief i before bel ieving belief j
4agent does not believe belief i before not bel ieving belief j
5agent performs actioni before bel ieving belief j
6agent performs actioni before not bel ieving belief j

Let us consider the first case. We say that agent has to perceive belief i before it can perceive belief j . Thanks to this
constraint, we can filter out all the scenarios where the environment sends the agent the perception belief j before
belief i . Note that, for this constraint, not believing, is interpreted as the removal of a belief/perception. That is, “agent
believes belief i before not believing belief j ” is to be interpreted as “agent must perceive belief i before the perception
that belief j holds is removed”.

In Example 1, we could have the following before constraint:
5Which means being observed in the past, and not having observed its negation until now.

Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 13

1car believes d r i ve r_acce le ra tes before bel ieving a t_speed_ l im i t

This constraint states that the environment has to delay the generation of at_speed_limit until after the belief
driver_accelerates is believed. Intuitively, we are just saying that to reach the speed limit, the car has to have
accelerated.

In contrast to the when constraint, the before constraint cares only about the order of beliefs/actions. When we state
that a belief belief i has to be believed before a belief belief j , we only mean that belief i has to be believed some time
before belief j is believed. After that belief i does not have to continue to be believed until belief j occurs.

Cause constraint. The last constraint is cause that enforces the direct effect of an action performed by the agent on
the environment.

There are two versions of the constraint:

1the ac t i on actioni causes agent to believe belief j
2the ac t i on actioni causes agent to not believe belief j

Let us consider the first case: it means that an action actioni performed on the environment by agent causes the
generation of belief j . Thanks to this constraint a cause-effect relation among the action actioni and the belief belief j is
created. This filters out all the scenarios where by performing actioni a set of environmental predicates which does not
contain belief j is generated.

In Example 1 there are no cause constraints; examples of its use will be introduced in Section 4.
Before going on with the presentation of how to compile EAASL into trace expressions, we would like to focus on

the principles that drove the design of EAASL. As we have shown in this section, EAASL is focused on the definition of
constraints in the context of autonomous cognitive systems. This can be noticed by looking at the notion of agents and
beliefs which is widely used in EAASL. With respect to other DSLs in literature (see Section 6 for more details), EAASL
was conceived to represent constraints on autonomous cognitive systems. The constraints we can define restrain when
an agent can believe in something, how the agent’s beliefs are related to each other, and finally, what is the cause–effect
relation between the actuation of an action and its outcome in the agent’s mind. As we are going to see, all these
constraints are necessary to help us in limiting the state space derived by what an agent can do inside the environment.

3.2 Compiling EAASL specifications to Trace expressions

Starting from a configuration file following the syntax presented in Section 3.1, we developed a compiler (in SWI-Prolog6)
which automatically generates the corresponding trace expression. We want to represent the abstract model of the real
world as a set of possibly cyclic trace expressions modelled in Prolog, which are going to be compiled from EAASL. We
use regular expression syntax: as parentheses are used for grouping in trace expressions, we adopt [and] to represent
groupings within a regular expression; similarly, since | is a trace expression operator, we use ∥ to indicate alternatives
within the regular expression. Here, e? indicates zero or one occurrences of the element e . As we use Prolog, variables
are represented by terms starting with an upper case letter (e.g.,Actioni) and constants are represented by terms starting
with a lower case letter (e.g., bi , actioni).

���n
i=1

indicates one or more trace expressions composed via the trace expression
shuffle operator, |. Similarly,

∨n
i=1 composes expressions using ∨ and

∧n
i=1 composes expressions using ∧. Variables

with the same name will be unified.

6https://www.swi-prolog.org, accessed on December 2020.

Manuscript submitted to ACM

https://www.swi-prolog.org

14 A. Ferrando, et al.

We now show how each part of the EAASL specification can be mapped to its trace expression representation. At
the end of the section, we are going to show how all these parts are then combined together to create the final trace
expression corresponding to the abstract model of the environment

3.2.1 Beliefs and Actions. Considering a generic list of beliefs, belief 1, . . . , belief n , as shown in Section 3.1.2, the
compiler automatically generates the following trace expression:

Beliefs =
���n
i=1

Beli (6)

Bel1 = (bel(belief 1) : ϵ) ∨ (not_bel(belief 1) : ϵ) · Bel1 (7)
... (8)

Beln = (bel(belief n) : ϵ) ∨ (not_bel(belief n) : ϵ) · Beln (9)

Fig. 4. Trace expressions for beliefs.

Beliefs = (Safe | DriverAccelerates | AtSpeedLimit | DriverBrakes) (10)
Safe = ((bel(safe):ϵ) ∨ (not_bel(safe):ϵ)) · Safe (11)

DriverAccelerates = ((bel(driver_accelerates):ϵ) ∨
(not_bel(driver_accelerates):ϵ)) · DriverAccelerates (12)

AtSpeedLimit = ((bel(at_speed_limit):ϵ) ∨ (not_bel(at_speed_limit):ϵ))
· AtSpeedLimit (13)

DriverBrakes = ((bel(driver_brakes):ϵ) ∨ (not_bel(driver_brakes):ϵ))
· DriverBrakes (14)

Fig. 5. Trace expressions for the beliefs in the running example.

In Figure 4, at line 6 the compiler creates the trace expression through a shuffle of n different trace expressions each
representing the events of adding or removing one of the beliefs in the beliefs: part of the EAASL specification; for
each belief j there, one such “add or remove” pattern Belj = (bel(belief j) : ϵ) ∨ (not_bel(belief j) : ϵ) · Belj is generated
into the compiled trace expression, and then they are all combined using a shuffle operator because we do not care
about the order. To note that the resulting trace expression is cyclic and not terminating and – because of this – any
infinite trace involving events matching bel(belief j) and not_bel(belief j), in any order, is valid w.r.t. it. We used the
shuffle operator in here because we do not care about the order on which the beliefs are actually generated and we
want to consider all the possible interleavings. The lines from 7 to 9 denote the addition/removal of beliefs belief 1 to
belief n . Any given belief, belief i may appear in the set of perceptions sent to the belief base (bel(beliefi)), or disappear
(not_bel(beliefi)). In this trace expression, all the beliefs listed are valid appearing/disappearing in any possible order.

Considering the four beliefs listed in Example 1, we generate the trace expression reported in Figure 5 for the running
example. The beliefs used in the Example 1 are mapped into four different terms (line 10) that are independent from one
another and combined using the shuffle operator. In each term the occurrence of the corresponding belief is handled. For
instance, in line 11, we may find the definition of the term handling the safe belief, which is where the addition/removal
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 15

of the belief can be observed. The other beliefs are defined following the same principle (lines 12-14). The constraints
over the beliefs are going to added later on depending on the constraints inserted in EAASL.

The compilation of the set of actions in EAASL, action1, . . . ,actionn , generates the trace expression in Figure 6:

Actions =
���n
i=1

Acti (15)

Act1 = (action(action1) :Act1) (16)
... (17)

Actn = (action(actionn) :Actn) (18)

Fig. 6. Trace expressions for actions.

The trace expression that is obtained allows the generation of actions in any possible order and with no constraints.
Considering the two actions listed in Example 1, we generate the trace expression reported in Figure 7 for the running

example. At line 19 we can find the term representing the possible combinations of the actions used in Example 1. Since
their order is not relevant (at this level), the combination is obtained using the shuffle operator. The two terms defined
at line 20 and 21 handle the occurrence of the two actions accelerate and brake.

Actions = (Accelerate | Brake) (19)
Accelerate = action(accelerate):Accelerate (20)

Brake = action(brake):Brake (21)

Fig. 7. Trace expressions for the actions in the running example.

3.2.2 The when constraint. The when constraint forces two beliefs to be (or not) satisfied at the same time in the
abstract environment. Which means that a belief can be added/removed only when the other belief has already been
added/removed, but the two events of adding/removing the two beliefs are separated and happen at different time. In
fact, trace expressions semantics is based on sequence of events (not sets). Because of this, the trace expression resulting
from a when constraint has to keep track of the occurrences of addition/removal of the two beliefs in order to check if
each addition/removal is consistent with the current agent’s state. For instance, if a belief b1 can be satisfied only when
a belief b2 is satisfied, this is translated into a trace expressions which has to keep track of addition/removal of belief b2,
because as soon as b1 is added, we need to know that b2 has been previously added, and it has not been removed since.

Considering the general case introduced in Section 3.1.4, we generate the trace expression in Figure 8.
Supposing we have specified n when constraints, in Figure 8 Bj ,1 and Bj ,2 are set according to which pattern of the

when constraint is used. For instance, if the pattern selected is the first one:

1when agent believes belief1 i t believes belief2

wewould have Bj ,1 = bel(belief1),NBj ,1 = not_bel(belief1), Bj ,2 = bel(belief2) andNBj ,2 = not_bel(belief2). Intuitively,
this constraint states that every time agent believes belief, we have that agent also believes belief’. If the pattern was
instead:

1when agent does not believe belief1 i t believes belief2

Manuscript submitted to ACM

16 A. Ferrando, et al.

Whens =
n∧
j=1

FilterEventTypej≫[When1j ∥When4j ∥When7j] (22)

When1j = ((((Bj ,1:ϵ) ∨ (Bj ,2:ϵ)) ·When1j) ∨ (NBj ,1:When2j)) (23)

When2j = ((((Bj ,2:ϵ)∨(NBj ,1:ϵ))·When2j) ∨ (NBj ,2:When3j) ∨ (Bj ,1:When1j)) (24)

When3j = ((Bj ,2:When2j) ∨ (((NBj ,1:ϵ) ∨ (NBj ,2:ϵ)) ·When3j)) (25)

When4j = ((Bj ,1:When5j) ∨ (Bj ,2:When4j) ∨ (NBj ,2:When6j)) (26)

When5j = ((((Bj ,1:ϵ) ∨ (Bj ,2:ϵ)) ·When5j) ∨ (NBj ,1:When4j)) (27)

When6j = ((Bj ,2:When4j) ∨ (((NBj ,1:ϵ) ∨ (NBj ,2:ϵ)) ·When6j)) (28)

When7j = ((Bj ,2:When8j) ∨ (((NBj ,1:ϵ) ∨ (NBj ,2:ϵ)) ·When7j)) (29)

When8j = ((Bj ,1:When9j) ∨ (NBj ,2:When8j) ∨ (((Bj ,2:ϵ)∨(NBj ,1:ϵ)) ·When8j)) (30)

When9j = ((((Bj ,1:ϵ)∨(Bj ,2:ϵ)) ·When9j) ∨ (NBj ,1:When8j)) (31)

Fig. 8. Trace expressions for the when constraint: Bj ,i must be the “opposite operation” of NBj,i.

we would have Bj ,1 = not_bel(belie f1), NBj ,1 = bel(belief1), Bj ,2 = bel(belief2) and NBj ,2 = not_bel(belief2). Intu-
itively, this constraint states that every time agent does not believe belief, we have that agent believes belief’. And so on
for the other patterns.

Bj ,i and NBj,i are event types, and they must meet the condition that if Bj ,i = bel(bj,i) then NBj,i = not_bel(bj,i)
and vice versa. FilterEventTypej is an event type which denotes only the events involved inWhenxj . Its purpose is to
filter out any events that are not constrained byWhenxj , and matches bel(bj,1),not_bel(bj,1),bel(bj,2) and not_bel(bj,2).
It ensures that the trace expression can move to the next state without getting stuck.

The equations from (23) to (31) capture the when constraint that Bj ,1 has to occur only when Bj ,2 is satisfied.
The constraint either starts in the state described byWhen1j ,When4j orWhen7j depending upon whether both the
constrained belief events are satisfied in the initial state (When1j), only Bj ,2 is (When4j), or none of them are (When7j).
These information have to be passed to the compilation process in order to correctly translate a EAASL when constraint
to its corresponding trace expression. Of course, the case where only Bj ,1 and not Bj ,2 is satisfied in the initial state
is forbidden because it violated the when constraint. This aspect will become clearer when we present the final trace
expression deriving from the combination of all the constraints.

Each equation represents a state of the formal specification where we know if Bj ,1 or Bj ,2 are satisfied or not (having
the opposite for their counterparts NBj ,1 and NBj ,2). Since we are talking about beliefs, we can start in three different
initial scenarios, depending on which beliefs are initially satisfied. If Bj ,1 and Bj ,2 are both initially satisfied, we start in
When1j . We stay in such state as long as the two beliefs keep being satisfied, because their satisfaction does not change
the knowledge we have of the system. We move toWhen2j only when we know that Bj ,1 is not satisfied anymore (NBj ,1

has been observed). It is important to notice that we cannot observe NBj ,2 inWhen1j , because it would be a violation
of the when constraint. In fact, by letting NBj ,2 to be observed inWhen1j , we would be in a situation where Bj ,1 is
satisfied, but Bj ,2 is not. After moving to stateWhen2j , we know that Bj ,1 is not satisfied, and Bj ,2 is. As before, if we
observe Bj ,2 or NBj ,1 we do not change state, because these information do not change our knowledge of the system,
since we already know that. If we observe NBj ,2, we move toWhen3j , which represents the state where neither Bj ,1 nor
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 17

When1 = (bel(sa f e) :When2) ∨

((not_bel(driver_accelerates):ϵ) ∨ (not_bel(safe):ϵ)) ·When1 (32)
When2 = (bel(driver_accelerates):When3) ∨ (not_bel(safe):When1)

∨ ((bel(safe):ϵ) ∨ (not_bel(driver_accelerates):ϵ)) ·When2 (33)
When3 = ((bel(driver_accelerates):ϵ) ∨ (bel(safe):ϵ)) ·When3

∨ (not_bel(driver_accelerates):When2) (34)

Fig. 9. Trace expressions for the when constraint in the running example.

Bj ,2 are satisfied. Finally, if we observe Bj ,1, fromWhen2j we go back toWhen1j , because by being inWhen2j we infer
that Bj ,2 is still satisfied, and by observing Bj ,1, we conclude that both are satisfied; which is the scenario represented
byWhen1j . Differently fromWhen1j , there is no belief which is not allowed inWhen2j . This is due to the fact that Bj ,2 is
independent from Bj ,1 satisfaction7. After moving toWhen3j instead, we know that both Bj ,1 and Bj ,2 are not satisfied.
In such state, if we observe Bj ,2, we can go back toWhen2j , where we represent the state where only Bj ,2 is satisfied;
otherwise, by observing NBj ,1 and NBj ,2, we stay in the same state, since nothing new happened. Similarly toWhen1j ,
also inWhen3j we have a belief which is not allowed to be observed, Bj ,1. This depends again on the when constraint,
since bothWhen1j andWhen3j have Bj ,2 not satisfied. The same reasoning can be followed to explain the construction
ofWhenij , with 4 ≤ i ≤ 9. The only difference is the knowledge we have in the initial states.

Considering our running example (Example 1), we reported in Figure 9 the trace expressions corresponding to the
when constraint8 showed in Section 3.1.4. In Figure 9, we haveWhen1 as initial state because we are assuming that
the driver_accelerates and safe beliefs are not initially satisfied;When1 can be traced back toWhen7j in Figure 8, which
denotes the case when Bj ,1 and Bj ,2 are both initially not satisfied. As we mentioned previously, we may have multiple
scenarios where different beliefs are initially satisfied; because of this, we need a way to represent such information
inside the formal specification. This is obtained following the template presented in Figure 8, where depending on which
pattern is followed, it is possible to customise the trace expression to correctly handle the beliefs’ addition/removal.

3.2.3 The before constraint. The before constraint (Figure 10) enforces the order between two beliefs. Its trace
expression representation is simpler than the one necessary for the when constraint, because we do not need to check if
the two beliefs are satisfied at the same time, but only if one of the two appeared before the other. In the following
trace expression we use FilterEventTypej as before to filter out the events which are not of interest for the constraint.
Supposing we have specified n before constraints, the trace expression corresponding to the each constraint forbids
the appearance of the second belief, as long as the first one has not yet been observed. After the first belief has been
observed, we can move to All where any belief is accepted; this is due to the fact that once the first belief is satisfied, the
constraint is satisfied by default, because in case Bj ,2 will be observed in the future, we know we have already observed
Bj ,1 before.

Considering our running example (Example 1), we reported in Figure 11 the trace expressions corresponding to the
before constraint9 showed in Section 3.1.4.

7The constraint is over Bj ,1 , there are no restrictions for Bj ,2 .
8when car believes driver_accelerates it believes safe.
9car believes driver_accelerates before believing at_speed_limit.

Manuscript submitted to ACM

18 A. Ferrando, et al.

Be f ores =
n∧
j=1

FilterEventTypej≫[Be f ore
1
j ∥ Be f ore

2
j] (35)

Be f ore1j = (Bj ,1:All
1) ∨ (((NBj ,1:ϵ) ∨ (NBj ,2:ϵ))·Be f ore1j) (36)

Be f ore2j = (Act j ,1:All
2)∨((NAct j ,1:ϵ)∨(NBj ,2:ϵ)·Be f ore2j) (37)

All1 = ((Bj ,1:ϵ)∨(NBj ,1:ϵ)∨(Bj ,2:ϵ)∨(NBj ,2:ϵ))·All1 (38)

All2 = ((Act j ,1:ϵ)∨(NAct j ,1:ϵ)∨(Bj ,2:ϵ)∨(NBj ,2:ϵ))·All1 (39)
(40)

Fig. 10. Trace expressions for the before constraint : Bj ,i must be the “opposite operation” of NBj,i, and NAct j ,1 accepts
every action, except Act j ,1.

Before = (bel(driver_accelerates):All) ∨ ((not_bel(driver_accelerates):ϵ) ∨
(not_bel(at_speed_limit):ϵ)) · Be f ore (41)

All = ((bel(driver_accelerates):ϵ)∨(not_bel(driver_accelerates):ϵ)
∨(bel(at_speed_limit):ϵ)∨(not_bel(at_speed_limit):ϵ))·All (42)

Fig. 11. Trace expressions for running example’s before constraint.

3.2.4 The cause constraint. The cause constraint (Figure 12) creates a cause-effect relation between an action and a
belief. With this constraint we can enforce that each time an action is performed by the agent on the environment, a
specific belief must be generated.

Supposing we have specified n cause constraints, the corresponding trace expression generated by compiling the
cause constraint is as follows:

Causes =
n∧
j=1

FilterEventTypej≫[Cause
1
j] (43)

Cause1j = ((Actj ,1:Cause
2
j) ∨ (NBj ,1:Cause

1
j) ∨ (NAct j ,1:Cause

1
j)) (44)

Cause2j = (Bj ,1:Cause
1
j) (45)

Fig. 12. Trace expressions for cause constraint: Bj ,i must be the “opposite operation” of NBj,i, and NAct j ,1 accepts every
action, except Act j ,1.

The trace expression for the cause constraint is very intuitive; we start in a state where as long as we observe actions
different from Act j ,1, we stay in the same state. But, upon reception of Act j ,1, the only possible next observation is the
perception Bj ,1, and nothing else. For instance, to observe another action instead of Bj ,1 is forbidden.

Before moving on to the next section, where we will focus on how a trace expression can be compiled into a Java
abstract model, it is important to discuss the kind of trace expressions that are generated by the EAASL compilation.
One could question the difference between writing a trace expression and generating a trace expression from an EAASL
specification. Specifically, we expect the trace expressions automatically generated from an EAASL specification to be
more compact (less verbose) and less inclined to contain errors than the trace expressions directly written by the user.
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 19

Protocol = (Cyclic [∧Whens]? [∧ Befores]? [∧Causes]?) (46)
Cyclic = Actions | Beliefs (47)
Actions = [defined in (15)] (48)
Beliefs = [defined in (6)] (49)
Whens = [defined in (22)] (50)
Befores = [defined in (35)] (51)
Causes = [defined in (43)] (52)

Fig. 13. Trace expression template for generating abstract environments.

This claim is supported by the fact that when we generate a trace expression starting from an EAASL specification,
we only create the terms that are needed, and nothing more. For each constraint in EAASL, we show how to extract
its corresponding trace expression. No additional terms are created in such translation if not explicitly required at
EAASL level. The same level of compactness can be achieved by directly writing the trace expression, but it is prone to
adding errors (unwanted behaviours) and useless constraints (bigger terms to represent the same notion). A complete
comparison between directly written and automatically generated trace expressions is however beyond the scope of
this paper.

3.3 Combining all trace expressions into the global abstract model

Now that we have all the individual parts of the trace expression, the final step is the combination of the separate trace
expressions into the global model that represents the abstract environment, as shown in Figure 13. The final protocol
can be generated by combining the three classes of constraints, the beliefs and the actions trace expressions obtained as
described in the previous section.

Cyclic (47) is the trace expression that describes the behaviour once the agent starts interacting with the model. It
consists in a shuffle between the possible beliefs and actions that can be observed. As in the configuration step, if we
stop right now we would have just an unstructured model. Each cycle, permissible beliefs and actions as defined by the
trace expression constraints can be observed or generated (depending on the use context). The presence at the Protocol
level of the three different constraints allows us to constrain the order of the events for each cycle.

3.4 Generating the Abstract Model

Once we have automatically generated a trace expression, we translate it into Java by implementing add_random_beliefs.
We omit the involved low level details (e.g. constructing appropriate class and package names) but just focus on the core
aspects10. Our trace expression is defined according to the template in Figure 13. Some parts of these trace expressions
are not directly translated into Java; the sub-expressions relevant to the generation of abstract models are Cyclic (47),
Whens (22), Befores (35) and Causes (43). Note that the MCAPL framework provides support for constructing logical
predicates and adding them to the belief base.

Cyclic contains a shuffle of trace expressions involving the actions and beliefs of our interest. Regarding the beliefs,
Beliefs = |ki=1 Beli , with Beli = (bel(belief i) :ϵ)∨(not_bel(belief i) :ϵ) ·Beli , defines the set of belief events that may occur.

10Full source code can be found in the MCAPL distribution: https://github.com/mcapl/mcapl. Code for the examples is also available from the University
of Liverpool data catalogue together with experimental data – https://www.doi.org/10.17638/datacat.liverpool.ac.uk/438

Manuscript submitted to ACM

https://github.com/mcapl/mcapl
https://www.doi.org/10.17638/datacat.liverpool.ac.uk/438

20 A. Ferrando, et al.

We define the set B(Beliefs) as bi ∈ B(Beliefs) iff (bel(bi)∨not_bel(bi)∨ϵ) is one of the interleaved trace expressions in
Beliefs. For each bi ∈ B(Beliefs) we define a predicate in the environment class and bind it to a Java field called bi .

Whens is used to filter out from the set of all possible perception events, the set violating the when constraints.
We construct a set of belief events satisfying theWhens constraint,Mx (Whens), which contains for all the conjuncts

inWhens the corresponding tuple (Bj ,1,Bj ,2).
The set of possible sets of belief events for our structured environment is:

PB(Beliefs,Whens) = {S | (∀bi ∈ B(Beliefs). bel (bi) ∈ S ∨not_bel (bi) ∈ S) ∧ (∀(B1, B2) ∈Mx (Whens). B1 ∈ S =⇒ B2 ∈ S)} (53)

Say that PB(Beliefs,Whens) contains k sets of belief events, Sj , 0 ≤ j < k . We generate a random integer between 1
and k :

1i n t assert_random_int = random_int_generator (k) ;

where random_int_generator is a special method that generates random integers in a way that supports a number of
AJPF features (in particular the ability to replay counter-example traces generated during model-checking) and for each
Sj we generate a if clause in the code which adds Sj as a perception

1i f (asser t_random_int == j) { add_percepts(Sj) }

Here add_percepts(Sj) adds bi to the percept base for each bel(bi) ∈ Sj . We do not need to handle the belief removal
events, not_bel(bi) ∈ Sj , because AJPF automatically removes all percepts before calling add_random_beliefs.

The if statements that are generated allow us to represent the set of beliefs satisfying theWhens constraints. The
other constraints we may have in the trace expression can modify these statements. More specifically, for each Causes
constraint denoting that an action action causes a belief b, we update all the if statements having Sj not containing b in
the following way:

1i f (asser t_random_int == j && ! act . getFunctor () . equals (action)) {
2add_percepts(Sj)
3}

where act.getFunctor() gives the name of the last action performed.
In this way, every time a belief set does not contain b, we require the action to be different from action, because

otherwise would be a violation of the Causes constraint.
The Befores constraint is slightly more complex. With it we can constrain the order of beliefs. Even though it is a

weaker limitation than the one forced byWhens , it requires us to keep track of previous information. For each Befores

constraint saying that a belief b1 has to happen before a belief b2; we modify all the if statements having Sj containing
b1, as follows:

1i f (asser t_random_int == j) {
2add_percepts(Sj)
3b1_observed = true ;
4}

And we modify all the if statements having Sj containing b2 as follows:

1i f (asser t_random_int == j && b1_observed) {
2add_percepts(Sj)
3}

Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 21

In this way, we force the order on the two beliefs, since we cannot generate any set of beliefs containing b2, as long
as we have not already observed b1. This translation process from trace expressions to Java is fully implemented in
SWI-Prolog.

3.5 Verifying MCAPL at Runtime

The same trace expression obtained from the EAASL specification is used to synthesise a monitor to validate at runtime
the consistence of the real environment with the abstracted one.

Since the MCAPL framework is implemented in Java, its integration with the trace expressions runtime verification
engine or “monitor” (namely, the Prolog engine that “executes” the δ transition function, briefly introduced in Section 2)
was done using the JPL interface11, between Java and Prolog. We use pre-existing work to monitor Java applications
using trace expressions expressed in Prolog [6, 7, 25, 26]. In order to verify a trace expression τ modelled in Prolog,
we supply the runtime verification engine with Prolog representations of the events taking place in the environment.
These are easily obtained from the abstraction engine and the Java environment that links to sensors and actuators. The
Java environment reports instances of assert_shared_belief, remove_shared_belief and executeAction to the runtime
verification engine which checks if the event is compliant with the current state of the modelled environment (namely,
the state where τ moved via δ , based on the previous observed events), and reports any violations that occur during
execution.

Imagine we have some program that has been verified in AJPF using a structured abstraction generated from the
trace expression τ . We have an abstraction engine and Java environment that link to sensors and actuators. We link the
Java environment to the existing Prolog implementation for runtime monitoring using trace expressions. This link
reports instances of assert_shared_belief, remove_shared_belief and executeAction to a Monitor object that forwards
these as events to the Prolog program. This monitor then reports any violations of the trace expression that occur
during execution.

4 CASE STUDIES AND EXPERIMENTS

In this section we report the experimental results obtained for two different case studies. The first one is derived from
Example 1, the cruise control agent. The second case study is more complex and involves the combination of multiple
frameworks such as Robotic Operating System12 (ROS), Gazebo13 and ROSBridge14.

The two case studies discussed in this section show how, by following the approach presented in this paper, we can
answer the following research questions:

• Can the constraints on the environment for autonomous cognitive systems expressed by EAASL help reduce the
complexity of the model checking problem?
• How can we assure that such constraints, besides avoiding the state explosion problem during the model checking
stage, are also met by the real world? Namely, how do we close the reality gap?
• If a constraint is violated, is the system informed in a reasonable amount of time?

Both case studies have been run on a machine with the following specification: Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz, 4 cores 8 threads, 16 GB RAM DDR4.

11http://jpl7.org, accessed on December 2020.
12https://www.ros.org/, accessed on December 2020.
13http://gazebosim.org/, accessed on December 2020.
14http://wiki.ros.org/rosbridge_suite, accessed on December 2020.

Manuscript submitted to ACM

http://jpl7.org
https://www.ros.org/
http://gazebosim.org/
http://wiki.ros.org/rosbridge_suite

22 A. Ferrando, et al.

4.1 Cruise Control

Figure 14 shows a possible definition of the abstract model for the cruise control example using EAASL.

1agent :
2car
3
4bel ie fs :
5safe
6d r i ve r_acce le ra tes
7a t_speed_ l im i t
8dr i ve r_brakes
9
10actions :
11acce le ra te
12brake
13
14constraints :
15when car believes d r i ve r_acce le ra tes i t believes safe
16car believes d r i ve r_acce le ra tes before bel ieving a t_speed_ l im i t

Fig. 14. EAASL configuration file for Cruise Control example.

Figure 15 shows the trace expression modeling the cruise control agent from Example 1. The single parts of such
trace expression have been introduced singularly through Section 3.2. This trace expression has been automatically
generated from the EAASL configuration file (Figure 14). When required, multiple beliefs and actions are combined into
an event type allowing all the events so combined. For instance, in Figure 15, we combine beliefs bel(driver_accelerate),
not_bel(driver_accelerate), bel(safe) and not_bel(safe), into the event type accelerate_or_safe. Such event type matches
all the beliefs combined to create it. Generally, we use combinations of beliefs and actions as conditions for the≫ operator
to filter out events which are not interesting for the trace expression contained in the body of the filter (right operand
of≫). For instance, in equation (63), we use the accelerate_or_safe event type to let only beliefs bel(driver_accelerate),
not_bel(driver_accelerate), bel(safe) and not_bel(safe) pass insideWhen1. All other events are filtered out, according
to the semantics of the≫ operator.

AJPF’s property specification language uses LTL extended with modalities for BDI concepts. For example, beliefs
such as B(a,b) are interpreted as agent a believes b. In this language □ means “it is always the case” and ♢ means “it is
eventually the case”.

4.1.1 Can constraints help reduce the complexity of the model checking problem? For our first case study, we
carried out experiments using the agent discussed in Example 1. First, we implemented an abstract environment model
in Java (recall that these are the standard unstructured abstractions used by AJPF), where the verification takes 7,378
states and 12:07 minutes to verify that it is always the case that eventually the car believes it is safe or that it is in the
process of braking:

□(B(car , safe) → □(♢(B(car , safe) ∨ B(car ,brakinд)))) (P1)

The condition B(car , safe) → at the start of the formula considers the possibility that the car never believes it is safe
since braking is only triggered when the safe belief is removed. To test our approach, we first used the automatically
generated trace expression in Figure 15 with the omission ofConstrs . Without the constraints the model is equivalent to
an unstructured abstraction, i.e., one where the percepts safe, at_speed_lim, driver_brakes, and driver_accelerates could
all either be true or false at any moment. Verifying (P1) in an abstract model generated from this trace expression without
the constraints took 7,378 states and 12:07 minutes. The behaviour was exactly the same as that for the environment
model created in Java.
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 23

Protocols = (Belie f s | Actions) ∧Constrs (54)
Beliefs = (Safe | DriverAccelerates | AtSpeedLimit | DriverBrakes) (55)
Safe = ((bel(safe):ϵ) ∨ (not_bel(safe):ϵ)) · Safe (56)

DriverAccelerates = ((bel(driver_accelerates):ϵ) ∨
(not_bel(driver_accelerates):ϵ)) · DriverAccelerates (57)

AtSpeedLimit = ((bel(at_speed_limit):ϵ) ∨ (not_bel(at_speed_limit):ϵ))
· AtSpeedLimit (58)

DriverBrakes = ((bel(driver_brakes):ϵ) ∨ (not_bel(driver_brakes):ϵ))
· DriverBrakes (59)

Actions = (Accelerate | Brake) (60)
Accelerate = action(accelerate):Accelerate (61)

Brake = action(brake):Brake (62)
Constrs = (accelerate_or_safe≫When1) ∧

(accelerate_or_at_speed≫Before) (63)
When1 = (bel(safe) :When2) ∨

((not_bel(driver_accelerates):ϵ) ∨ (not_bel(safe):ϵ)) ·When1 (64)
When2 = (bel(driver_accelerates):When3) ∨ (not_bel(safe):When1)

∨ ((bel(safe):ϵ) ∨ (not_bel(driver_accelerates):ϵ)) ·When2 (65)
When3 = ((bel(driver_accelerates):ϵ) ∨ (bel(safe):ϵ)) ·When3

∨ (not_bel(driver_accelerates):When2) (66)
Before = (bel(driver_accelerates):All) ∨ ((not_bel(driver_accelerates):ϵ) ∨

(not_bel(at_speed_limit):ϵ)) · Be f ore (67)
All = ((bel(driver_accelerates):ϵ)∨(not_bel(driver_accelerates):ϵ)
∨(bel(at_speed_limit):ϵ)∨(not_bel(at_speed_limit):ϵ))·All (68)

Fig. 15. Automatically generated trace expression for the Cruise Control Agent.

We then investigated the effect of structuring the model using the complete trace expression (i.e., with the constraints).
With this abstraction (P1) takes 4:33 minutes to prove using 2947 states – one third of the model checking time and the
size of the state space.

This answers our research question, indeed by adding constraints on the environment we managed to reduce the
model checking time. This is achieved by pruning states that are not considered valid since we are assuming specific
situations will never occur. In this case, for instance, we are removing the states where the agent would have believed
to have reached the speed limit without the driver previously accelerating.

4.1.2 How can we assure the abstraction’s constraints are met by the real world? In autonomous driving, it is
important that an autonomous vehicle should not be able to override the actions of a driver. In our previous example
the vehicle violates this rule – it would only let the driver accelerate if it was safe to do so, and it would brake whenever
it detected unsafe conditions even if the driver was currently trying to accelerate. We adapted the program, removing
these restrictions. This modified program could not be verified in the unstructured model because our property is not

Manuscript submitted to ACM

24 A. Ferrando, et al.

actually true in that model – if the driver continually accelerates in an unsafe situation then the car can never brake.
However, it is true in the structured model which assumes that the driver never accelerates if the situation is unsafe.
When we run this program in our simulator it is indeed possible to cause a crash by accelerating in unsafe conditions.
This is where using runtime verification can be advantageous. The monitor logs an exception at the moment when the
unsafe acceleration takes place. It generates the error message shown below and also shows the current state of the
trace expression, which is the equivalent of (65) in Figure 15.

* * * DYNAMIC TYPE−CHECKING ERROR * * *
Message event (abs t rac t ion_car0 , assert_shared (d r i ve r_acce le ra tes))
cannot be accepted i n the cu r ren t s t a t e

S_8=(be l (safe) : S_6) \ / ((not_be l (safe) : eps i l on) \ /
(not_be l (d r i ve r_acce le ra tes) : eps i l on)) * S_8])

This identifies the system as now being in an unverified state, as this acceleration has violated the trace expression. The
example shows how we have addressed the development of a principled mechanism for creating structured abstractions
in a way that allows us to provide at least some guarantee of the validity of our results.

This answers our research question, indeed the automatically synthesised monitor is capable of catching violations
of the abstract environment’s restrictions. This helps close the reality gap between what is assumed at design time (in
the first research question to reduce the model checking time) and how the real system behaves. Thanks to the addition
of a monitor we can control the real system, and when an event violating the abstract environment’s constraints is
observed, the monitor can raise an error informing the system about it.

4.1.3 If a constraint is violated, is the system informed in a reasonable amount of time? We have shown the
time required to model check the agent in AJPF using structured and unstructured abstractions. We have also shown
how the addition of assumptions on the model of the environment helped reducing the time required for performing
model checking of LTL properties, by pruning states we assume will never occur. Next, present an evaluation of the
monitoring process applied to the system at runtime. More specifically, we evaluate two aspects: monitor response
time, and memory usage.

In Figure 16, we report the response time of the monitor for the cruise control case study. On the x-axis, we have the
length of the analysed trace; on the y-axis, we have the time the monitor requires to intercept and analyse a single event
of the trace. The monitor response time does not suffer from increasing the trace length. The average time it requires
to intercept and analyse an event (the red line in the graph) is around 0.5 milliseconds. Our results corroborate the
findings found in [10], that the runtime verification problem using trace expressions requires linear time with respect
to the trace length.

This answers our research question, indeed the runtime verification problem can be solved in linear time with respect
to the trace length. These results show that the use of a monitor is not invasive, and allow its use in scenarios where
the resources of the system are limited.

In Figure 17, we report the memory usage of the cruise control system execution, with and without a monitor. As we
can see, the presence of a monitor running in parallel with the system does not affect negatively the memory usage,
which is almost unaltered. This allows us to show that increasing the length of the trace to be analysed the monitor
does not require an increased amount of memory. This observation can also be proved by considering the kind of trace
expressions used to represent abstract environments. Such trace expressions can be cyclic, but can never increase in
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 25

Trace length

M
on

ito
r R

es
po

ns
e

Ti
m

e
[m

s]

0,0

0,5

1,0

1,5

2,0

100 200 300 400 500

Fig. 16. Monitor response time for a sample trace observed during execution of the cruise control case study.

size15; thus, we can always find a finite and constant number T for which at any state, the trace expression will always
have a number N of possible event types to check, s.t. N ≤ T .

4.2 Simulation Mars Curiosity Rover

To further demonstrate the feasibility of our approach, we introduce another challenging case study where our
framework has been successfully applied. This case study involves a simulation of the Mars Curiosity Rover whose
main objectives include recording image data and collecting soil/rock data.

Even though in the original mission the software used in Curiosity was not ROS-based, a ROS simulation in Gazebo
has been developed16 using official data and 3D models of Curiosity and Mars terrain that were made available by
NASA.

ROS [83] is an open-source set of software libraries and tools to build robotic applications. It is modular, supported by
a large community, and highly compatible with many types of robots. We used the existing integration of the Curiosity
rover simulation with MCAPL17 [28], where the ROS simulation is extended to allow the rover to be guided by an agent
coded in Gwendolen. Such integration has been possible thanks to the ROSBridge package, which has been used to
establish the communication between the Gwendolen agent and the Curiosity rover in ROS. In this implementation,
the actions performed by the agent are directly mapped into ROS messages published on the corresponding topics
(communication channels) used by Curiosity; conversely, to obtain the action results and the perceptions coming from
the sensors the agent has to subscribe to the relevant ROS topic.

15According to trace expressions operational semantics, no new terms can be generated by expanding a term.
16https://bitbucket.org/theconstructcore/curiosity_mars_rover/src/master/, accessed on December 2020.
17https://github.com/autonomy-and-verification-uol/gwendolen-ros-curiosity, accessed on December 2020.

Manuscript submitted to ACM

https://bitbucket.org/theconstructcore/curiosity_mars_rover/src/master/
https://github.com/autonomy-and-verification-uol/gwendolen-ros-curiosity

26 A. Ferrando, et al.

Trace length

M
em

or
y

us
ag

e
[M

B
]

0,00

25,00

50,00

75,00

100,00

[1-100] [100-200] [200-300] [300-400] [400-500]

Memory usage without monitor [MB] Memory usage with monitor [MB]

Fig. 17. Memory usage of the cruise control process with and without a monitor.

Besides being a challenging case study to evaluate our approach in practice, we chose this scenario for two main
reasons. First, the Gwendolen interface with ROS18 [29]: by showing the applicability of our approach to this scenario,
we show that this could also be used for many other robotic applications developed in ROS. Second, its highly dynamic
and unpredictable environment: our approach is focused on recognising assumptions violations in the abstract model
used in the static verification process. Depending on the scenario, the environment can be more easily and safely
abstracted, but, in complex, unpredictable and error-prone scenarios it is necessary to have a validation process at
runtime.

In the following, we present an example of the code used by the agent controlling the Curiosity rover to patrol an
area on the Mars surface.

Example 2. (Simulation Mars Curiosity Rover). We consider a patrolling mission, where the Curiosity has to patrol four

waypoints (a, b, c, and d). At the start of the simulation, the rover waits for the initialisation of the low-level arm, mast

and wheels control modules. The belief +actuator_ready(Mode) is added, with Mode varying on the set {arm, mast, wheels}.

When all three of them are correctly set and ready for the mission, the goal start is added. The corresponding plan performs

two actions sequentially, first the agent asks the rover to turn right of a certain amount, then it asks to extend the mast

(control_mast(open)); this allows the Curiosity to take pictures using the camera that is mounted on top of the mast. After

the completion of each control_wheels action (used to make the rover move), the agent receives the movement_completed

belief. Each time, depending on where the agent believes to be, a different plan is selected and that makes the agent patrol

18https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge, accessed on December 2020.

Manuscript submitted to ACM

https://github.com/autonomy-and-verification-uol/gwendolen-rosbridge

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 27

a different waypoint on the Mars surface. In some of these steps the actions control_mast and control_arm are performed

in order to simulate interaction with the environment (like taking pictures and moving the arm in different positions to

manipulate soil or rock samples).

1:name :
2c u r i o s i t y
3

4: I n i t i a l Bel iefs :
5ready (0)
6p a t r o l (f i r s t t u r n)
7

8: Plans :
9

10+actuator_ready (Mode) : { B ready (0) } ←
11−actuator_ready (Mode) , −ready (0) , +ready (1) ;
12+actuator_ready (Mode) : { B ready (1) } ←
13−actuator_ready (Mode) , −ready (1) , +ready (2) ;
14+actuator_ready (Mode) : { B ready (2) } ←
15−actuator_ready (Mode) , −ready (2) , + ! s t a r t [perform] ;
16

17+! s t a r t [perform] : { ⊤ }
18← cont ro l_wheels (r i g h t , 4 5) ,
19cont ro l_mast (open) ;
20

21+movement_completed : { B p a t r o l (f i r s t t u r n) } ←
22−movement_completed , −p a t r o l (f i r s t t u r n) , + p a t r o l (ha l f f o rwa rd) , cont ro l_wheels (forward , 3 5) ;
23+movement_completed : { B p a t r o l (ha l f f o rwa rd) } ←
24−movement_completed , −p a t r o l (ha l f f o rwa rd) , + p a t r o l (f i n a l t u r n) , cont ro l_wheels (r i g h t , 4 5) ;
25+movement_completed : { B p a t r o l (f i n a l t u r n) } ←
26−movement_completed , −p a t r o l (f i n a l t u r n) , + p a t r o l (a) , + p a t r o l (t u rn) , cont ro l_wheels (forward , 5 0) ;
27+movement_completed : { B p a t r o l (a) , B p a t r o l (t u rn) } ←
28−movement_completed , −p a t r o l (t u rn) , cont ro l_wheels (r i g h t , 4 5) , cont ro l_mast (c lose) , contro l_arm (open) ;
29+movement_completed : { B p a t r o l (a) , ~B p a t r o l (t u rn) } ←
30−movement_completed , −p a t r o l (a) , + p a t r o l (b) , + p a t r o l (t u rn) , cont ro l_wheels (forward , 5 0) ;
31+movement_completed : { B p a t r o l (b) , B p a t r o l (t u rn) } ←
32−movement_completed , −p a t r o l (t u rn) , cont ro l_wheels (r i g h t , 4 5) ;
33+movement_completed : { B p a t r o l (b) , ~B p a t r o l (t u rn) } ←
34−movement_completed , −p a t r o l (b) , + p a t r o l (c) , + p a t r o l (t u rn) , cont ro l_wheels (forward , 1 0 0) ;
35+movement_completed : { B p a t r o l (c) , B p a t r o l (t u rn) } ←
36−movement_completed , −p a t r o l (t u rn) , cont ro l_wheels (r i g h t , 4 5) , cont ro l_mast (open) , contro l_arm (c lose) ;
37+movement_completed : { B p a t r o l (c) , ~B p a t r o l (t u rn) } ←
38−movement_completed , −p a t r o l (c) , + p a t r o l (d) , + p a t r o l (t u rn) , cont ro l_wheels (forward , 1 0 0) ;
39+movement_completed : { B p a t r o l (d) , B p a t r o l (t u rn) } ←
40−movement_completed , −p a t r o l (t u rn) , cont ro l_wheels (r i g h t , 4 5) ;
41+movement_completed : { B p a t r o l (d) , ~B p a t r o l (t u rn) } ←
42−movement_completed , −p a t r o l (d) , + p a t r o l (a) , + p a t r o l (t u rn) , cont ro l_wheels (forward , 1 0 0) ;

As in the cruise control example, we have verified several LTL properties. We report one of them here (cur is the
abbreviation for curiosity):

□((B(cur , patrol(a)) ∧ B(cur ,mast(open)) ∧ B(cur , arm(close))) →

(♢(B(cur , patrol(b)) ∧ B(cur ,mast(close)) ∧ B(cur , arm(open))))) (P2)

With (P2) we check that each time the agent believes it is patrolling position a, with the mast open and the arm
closed, then, eventually it will believe it is patrolling position b, with the mast closed and the arm open instead.

Manuscript submitted to ACM

28 A. Ferrando, et al.

As in the previous case study, in order to verify the properties in AJPF, we have to create an abstract model of the
environment first. Here, the EAASL specification is useful to describe more complex abstractions in a higher-level.

1agent :
2c u r i o s i t y
3
4bel ie fs :
5movement_completed
6actuator_ready (wheels)
7actuator_ready (mast)
8actuator_ready (arm)
9mast (open)
10mast (c lose)
11arm (open)
12arm (c lose)
13
14actions :
15cont ro l_wheels
16cont ro l_mast
17contro l_arm
18
19constraints :
20c u r i o s i t y believes actuator_ready (wheels) before bel ieving movement_completed
21c u r i o s i t y believes actuator_ready (mast) before bel ieving movement_completed
22c u r i o s i t y believes actuator_ready (arm) before bel ieving movement_completed
23when c u r i o s i t y believes mast (open) i t does not believe mast (c lose)
24when c u r i o s i t y believes arm (open) i t does not believe arm (c lose)
25the ac t i on cont ro l_mast (open) causes c u r i o s i t y to believe mast (open)
26the ac t i on cont ro l_mast (c lose) causes c u r i o s i t y to believe mast (c lose)
27the ac t i on contro l_arm (open) causes c u r i o s i t y to believe arm (open)
28the ac t i on contro l_arm (c lose) causes c u r i o s i t y to believe arm (c lose)

Fig. 18. EAASL configuration file for the Mars Curiosity Rover example.

Figure 18 shows our EAASL specification for the Mars Curiosity Example. At the start we specify the name of the
agent involved in the verification, curiosity , and the list of beliefs which are generated by the environment. Then, we
have the list of actions which can be performed by the agent in the environment: the three types of control action
for interacting with the wheels, the mast and the arm of the Mars rover. Finally, we have the list of constraints that
we want to enforce in the abstract model. The first three are before constraints, which are used to enforce the order
between actuator_ready and movement_completed. This means that all the rover components have to be ready before
being allowed to observe movement_completed. After that, we have two when constraints where we enforce exclusivity
between mast(open) and mast(close) (respectively for arm(open) and arm(close)). With these two constraints, we can
remove all the scenarios from the abstract model where the agent believes that the mast is both open and close (the
same for the arm). Finally, the last four lines are cause constraints, which we use to create cause-effect relations between
performing a controlling action (e.g. control_mast(open)) and the belief we expect to be generated by the abstract
environment (e.g. mast(open)) as result.

4.2.1 Can constraints help reduce the complexity of the model checking problem? In contrast to the specification
for the cruise control example in Figure 14, there are many beliefs and actions available to the agent in this example. This
highlights an important aspect of the use of unstructured models, that is the state space explosion problem (common in
model checking). We are going to need the constraints not only to reduce the execution time of the model checker (as
in the cruise control example), but simply to make the process feasible. Without constraining the environment, AJPF is
not actually capable of completing the model-checking execution because of the huge number of states to check. By
adding the constraints and consequently removing a large set of states, AJPF is then able to complete the analysis.
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 29

The trace expression deriving from the compilation of the high-level specification presented in Figure 18 is not
shown because of its size. The full trace expression can be found in the Appendix. We have performed the verification
of the (P2) LTL property with both the unstructured and structured abstraction models. Where the unstructured model
corresponds to compiling the specification in Figure 18 without the list of constraints, and the structured one is compiled
using the full specification.

When we generate an unstructured environment from our specification (via a trace expression) and attempt to
verify the agent using this environment, the verification process runs out of memory and crashes due to state space
explosion. Using the structured abstraction, due to its many constraints we can reduce the number of states to be
analysed by the model checker, and the verification process completes successfully. That is, (P2) is considered satisfied
by the Gwendolen agent executing in the structured environment model. The final number of states analysed is 10,438,
and the time required to analyse them is 51 seconds.

In this case study, we show how adding constraints while abstracting the environment can make the model checking
problem feasible. By reducing the size and complexity of the model of the environment we can verify the LTL property
of interest, empirically answering the research question.

4.2.2 How can we assure the abstraction’s constraints are met by the real world? As in the cruise control case
study, here we also need to close the reality gap induced by adding constraints while abstracting the environment.
This can be done by validating the structured abstraction at runtime, through the monitoring of the trace expression
generated by the EAASL high-level specification. Using EAASL we synthesise the abstract model of the environment
used by AJPF (static verification), and then, the monitor (runtime verification) that we use to validate the conformance
of the real ROS environment against this abstraction.

We force a violation of our constraints at runtime to show how the monitor works. For this example, we cause
a protocol violation by forcing a failure in one of the control_mast action executions in the ROS/Gazebo simulation.
More specifically, considering the constraints we listed in the specification, we can introduce a ROS-side failure upon a
control_mast(open) causing the mast to fail to open and so the corresponding mast(open) belief is never asserted. Even
though such a violation has been manually induced, it represents a typical error determined by a failure in the real
world. In this case, we are assuming that each time the action control_mast(open) is performed, the rover succeeds
in opening the mast component, producing the mast(open) belief. But some technical difficulty causing the mast to
not open could really happen in a real scenario. To assume that a control_mast(open) action will never fail can help to
reduce the size of the model to statically verify, but we need a runtime monitor to close the gap and control that this
will always be the case.

In this scenario, if the mast fails to open, we have a violation of the cause constraint:

1the ac t i on cont ro l_mast (open) causes c u r i o s i t y to believe mast (open)

and generates the following violation through the monitor

* * * DYNAMIC TYPE−CHECKING ERROR * * *
Message event (c u r i o s i t y , ac t i on (cont ro l_wheels (r i g h t , 4 5)))
cannot be accepted i n the cu r ren t s t a t e

_S18 = (be l (mast (open)) : _S18)

A violation occurs after performing control_mast(open) and not receiving back the belief mast(open). In the current
state the only acceptable event is mast(open), which is the expected result of the previous action, but, because of the

Manuscript submitted to ACM

30 A. Ferrando, et al.

failure on ROS-side we never received it. Thus, the next following action, control_wheels(right , 45) (according to the
implementation showed in Example 2), is considered wrong because it is violating the cause-effect relation.

By adding a monitor at runtime looking for environment’s constraints violations, we can identify if a violation
happens and inform the system accordingly. This answers the research question since the presence of the monitor at
runtime helps assuring the system will behave as intended. As long as the monitor does not find a violation at runtime,
we will know that the real system is holding to our expectations.

4.2.3 If a constraint is violated, is the system informed in a reasonable amount of time? We carried out
experiments to evaluate the monitor response time and memory usage in the Curiosity rover case study.

Trace length

M
on

ito
r R

es
po

ns
e

Ti
m

e
[m

s]

0,00

0,25

0,50

0,75

1,00

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

Fig. 19. Monitor response time for a sample trace observed during execution of the Curiosity case study.

In Figure 19, we report the monitor response time per event for a sample trace. As observed in the previous case
study, the time required by the monitor to intercept and analyse an event does not depend on the length of the trace.
The average response time (the red line) is around 0.68 milliseconds. In comparison to the cruise control case study,
in the Curiosity case study the machine used for the evaluation had more computations to perform, and the trace
expression generated by the EAASL high-level definition is slightly more complex. This resulted in slightly higher
average response time for the monitor.

These results empirically show the feasibility of using a monitor at runtime even in the more complex scenario of
the Curiosity rover. Moreover, in contrast to the cruise control case study, this scenario has more resource constraints,
since the Curiosity rover has a predetermined computational power and memory, which cannot be changed on the fly;
once deployed, it has to complete its missions using its fixed resources.

In Figure 20, we show the memory usage for the Curiosity case study. It is important to note that the process that
was profiled to report memory usage was restricted to MCAPL; it did not include ROS and Gazebo processes (which
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 31

Trace length

M
em

or
y

us
ag

e
[M

B
]

0,00

25,00

50,00

75,00

100,00

[1-100] [100-200] [200-300] [300-400] [400-500]

Memory usage without monitor [MB] Memory usage with monitor [MB]

Fig. 20. Memory usage of the Curiosity process with and without a monitor.

take a lot more memory, but are not influenced by our approach). Similar to the previous case study, we observe that the
presence of a monitor does not affect significantly the amount of memory required by the process execution. We can
also observe that the memory usage is not influenced by increasing the length of the trace (x-axis), or more specifically,
that the monitor requires constant memory.

4.3 Discussion

In this section we presented two case studies used to show the feasibility of our approach. Specifically, we focused on
three different research questions to show how our work can reduce the complexity of model checking, close the reality
gap deriving by restrictions added at design time, and quickly respond to constraint violations at runtime.

The two case studies cover (a) problems where a structured abstraction of the system is needed (for different reasons,
from performance to pure feasibility); and (b) problems where we cannot trust the system will always behave as
expected.

The choice of the two case studies was guided by their intrinsic need to abstract the environment in order to perform
static verification. In a different scenario, where no abstraction of the environment or no constraints on an unstructured
abstraction were needed, our approach would not be necessary; the model checking problem would be feasible on
the full state space of the environment or its unstructured abstraction. This would mean that no reality gap would
have been introduced. We considered two case studies which represent two typical scenarios where abstracting (and
constraining) is not optional. In the first case study, we presented a typical scenario where the advantage of abstracting
is in reducing model checking time. This confirmed our expectations and has shown how our approach closes the entire
loop, from abstracting at design time, to validating at runtime through monitors. In the second case study, we could

Manuscript submitted to ACM

32 A. Ferrando, et al.

stress even further the advantage of abstracting the environment, since the model checking problem without constraints
on the environment was not feasible. Moreover, the second case study tackles a challenging scenario involving a robotic
application, and has shown how our approach could handle the increased complexity.

We considered different restrictions in order to reduce the complexity of model checking. EAASL is expressive
enough to represent all the constraints that were needed in our case studies. In Section 6, we comment more on possible
future developments on the expressiveness of EAASL.

5 RELATED WORK AND COMPARISON

As observed by Fisher, Mascardi, et al. in their recent paper on certification of reliable autonomous systems [52], formal
methods are a suitable technique for design, specification, validation, and verification of a wide variety of systems,
including autonomous and robotic ones. This opinion is shared by many authors [30, 61, 93].

In some formal methods, such as model checking and theorem proving [68], both the system under verification and
the properties to be verified are modelled using a rigorous mathematical or logical language. Other methods model the
properties to check using rigorous formalisms and languages, and check the property against the real system under
certification. These methods include some static analysis approaches [79] and runtime verification.

Combining static and runtime verification methods raises many issues due to the fact that properties are checked
against a model in the first case, and against a real running system in the second. To the best of our knowledge, very
few attempts to carry out such a combination exist.

In a position paper dating back to 2014, Hinrichs et al. suggested to “model check what you can, runtime verify the
rest” [57]. Their work presented several realistic examples where such mixed approach would give advantages, but
no technical aspects were addressed. Desai et al. [42] present a framework to combine model checking and runtime
verification for robotic applications. They represent the discrete model of their system using the P language [43], check
the model and extract the assumptions deriving from such abstraction. Despite sharing the same purpose, our work is
applied to a different research area (cognitive autonomous systems) and trace expressions are more expressive than STL
specifications [69] that were used in [42]. Kejstová et al.[63] extended an existing software model checker, DIVINE [17],
with a runtime verification mode. The system under test consists of a user program in C or C++, along with the
environment. The model checker operates in two modes: in run mode, a single execution of the program is explored
in the standard execution order; in verify mode, the standard model checking algorithm is applied. This extension to
DIVINE, besides being a prototype with many limitations recognised by the authors themselves, operates on C or C++
programs. Other blended approaches exist, such as a verification-centric software development process for Java making
it possible to write, type check, and consistency check behavioural specifications for Java before writing any code [97].
Although it integrates a static checker for Java and a runtime assertion checker, it does not properly integrate model
checking and RV. Both the Java approach and the extension to DIVINE are targeted to specific programming languages,
and hence are not comparable with our approach.

Other methods such as software testing – which are generally not considered to be formal – are widely adopted in
industry. The ‘Software Testing Services Market by Product, End-users, and Geography – Global Forecast and Analysis
2019-2023’ [60] foresees that the software testing services market will grow at a compounded average growth rate of
over 12% during the period 2019-2023.

Many approaches for testing software or models exist. For example, Menghi et al. [71] propose an automated approach
to translate requirements of Cyber Physical Systems specified in a logic-based language into test oracles (mechanisms

Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 33

to automatically determine whether a test has passed or failed) specified in Simulink19 – a graphical programming
environment for modeling, simulating and analysing multi-domain dynamic systems. This and similar approaches would
be worth exploring because of the well known connections between software testing and runtime verification [13, 47]:
a really holistic approach would integrate software testing as a further stage of the process depicted in Section 3.

Next, we analyse related work according to the stages of the process presented in Figure 3: works that introduce
formalisms for expressing properties of systems and perform static and/or runtime verification; works that define
DSLs for specifying temporal properties; works addressing the development of safe structured abstractions for model
checking; and works on model checking and RV of Multi-Agent Systems (MAS).

5.1 Formalisms for Specifying Temporal Properties

Temporal properties to be automatically verified, either statically or dynamically, are often represented using temporal
logic. There are many surveys on temporal logic, starting from [56, 81] and moving to more recent works such as
[20, 77, 95], which take time and intervals into account. The most well known and widely used variant of temporal
logic is LTL, which is often applied in model checking [15].

When used for RV, LTL has some major limitations. Let us consider the following sequence of states, where ϕ andψ
are different formulae:

ϕ −→ ϕ −→ ϕ −→ ϕ

Does the sequence satisfy ^ψ? Given that the sequence is finite, an answer based on Pnueli’s semantics [81], which
takes infinite sequences or paths into account, is hard to provide: ^ψ is in fact satisfied if, from some time point j ≥ 0
on,ψ becomes true. If the sequence is only a prefix of a (possibly) longer sequence, where the next states are unknown
(i.e., they must still be observed), then it might be the case that ^ψ is true, if in some successive observed state ψ
became true. Given that runtime verification aims to monitor the behaviour of a system and raises errors only when
these errors actually take place, the correct answer to the question above in a runtime verification setting would be it
might, or it might not.... In other words, the verdict is inconclusive .

LTL3 has been proposed by Bauer, Leucker, Schallhart [19] in order to make LTL suitable for runtime verification.
LTL3 is defined on finite traces and its semantics is based on three truth values: true , f alse and inconclusive .

Timed Linear Temporal Logic [88] is a variant of LTL, and Metric Temporal Logic (MTL [64]) is an example of Timed
Linear Temporal Logic. It extends LTL by constraining the until operator to an interval I that can be open, closed or
half open: I ⊆ R≥ 0 whose left and right arguments belong to N ∪ {∞}.

Metric Interval Temporal Logic (MITL [3]) shares both the syntax and the semantics with MTL, being a sort of
restricted MTL. The difference is that the constraint on time intervals can be imposed to what is called punctuality. Let⋃
I be the until operator and I = [a, b] with a, b ∈ R≥ 0. The constraint b > a is set in MITL, so that I = [a, a] is not a

valid interval.
Other variants of LTL often used in RV (see Sect 2.1 of [46]) are Mission-time Linear Temporal Logic (MLTL [65, 66])

and First-Order Linear Temporal Logic (FOLTL [18]), whereas in the cyber-physical systems domain, Timed Regular
Expressions (TRE [14]), Signal Temporal Logic (STL [70]), Extended Signal Temporal Logic (xSTL [76]) and Signal
First-Order Logic (SFO [16]) are also used. TRE specifies discrete behaviors augmented with timing information, whose
expressive power is equivalent to the timed automata of Alur and Dill [2]. xSTL integrates TRE within STL, and SFO
combines first-order logic with linear-real arithmetic and unary function symbols interpreted as piecewise-linear signals.

19https://www.mathworks.com/products/simulink.html, accessed on December, 2020.

Manuscript submitted to ACM

https://www.mathworks.com/products/simulink.html

34 A. Ferrando, et al.

An offline monitoring procedure for SFO has been developed that has polynomial complexity in the size of the input
trace and the specification, for a fixed number of quantifiers and function symbols.

Trace expressions, initially devised for modeling interaction protocols in MAS, have been successfully adopted for
specifying different kinds of behavioural patterns, including interactions among objects in Java-like programs [8] and
Internet of Things applications developed with Node.js [12]. There are many differences between trace expressions
and the formalisms mentioned in this section here. First, to the best of our understanding of these formalisms, none is
more expressive than context free grammars, as traces expressions are. Second, trace expressions have been conceived
with online RV in mind; the differences between trace expressions and LTL in the RV setting have been discussed by
Ancona et al. [10]; similar arguments may be adapted to formalisms that extend LTL, and to formalisms for which only
offline monitoring procedures exist. Third, trace expressions come with many implemented extensions ranging from
parametric trace expressions [11] to timed ones [32]. Implementations exist for executing or verifying a specification in
most formalisms above; this is true also for trace expressions, whose monitor is fully implemented in SWI-Prolog20 and
available to the research community21.

Given the current definition of EAASL, we could have selected most of the temporal formalism mentioned above as
the target for the compilation from EAASL. While it is true that trace expressions have been shown to be more expressive
than standard LTL, and that they come with many already implemented extensions to cope with parameters, time, etc,
these features have not been exploited because EAASL’s expressive power is limited. Yet. In fact, trace expressions
are suitable for being the target of the compilation even if, or when, EAASL will become more complex, powerful,
expressive. In the future, we will be able to reuse the work we already did, and just add the compilation of new linguistic
elements down to trace expressions, ready to support them. This would not be true if we opted for a less expressive
target language since the beginning of the EAASL engineering.

Extensibility is one strong motivation for our choice.

5.2 DSL for User Friendly Specification of Temporal Properties

The direct use of any of the languages and formalisms mentioned in Section 5.1 requires a high level of experience
from the user. For this reason, many languages exist that simplify the specification of temporal properties by making
assumptions on the domain, by providing a graphical interface, or by restricting the language expressive power. They
share with EAASL the goal of making the writing and understanding of properties easier for human users.

While most of them include patterns for stating that something should take place before or after something else,
none addresses the specification of structured abstractions of environments for autonomous cognitive systems, and
none has explicit statements for addition/removal of beliefs.

In PROPEL [90], property pattern templates are represented both as finite state automata and using a disciplined
natural language notation. In both cases, the events that are specified, along with their relationships, are actions and
responses. As an example, the sentence in natural language “after the elevator button is pushed, the elevator closes its
doors” is translated into the PROPEL disciplined natural language notation “one or more occurrences of button-push
eventually result in only one occurrence of door-close, button- pushmay occur zero times, door-close cannot occur before
the first button-push occurs. The behavior above is repeatable”.

Structured natural language is also used in FRETISH [54] that incorporates features from existing research and from
NASA applications. FRETISH underlying semantics is determined by the types of four fields: scope, condition, timing,

20https://www.swi-prolog.org/, accessed on December, 2020.
21https://github.com/RMLatDIBRIS/monitor, accessed on December, 2020.

Manuscript submitted to ACM

https://www.swi-prolog.org/
https://github.com/RMLatDIBRIS/monitor

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 35

DSL Target low-level formalism Explicit addition/removal of beliefs Can be manually introduced?
PROPER Finite State Automaton ✗ ✓

FRETISH Future/Past Time LTL ✗ ✓

VISPEC MTL ✗ ✓

RML Trace expressions ✗ ✓

ProMoBox LTL ✗ ✓

EAASL Trace expressions ✓ not necessary
Table 1. DSLs for the specification of temporal properties.

and response. Each combination of field types defines a template from which future and past-time MTL formulas can be
constructed. A sentence such as “When roll AP (Auto Pilot) is not engaged, the command to the roll actuator shall be
zero” is translated into FRETISH as “RollAP shall always satisfy !ap_engaged =⇒ roll_act_cmd = 0.0”. So far, FRETISH
does not support responses that involve ordering of actions or conditions that persist for some time interval.

VISPEC [59] is a graphical tool designed for the development and visualisation of formal specifications by users
that do not have training in formal logic. Specifications in the fragment of MTL formulas called Safety MTL can be
visually represented such as ϕ1 = □[0,36](rpm < 4000), which states that in the next 36 seconds the engine speed should
always be less than 4000, and ϕ2 = ^[0,39](speed > 100), which states that eventually, within the next 39 seconds the
vehicle speed will go over 100. One valuable aspect of the paper presenting VISPEC is that it also presents a usability
study that involved users familiar/not familiar with system requirements. The result was that users who have little to
no mathematical training in formal logic could nevertheless develop formal specifications. Extending EAASL with a
graphical interface would further simplify the specification of properties in our framework.

RML, the Runtime Monitoring Language22 [53] is a rewriting-based and system agnostic DSL for RV which decouples
monitoring from instrumentation by allowing users to write specifications and to synthesise monitors from them,
independently of the system under scrutiny and its instrumentation. RML is compiled down into trace expressions, as
EAASL does, but it serves a different purpose, being aimed at specifying traces of domain independent events rather
than constraints on addition and removal of beliefs and on action execution.

Finally, ProMoBox [73] moves a step further in pursuing generality. It integrates the definition and verification
of temporal properties in discrete-time behavioural Domain-Specific Modelling Languages (DSML) whose semantics
can be described as a schedule of graph rewrite rules. With ProMoBox, the user models not only the system with a
DSML, but also its properties, input model, runtime state and output trace. The DSML is thus comprised of five sub-
languages, which share domain-specific syntax. The modelled system and its properties are transformed to Promela23,
and properties are verified with the Spin [58] model checker. Compared to ProMoBox, EAASL addresses one specific
domain (autonomous cognitive systems) only. This makes its use unsuitable in many domains, but much easier in the
one it has been conceived for.

In Table 1, we compare the DSLs analysed in this section. For each DSL, we consider the low-level formalism to
which the high-level specification is compiled to, the presence of explicit addition/removal of beliefs, and the possibility
of introducing beliefs in the DSL, if required.

22https://rmlatdibris.github.io/, accessed on December, 2020.
23http://spinroot.com/spin/Man/grammar.html, accessed on December, 2020.

Manuscript submitted to ACM

https://rmlatdibris.github.io/
http://spinroot.com/spin/Man/grammar.html

36 A. Ferrando, et al.

5.3 Safe Structured Abstractions for Model Checking

“Enabling sufficiently precise yet tractable verification” with models – be they explicit or under the hood – of a real
environment is a main research issue [91]. Developing “safe” structured abstractions of the environment (“environment
models”) for model checking that are sufficiently precise to enable effective reasoning yet not so over-restrictive that
they mask faulty system behaviours has been understood as a significant challenge since the early 2000s [78].

The Bandera Environment Generator [91] is a toolset that automates the generation of environments to provide
a restricted form of modular model checking of Java programs. Although the addressed problem is similar to ours,
the approach is different. We do not automatically generate “safe by construction” trace expressions starting from
observations of the environment. Rather, we manually design a trace expression encoding our assumptions and validate
it against the real environment to empirically show that it is “safe”. Although our approach requires a more accurate
design stage and more manual work, it can be applied to more systems; the automatic generation of the environment
model in the Bandera Environment Generator is instead inherently domain-dependent and is customised for model
checking Java programs.

The approach of Dhaussy et al. [44] is closer to ours; the state space explosion is mitigated with requirements
relative to scenarios which are verified instead of the full environment. In that work the context – which corresponds
to our structured abstraction – is modelled with the domain-specific Context Description Language, CDL. The main
difference is that CDL is less expressive than trace expressions (recursion and concatenation are not supported), and no
methodology for checking the CDL specification against the real environment is discussed.

Besides CDL, hybrid automata [4, 55] are another widely adopted formalism for precise modelling of the real world.
They do not solve the question of whether the model accurately captures the environment, and although RV of cyber-
physical systems modelled with hybrid automata is a promising research field [75, 89], we are not aware of proposals
where the same hybrid automaton model undergoes both a model checking and a RV process.

5.4 Model Checking and RV of MAS

The context of this paper is that of autonomous cognitive systems that can be to a large extent considered as MAS where
agents are conceptualised and implemented in terms of mental, or cognitive, features. For this reason, we conclude the
related work section with a brief overview of model checking and RV for MASs.

Investigation of model checking for MASs dates back to 1998 [21] and has continued to generate much follow up work.
Besides MCAPL, we can cite for instance works by Lomuscio and Raimondi [67, 84]. Approaches to MAS RV complement
these and include the proposals spun off from the SOCS project where the SCIFF computational logic framework [1] is
used to provide the semantics of social integrity constraints. To model MAS interaction, expectation-based semantics
specifies the links between observed and expected events, providing a means to test runtime conformance of an actual
conversation with respect to a given interaction protocol [92]. Similar work has been performed using commitments [31].
None of the contributions above tackle the problem of recognising assumption violations in structured abstractions via
RV for model checking autonomous systems immersed in a real environment. This makes our proposal original in the
panorama of model checking both generally and, more specifically, for autonomous systems and MASs.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how trace expressions can be used as a unifying formalism to generate both a structured
abstraction for improving model checking efficiency and a runtime monitor to provide an additional route for guarantees
Manuscript submitted to ACM

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 37

of the behaviour of a system that has been verified using an abstract model of the real world. Because of the complexity
in writing trace expressions, we also presented EAASL, a high-level DSL which helps define trace expressions for
generating abstract environment models more intuitively.

In previous work [50, 51], we explored the use of trace expressions to define structured abstractions. In this paper, we
presented an extension of those works where a DSL is used instead of directly writing trace expressions specifications.
One of the reasons that brought us to define EAASL was the feedback that we received in our previous work. The use
of trace expressions was considered promising, but their complexity made the approach hard to access for non formal
verification experts. This has been the main guideline we followed in this work, among exploring new and different
case studies.

In particular, we have evaluated our approach by applying it to two case studies: cruise control, and the simulation of
the Mars Curiosity rover. Our results in the first case study show that by using trace expressions to generate a structured
abstraction model of the environment we were able to significantly decrease the number of states, and consequently
reduce the time that is necessary to model check the system. Our results in the second case study demonstrate that
using structured abstractions can also be the difference between successfully terminating the model checking process
and getting stuck in a state space explosion. Moreover, the results in both case studies show that the response time
of the runtime monitor does not increase with the length of the trace and that adding a runtime monitor causes no
significant impact in memory usage.

The expressive power of trace expressions potentially paves the way to addressing more challenging scenarios.
Let us suppose that, at the end of each mission, the Mars Curiosity Rover must leave all the collected soil samples at

the base station. Namely, at the beginning of each mission it is empty, and for every collect_sample (c) action performed
during the mission, a corresponding leave_sample (l) action must be performed at the end. This pattern corresponds
to cnln traces for any n ∈ N. The parameter n is not fixed a priori, but defined only once the rover comes back to the
station, the first leave_sample action is performed, and hence it becomes clear that no collect_sample actions should
be performed until n − 1 leave_sample actions have. Traces like cnln cannot be modeled in LTL. So far, they cannot
even be modeled in EAASL, but should EAASL be extended to cope with them, it could be easily compiled down into
trace expressions, but not into LTL. Empirical results show that, in most cases, verifying whether a trace belongs to the
language defined by a trace expression is linear in the length of the trace even when exploiting the full expressiveness
of trace expressions: performance of RV should remain acceptable also in this scenario. In order to use expressive trace
expressions for model checking, they should be over-approximated as model checking cannot be fed with properties
expressed using context-free languages; this over-approximation is however possible, as shown in [48].

In future work, we aim to provide arguments (ideally proofs) that the behaviour of the abstract environments
generated by the system genuinely expresses the behaviour specified by the trace expressions. We are also interested
in expressing noise and uncertainty in beliefs potentially through some of our prior work in dealing with partially
observable events [9].

Discovering a violation does not necessarily mean that the system is in danger. For example, in our cruise control
case study braking and accelerating at the same time, even though they are tagged as a violation during the RV stage,
might not cause the system to crash. Discriminating between safety-critical and acceptable violations is outside the
scope of this paper, but it is a significant issue that deserves further exploration.

We also plan to apply our approach to a real case study. The scenario we have in mind is a cyber-physical system
which must demonstrate its dependability in order to be acceptable to society and be trusted by its users. As an example,
in a remote patient monitoring system where the program monitors a range of sensors, formal guarantees should

Manuscript submitted to ACM

38 A. Ferrando, et al.

be provided that the system respects given medical guidelines before deployment (model checking stage). However
such guarantees are likely to assume that the sensors perform within some range of behaviour so an RV stage should
nevertheless be included to monitor sensor behaviour for issues and flag situations where the medical guidelines might
be violated as a result.

ACKNOWLEDGMENTS

Work supported by the UK Research and Innovation Hubs for “Robotics and AI in Hazardous Environments”: EP/R026084
(RAIN), EP/R026173 (ORCA), EP/R026092 (FAIR-SPACE). Fisher was funded by the Royal Academy of Engineering
through a Chair in Emerging Technologies.

REFERENCES
[1] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. 2005. The SCIFF Abductive Proof-Procedure. In AI*IA (Lecture

Notes in Computer Science), Vol. 3673. Springer, 135–147.
[2] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theor. Comput. Sci. 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-

3975(94)90010-8
[3] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. 1991. The Benefits of Relaxing Punctuality. In Proceedings of the Tenth Annual ACM

Symposium on Principles of Distributed Computing, Montreal, Quebec, Canada, August 19-21, 1991, Luigi Logrippo (Ed.). ACM, 139–152. https:
//doi.org/10.1145/112600.112613

[4] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J. Pappas. 2000. Discrete Abstractions of Hybrid Systems. Proc. of the IEEE 88, 7
(2000), 971–984.

[5] Davide Ancona, Matteo Barbieri, and Viviana Mascardi. 2013. Constrained global types for dynamic checking of protocol conformance in multi-agent
systems. In Proc. of the 28th Annual ACM Symposium on Applied Computing, SAC ’13. ACM, 1377–1379.

[6] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. 2015. Global Protocols as First Class Entities for Self-Adaptive Agents. In Proc. of the 2015
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015. 1019–1029.

[7] Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi. 2012. Automatic Generation of Self-monitoring MASs from Multiparty Global Session
Types in Jason. In Proc. of Declarative Agent Languages and Technologies X, DALT 2012. 76–95.

[8] Davide Ancona, Angelo Ferrando, Luca Franceschini, and Viviana Mascardi. 2017. Parametric Trace Expressions for Runtime Verification of
Java-Like Programs. In Proc. of the 19th Workshop on Formal Techniques for Java-like Programs (FTFJP’17).

[9] Davide Ancona, Angelo Ferrando, Luca Franceschini, and Viviana Mascardi. 2018. Coping with Bad Agent Interaction Protocols When Monitoring
Partially Observable Multiagent Systems. In Proc. of Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS
Collection - 16th International Conference (LNCS), Vol. 10978. Springer, 59–71.

[10] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2016. Comparing Trace Expressions and Linear Temporal Logic for Runtime Verification.
In Theory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday.

[11] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2017. Parametric Runtime Verification of Multiagent Systems. In Proc. of the 2017
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017. ACM, 1457–1459.

[12] Davide Ancona, Luca Franceschini, Giorgio Delzanno, Maurizio Leotta, Marina Ribaudo, and Filippo Ricca. 2017. Towards Runtime Monitoring of
Node.js and Its Application to the Internet of Things. In Proc. of the 1st workshop on Architectures, Languages and Paradigms for IoT, ALP4IoT@iFM
(EPTCS), Vol. 264. 27–42.

[13] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Roşu, Koushik Sen,
Willem Visser, et al. 2005. Combining test case generation and runtime verification. Theoretical Computer Science 336, 2-3 (2005), 209–234.

[14] Eugene Asarin, Paul Caspi, and Oded Maler. 2002. Timed regular expressions. J. ACM 49, 2 (2002), 172–206. https://doi.org/10.1145/506147.506151
[15] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT press.
[16] Alexey Bakhirkin, Thomas Ferrère, Thomas A. Henzinger, and Dejan Nickovic. 2018. The first-order logic of signals: keynote. In Proceedings of

the International Conference on Embedded Software, EMSOFT 2018, Torino, Italy, September 30 - October 5, 2018, Björn B. Brandenburg and Sriram
Sankaranarayanan (Eds.). IEEE, 1. https://doi.org/10.1109/EMSOFT.2018.8537203

[17] Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Milan Lenčo, Petr Ročkai, Vladimír Štill, and Jiří Weiser. 2013. DiVinE 3.0–an
explicit-state model checker for multithreaded C & C++ programs. In International Conference on Computer Aided Verification. Springer, 863–868.

[18] David A. Basin, Felix Klaedtke, Samuel Müller, and Birgit Pfitzmann. 2008. Runtime Monitoring of Metric First-order Temporal Properties. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2008, December 9-11, 2008, Bangalore,
India (LIPIcs), Ramesh Hariharan, Madhavan Mukund, and V. Vinay (Eds.), Vol. 2. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 49–60.
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1740

Manuscript submitted to ACM

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/112600.112613
https://doi.org/10.1145/112600.112613
https://doi.org/10.1145/506147.506151
https://doi.org/10.1109/EMSOFT.2018.8537203
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1740

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 39

[19] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4
(2011), 14:1–14:64. https://doi.org/10.1145/2000799.2000800

[20] Pierfrancesco Bellini. 2001. Interval Temporal Logic for Real-Time Systems: Specification, Execution and Verification Processes. (2001). PhD. Thesis,
University of Florence, Italy.

[21] Massimo Benerecetti, Fausto Giunchiglia, and Luciano Serafini. 1998. Model Checking Multiagent Systems. J. Log. Comput. 8, 3 (1998), 401–423.
[22] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael J. Wooldridge. 2006. Verifying Multi-agent Programs by Model Checking. Autonomous

Agents and Multi-Agent Systems 12, 2 (2006), 239–256. https://doi.org/10.1007/s10458-006-5955-7
[23] R. H. Bordini, J. F. Hübner, and M. Wooldridge. 2007. Programming multi-agent systems in AgentSpeak using Jason. John Wiley and Sons.
[24] Michael E. Bratman. 1987. Intention, Plans, and Practical Reason. Cambridge, Mass., Harvard University Press.
[25] Daniela Briola, Viviana Mascardi, and Davide Ancona. 2014. Distributed Runtime Verification of JADE and Jason Multiagent Systems with Prolog.

In Proc. of the 29th Italian Conference on Computational Logic. 319–323.
[26] D. Briola, V. Mascardi, and D. Ancona. 2014. Distributed Runtime Verification of JADE Multiagent Systems. In Proc. of IDC.
[27] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. 2018. Automata for regular expressions with shuffle. Inf. Comput. 259, 2

(2018), 162–173.
[28] R. C. Cardoso, M. Farrell, M. Luckcuck, A. Ferrando, and M. Fisher. 2020. Heterogeneous Verification of an Autonomous Curiosity Rover. In NASA

Formal Methods Symposium (NFM).
[29] R. C. Cardoso, A. Ferrando, L. A. Dennis, and M. Fisher. 2020. An Interface for Programming Verifiable Autonomous Agents in ROS. In European

Conference on Multi-Agent Systems (EUMAS).
[30] Ana Cavalcanti. 2017. Formal methods for robotics: RoboChart, RoboSim, and more. In Brazilian Symposium on Formal Methods. Springer, 3–6.
[31] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. 2009. Commitment Tracking via the Reactive Event Calculus. In Proc. of the 21st

International Joint Conference on Artifical Intelligence (IJCAI’09). 91–96.
[32] Luca Ciccone, Angelo Ferrando, Davide Ancona, and Viviana Mascardi. 2019. Timed Trace Expressions. In Proceedings of the 34th Italian Conference

on Computational Logic, Trieste, Italy, June 19-21, 2019 (CEUR Workshop Proceedings), Alberto Casagrande and Eugenio G. Omodeo (Eds.), Vol. 2396.
CEUR-WS.org, 229–241. http://ceur-ws.org/Vol-2396/paper13.pdf

[33] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2000. Model Checking. The MIT Press.
[34] Edmund M. Clarke and Bernd-Holger Schlingloff. 2001. Model Checking. In Handbook of Automated Reasoning, Alan Robinson and Andrei Voronkov

(Eds.). Elsevier and MIT Press, 1635–1790.
[35] Arie A Covrigaru and Robert K Lindsay. 1991. Deterministic autonomous systems. AI Magazine 12, 3 (1991), 110–110.
[36] Louise A. Dennis. 2017. Gwendolen Semantics: 2017. Technical Report ULCS-17-001. University of Liverpool, Department of Computer Science.
[37] Louise A Dennis. 2018. The MCAPL Framework including the Agent Infrastructure Layer and Agent Java Pathfinder. The Journal of Open Source

Software 3, 24 (2018).
[38] Louise A. Dennis, Jonathan M. Aitken, Joe Collenette, Elisa Cucco, Maryam Kamali, Owen McAree, Affan Shaukat, Katie Atkinson, Yang Gao,

Sandor M. Veres, and Michael Fisher. 2016. Agent-Based Autonomous Systems and Abstraction Engines: Theory Meets Practice. In Proc. of Towards
Autonomous Robotic Systems: 17th Annual Conference, TAROS 2016. 75–86.

[39] L. A. Dennis, M. Fisher, N. Lincoln, A. Lisitsa, and S. M. Veres. 2010. Declarative Abstractions for Agent Based Hybrid Control Systems. In Proc. 8th
Int. Workshop on Declarative Agent Languages and Technologies (DALT). 96–111.

[40] Louise A. Dennis, Michael Fisher, Nicholas K. Lincoln, Alexei Lisitsa, and Sandor M. Veres. 2014. Practical verification of decision-making in
agent-based autonomous systems. Automated Software Engineering (2014), 1–55.

[41] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H. Bordini. 2012. Model checking agent programming languages. Automated
Software Engineering 19, 1 (2012), 5–63.

[42] Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia. 2017. Combining Model Checking and Runtime Verification for Safe Robotics. In Proc. of the
17th International Conference on Runtime Verification, RV 2017 (LNCS), Vol. 10548. Springer, 172–189.

[43] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien Zufferey. 2013. P: safe asynchronous event-driven
programming. In Proc. of the ACM SIGPLAN Conference on Programming Language Design and Implementation 2013, PLDI 2013. ACM, 321–332.

[44] Philippe Dhaussy, Jean-Charles Roger, and Frédéric Boniol. 2011. Reducing State Explosion with Context Modeling for Model-Checking. In Proc. of
the 13th IEEE International Symposium on High-Assurance Systems Engineering, HASE 2011. 130–137.

[45] Yliès Falcone, Klaus Havelund, and Giles Reger. 2013. A Tutorial on Runtime Verification. Engineering Dependable Software Systems 34 (01 2013),
141–175.

[46] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. 2018. A Taxonomy for Classifying Runtime Verification Tools. In Runtime Verification -
18th International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings (Lecture Notes in Computer Science), Christian Colombo
and Martin Leucker (Eds.), Vol. 11237. Springer, 241–262. https://doi.org/10.1007/978-3-030-03769-7_14

[47] Kevin Falzon and Gordon J. Pace. 2012. Combining Testing and Runtime Verification Techniques. In Model-Based Methodologies for Pervasive
and Embedded Software, 8th International Workshop, MOMPES 2012, Essen, Germany, September 4, 2012. Revised Papers (Lecture Notes in Computer
Science), Ricardo Jorge Machado, Rita Suzana Pitangueira Maciel, Julia Rubin, and Goetz Botterweck (Eds.), Vol. 7706. Springer, 38–57. https:
//doi.org/10.1007/978-3-642-38209-3_3

Manuscript submitted to ACM

https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/s10458-006-5955-7
http://ceur-ws.org/Vol-2396/paper13.pdf
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-642-38209-3_3
https://doi.org/10.1007/978-3-642-38209-3_3

40 A. Ferrando, et al.

[48] Angelo Ferrando. 2019. The early bird catches the worm: First verify, then monitor! Sci. Comput. Program. 172 (2019), 160–179. https://doi.org/10.
1016/j.scico.2018.11.008

[49] Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and Viviana Mascardi. 2018. Recognising Assumption Violations in Autonomous
Systems Verification. In Proc. of the 2018 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018.

[50] Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and Viviana Mascardi. 2018. Recognising Assumption Violations in Autonomous
Systems Verification. In AAMAS. International Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 1933–1935.

[51] Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and Viviana Mascardi. 2018. Verifying and Validating Autonomous Systems:
Towards an Integrated Approach. In Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings
(Lecture Notes in Computer Science), Christian Colombo and Martin Leucker (Eds.), Vol. 11237. Springer, 263–281. https://doi.org/10.1007/978-3-030-
03769-7_15

[52] Michael Fisher, Viviana Mascardi, Kristin Yvonne Rozier, Bernd-Holger Schlingloff, Michael Winikoff, and Neil Yorke-Smith. 2020. Towards a
Framework for Certification of Reliable Autonomous Systems. CoRR abs/2001.09124 (2020). arXiv:2001.09124 https://arxiv.org/abs/2001.09124

[53] Luca Franceschini. 2019. RML: runtime monitoring language: a system-agnostic DSL for runtime verification. In Conference Companion of the 3rd
International Conference on Art, Science, and Engineering of Programming, Genova, Italy, April 1-4, 2019, Stefan Marr and Walter Cazzola (Eds.). ACM,
28:1–28:3. https://doi.org/10.1145/3328433.3328462

[54] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. 2020. Generation of Formal Requirements from
Structured Natural Language. In Requirements Engineering: Foundation for Software Quality - 26th International Working Conference, REFSQ 2020,
Pisa, Italy, March 24-27, 2020, Proceedings [REFSQ 2020 was postponed] (Lecture Notes in Computer Science), Nazim H. Madhavji, Liliana Pasquale,
Alessio Ferrari, and Stefania Gnesi (Eds.), Vol. 12045. Springer, 19–35. https://doi.org/10.1007/978-3-030-44429-7_2

[55] Thomas A. Henzinger. 1996. The Theory of Hybrid Automata. In Proc. of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS).
278–292.

[56] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. 1991. Timed Transition Systems. In Real-Time: Theory in Practice, REX Workshop, Mook, The
Netherlands, June 3-7, 1991, Proceedings (Lecture Notes in Computer Science), J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grzegorz
Rozenberg (Eds.), Vol. 600. Springer, 226–251. https://doi.org/10.1007/BFb0031995

[57] Timothy L. Hinrichs, A. Prasad Sistla, and Lenore D. Zuck. 2014. Model Check What You Can, Runtime Verify the Rest. In HOWARD-60: A Festschrift
on the Occasion of Howard Barringer’s 60th Birthday, Andrei Voronkov and Margarita V. Korovina (Eds.). EPiC Series in Computing, Vol. 42. EasyChair,
234–244. https://easychair.org/publications/paper/tq7

[58] Gerard J. Holzmann. 2004. The SPIN Model Checker - primer and reference manual. Addison-Wesley.
[59] Bardh Hoxha, Nikolaos Mavridis, and Georgios E. Fainekos. 2015. VISPEC: A graphical tool for elicitation of MTL requirements. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, September 28 - October 2, 2015. IEEE, 3486–3492. https:
//doi.org/10.1109/IROS.2015.7353863

[60] Industry Research. 2019. Software Testing Services Market by Product, End-users, and Geography – Global Forecast and Analysis 2019-
2023. https://www.industryresearch.co/software-testing-services-market-by-product-end-users-and-geography-global-forecast-and-analysis-
2019-2023-14620379

[61] Félix Ingrand. 2019. Recent Trends in Formal Validation and Verification of Autonomous Robots Software. In 3rd IEEE International Conference on
Robotic Computing, IRC 2019, Naples, Italy, February 25-27, 2019. IEEE, 321–328. https://doi.org/10.1109/IRC.2019.00059

[62] Maryam Kamali, Louise A. Dennis, Owen McAree, Michael Fisher, and Sandor M. Veres. 2017. Formal verification of autonomous vehicle platooning.
Science of Computer Programming 148 (2017), 88–106. Special issue on Automated Verification of Critical Systems (AVoCS 2015).

[63] Katarína Kejstová, Petr Rockai, and Jiri Barnat. 2017. From Model Checking to Runtime Verification and Back. In Runtime Verification - 17th
International Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings (Lecture Notes in Computer Science), Shuvendu K. Lahiri and
Giles Reger (Eds.), Vol. 10548. Springer, 225–240. https://doi.org/10.1007/978-3-319-67531-2_14

[64] Ron Koymans. 1990. Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2, 4 (1990), 255–299. https://doi.org/10.1007/
BF01995674

[65] Jianwen Li and Kristin Y. Rozier. 2018. MLTL Benchmark Generation via Formula Progression. In Runtime Verification - 18th International Conference,
RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings (Lecture Notes in Computer Science), Christian Colombo and Martin Leucker (Eds.),
Vol. 11237. Springer, 426–433. https://doi.org/10.1007/978-3-030-03769-7_25

[66] Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier. 2019. Satisfiability Checking for Mission-Time LTL. In Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II (Lecture Notes in Computer Science), Isil Dillig and
Serdar Tasiran (Eds.), Vol. 11562. Springer, 3–22. https://doi.org/10.1007/978-3-030-25543-5_1

[67] Alessio Lomuscio and Franco Raimondi. 2006. MCMAS: A Model Checker for Multi-agent Systems. In Proc. of Tools and Algorithms for the
Construction and Analysis of Systems, 12th International Conference, TACAS 2006. 450–454.

[68] Donald W Loveland. 2016. Automated Theorem Proving: a logical basis. Elsevier.
[69] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Continuous Signals.. In Proc. of Formal Techniques, Modelling and Analysis

of Timed and Fault-Tolerant Systems, FORMATS/FTRTFT 2004 (LNCS), Yassine Lakhnech and Sergio Yovine (Eds.), Vol. 3253. Springer, 152–166.
[70] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of Continuous Signals. In Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal

Manuscript submitted to ACM

https://doi.org/10.1016/j.scico.2018.11.008
https://doi.org/10.1016/j.scico.2018.11.008
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1007/978-3-030-03769-7_15
http://arxiv.org/abs/2001.09124
https://arxiv.org/abs/2001.09124
https://doi.org/10.1145/3328433.3328462
https://doi.org/10.1007/978-3-030-44429-7_2
https://doi.org/10.1007/BFb0031995
https://easychair.org/publications/paper/tq7
https://doi.org/10.1109/IROS.2015.7353863
https://doi.org/10.1109/IROS.2015.7353863
https://www.industryresearch.co/software-testing-services-market-by-product-end-users-and-geography-global-forecast-and-analysis-2019-2023-14620379
https://www.industryresearch.co/software-testing-services-market-by-product-end-users-and-geography-global-forecast-and-analysis-2019-2023-14620379
https://doi.org/10.1109/IRC.2019.00059
https://doi.org/10.1007/978-3-319-67531-2_14
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-030-03769-7_25
https://doi.org/10.1007/978-3-030-25543-5_1

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 41

Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings (Lecture Notes in Computer
Science), Yassine Lakhnech and Sergio Yovine (Eds.), Vol. 3253. Springer, 152–166. https://doi.org/10.1007/978-3-540-30206-3_12

[71] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019. Generating automated and online test oracles for Simulink models
with continuous and uncertain behaviors. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and
Alessandra Russo (Eds.). ACM, 27–38. https://doi.org/10.1145/3338906.3338920

[72] Giorgio Metta and Angelo Cangelosi. 2012. Cognitive Robotics. Springer US, Boston, MA, 613–616. https://doi.org/10.1007/978-1-4419-1428-6_654
[73] Bart Meyers, Hans Vangheluwe, Joachim Denil, and Rick Salay. 2020. A Framework for Temporal Verification Support in Domain-Specific Modelling.

IEEE Trans. Software Eng. 46, 4 (2020), 362–404. https://doi.org/10.1109/TSE.2018.2859946
[74] Vincent C. Müller. 2012. Autonomous Cognitive Systems in Real-World Environments: Less Control, More Flexibility and Better Interaction. Cogn.

Comput. 4, 3 (2012), 212–215. https://doi.org/10.1007/s12559-012-9129-4
[75] Luan Viet Nguyen, Christian Schilling, Sergiy Bogomolov, and Taylor T. Johnson. 2015. Runtime Verification for Hybrid Analysis Tools. In Proc. of

the 6th International Conference on Runtime Verification, RV 2015 (LNCS). 281–286.
[76] Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus. 2018. AMT 2.0: Qualitative and Quantitative Trace Analysis with

Extended Signal Temporal Logic. In Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
II (Lecture Notes in Computer Science), Dirk Beyer and Marieke Huisman (Eds.), Vol. 10806. Springer, 303–319. https://doi.org/10.1007/978-3-319-
89963-3_18

[77] Joël Ouaknine and James Worrell. 2008. Some Recent Results in Metric Temporal Logic. In Formal Modeling and Analysis of Timed Systems, 6th
International Conference, FORMATS 2008, Saint Malo, France, September 15-17, 2008. Proceedings (Lecture Notes in Computer Science), Franck Cassez
and Claude Jard (Eds.), Vol. 5215. Springer, 1–13. https://doi.org/10.1007/978-3-540-85778-5_1

[78] John Penix, Willem Visser, Eric Engstrom, Aaron Larson, and Nicholas Weininger. 2000. Verification of time partitioning in the DEOS scheduler
kernel. In Proc. of the 22nd International Conference on Software Engineering. 488–497.

[79] Marco Pistoia, Satish Chandra, Stephen J. Fink, and Eran Yahav. 2007. A survey of static analysis methods for identifying security vulnerabilities in
software systems. IBM Syst. J. 46, 2 (2007), 265–288. https://doi.org/10.1147/sj.462.0265

[80] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science (SFCS ’77).
IEEE Computer Society, Washington, DC, USA, 46–57.

[81] Amir Pnueli. 1986. Applications of Temporal Logic to the Specification and Verification of Reactive Systems: A Survey of Current Trends. In Current
Trends in Concurrency, Overviews and Tutorials, J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg (Eds.). Lecture Notes in Computer
Science, Vol. 224. Springer, 510–584. https://doi.org/10.1007/BFb0027047

[82] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI Reasoning Engine. In Multi-Agent Programming: Languages,
Platforms and Applications. Multiagent Systems, Artificial Societies, and Simulated Organizations, Vol. 15. Springer, 149–174.

[83] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Ng. 2009. ROS: an open-source Robot
Operating System. InWorkshop on Open Source Software. IEEE, Japan.

[84] Franco Raimondi and Alessio Lomuscio. 2007. Automatic verification of multi-agent systems by model checking via ordered binary decision
diagrams. J. Applied Logic 5, 2 (2007), 235–251.

[85] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In Agents Breaking Away: Proc. of the 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW). 42–55.

[86] A. S. Rao and M. Georgeff. 1995. BDI Agents: From Theory to Practice. In Proc. of the 1st Int. Conf. Multi-Agent Systems (ICMAS). San Francisco, USA,
312–319.

[87] A. S. Rao and M. P. Georgeff. 1991. Modeling Agents within a BDI-Architecture. In Proc. of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR&R). 473–484.

[88] Jean-Francois Raskin. 1999. Logics, automata and classical theories for deciding real-time. (1999). PhD. Thesis, Facultés universitaires Notre-Dame
de la Paix, Namur.

[89] A. Prasad Sistla, Miloš Žefran, and Yao Feng. 2012. Runtime Monitoring of Stochastic Cyber-physical Systems with Hybrid State. In Proc. of the 2nd
International Conference on Runtime Verification, RV 2011 (LNCS). 276–293.

[90] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. 2002. PROPEL: an approach supporting property elucidation. In Proceedings
of the 24th International Conference on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, Will Tracz, Michal Young, and Jeff
Magee (Eds.). ACM, 11–21. https://doi.org/10.1145/581339.581345

[91] Oksana Tkachuk, Matthew B. Dwyer, and Corina S. Pasareanu. 2003. Automated Environment Generation for Software Model Checking. In Proc. of
the 18th IEEE International Conference on Automated Software Engineering (ASE 2003). 116–129.

[92] Paolo Torroni, Pinar Yolum, Munindar P. Singh, Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, and Paola Mello. 2009. Modelling
Interactions via Commitments and Expectations. In Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models.
IGI Global.

[93] Federico Vicentini, Mehrnoosh Askarpour, Matteo G Rossi, and Dino Mandrioli. 2019. Safety assessment of collaborative robotics through automated
formal verification. IEEE Transactions on Robotics 36, 1 (2019), 42–61.

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1145/3338906.3338920
https://doi.org/10.1007/978-1-4419-1428-6_654
https://doi.org/10.1109/TSE.2018.2859946
https://doi.org/10.1007/s12559-012-9129-4
https://doi.org/10.1007/978-3-319-89963-3_18
https://doi.org/10.1007/978-3-319-89963-3_18
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1147/sj.462.0265
https://doi.org/10.1007/BFb0027047
https://doi.org/10.1145/581339.581345

42 A. Ferrando, et al.

[94] Markus Vincze and David Vernon. 2017. Industrial Priorities for Cognitive Robotics, Deliverable D-3.1, RockEU2 - Robotics Coordination Action for
Europe Two. (2017).

[95] Farn Wang. 2004. Formal verification of timed systems: A survey and perspective. Proc. IEEE 92, 8 (2004), 1283–1305.
[96] Michael Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents: theory and practice. Knowledge Eng. Review 10, 2 (1995), 115–152.

https://doi.org/10.1017/S0269888900008122
[97] Daniel M. Zimmerman and Joseph R. Kiniry. 2009. A Verification-Centric Software Development Process for Java. In Proceedings of the Ninth

International Conference on Quality Software, QSIC 2009, Jeju, Korea, August 24-25, 2009, Byoungju Choi (Ed.). IEEE Computer Society, 76–85.
https://doi.org/10.1109/QSIC.2009.18

Manuscript submitted to ACM

https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1109/QSIC.2009.18

Towards a Holistic Approach to Verification and Validation of Autonomous Cognitive Systems 43

A MARS CURIOSITY ROVER ENVIRONMENT TRACE EXPRESSION

Trace expression generated from the specification presented in Figure 18.

Protocols = (Belie f s | Actions) ∧Constrs (69)
Beliefs = (MovementCompl | ActReadyWheels |

ActReadyMast | ActReadyArm | MastOpen |

MastClose | ArmOpen | ArmClose) (70)
MovementCompl = ((bel(movement_completed):ϵ) ∨

(not_bel(movement_completed):ϵ)) ·MovementCompl (71)
ActReadyWheels = ((bel(actuator_ready(wheels)):ϵ) ∨

(not_bel(actuator_ready(wheels)):ϵ)) · ActReadyWheels (72)
ActReadyMast = ((bel(actuator_ready(mast)):ϵ) ∨

(not_bel(actuator_ready(mast)):ϵ)) · ActReadyMast (73)
ActReadyArm = ((bel(actuator_ready(arm)):ϵ) ∨

(not_bel(actuator_ready(arm)):ϵ)) · ActReadyArm (74)
MastOpen = ((bel(mast(open)):ϵ) ∨

(not_bel(mast(open)):ϵ)) ·MastOpen (75)
MastClose = ((bel(mast(close)):ϵ) ∨

(not_bel(mast(close)):ϵ)) ·MastClose (76)
ArmOpen = ((bel(arm(open)):ϵ) ∨

(not_bel(arm(open)):ϵ)) · ArmOpen (77)
ArmClose = ((bel(arm(close)):ϵ) ∨

(not_bel(arm(close)):ϵ)) · ArmClose (78)
Actions = (ControlWheels | ControlMast | ControlArm) (79)

ControlWheels = action(control_wheels):ControlWheels (80)
ControlMast = action(control_mast):ControlMast (81)
ControlArm = action(control_arm):ControlArm (82)

Fig. 21. Trace expression for the Mars Curiosity Rover example (Part 1).

Manuscript submitted to ACM

44 A. Ferrando, et al.

Constrs = (mast_open_or_close≫When1) ∧ (arm_open_or_close≫When4) ∧

(mast_open_any_action≫Cause1) ∧ (mast_close_any_action≫Cause2) ∧
(arm_open_any_action≫Cause3) ∧ (arm_close_any_action≫Cause4) ∧
(actuator_ready_wheels_move_compl≫Be f ore1) ∧

(actuator_ready_mast_move_compl≫Be f ore2) ∧

(actuator_ready_arm_move_compl≫Be f ore3) (83)
When1 = (bel(mast(open)) :When2) ∨

((not_bel(mast(close)):When1) ∨ (bel(mast(close)):When3)) (84)
When2 = (((bel(mast(open)):ϵ) ∨ (not_bel(mast(close)):ϵ)) ·When2)

∨ (not_bel(mast(open)):When1) (85)
When3 = ((bel(driver_accelerates):ϵ) ∨ (bel(safe):ϵ)) ·When3

∨ (not_bel(driver_accelerates):When2) (86)
When4 = (bel(arm(open)):When5) ∨ (not_bel(arm(close)):When4)

∨ (bel(arm(close)):When6) (87)
When5 = ((bel(arm(open)):ϵ) ∨ (not_bel(arm(close)):ϵ) ·When5)

(not_bel(arm(open)):When6) (88)
When6 = (not_bel(arm(close)):When4) ∨

((not_bel(arm(open)):ϵ) ∨ (bel(arm(close)):ϵ) ·When4) (89)
Cause1 = (action(control_mast(open)):bel(mast(open)):Cause1) ∨

(not_bel(mast(open)):Cause1) ∨ (anyActionBut(action(control_mast(open))):Cause1) (90)
Cause2 = (action(control_mast(close)):bel(mast(close)):Cause2) ∨

(not_bel(mast(close)):Cause2) ∨ (anyActionBut(action(control_mast(close))):Cause2) (91)
Cause3 = (action(control_arm(open)):bel(arm(open)):Cause3) ∨

(not_bel(arm(open)):Cause3) ∨ (anyActionBut(action(control_arm(open))):Cause3) (92)
Cause4 = (action(control_arm(close)):bel(arm(close)):Cause4) ∨

(not_bel(arm(close)):Cause4) ∨ (anyActionBut(action(control_arm(close))):Cause4) (93)
Be f ore1 = (bel(actuator_ready(wheels)):Anythinд) ∨

((not_bel(actuator_ready(wheels)):ϵ) ∨
(not_bel(movement_completed):ϵ)) · Be f ore1 (94)

Be f ore2 = (bel(actuator_ready(mast)):Anythinд) ∨
((not_bel(actuator_ready(mast)):ϵ) ∨
(not_bel(movement_completed):ϵ)) · Be f ore2 (95)

Be f ore3 = (bel(actuator_ready(arm)):Anythinд) ∨
((not_bel(actuator_ready(arm)):ϵ) ∨
(not_bel(movement_completed):ϵ)) · Be f ore3 (96)

Fig. 22. Trace expression for the Mars Curiosity Rover example (Part 2).

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background and Running Example
	3 Recognising Assumption Violations
	3.1 EAASL, a Domain Specific Language to define Abstract Models
	3.2 Compiling EAASL specifications to Trace expressions
	3.3 Combining all trace expressions into the global abstract model
	3.4 Generating the Abstract Model
	3.5 Verifying MCAPL at Runtime

	4 Case Studies and Experiments
	4.1 Cruise Control
	4.2 Simulation Mars Curiosity Rover
	4.3 blueDiscussion

	5 Related Work and Comparison
	5.1 Formalisms for Specifying Temporal Properties
	5.2 DSL for User Friendly Specification of Temporal Properties
	5.3 Safe Structured Abstractions for Model Checking
	5.4 Model Checking and RV of MAS

	6 Conclusions and Future Work
	Acknowledgments
	References
	A Mars Curiosity Rover Environment Trace expression

