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1. Introduction
1.1. Main result

In this article we study the existence and uniqueness of solutions to the system

. n\lC 1

by = —5Dgthp — Z 1/1k+< | * ,0> Vi + A g, (1.1a)

. Zx T — XK REIS Xk —Xp

Xy = _[ ———p(x)dz+ > 7y 3} (1.1b)
Mg |z — Xkl L=1,L#K [ Xk — X

where Nej, Npue € N, Zg € N, Mg >0, A€ Rand ¢ > 1 aregiven,andk=1,...,Nqgand K =1,..., Nyec.
We use the short-hand notation ¢ = (¥1,...,¢n,) and X = (X1,...,Xn,,.) € R3Nwe with

p = Pr(z,t), Xk =Xg(t), zeR’ t>0.

In the above equations, for all 9(+) : [0, Tiax) — H?(R3; CNe1), we set

Nel
p= |l
k=1

Moreover, for all X € R3Vwe and k= 1,..., Ny, we define

Nnuc

(H[X, plY)k == — 538505 — Z T Zx ﬂ’k"‘(% *P)%/Jk + 2T . (1.2)

The dynamics of the elements X (-) : [0, Tyax) — R3*Voue is driven by the acceleration function A = A4 A2
whose components are defined as

Nnuc

X — X
L=1,L£K Xk L

ZK £L'7XK

Akl)(X) = 37 - L pP @), A2 (X) =

4%
My
The main result of this article is as follows.
Theorem 1.1. Let ¢ > 7/2 and X € R. Further, let ¥° € H?(R3;CNet), VO € R3Nuuwe gnd X0 € R3Noue pe
given, with X9 # X? for K # L.

Then there exists T > 0 such that the initial-value problem associated with the system (1.1) with ¥ (0) = ¥°,
X(0) = X° and X(0) = VO has a unique solution (1, X) € X(7), where

X(7) = C([0, 7J; LA(R%; €M) 1 CO((0, 7J; HA(R®; €Y¥)) x C3(0, 7J; RNowe).
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1.2. Physical motivation

Problems such as (1.1) describe the nonadiabatic dynamics of molecular, spin-unpolarised systems in-
volving an even number N € 2N of electrons and Ny, € N nuclei with masses My, ..., My
VAT

nuc*

and charges
See, for example, [2,14,17,19-21,26,27,30], which form a sample of the extensive body of litera-

nuc

ture on both physical and mathematical aspects of the so-called density-functional theory, which comprises
the framework of the time-dependent Kohn—-Sham (TDKS) equations, given in (1.1a). These equations,
which with the use of (1.2) can be written as

i) = HIX, ot (L4)

describe the electronic evolution in terms of single-particle wave functions v, known in the physical lit-
erature as the Kohn—Sham (KS) orbitals. The TDKS equations have been extensively considered as an
approximation to the time-dependent Schrédinger equation, which reduces the electronic dynamics to a
single-particle description based on the KS density function p. For convenience, we briefly recall the physi-
cal interpretation of each potential in the KS Hamiltonian H from (1.2), which can be written as

H[va] = _%Ax+%xt[X]+Vch[p]a VHXC = VH+Vx+V:: (15)

The different terms appearing in (1.5) are defined as follows.
The electrostatic potential

Noe 7
‘/eXt[X](x) __Z |{IJ—X |
K=1 K

is an external potential, generated by the nuclei, which represents the Coulombic nucleus-electron interac-
tions. The Hartree potential

Vilp] =17 % p

corresponds to the Coulombic electron-electron interactions. The remaining term, the exchange-correlation
potential Vi + V¢, is not explicitly known: in the local-density approximation (LDA) introduced by Kohn
and Sham [19], for the exchange potential V5 an approximation based on the homogeneous electron gas
approximation is chosen [25]. In this article, we study a generalisation of this exchange potential, of the
form

Vil] = 2o,
where A € R and g > 1. Hereafter, we set the so-called correlation potential to zero, namely,

Ve

0,

and write accordingly Vizxe = Vix. In most cases, there is no closed form for the correlation potential, and
one has to resort to numerical presentations, which are too complex to investigate in the same manner as
we handle the other terms. See, for example, [2,18], where the case V. # 0 is considered in time-independent
or specific time-dependent settings.

In the coupling of (1.4) with the equations (1.1b) describing the nuclear dynamics, which with the use
of (1.3) can be written as
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X = Alp)(x), (1.6)

we apply the so-called mean-field or Ehrenfest dynamics approach—see, for example, [1, Section V], [15,
Section 2.1], [23, Section II.3] and [29]—based on factorising the total wave function into a product of
fast (electronic) and slow (nuclear) particle parts. In this nonadiabatic mixed quantum-—classical dynamics
method, we use a point-nucleus approximation rather than the Born—Oppenheimer approximation, which
would assume some requirements for the system under consideration. In this way, we can ignore the quantum
nature of the nuclei, since these are much heavier than electrons, and consider them as classical point
particles. This mean-field description can be understood as a semiclassical limit of the time-dependent self-
consistent field (or Hartree) method, from which the Hamilton—Jacobi equation (equivalent to Newton’s law
of motion) for the nuclei can be derived. According to this description, the nuclei move subject to a single
effective potential of Hellman—Feynman type, corresponding to an average over quantum states:

My Ax[pl(X) = =V, W[p|(X) for all K,

where

Wpl(X) := (%xt[X]aP)L2(R3) + Wan(X),

N,
nuc ZKZL
Wan(X) =3 Y (1.7)
K, L=1,K+L [ Xk — X

describe the interaction of the electrons with the external potential, and the Coulombic internal nuclear
interactions, respectively. Note that the exchange term does not appear in the coupling of (1.4) with (1.1b),
as it does not describe electrostatic interaction, but describes interactions between the electrons. Also, we
note that our equations (1.1) can be regarded as a Hamiltonian system. The total energy E associated with
this system is given by

B[X, 9] == Bianl X, ¢] + W[} (X) + En[[v[*] + Ex[[¥]?],

where
Nou , N
BEuin[X, 9] =3 Z M| Xk |”+ %Z/\erk(x)ﬁdx
K=1 k=1

is the kinetic energy of the system. The other terms are potential energies:

] = § [ IR o,

|z — |

is the Hartree electrostatic self-repulsion of the KS electron density, and

B [0 ] / () Pda

is the exchange energy, whose functional derivative coincides with the exchange potential V4. The total
energy F and [|¢|| L2(R3;CNery are quantities which are conserved under the dynamics, as is customary for
Hamiltonian systems.

Cances and Le Bris [8] considered similar electronic evolution equations coupled with classical nuclear
dynamics consistent with the mean-field Ehrenfest approach. They studied a system involving the Hartree—
Fock equations:
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WHF = FHF x| HF]HE (1.8a)
X = Alp)(x), (1.8b)

Nel
where p = Z 1% |2, the Hartree-Fock Hamiltonian is defined as

k=1
HY X, M) o= =LA, + Ve [X] + Vialp] + VIF[1F]
and
Nep
A P D D /e R R O
=1

is known as the Hartree—Fock exchange potential. Here, @[J,EIF are single-particle wave functions. In [8],
the global-in-time existence and uniqueness of solutions to (1.8) in H? are based on the result obtained by
Yajima [31] for the existence of propagators associated with linear, time-dependent Hamiltonians. The proof
in [8] consists of two main steps: a fixed-point argument to show the existence of short-time solutions, based
on Lipschitz estimates in H2(R?; CNe), and a Grénwall-type argument which relies on energy conservation,
conservation of the L?(IR3; CMet) norm of ¥MF and estimates of the solutions 1"¥ in the H2(R?; CNe!) norm.

To the best of our knowledge, since the article by Cances and Le Bris [8], only a few contributions have
dealt with the coupling of a system describing electronic evolution with nuclear dynamics; this is the case, for
instance, in [3], where existence and regularity questions are studied for a similar system, in the case A = 0.
Considerable attention has also been devoted to Schrodinger—Poisson-type equations, which include the
Hartree-Fock and TDKS equations; see, for instance, [2,5-7,9,10,13,18,22,32]. We also mention [28], where
existence, uniqueness and regularity questions are investigated for TDKS equations set on bounded space
domains, in relation to control problems. None of the contributions cited above considered the combined
nuclear and electronic dynamics as described in our system.

1.3. Article outline

This article is organised as follows.
In Section 2, we recall the relevant results from [31] on the construction and properties of a family of
propagators

U(t,s): L*(R% CNe1) — L2(R* CN),

with ¢, s € [0, ©], associated with the linear parts of the KS Hamiltonians H[X (t), p] for ¢ € [0,0], with 0 <
© < oo, and some results from [8] on the bounds on the operator norms of these propagators.

In Sections 3 and 4 we define bounded regions Be(7) and By (7), designed to seek solutions to (1.4) and
(1.6), respectively, on a time interval [0, 7], and the mappings

N Bo(1) — Bpuc(7) N CZ([O,T];R?’N““C), E : Buuc (1) — Ba(7)

which connect these solutions.
In Section 5, in view of a Duhamel-type argument developed in later sections, we state and prove some
Lipschitz estimates on the nonlinear mapping

b — Vire[[9]*]¢.
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The restriction ¢ > 7/2 arises from these estimates.

Next, we prove in Section 6 that for some 7 > 0 and any fixed ¢ € Bg(7), the Cauchy problem (1.6) has a
unique solution X € Byu.(7) NC?([0,7]; Bs(X?)), with Bs(X") denoting a closed ball of radius § centred at
X0 and the mapping N[¢] = X is bounded with respect to the C1([0, 7]; R3"¥aue) topology, and continuous
as a map from C’O([O, 7]; L?(R?; (CNel)) to C° ([O, 7); R3N"“°). We construct these solutions as fixed points of
the mapping

TX)(t) = X° + VOt + /(t —0)A(o, X (0))do.
0

We stress that here A depends on ).

Further, we prove in Section 7 that for ¢ > 7/2, some 7 > 0 and any fixed X € Bp,.(7), the Cauchy
problem (1.4) has a unique solution ¢ € B (7), and the mapping £[X] = ¢ is bounded and continuous as a
map from CO([O, T ]R3N"““) to C’O([O, 7]; L?(R3; (CNcl)). Similarly, solutions are constructed as fixed points
of the mapping

FI)(t) = U040 — i / U(t, 0)Virelplt(0)do
0

Using results from Sections 2 and 5 and [31], we show that fixed points of this mapping are strong solutions
to (1.4).

We then prove in Section 8 that for ¢ > 7/2 and some 7 > 0, the initial-value problem associated with
the problem (1.1) has a solution (¢, X) in X (7). To this end, we construct the mapping

K 2 Boue(T) — Buue(7), K=ZoNoE&,
where
I : Bnuc(7—> N 02([()’ T]; R?’Nnuc) — BHUC(T>

is the inclusion into Byyuc(7); we then apply a Schauder-type argument to X, in the spirit of [8]. Unlike in
[8], we equip Buuc(7) with a weaker CY-topology, which takes into account nuclear repulsion. The remainder
of this section is devoted to uniqueness.

Finally, the Appendix is devoted to the notation we systematically use, comprising that for the norms
on different function spaces, such as H2(R3; CMet) and Lorentz spaces.

1.4. Related questions

Theorem 1.1 can be generalised to LDA-type nonlinearities which are either sufficiently smooth at the
origin p = 0 or enjoy H?2-Lipschitz estimates such as those obtained in this article. This is the case,
for instance, of Alp‘h’l — )\gpq’fl with g1,q2 > 7/2 and A1, Ay > 0, which share a similar structure
with nonlinearities involved in various well-known models in quantum mechanics, such as the Thomas—
Fermi-Dirac—von Weizsécker model [21]. For this particular example, with one working with the same
functional setting, it would be interesting to explore, for certain ranges of exponents, the occurrence of
either a blow-up at finite time in the norm of the solutions or the existence of maximal solutions defined
for all t > 0; see [11,12].

Also, it would be interesting to identify a functional setting (and a possibly different proof)—the most
natural one would certainly be H'—in order to capture the physically relevant exponent q = 4/3, which is
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not covered in the present work. We wonder if a suitable regularisation “at the origin” of the LDA term for
q = 4/3 would allow one to cover this case as a result of a limit process.

2. Preliminaries
The first observation in this section is that the Newton potential
Glo1, ¢o] i= (¢ d2) * |- |7 (2.1)
solution to
—A,G =47d19 (2.2)
defines a mapping H? x H? — W2,

Lemma 2.1. For alli,j € {1,2,3} and every x € R3, it holds that

|Gl¢1, 9a2l(2)| S Ml all 2 [ Vall L2, (2.3)
|0:G¢1, P2](2)] S VadrllL2[[Vadall L2, (2.4)
10 Gl¢1, @2)(2)] S 91| 2| P2l 2 (2.5)

Proof. By Hardy’s inequality (A.2) and the properties

0;Glor, da2] = (1¢2) * (wi|z|~3),
0i;Gld1, d2] = [(0i1) 2 + 1(0;02)] * (ws|w]|~?),

for all i, j and x € R3, it holds that

|Glp1, d2)(2)] = (91, |- =27 2)r2| S p1ll 2 Vol Lz,
10:G 61, 62](@)] < (|- =T, |- =2 7Hd2D) 12 S IVadillz2llVadllze,
10:Glb1, d2)(2)] < (|- [ 7HOigu |, |- —a|7Hd2l) 2 + (|- —2| 7 ool | - 2|71 |0562]) 2

IV20id1l 2| Va2l L2+ IVadrl L2 |V 205 P2l 12
Pl 22| b2l -

S
<
This concludes the proof. O

The following lemma generalises Lemma 3 in [8], and provides us with useful bounds on the functions
fEE R3Nwue — C3 defined as

ff = Vi (Vrs Vet [X]We) 2
namely,

KXy — -~ Xk
K (X) = *ZK(T/%, E —XK|3W>L2'

Note that fEf effectively depends only on the position Xk of the Kth nucleus, and that
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1 Nel
1 _ kk
Ak = M ZfK :
k=1
Lemma 2.2. For all 1y,v, € H?, it holds that

HfIk(EHLOC(RBNm;C;CS) S Hvxwk”LQ ||Vz¢z||L2

and

HDf}C(ZHLoo(R:anuc;Csx's) ,S ||1/)k||H2|W)€HH2 (2'6)
Here, D is the gradient in R3Nwe . In addition, we have that fEf € W nC*t for all K.

Proof. By Lemma 2.1, G[¢1, 2] € W™ for all ¢1, ¢ € H?. Using

K (X) = =ZxVaGln, o) (Xk),

we get

HfIk{ZHLoo(]RSNnuc;CS) 5 ”Vﬂcwlf”L? ||vo:¢€||L27

||fok(eHLoo(R3Nnuc;(C3X3) 5 Xlllgﬁ?’ HDQG['L/}th](XK)Hcsxg 5 HwkHHQHuJKHHZ

This shows that f£ € W1>°. By Sobolev’s embedding in Hélder spaces, 1ty € C% . With the use of (2.1)

loc

from Lemma 2.1 and standard elliptic regularity, it holds that G[ix,v¢] € C?, by which f&f € Ct. O

In what follows we recall some results on the existence of the propagator for the linear parts of the
Kohn—Sham-type Hamiltonian H[X (¢), p] for ¢ € [0, 0], with 0 < © < oo, for a given nuclear configuration
X € C1([0,0]; R3Nnue),

For some X € C'([0,0]; R3Naue) and 0 < © < oo fixed, we consider the family of linear time-dependent
Hamiltonians { H(¢),t € [0,0]} C L(H?(R3; CNer); L2(R3; CNer)):

H™(t) == —1A, + V (1), (2.7)
where
V(t,) i= Ve [X (). (2.8)

Note that H'™(¢) is the linear part of H[X(t),p], and that for any fixed ¢ it is a self-adjoint operator on
L?(R3; CNet), We emphasise that these expressions depend on the time evolution of the nuclear configuration
X. This family of Hamiltonians is naturally associated with the Cauchy problem

W =H"(y,  P(s) =¢°,
on a time interval [0, O] for some s € [0, ©]. Equivalently, we can formulate the above as an integral equation

t

Mﬂz&ﬁ—@%—{/%@—@vwwme (2.9)

S
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where
Uo(t) := exp(itA,/2)

is the free propagator (i.e. the propagator for the free particle), which is an evolution operator on
H?(R3; CVet). The following lemma is in the spirit of Lemma 4 in [8], which in turn is based on Corol-
lary 1.2 properties (1), (2) and (4), Theorem 1.1 property (2) and Theorem 1.3 properties (5) and (6) in
[31].

Lemma 2.3. For the family of Hamiltonians {H"™(t),t € [0,0]}, there exists a unique family of linear
evolution operators

Ul(t,s) : L*(R3CNe1) — L2(R3;CNo), t,s €[0,0],
such that
Y(t) = U(t, s)¥"
solves (2.9) on [0,0] for all v° € H?(R3; CNet), with
1Y)l L2 Recva)y = 19°]] L2 RE.CVa)s
for all t € [0,0]. Moreover, this family has the following properties:

(i) U(t,s)U(s,r) =Ul(t,r) forallt,s,r €[0,0].
(ii) U(t,t) =1d for all t € [0, O].
(iii) U(t,s) is a unitary operator on L?(R3;CNet) for all t,s € [0,0)]:

t
t

1U(¢, 8)¥ |l L2 mescvey = 19l L2ms;cver)-

(iv) For all f € L*(R3;CNet), ((t,s) — U(t,s)f) : [0,0]> — L*(R3;CNe) is a continuous mapping.
(v) U(t,s) € LH?(R3; CNev)) for all (t,s) € [0,0]2.

(vi) For all f € H*(R3;CNe), ((t,s) — U(t,8)f) : [0,0]> — H?(R3; CNet) is a continuous mapping.

(vii) For all f € H*(R3;CNt), the mapping (t,s) — U(t,s)f is an element in C*([0,0]%; L2(R3; CNer)),

and the following equations hold in L?(R3; CNer):

9 in
i5,(U(ts)f) = H™(0)U(t,5)F,

z%(U(t, s)f) = —U(t,s)H™(s)f.
(viii) For all v > 0, there is a constant Be - of the form
Bon,=AM4® A C, >0,
such that if
||X||CU([0,®];R3Nnuc) <7

then for all t,s € [0,0],

NU )l 22 ®sscmvery) < Bey-
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Proof. The result in the case No = Npue = 1 was proved in [8, Lemma 4]. We observe that the argument
in [8] is robust enough to be easily adapted to our more general context of arbitrary Nej, Nyye € N. Indeed,
since the linear Hamiltonians H'"(¢) do not depend on an electronic configuration 1, and act on every
element 1, independently, the result for general N, follows from the case N = 1. In particular, properties
(i)—(vii) can be justified with an obvious adaptation of the case N = 1 proved in [31, Corollary 1.2 (1),
(2) and (4), Theorem 1.1 (2) and Theorem 1.3 (5) and (6)]. Property (viii) can be justified also by one
arguing exactly as for the case Ngj = Nyyue = 1 in [8, Lemma 4], observing that our additional terms in the
expression for V' can be estimated in the same way. O

3. Definition of the electronic feasible region B,
Let 7 > 0 be finite and define

where the term “+1” allows us to cover the case VY = 0. Let us consider B, ., as given in Lemma 2.3 with
O = 7, and where 7 is as above. We can therefore define the radius

a(T) == 2B,

(R3:C 1)
for the ball centred at the initial configuration ¢° € H?(R3; CNet):
Bo(¥°) = {¢ € H*(R% CY)[||¢ = ¢°l| 2 rsscvr) < @}

Finally, let us define the electronic feasible region for the time interval [0, 7] as

Ba(7) := {y € C([0,7); L*(R*; CN)) N CO([0, 7]; Ba(¥7)) | $:(0) = ¢°},
equipped with the C°([0,7]; L?(R3; CNe1)) norm, which is designed to contain solutions v to the Cauchy
problem associated with (1.4) with ¢(0) = ¥° on the time interval [0, 7], which we call “feasible electronic
configurations”.
4. Definition of the nuclear feasible region B,

For all 0 < & < ming7{|X% — X?|}, we set

mingp{| X — X7[} — min{drep (), €}

o(r) == 5 > 0,
where
N, —1
nuc nuc Z Z Nnuc Z2 .
Orep( [(ZMK|VK| Z |X0K )L(0|> +162 - ”77[’”00(07] JH1(R3; (CNel))(e *1)
K,L=1,L#K L

arises from a repulsion argument, given in Lemma 4.1. Note that € > 0 ensures the strict positivity of §(7),
which defines the radius for the ball centred at the initial configuration X° € R3Vme with X9 # X9 for
K # L:

Bs(X%) = {X € R3Mme || X — XO| < 6}.
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Then, by the triangle inequality, for all X € Bs(X°) and K # L, it holds that

- XY,

. 0 0 0 . .
| XKk — Xp| > Krp;ﬁli/ |XK, - XL,| - 2|X - X | > Km;éri' —26(7) = min{d,ep(7), e} > 0.

We define the nuclear feasible region for the time interval [0, 7] as
Buuc(7) = {X € C1([0,7]; B5(X?)) | X(0) = X°, X (0) = V°, [IX[lco(po,riRanme) < 7}

with « as in (3.1). This region is equipped with the C°([0, 7]; R3"nue) topology, and is designed to contain
short-time solutions X to the Cauchy problem associated with (1.6) with X(0) = X° and X(0) = V° on
the interval [0, 7], which we call “feasible nuclear configurations”.

This definition of 6(7) is suggested by an a priori lower bound on the nuclear distances | X (t) — X.(t)|,
K # L, which is based on Gronwall’s lemma. We have the following lemma.

Lemma 4.1. Fiz ¢ € C°([0,7]; H'(R?; CNe1)), and X° € R3Nwe such that Xj # X} for K # L. Let X
solve (1.6), and let X (0) = X°. Then, for all t € [0,7] and K # L,

[ Xk () = XL(8)] = brep(7)-

Proof. Writing the momenta P := Mg X, we define the classical reduced Hamiltonian

Hun (X, P) =1

with Wy, as in (1.7). Fix ¢ € C°([0, 7]; H*(R3; CVe)). Now

d Nyuc

(X P = [V Houn(X, P) - Xic + Vi Hun (X, P) - Prc]
K=1
N“UC P
= M—K {Vx e Wan(X)] + Mg Xk}
K
K=1
N,
1.6 -3 P
S (Vi Vet [X], ) 2
K=1 K
Niue 1
< D gage PRI + (Vi Vesa [ X, ) 2]
K=1
Nnue 2
S Hnn(X7 P) +8 Z M—II((H{l/}||%0([0,7'];H1(R3;CNel))7 (41)
K=1

by which, with the use of Gronwall’s inequality, on [0, 7]

Nuue ) Nuue 7.7 Nuue
Hun(X, P) < 3e7 [Z Mi|VR]"+ ) ﬁ +16 Z Zic M0 0, oy
K=1 K,L=1,L#K L

Nnuc

Z2
-8 Z K ”'(/)”CO ([0,7); HL(R3;CNe1))* (4'2)
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In (4.1), we use the fact that, by Hardy’s inequality, for all K =1,..., Nyyc,

Nei
—X -
(Vo Vel XL p)el = (= Zre =o)L < 2 2 =Xl
|- = Xk[? k=1
Nei
<27k Y I Vatbllrr < 2V22k)Vathll p2msicvey < 2V2Zx [0 1 ms Ve -
k=1

Estimate (4.2) is enough to conclude the proof, as for all K # L we have

1 1
3 < Wan(X) < Win(X) < Hon(X, P). D
e < Zrg V) S Wan(X) < Han (X, P)

Remark 4.1. A similar argument yields an a priori estimate of the nuclear velocity X.
5. Lipschitz estimates

In this section, we obtain Lipschitz estimates on the mapping ¢ — Vir[p]Y) := (Va[p] + Vilp]) .

Lemma 5.1 (Lipschitz estimates on the Hartree term). For all 4,1’ € HY(R3;CNv), with p' := [)'|?,

Vi [plt — Valp'To' | 2 ws.cvay S VNallt) — 4[| L2 ,c Ve X

Ncl Ncl
X [Z(||Vz¢k|L2<R3;ca) + IVaill 2 @) 19 [ 2 scvay + O 10ell L2 [ Vatbell 2oy |- (5.1)
k=1 =1

Moreover, for all 1, € H?*(R?;CNer),

Nel
Vol gz ra,c ey S v/ Nel Z [0kl 19 2 (3 Nt (5.2)
k=1

Vi [plY — Vi[9 | 2 e very S V Netll) = ¥ | 2 s, o vy X

Nei
Y [kl + 19l 19 2 s sovay + 1861 30]. (5.3)

k=1

Proof.

Proof of (5.1).
By adding and subtracting the term (|¢)[? % | - | 1)1}, we can write for all k =1,..., Nq,

Ne)
I(Valplt — Vaa[p' 19" )i ll 2 < Z[H(WMF | 17D Wk — Pi)llez + 1((el® = 10g1?) * |- 17D klle). (5.4)
=1 — (0 —. (1)

With the use of the Cauchy—Schwarz inequality in (5.5) and (5.7), Hardy’s inequality in (5.6) and (5.8),
and the triangle inequality in (5.8),

(D) < M1l %[ 17z o — Willze < eSSE}%&p{I(\WI, |- =l ) L2 1Y — 9l 2 s veny
e
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< esssup{|[Yell 2l - —2| ™ el L2 o — ¥l 12 (re.c v
zeR3
S ell2IVatbell oz reico) 1v — ¥l 2 Rs cve)
and

(I0) < [ICleel® = ol = |- |7 o 1k e
< eSZ?R}lsp{I(IWI = [l |- =27 (el + D) 2219 | L2 s e ver)

< esssup el — (9412 (1] =/~ wellzz + 11 =2l 9l Y e v
xE

S (IVatbel L2 @s,csy + IVatill Lz ®sics) 1Y | 2 Ve 1900 — 9| 2
<

(IVatbellL2@ascs) + [ Vatbill Lo @ssco) 19| L2 masevay 19 = 'l L2 ws e v

Combining (5.6) and (5.9) with (5.4), we get (5.1).

Proof of (5.2).
With G as in (2.1), we can write

Nel
Vilpl = > Glow, iy
k=1

Note that for all ¢1, s, 3 € H?,
A(Glér, d2)63) ‘= Glor, d2)Ands + 2V, (Gl b2)) - Vuds — Aniads.
Using (2.3) and (2.4) from Lemma 2.1, we obtain

1Gl¢r, pal@sllL> < 1Gld1, Gl l¢sllL2 S |o1ll g2l (sl ar,
G161, P2 Aaslle < [IGld1, PolllLoe [AatsllLe S [1@rll | @2l a | @3]l a2,

IVa(Glor, ¢2]) - VadsllL2 < [|Go1; do]llwre<VadsllL2@sics) S o1l ldall || dslm-

On the other hand, by Hoélder’s and Sobolev’s inequalities,

[¢10203ll2> < llo1llLelld2llLelldslize S lldrllar ool @s] mr-

This gives for all k =1,..., Ng,

Nep Nei
I(Valpl)illaz < Y NGe el S 10l En 1] rz@s ey

{=1 {=1

By our combining these estimates, (5.2) follows.

Proof of (5.3).
As in the proof of (5.1), we bound for all k =1,..., Ny,

13

Ney
1A: (Vialplt — Vaalp [0 il <> {1 A (Glbe, el (b — vi)lll L2 + | A [Gllvel + W0, [l — [plli]ll 2 }-
/=1

=:(I) =: (II)
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As for (5.2), we can bound (I) using (¢1, ¢2, ¢3) = (e, Ve, Yr — ¥},) and can bound (IT) using (¢1, P2, d3) =
(|e] + |yl [80e| — |95l, ). Hence, by the triangle inequality,

1A (Virlplt = Valp'Te) | 12 (rs,cvery S (B) o=

Nl
= Z lowlF + (onller + 15l 1 2 @i 11 = 9| 2 s io vy - (5.10)
k=1

On the other hand, by (5.1) we also have
IValply — Valp' T || L2 e ,cvey S (B)- (5.11)
Hence, by (5.10) and (5.11), (5.3) immediately follows. O
By the CauchySchwarz inequality, for all CVel-valued functions 1, 1)’, we have
Y- Vo' | < [ Vay]. (5.12)
Lemma 5.2 (Mean-value estimates for the density). For all a > 1/2, we have
0" =01 Sa Ul + 10171 = ) (5.13)

Proof. By the fundamental theorem of calculus

| o

1
a /a| __ 2a _ /2a_ 2a
o = = e =] = | [ 0 o0 = vl
0

Sa (014 WD MY — 0| Sa (0127 + [P |y — |
= (p" M2 4 p ) — |,

which yields (5.13). O
Lemma 5.3 (Mean-value estimates for the density gradient). For all b > 3/2, it holds that

Ve (p") = Valp' ") S (QuIVath] + Q2| Vat v — ¢'| + Q3| Vart) — Vart'|, (5.14)
where

Qi=p"" Q=" Qs =pt
Proof. Using V,p = V0 -9 +1 - V(1) and (5.12) for the pair (¥, 1), we have
Vepl S 02| Vathl. (5.15)

Since

IV (p")| <o 0"V anl,

adding and subtracting the term p?~'V,p’, we get for all b > 1,
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IVa(p") = Valp' ") So 0" HVep = Vap |+ 10" = 0PI Vap|.
By adding and subtracting v’ - V() and ¢/ - V1, and using (5.12) for the pairs () — ', ), (¢', ¢ — '),
W - 1;/]/71/}) and (va - 1//)7 we get
|v$p - vmpl‘ = hb ’ Vx@) - '(/)/ ' Vm(v) +E ' Vﬂ# _W ' vw("//”
S IVl = o' + 9"Vt — V. (5.16)

By (5.13) witha =b—1>1/2 and (5.15) for p’, we get
0" = 0 IV | S (007 4 0 TR p R [ — ).
Putting these estimates together, we get (5.14). O
Lemma 5.4 (Lipschitz estimates on the local nonlinearity). Let q € [1,00) and A € R. For any fized p € [1, 0]

and for all 1, € H?(R3; CNet) n LP(R3; CNet), it holds that

Nel
2(g—1 2(g—1
IValelte = Vlo T o qocy Sax D [l ™ + W5Vl = ¢l ogacray: (5:17)
k=1
Moreover, for all ¢ > 7/2 and any X € R, we have
[Vilolt = Vil T || iz rase vy < Loa(max{[|[¥]l gzga;cna), 191 2@ac ey DIY = ¥l 2@eiona),  (5:18)
where Lg y : RS‘ — ]Rg' is a polynomial function which vanishes at the origin.

Proof.

Proof of (5.17).
By the fundamental theorem of calculus,

Vielplwo = Vi1 = [ [P0 Dep — [ [Py

1
d ’ / — / /
o] [ 00+ o0 = )P0 o - )]
0

1
Solo =) [ 10/ + 1w - 9P Var
0

< (W + DXV = g (077 + P T ).
Since H? is embedded into L,
Ney
o1 Sa D lkll3e (5.19)

k=1

for all @ > 0. By our taking a =g —1 > 0, (5.17) follows.
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Proof of (5.18).
Taking p = 2 in (5.17), we need only the L?(R3; CMet) norm of A, (Vi[p]y — Vi[p']¥’) in addition to get
the H2(R3; CNet) norm estimate. Using the product rule for the Laplacian in R, we get

Ay (Vilpl — Vilp' ') = /\{ PP A — P T A +2[Va(p0Th) - Viatp = Va(p 9T - Vit
=: (I) =: (II)
+ s (p" = As (0 (5.20)

=: (III)

which is in CNet, We discuss the terms one by one.

Term (I).
By adding and subtracting the term p?~!'A ¢’ and using (5.13) with a = ¢ —1 > 1, we get

D] < [p7 At — Agt)!| + [p7 1 = p/ 97| Agy|
Sq A1|Az¢'||¢ - ¢,| + A2|Aa:¢ - Am?ﬁ% (521)
where

22272 |95,

= |lp| = |pl|4=".

Term (1I).
By adding and subtracting the term V,(p?71) - V9’ we get

|vx(l)q71) Va1 — v:c(p/qil) : vx¢/‘ < |Vx(0q*1)|\Vw - vx¢,| + |vx¢/”vx(0q71) - Vm(p,q71)|-
We then get

(5.15)

Ve (p™H) = (g = Do 2 Vapl < (¢ = Doll822 V0.

Using this and (5.14) with b=¢ — 1 > 2, we get

()| g (Bi| Vo]Vt | + Ba| Vot |2)|00 — 0| + (Bs|Vath| + Ba| Vo) Vath — Vorl/|, (5.22)
where
1/2 5/2 5/2
By = ||p]| 42, = 0112227 + 11152272,
3 2 1/2
By = ||pl|4=Y = [l |17/
Term (1II).

By adding and subtracting the term A, (p?~1)1’, we get

[(IID)] < Ay (0™ )| [0 — 9| + [Au(p?™Y) = Au (' Y[ 12.
N————
=:(a) =:(b)

Using Ayp = 9 - Agth + Agth - + 2|V,1p|? and the Cauchy-Schwarz inequality, we get
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1Acpl S o2 1A0] + Vo] (5.23)

Hence,

(ol
(2) Sq (@ 21017 |Vapl® + 101972 A0p] S 01922 [(20 — 3)|Vato? + [l /2| A0 ]

By similar reasoning, we get, by adding and subtracting the terms p?=3|V,p/|? and p?=2A, 0/,

(b) Sq (g =2) (101772 [IVapl® = [Vap P+ 1072 = o' 972 Vap'IP) +lp| 2 |Arp — Aup|
=:(i) =: (ii) =: (iii)
+ p? 2 = p' T3 Ap]
= (i)

By (5.15), we get

(i) < (|Vapl + Vel )IVap — Vap'|
(5.16)
S (121920 + 12152199 ) (18 = ¢ Vatt] + 101121Vt — Vo]

Furthermore, using (5.13) with a = ¢ — 3 > 1/2 (here is where we use the restriction ¢ > 7/2) and (5.15)
for p’, we get

(i) g (IS + 1 NG 0  poe [V ot P00 — 3]

In addition, by adding and subtracting the terms ¢’ - Ay1p and A -1/, and using the triangle and Cauchy—
Schwarz inequalities, we get

(iii) = [2(/Votp|* = Vot [?) + (0 = 97) - Autp + (Dutp — Agt)’) -4

+ (=) B+ (B — D) - |
S (Vo] + Vot ) Vath — Vot | + (Al [t — 3| + 10| 21 A0tp — Agt)'|.

Furthermore, using (5.13) with a = ¢ — 2 > 1 and (5.23) for p’, we obtain

(V) S (1SS + 10152 U 121 A | + [Vt 1P 0 — ).

Altogether, we get

(D) Sq (C1lVathl? + Col Vadb| [ Vo] + Ca| Va2 + Cal Agtp| + Cs|Aut'|) [y — ']
+ (Co|Vato| + C7| Vot ) Vath — Var'| + Cs| Aath — Ag], (5.24)

where

= AL Mol 2 + 1P11E2), Ca =Nl &2le
= ||/l [lloll 4721 + HPlle) + ||p 1521+ 11| =)).
= [l ol 21002 + 1), Cs = Do lleee (A5 + 16/ 15272),
Co = o520 12 ol 2 + 10122), Cr = Il &2l 12 ol s + 116 l]),

= llpllE210 | o=
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Conclusion of the proof of (5.18).

The function £ can be split into terms and expressed as £ = Lo + L1 + L1 + Ly11. As discussed at the
start of this proof, Lg is the contribution of estimate (5.17) for p = 2. The other terms stem from (I), (II)
and (I1I) in (5.20), and are obtained by one taking the L? norm in (5.21), (5.22) or (5.24), respectively. For
instance, in the expression for Ly, all scalars C; can be bounded with the use of (5.19). Likewise, the term
|t) — 1’| and the remaining factors involving C; and Cs can be bounded with their H? norms. The other
summands, and £y and L, can be estimated similarly, and this concludes the proof. O

Lemma 5.5 (Lipschitz estimates for the nonlinearity). For ¢ > 7/2 and any X € R, there exists a polynomial
function which vanishes at the origin £, » : R§ — R{ such that for all 1" € Ba(T),

Vare[plt = Vil o'1' | co (o, mr2 e e ey < ZLaa(a() + 190 gz @s.cva)) 19 — ¥l co o, 52 R, Ve )
(5.25)

Vit [Pl co o, p: 2 R2se Ve ) < (@T) 4+ 1100 | 2w s veny) Laa (@(T) + 1[9° e m.over)- (5.26)

Proof. By (5.3) in Lemma 5.1 and (5.18) in Lemma 5.4, we have for all ¥, v’ € C°([0, 7]; H2(R3; CNer)),

Vi [p]) — Vit o1 [| co o, 7j; 2 (350 Ve y) <
< Zya(max{|[9]l oo, m2 ®a:cVer)) s 18 [l 0o 0,7 2 2 Vet )y D 1Y — W o (0,73; 112 (RE 0 Ve ) (5:27)

=

where .7, » is a polynomial by construction. Note that (5.25) follows from (5.27) by the definition of Bej (7).
In particular, (5.26) follows from (5.27) by our setting ¢’ =0. O

6. Existence and uniqueness of nuclear configurations

In this section, we prove a local-in-time existence and uniqueness result for the Cauchy problem associated
with (1.6) for given ¢ € Bey(7) and X (0) = X% and X (0) = V(0), with X°, V0 € R3Nmee such that X9 # X9
fOI‘lSK?éLgNnuc-

Lemma 6.1. Let VO € R3Voue gnd X0 € R3Noue be given, with X9 # X9 for K # L.

Then there exists T > 0 such that the following properties hold. For given ¥ € Be(7), the Cauchy
problem associated with the system (1.6) with X (0) = X° and X (0) = V° has a unique short-time solution
X € Buue(T) N C?([0,7]; Bs(X")). The mapping

N i th € Ba(7) — X € Buue(7) N C3([0, 7]; R3Noue)

is bounded with respect to the C1([0, 7]; R3Nwue) topology, and is continuous as a map from C’O([O7 7]; L?(R3;
CHNe)) to CO([0, 7]; R3Nome)

Proof. Part 1: Ezistence and uniqueness of X in C?([0,7]; Bs(X?)).

Since ¥ and so p are given, we write the acceleration function from (1.6) without parameters for now:
A = A(t, X). Note that t is an explicit variable for the A} terms, but not for the A% terms.

We define the compact set

x(7) == [0, 7] x Bs(X°).

Note that we drop the dependence of this set on 7. By the triangle inequality, for all X € Bs(X?) and
K=1,..., N,
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[ Xxc| < X[ < X0+ X = XO < | XO] + 6(7). (6.1)

First, we prove A is continuous in (¢,X) on 3. To this end, we pick a sequence {(tn,Xn)}nen C s
with (t,, X,,) ———> (t*, X) € ». The functions A} give for all n, with the use of the Cauchy-Schwarz and
Hardy inequalities,

Nel
|Afe (tn, Xn) — AR (5, X0)| S Z(\XnK — |72 Wk (tns -))? = (0 (5, ))?]) 2
=1
Nel
Z (1 Xnk — -7 nax, () [ Xnie — - |7 Wk (s ) — (5, )]) L
k=1 o
Ney
< Z Vel £oe (0,712 (R2:co)) | Vatbr (tns ) — Vatbr (8, )| L2 ®s,c3) ——— 0
=1

A

as ¢ € C°([0, 7]; HL(R3; CNer)). Using this and Lemma 2.2, by which Ak (¢*,) € CO(R3Nwe; C3), we get
A (tny Xn) — A (7, X)| < [Afc (tn, Xn) — Afe (7, X)) |+ [Afe (7, X)) — Afe (7, X)| =0

for all n. The functions A% are not explicitly time-dependent, and are continuous on Bs(X?), and hence
on .
Since A is continuous on the compact set s, it is also uniformly bounded on 7. By Lemma 2.2,

”A}(||C°([0,T];W1=°°(B5(XO);C3)) 5 ||¢||200([0,T];H2(R3;CN01)),
since 1 € Bei(7). The functions A% are bounded on B;(X°) by
Nnuc

1A% = (Bsxoyesy S D H

ol
L Tur VXK _XL|2‘ L (B5(X°);C)

Furthermore, by Lemma 2.2, AL-(¢,-) is uniformly Lipschitz continuous for all ¢ € [0, 7] and K, as

Nel
||DA}((t7 ')||L°°(]R3;C3X3) 5 Z ||fo(k(t7 ')||L°°(]R3;C3X3) 5 ||w‘|é0([077];H2(R3;CN01))a
k=1

since 1 € Bei(7). For the A% terms, we note that the functions X —— (Xx — X1)| X — X1|72 are locally
Lipschitz on Bs(XY). Therefore, A is Lipschitz continuous in X € Bs(X?) and uniformly in ¢ € [0, 7]. We
denote the corresponding Lipschitz constant by Cp,, dropping its dependence on 7.

We now define 7 as the following mapping on the complete metric space C°([0,7]; Bs(X°)), equipped
with the C°([0, 7]; R3Vnue) norm:

TIX)(t) == X° + VO + / (t — 0)A(o, X (0))do. (6.2)

By the boundedness of A,

2
-
I71X] = XOHCU([O,T];RWnuc) < |V0|T + 7HAHCO(%;CSNnuc)
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for all X € C°([0,7]; Bs(X?)). Note that T maps C°([0, 7]; Bs(X?)) into itself, as for 7 > 0 small enough it
holds that

2
-
VO + 7||A||CO(%;<C3Nnuc) < (7).

Hence, for all X, X’ € C°([0, 7]; B5s(X?)),

t

ITIXT = TIX N co o, r1Ranmme) < Jnax, /(t = 0)|A(0, X (7)) = A(o, X' (0))|do
0

CLT

H‘X X’ HCO([OT ;R3Nnuc) -

Note also that 7T is a strict contraction on C°([0,7]; Bs(X?)) in the C9([0, 7]; R3Mwue) norm, as we can
always shrink 7 > 0 so that

CL7'2

<1
2

holds. By the contraction mapping theorem, 7 has a unique fixed point in C°([0, 7]; Bs(X")). Because of
this, (1.6) has a unique short-time solution in C?([0, 7]; Bs(X?)).

Part 2: Localisation of X in Buue(T).
Integrating the ordinary differential equation in (1.6), we get

1X | o (fo. 713 me) < VO] + 7] Allco Gescammne)-
Note that we can pick 7 > 0 small enough so that
THAHCO(%;CSNnuc) <1
holds. Therefore, X € Byuc(7) N C%([0, 7]; Bs(X?)).

Part 3: Boundedness and continuity of N.
From (6.1) with (3.1), AV is bounded in the C*([0, 7]; R3¥=uc) norm:

||X||Cl([O,T];R3Nlmc) S |X0| + 5(7-) +
To prove continuity of A" in the C°([0, 7]; R3N») norm, we consider a sequence {4, }nen C Bei(7) such that
Y 2 4p € Bey(7) in the CO([0, 7]; L*(R3; CNet)) norm. Similarly to X = N[¢)], we define X,, := N[t,,]

and p,, := [1,|?. Note that X and X,, are fixed points of the mapping 7 introduced in part 1 of the proof.
Using this, we have for all ¢t € [0, 7],

(X /t*ff |Alpn](X(9)) = Alp(X(0))|do, (6.3)
0

where
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[Alpn)(Xn(0)) = Alpl(X(2))| < (I) + (1D),

Nuue
(D)= > Akl (Xa(0)) = Ak [pl(X ()],
K=1
Nnuc
(ID) := ) [A%(Xn(0)) — A% (X(0))]
K=1

We further bound

(D) < (Ta) + (Ib),

Nei

(Ta) := )

k=1

(wk(t, ')7 E( - XK)(wnk(t7 ) - wk(t7 ')))L2 + (wnk(tv ) - wk(t’ ')7 E( - XnK)qybnk(ta '))L2 s

Nei
(Ib) = Z |(’¢)k(ta ')7 E’( - X?LK)¢7Lk(t7 '))L2 - (¢k(ta ')a E( - XK)¢nk(t7 '))L2 |7
k=1

where we use for short-hand notation the function = : R* — R3 (almost everywhere), 2 +—— x|z|73.
Arguing as in [8, p. 980], we state that (Ia) is bounded by

Nel

Bui=3" s (ol )+ unlh - =l () = vt ) D 220,
1 (t,z)€[0,7]xR3

as ¥, ——4p in CO([0, 7]; L2(R3; CNe1)). We also have

Nel
(Ib) < Z Ve Gk, Vi) (Xnk ) — VaGr, Ynk) (Xx )l co(o,r502) < CLnl Xn — X,
k=1

where G is as in (2.1), and where we used the fact that the functions V,G[¢k, ¥ni] are uniformly Lipschitz
continuous in X for uniformly all ¢ € [0, 7]. We note that (II) is also uniformly Lipschitz continuous, with
some Lipschitz constant C’;H. For all n, C’{j », and C’; », are uniformly bounded by C1,, since all v,, and 1) are
taken from the bounded set Be (7). Altogether, from (6.3) we obtain

1 Xn — Xl oo, riRevmue) S 7211 Xn — Xl oo, rjiR3Mmue) + 72 Bn-
It is then clear that for 7 small enough the conclusion follows. 0O
7. Existence and uniqueness of electronic configurations

In this section, we prove a local-in-time existence and uniqueness result for the Cauchy problem associated
with (1.4) for given X € Buue(7) and ¥(0) = ¢° € H?(R3; CNe1).

Lemma 7.1. Let ¢ > 7/2 and A € R. Let ° € H?(R3; CNet) be given. Then there exists T > 0 such that the
following holds. For given X € Buuc(7), the Cauchy problem associated with the system (1.4) with 1(0) = 1°
has a unique short-time solution v in Be (7).

Proof. The proof is based on Lemma 2.3, which ensures the existence and the £(H?(R?; CVe!)) bounds of the
propagator U(t, s) for the family of linear Hamiltonians { H'®(¢),¢ € [0, 7]} from (2.7), and on Lemma 5.5,
which ensures that the nonlinear mapping ¢ —— Viz, [p]t is locally Lipschitz in H2(R3; CNer).
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We define F as the following mapping on the complete metric space C°([0, 7]; Bo(%?)), equipped with
the C°([0, 7]; H2(R?; CNet)) norm:

t

FIul) = U0 i [ Ut.)Vindplo(o)dor

0

Note that we obtain for all ¢ € C°([0, 7]; Ba(¢Y)), using Lemma 2.3 (ii),
Fl](0) = U(0,0)9° = 4°. (7.1)
Note also that, provided
[1+ Bry + 7By (2Bry + DZya(a + [9°]] r2mscvay)] < 2Brs, (7.2)
F maps the complete metric space CO([0, 7]; B (%)) into itself as

IF 9] = 4%l coo,riar2 ®eicNery) =

CO([0,7];H2(R3;C Net))

= H[U(-,O) —1d]y° — i/U('»U)VHx[p]w(U)da‘

< By (10° Ml 2 s ey + TIVar 019l co 0,032 (R2 0¥y ) + 1901 172 (R0 vy (7.3)
(5.26)
= [1 + Bry + 7Bry(2Br 5y + 1) Ly (o + ||¢OHH2(]R3;<CNe1))] ||¢0||H2(]R3;(CNe1)

(7.2)
< 2B,

|1/}O||H2(R3;CNcl) = Q,
where we used Lemma 2.3 (viii) in (7.3). Moreover, note that, provided
By Zya(a(T) + ||7/10||H2(R3;(CNc1)) <1, (7.4)

F is a contraction on C°([0,7]; Bo(¥°)) in the C°([0,7]; H2(R3;CNe1)) norm, as for all ¢, €
CO([0, 7; Ba(¥%)),

171} = FI N eopo,71; 2 meeveryy = H/U(-,U)(Vﬂx[plw(a) = Vaax[pY)'(0))do
0

CO([0,7]; H?(R3;CNel))

< 7Br o [[Viix[plY — Vi [o'1¥ (| 0o j0,71: 2 (m3:0Mer) (7.5)
(5.25)
< TBTv’Y"g(L)\(O[ + ||w0||H2(R3;(CNel))||¢ - w,”CO([O,T];HZ(Rg;CNeI))7

where we used Lemma 2.3 (viii) in (7.5). By the contraction mapping theorem, F has a unique fixed point
in C°([0, 7]; Bo(¥°)).

Note that we can always select 7 > 0 small enough such that the inequalities (7.2) and (7.4) are satisfied.
Recall that B, and a are of the form

B‘r,'y = A»1Y+C‘YT7 CY(T) = QA'lerC-YT||1/}0||H2(]R3;(CN01)’

with A,,C, > 0 as defined as in Lemma 2.3 (viii). If we pick A, and C, large, (7.2) is true for 7 = 0 and,
by continuity, for 7 > 0 small enough.
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It is now left to prove that this fixed point, denoted simply by 1, is also of class C*([0, 7]; L2(R3; CNe));
namely, it solves (1.4) strongly on [0, 7]. To this end, we consider the following identity, which holds for all
0<t<t <t

Ult',o) = U(t, o)
t—t

Vix[ply(0)do

Further, we show that
t'—t

(R) = H[X(#), plp(t) ]| L2 (s ;e ¥ery — O

This implies that v (-) is differentiable as a mapping [0, 7] — L?(R3; CVe) such that

Note, in particular, that for a given X € Buu(7), H[X(-),p]¥(:) is a continuous mapping [0,7] —
L2(R3; CNet)| which implies that v € C1([0, 7]; L?(R3; CVe1)). We bound

I(R) = H[X(2), plo(t) [l L2 me;cvery < (1) + (TD),

0= LY [UD T oy 00 e,
0
(IT) := H / UtEt/ )VHX[ [ (0)do — Vix[p]o( )’ L2(R3;CNet)
We get
Jim (1) = HZ’%M / ag U(t,0)Vasslph(0)]do — H'™ (1) (1) L2(R3:CVer)
0
HHI‘“ U(t,0) +/—th“ U(t, o) Vix[plth(o)]do — H™ (£)u(t) (7.6)
) L2(R3;CNel)
= ||H" () [F[ ()] — »(t)][| 2 @sscveny = O, (7.7)

where we used Lemma 2.3 (vii) (see also [31, Theorem 1.3 (6)]) in (7.6), the linearity of the Hamiltonians
H'"(t), and 1 being a fixed point of F in (7.7). On the other hand,

(I) < (a) + (b),

— / U(t, o) Vi [plt(0)do — VHx[p}w(t)\

t

(a) :=

L?(R3;CNet)’
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(b) :=

L2(R3;CNel)

| [0 - v Windslvioro]

In the limit, (a) goes to zero, because of the fundamental theorem of calculus for Bochner integrals and
Lemma 2.3 (ii). Moreover,

t/
. . 1
Jim (0) < Jim o2 [ U(.0) = Ut ) Vil 60 2 po vy do
t
< Jim U, ) = Ut Walolbllooo.r1,c2@sc vy =0 (78)

Tt —t

where we used the uniform continuity of U (¢, s)Vizx[p]1(s) on [0, T)? together with Lemma 2.3 (iv) in (7.8).
Since v also is a fixed point of F, by which 1(0) = F[](0) = ¢° (see (7.1)), we know % is a strong solution
to (1.4) on [0, 7).

We now show the uniqueness of the short-time solution 1 to (1.4) in the class C*([0, 7]; L?(R3; CNet)) N
C°([0,7]; Bo(¥?)): although the classical contraction mapping theorem also provides uniqueness, this is only
in the class C°([0, 7]; Bo(1/°)). So now we prove uniqueness in the different space C*([0, 7]; L2(R3; C™Ne1)). To
this end, we let ¢ and 1’ be two short-time solutions to (1.4) in C1([0, 7]; L(R3; CNet)). First, (v —¢')(0) =
¥ — 9% = 0. Moreover, for all k = 1,..., N, using the partial differential equation in (1.4), we get

d d
prAL Uille) = 37 (U = s ¥ = U1)12)
= Wk - Qb;cvwk - ¢I;)L2 + (¢k - 1%6#% - w;g)l? = (I) =+ (II)7

where, using the fact that the linear Hamiltonians H'""(¢) are self-adjoint on L2(R?; CY!), we have

(D) = i[(r = ¥pr (H™ () (% = )i 2 — (H™ (0@ = ")k o — ) 12] =0

and

(1) = @ [(Vac o]t — Vi[9 )k, r — ¥3,) 2 — (Vi [p]t — Vine[p' 19 )k, r — 0, 2]
= 2Im((Vax[p]Y — Vare[0'10" )i, Y1 — ) 12

Using this, we get

Nel d

d / /
&(Wb - ||2L2(R3;<cNe1)) = Z E(”?ﬁk - ¢k||2L2>

= 2Im (Vir [p]Y) — Vire[0' 10", 0 = ¥') p2ro.cvery
<l — ¥/ gy
where C = C([|¥llcoo, ) m2®s;ce))s 19 | co (0,71 52 (R3:0Nery)s Ts @ Ay Net) > 0 stems from the Cauchy—

Schwarz inequality and our combining (5.1) from Lemma 5.1 and (5.17) from Lemma 5.4. Finally, by
Gronwall’s lemma, we get 1) = 9’, and this concludes the proof. O

Lemma 7.2. Let ¢ > 7/2 and A € R. Let 7 > 0 be such that the following holds: for given X € Bpuc(7),
Y € Ba(7) is the unique short-time solution to (1.4). Then the mapping
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£ X € Bue(r) — ¥ € Bai(7)
is bounded and continuous as a map from CO([OyT};RgN"“C) to CO([OvTh L*(R?; CNel))'

Proof. Since B (7) is a bounded subset of C°([0,7]; L?(R3;CNe1)), the mapping € is bounded in the
C°([0, 7]; L*(R?3; CNet)) norm. To prove continuity of € as a map from C°([0, 7]; R3N=u<) to CO([0, 7]; L2(R3;

n——oo

(CNel)), we consider a sequence {X,}neNn C Bpuc(7) such that X, ——— X € Buue(r) in the
CO([0, 7]; R3Nsue) norm. Similarly to 1 = £[X], we define 1, := £[X,,] with p,, := |1,|?. Then

L =) = HIX 0 =) 4o (n = 0)(0) = 0
with

Cn =G+ (o + G,
Crly, = ext[ ]wn - ext[ ]'(/} - V:ext[X](wn - w) = (‘/Yezxt[Xn] - ext[ ])wru
¢ = Valpalon — Vaal[plt — Vaa[p] (9n — )

Ney
= > {Re[(Wnk — ) Wnk +vi)] * |- |7}, (7.9)

Ci = VX[pn}'l/Jn - Vx[PW - Vx{ﬂ]('l/}n —) = )‘[p%_l - pq_lem

where we used |a|? —|b]? = Re[(a — b)(a+b)] in (7.9). We denote by {H[X (t), p],t € [0,T]} the family of KS
Hamiltonians for the given X € Byuc(7). Note that since ¢ and thus p are fixed now, these Hamiltonians
are acting linearly on 1, — ¢, and can thus be written, similarly to (2.7), as

H(t) = —5A: + V(1) + Vi)

with V' from (2.8). The linear potential V(¢) + Vux[p] satisfies Assumption (A.1) in [31, Theorem 1.1];
hence, there exists a family of evolution operators {8l(t,s), (t,s) € [0,T]?}, associated with this family of
Hamiltonians, satisfying properties (i)—(iv) of Lemma 2.3. By this, from which it follows that for fixed
t € 10,7, sh(t, -)Cn € CO([0,¢], L2(R3; CNe1)), and [31, Corollary 1.2 (4)], we can argue as in [8, p. 982], and
the corresponding integral representation holds for all ¢ € [0, T:

¢
(n, — —i [ (t,0)Cn(o
=i/

Using Lemma 2.3 (iii), we bound for all n € N and ¢ € [0, 7]

t

6 = ) Olsmscrn S 3 [ 1O mscraydo

Je{1,2,3}

So now we deduce L?(R3;CNet) estimates on (J (o) for j € {1,2,3} for all ¢ € (0,t), using the
fact that 1, and ¢ are elements in Be(7), which makes them uniformly bounded with respect to n
in CY([0, 7]; H?(R3; CNer)). For j = 1, as noted in [8, p. 982], it holds for all 0 < 0 < t < 7 < T that

n——o0

163 () 23, cvay < Crn —=0
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for some C ,, = C1 ,(a,9%) > 0. For j = 2, we use the mapping G from (2.1). This gives for all o € (0,¢),

Nei

12 (@)l 2 Rsscvery < D NG ok (0) = Vi(0), Yk (o) + Vi (0)] ]l oo 110 ()| 2 (RN
k=1
Nei

S ) Mnk(o) = Yr(o)|| L2 |¥nk (o) + Vi (o) m2 [|9nll Lo (0,722 (RS0 M)
k=1

< Col[thn(0) — (o) L2(r3;0Ne)

for some Cy = Co(a, %) > 0. For j = 3 and all o € (0,1),

(5.13)
-3/2 —3/2 1/2
I @) z2@acray Sea (oa(@ 152+ 1lp(@) 152 o (@2 1n(0) = ()| p2gs v

(5.19)

< Gsllbnlo) = ¥(0)[| L2ms;cva)

for some C3 = C5(q, o, 9°) > 0. Combining these three estimates, we have for all ¢ € [0, 7],

t
1@ = ) Ol L2(rz;cvery < CrnT + (C2 + C3) / 1% = ¥)(0)ll L2 (rs;cverydo
0

By Gronwall’s lemma, we conclude that for all ¢ € [0, 7],

(¥ — w)(t)||L2(R3;(CNe1) < Cl,n76(02+03)t,

and this concludes the proof. O
8. Proof of Theorem 1.1

In this section, we prove the main result, Theorem 1.1.

Lemma 8.1. Let ¢ > 7/2 and A\ € R. Further, let ¢° € H?*(R3;CNet), VO € R3Nuue gnd X© € R3Noue pe
given, with X9 # X9 for K # L.

Then there exists T > 0 such that the initial-value problem associated with the system (1.1) with ¥ (0) = ¥,
X(0) = X° and X(0) = V° has a solution (, X) € X(1).

Proof. Let 7 > 0 be such that the following statements hold. For given ¢ € B (7), (1.6) has a unique solution
X € Buue(T) N C3([0,7]; Bs(XY)), and for given X € Byyc(7), (1.4) has a unique solution ¢ € Be(7). The
existence of such 7 was proven in Lemmas 6.1 and 7.1. We define the inclusion

T : Buue(T) N C2([0, 7); R3Nmue) 5 By (1),
which is a continuous and compact mapping. Also, we define the mapping
K : Bhue(T) — Bhuc(7), K:=ZToNo&.

Since by Lemma 6.1, A/ is bounded in the C([0,7];R3N=u<) topology, by the Arzela—Ascoli theorem it
follows that K is a compact mapping, where By,.(7) is equipped with the C°([0, 7]; R3Nme) topology.

By the classical Schauder fixed-point theorem, K has a fixed point X in By (7). If we set ¢ := E[X], the
corresponding pair (¢, X) is the desired solution, and this concludes the proof. O
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Lemma 8.2. Let ¢ > 7/2 and A € R. Let (X, ), (X',¢)') € X(7) be two solutions to (1.1) for some 7 > 0.
Then, for allt € [0, 7],

(X = X)) < CUX = X))+ 1@ = D)) 1.0 3 se v, (8.1)

(% = ") ()]l 3,00 (R3, Ny < C / = X))+ 1 =) ()| 2.0em2,cNer)] oy (8:2)
0

where C = C([1¥]lcofo, ) mr2R3;cVer)ys 19 | oo (0,77 52 (R3,0Ner ) ) -
Proof. We focus on justifying each estimate separately, as follows.

Proof of (8.1). In this proof, we use for short-hand notation the function Z : R?* — R? (almost every-
where), x — z|z|~? again.
For all t € [0,7] and K = 1,..., Npyc,

|(Xx = X)) < [AK[p(ON(X (1) = Ak [o' 01X (1)) + [AK (X (2)) — A (X'(1))]
< (1) + (1) + (TI),
(1) = | Ak [p®)](X (1) = Ak [pOIX' @),
(IT) == [Ax [p(1)] (X" (1) — Ak ["(DIX" ()],
(ITD) := | A% (X (1)) — AR (X(1))].

By Lemma 2.2 on the force functions, Ak [p] are uniformly Lipschitz continuous in the nuclear variable for
all t € [0,7] and K, by which

(D) S D 1Wn(t), EC = Xae(8))ehr(0) 22 — (e(t), E(- = X (8) )b () 2|

(2.6)
< Cl|(Xk — X)) ()] < Crl(X — X')(2)]

for some Cf = CI(H¢||CO([O7T];H2(R3;CNSI))) > 0. Also,

(I1) < Cull(¥ = ") ()]l 3.0 (R3;€ v

for some Cr1 = Cri([[¥l co 0,71 2R3N )y 1| 0 (0,71, 2 (R2,C Ve ))) > O by Hélder’s inequality in Lorentz
spaces (A.1) and the fact that || - ||gz € L*?. Since X, X’ € Byuc(), we bound (III) similarly to the
bounding in part 1 of the proof of Lemma 6.1:

() 5 Z E(Xx = X1)(1) = E(Xx = X2)(1)] So.xo [(X = X)(1)].

L=1,L#£K

Since these results hold for all K, (8.1) follows.

Proof of (8.2). Similarly to the proof of Lemma 7.1,

00— 0) = a0~ )+ Ve K — )+ Vilpl(0 — ) + .
(6~ 9)(0) =0
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~  ~1  ~2 ~3 ~j .
where ¢ :==( + ¢ + ¢, with for j € {1,2,3}, CJ being ¢, with (X,,,¢,) — (X’,4¢’). As the operator
—A, /2 generates the free propagator Uy, we write the equivalent integral equation for all ¢ € [0, 7]:

(W —¥)(t) = —i/Uo(t—0){%xt[X(0)}(¢—¢’)(U)+VHX[P](¢—¢’)(0)+Z(0)}d0-

We recall that by Lemma 6 in [8], for all o € (0,7] and f € L3/2° it holds that

\Uo()fll o < \/1—||f\|Ls/2oo

Using this estimate, we obtain for all ¢t € [0,7] and k = 1,..., Nq,

1k — )l o < / Vet X (@))% — )i ()] 20
0

+ [I(Valp ](w - w D@l psrze + (Vo (v = ¥")k(0) [l £or2.00
+ Z k||L3/2 - |do.

Jje{1,2 }

Since || - ||gs € L, by Hélder’s inequality on L3/%°°, we obtain for all o € (0,¢) and k = 1,..., N,

Nnuc

[(Vext[X ()] (¥ — " Dk(0) | Lsr2e S Z I - =X ()]l ponee | (r — 4 ()| po.oe
S zoee 1 (or = 3) (0) || o0
S Wk — 3,) (0] s.oe -
Note also that
[(Varlp) (¥ = @) (0) [ arzee S llp(0) # |- [~ zaoe [| (0 = 13)(0) || L3 (8.3)

S @)l 17 e 14 — 95) (@) | e (8.4)
< Cul|(x = ¥%)(0)]| L3

for some Cy = Cu([|¥|lco(o,7);rr2(R3;cNery)) > 0. Here we used Holder’s inequality on L3/%° in (8.3) and
Young’s convolution inequality on L*°° in (8.4). Moreover,

I(Vielpl (0 = ")k (0) [ ar2i0e Sx [0(0)) 7 | poioe [| (01 — 903,) ()] L3200 (8.5)
S (o)) Ml psll Wk — ¥3.)(0) || Lo (8.6)
< Cxl| (W — ) (0) || L3 (8.7)

for some Cyx = Cx([|9ll oo, mr2(R2:CNery) ) > 0. Here we used Hélder’s inequality on L3/2°° in (8.5)
and Proposition 4.2 from [4] in (8.6). In (8.7), we used Sobolev’s inequality with interpolation, and the
embedding of H? into L*°, by which, with 6 := 6(q — 1) > 6,
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Nei
o)) 7s <o Z eor (@) @=OFO a

Nel
S ZII?/J @NZL 1050 S D 1nllEo o, m2)-

k=1
On the other hand,
~1 er\lc
I (@Dillzsrze DI =Xk (@)™ = |- = X5 (@)~ h (0, )l o2
K=1
NI’IUC
=D =Xk = Xi) (@)™ = |- [T)k(on + Xi) | oz
K=1
S k(@)= Z 1171 = (X = X5 ) (@)l poraee (X ke = X)(0)] (8.8)
NI]UC
S kllcoqoma Il [7Hpes Z I =(Xx = Xi) (@) 7 Iz |(Xi = X5 )(0)] (8.9)
e [kl o, I 17 12 [(X = X7)(0)]
S 1kllcoqpo,rs 2y (X = X ) (o),
where we used the triangle inequality written as ||| — |- —(Xx — X% )(0)|] < (Xk — X%)(0)| in (8.8), and

Hélder’s inequality in L3/2° and the embedding of H? into L> in (8.9). Moreover,

1 @)ell g S Zn{ (@ — 0P 0) (e + U)(@)] * ] - |7 Yk (o) pove

2/\

ZH (e — ) (o) (We + ) ()] | - |7 | oo [0 (0) | 2 (8.10)
< ZH (e — ¥ () (We + ) (@) * |- | lzo |k (o)l 2 (8.11)

S 1kl o,ry; ) Z (e = ) (o) (e + 7))l posslll - |7 [ powee (8.12)

/=1
Nei

S Willooormz) D llIve(@) e + (o) 2]l (e — 44) ()| 1. (8.13)

{=1
< G| (¥ = ¥')(0) Lo o (m3, M)

for some Cy = Co(|[vllco(po, ) m2ra,cNer))s 19l o (0,77 2 (R3;,C Nery)) > 0. Here we used Holder’s inequality
on L3/2° in (8.10), Proposition 4.2 from [4] in (8. 11) Young’s convolution inequality on L2 in (8.12) and
Holder’s inequality on L%%2 in (8.13). Finally,

(5.13

N )
1 @Dillzsrzee San 11p@N + [ @)% | e [0 (0)(0) = ¥/ (0) [ o2
S e@NE2 + 116 (@) 152" k(o) s (@ = ) (@) | po.oe ety eny (8.14)
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Nei
S [ D e (o) B S o) 37| It o HLaZn Yo =00 o (8.15)

=1 k'=1
< sl (4 = ¢ )(0) ] 3.0 (330 Ner) (8.16)
for some C3 = C3(|[Y| co (0,71 5230 Ner))s 1V | c0((0,7); 112 (R2;C Vet )), @) > 0. Here we used Hélder’s inequality

on L3/2° in (8.14), (5.19) and Proposition 4.2 from [4] in (8.15), and Sobolev’s embedding theorem with
interpolation in (8.16). Since all these estimates hold for all o € (0,¢), and k =1,..., Ny, (8.2) follows. O

Proof of Theorem 1.1. Let 7 > 0 be such that the following statements hold. For given ¢ € Be(7), (1.6) has
a unique solution X € Bpue(7) N C2([0, 7]; Bs(XY)), and for given X € Byuc(7), (1.4) has a unique solution
1 € Be (7). The existence of such 7 was proven in Lemmas 6.1 and 7.1. The existence of the solution
(X,%) € X(7) to (1.1) was proven in Lemma 8.1. Uniqueness of this solution follows from Lemma 8.2. For
two solutions (X, 1), (X',9’) € X(7) and p > 2, we define the function h € C°([0,7]; R{) by

h(t) = (I(X = X)(O)] + (& — ") () 3. (msc vy )P

Since X and X’ both solve (1.6) on [0, 7] and thus are fixed points of the mapping 7 in (6.2), for all ¢ € [0, 7],

(X /t—a — X")(0)|do.

Using this in combination with Lemma 8.2 in (8.17) and Hoélder’s inequality, we have for all ¢ € [0, 7],

) S o [ (1= 04 =) 16X - XY+ 1@ =)o mrcsallo} (817

sefe---

nl/p P
L'([0,t];R)

1

||Lp(0t] R) S C/h(a)da,
0

1 P
Vit —- L”/([OJ];R)
where C' = C(||¥]|cojo,r);m2®s;cVe))s 1Y | co (0,7, r2(R3,cMeryy) 18 from Lemma 8.2. Using Grénwall’s in-
equality, we obtain h < 0 on [0,7]. Since A > 0 too by definition, and h(0) = 0 since X (0) = X'(0) = X°
and (0) = 9'(0) = ¢°, we get h = 0, by which (X,¢) = (X’,’). This completes the proof. O
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Appendix A. Notation
Throughout this article, we use the following notation:

o We use A < B to denote |A| < CB, where 0 < C' < 0.
o We use A S, p B to denote dependence on parameters a and §: so |A| < Cp B with 0 < Cf g < 00.
In our notation, A S, B Sg I' means that A S, 5 T

Further, we use the following normed spaces:

o We use the notation LP"(R3) = LP", p € [1,00), 1 € [1, 00|, for Lorentz spaces, with
— the radial nonincreasing rearrangement of measurable functions f on R3

f7(t) = inf{s > 0| {z € R?||f(2)] > s}| < t},

— the average of f*

— the norms

dt

I91er = [ 1008 0
0

on LP" r < oo, and
[ £llLree = sup [£/7 £ (1)]
teR

on the weak Lebesgue spaces LP>°.
« We use the notation W*P?(R3) = WkP and W*?2 = H* k € N, p € [1, 0], for classical Sobolev spaces,
setting in particular

1172 = 11 FlIZ2 + 1AF]Z-.
Further, we use the following inequalities:

o Holder’s inequality on Lorentz spaces [24]. Let f € LP©9 and g € LP>»%  with p;,ps € (0,00) and
q1, 42 € (0,00]. Then

I1f - 9llere Sprpaaras [1flleallglle e, (A1)

with 1/r =1/p1 +1/p2 and 1/s =1/q1 + 1/g2.
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e Young’s convolution inequality on Lorentz spaces [33, Theorem 2.10.1]. Let f € LP*% and g € LP>%,
with 1/p1 +1/p2 > 1. Then

1 gl < 3l Fllzonor gl e,

with 1/r =1/p; +1/p2 — 1 and s € [1, 00] such that 1/¢; +1/g2 > 1/s.
o Hardy’s inequality [16]:

e =7 fllee <2V fllze (A.2)
for all f € H' and = € R3.
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