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1. Introduction

1.1. Main result

In this article we study the existence and uniqueness of solutions to the system

iψ̇k = −1
2Δxψk −

Nnuc∑
K=1

ZK

| · −XK |ψk+
(

1
| · | ∗ ρ

)
ψk + λρq−1ψk, (1.1a)

ẌK = ZK

MK

[ ∫
x−XK

|x−XK |3 ρ(x)dx +
Nnuc∑

L=1,L �=K

ZL
XK −XL

|XK −XL|3
]
, (1.1b)

where Nel, Nnuc ∈ N, ZK ∈ N, MK ≥ 0, λ ∈ R and q > 1 are given, and k = 1, . . . , Nel and K = 1, . . . , Nnuc.
We use the short-hand notation ψ = (ψ1, . . . , ψNel) and X = (X1, . . . , XNnuc) ∈ R3Nnuc , with

ψk = ψk(x, t), XK = XK(t), x ∈ R3, t ≥ 0.

In the above equations, for all ψ(·) : [0, τmax) � H2(R3; CNel), we set

ρ =
Nel∑
k=1

|ψk|2.

Moreover, for all X ∈ R3Nnuc and k = 1, . . . , Nel, we define

(H[X, ρ]ψ)k := −1
2Δxψk −

Nnuc∑
K=1

ZK

| · −XK |ψk+
(

1
| · | ∗ ρ

)
ψk + λρq−1ψk. (1.2)

The dynamics of the elements X(·) : [0, τmax) � R3Nnuc is driven by the acceleration function A = A1+A2, 
whose components are defined as

A1
K [ρ](X) := ZK

MK

∫
x−XK

|x−XK |3 ρ(x)dx, A2
K(X) := ZK

MK

Nnuc∑
L=1,L �=K

ZL
XK −XL

|XK −XL|3
. (1.3)

The main result of this article is as follows.

Theorem 1.1. Let q ≥ 7/2 and λ ∈ R. Further, let ψ0 ∈ H2(R3; CNel), V 0 ∈ R3Nnuc and X0 ∈ R3Nnuc be 
given, with X0

K �= X0
L for K �= L.

Then there exists τ > 0 such that the initial-value problem associated with the system (1.1) with ψ(0) = ψ0, 
X(0) = X0 and Ẋ(0) = V 0 has a unique solution (ψ, X) ∈ X (τ), where

X (τ) := C1([0, τ ];L2(R3;CNel)) ∩ C0([0, τ ];H2(R3;CNel)) × C2([0, τ ];R3Nnuc).
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1.2. Physical motivation

Problems such as (1.1) describe the nonadiabatic dynamics of molecular, spin-unpolarised systems in-
volving an even number Nel ∈ 2N of electrons and Nnuc ∈ N nuclei with masses M1, . . . , MNnuc and charges 
Z1, . . . , ZNnuc . See, for example, [2,14,17,19–21,26,27,30], which form a sample of the extensive body of litera-
ture on both physical and mathematical aspects of the so-called density-functional theory, which comprises 
the framework of the time-dependent Kohn–Sham (TDKS) equations, given in (1.1a). These equations, 
which with the use of (1.2) can be written as

iψ̇ = H[X, ρ]ψ, (1.4)

describe the electronic evolution in terms of single-particle wave functions ψk, known in the physical lit-
erature as the Kohn–Sham (KS) orbitals. The TDKS equations have been extensively considered as an 
approximation to the time-dependent Schrödinger equation, which reduces the electronic dynamics to a 
single-particle description based on the KS density function ρ. For convenience, we briefly recall the physi-
cal interpretation of each potential in the KS Hamiltonian H from (1.2), which can be written as

H[X, ρ] = −1
2Δx + Vext[X] + VHxc[ρ], VHxc := VH + Vx + Vc. (1.5)

The different terms appearing in (1.5) are defined as follows.
The electrostatic potential

Vext[X](x) := −
Nnuc∑
K=1

ZK

|x−XK |

is an external potential, generated by the nuclei, which represents the Coulombic nucleus-electron interac-
tions. The Hartree potential

VH[ρ] := | · |−1 ∗ ρ

corresponds to the Coulombic electron-electron interactions. The remaining term, the exchange-correlation 
potential Vx + Vc, is not explicitly known: in the local-density approximation (LDA) introduced by Kohn 
and Sham [19], for the exchange potential Vx an approximation based on the homogeneous electron gas 
approximation is chosen [25]. In this article, we study a generalisation of this exchange potential, of the 
form

Vx[ρ] := λρq−1,

where λ ∈ R and q > 1. Hereafter, we set the so-called correlation potential to zero, namely,

Vc ≡ 0,

and write accordingly VHxc = VHx. In most cases, there is no closed form for the correlation potential, and 
one has to resort to numerical presentations, which are too complex to investigate in the same manner as 
we handle the other terms. See, for example, [2,18], where the case Vc �≡ 0 is considered in time-independent 
or specific time-dependent settings.

In the coupling of (1.4) with the equations (1.1b) describing the nuclear dynamics, which with the use 
of (1.3) can be written as
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Ẍ = A[ρ](X), (1.6)

we apply the so-called mean-field or Ehrenfest dynamics approach—see, for example, [1, Section V], [15, 
Section 2.1], [23, Section II.3] and [29]—based on factorising the total wave function into a product of 
fast (electronic) and slow (nuclear) particle parts. In this nonadiabatic mixed quantum–classical dynamics 
method, we use a point-nucleus approximation rather than the Born–Oppenheimer approximation, which 
would assume some requirements for the system under consideration. In this way, we can ignore the quantum 
nature of the nuclei, since these are much heavier than electrons, and consider them as classical point 
particles. This mean-field description can be understood as a semiclassical limit of the time-dependent self-
consistent field (or Hartree) method, from which the Hamilton–Jacobi equation (equivalent to Newton’s law 
of motion) for the nuclei can be derived. According to this description, the nuclei move subject to a single 
effective potential of Hellman–Feynman type, corresponding to an average over quantum states:

MKAK [ρ](X) = −∇XK
W [ρ](X) for all K,

where

W [ρ](X) := (Vext[X], ρ)L2(R3) + Wnn(X),

Wnn(X) := 1
2

Nnuc∑
K,L=1,K �=L

ZKZL

|XK −XL|
(1.7)

describe the interaction of the electrons with the external potential, and the Coulombic internal nuclear 
interactions, respectively. Note that the exchange term does not appear in the coupling of (1.4) with (1.1b), 
as it does not describe electrostatic interaction, but describes interactions between the electrons. Also, we 
note that our equations (1.1) can be regarded as a Hamiltonian system. The total energy E associated with 
this system is given by

E[X,ψ] := Ekin[X,ψ] + W
[
|ψ|2

]
(X) + EH

[
|ψ|2

]
+ Ex

[
|ψ|2

]
,

where

Ekin[X,ψ] := 1
2

Nnuc∑
K=1

MK

∣∣ẊK

∣∣2 + 1
2

Nel∑
k=1

∫
|∇xψk(x)|2dx

is the kinetic energy of the system. The other terms are potential energies:

EH
[
|ψ|2

]
:= 1

2

∫∫ |ψ(x)|2|ψ(x′)|2
|x− x′| dx dx′

is the Hartree electrostatic self-repulsion of the KS electron density, and

Ex
[
|ψ|2

]
:= λ

q

∫
|ψ(x)|2qdx

is the exchange energy, whose functional derivative coincides with the exchange potential Vx. The total 
energy E and ‖ψ‖L2(R3;CNel ) are quantities which are conserved under the dynamics, as is customary for 
Hamiltonian systems.

Cancès and Le Bris [8] considered similar electronic evolution equations coupled with classical nuclear 
dynamics consistent with the mean-field Ehrenfest approach. They studied a system involving the Hartree–
Fock equations:
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iψ̇HF = HHF[X,ψHF]ψHF, (1.8a)

Ẍ = A[ρ](X), (1.8b)

where ρ =
Nel∑
k=1

|ψHF
k |2, the Hartree–Fock Hamiltonian is defined as

HHF[X,ψHF] := −1
2Δx + Vext[X] + VH[ρ] + V HF

x [ψHF]

and

(V HF
x [ψHF]ψHF)k := −

Nel∑
�=1

(ψHF
� ψHF

k ∗ | · |−1)ψHF
�

is known as the Hartree–Fock exchange potential. Here, ψHF
k are single-particle wave functions. In [8], 

the global-in-time existence and uniqueness of solutions to (1.8) in H2 are based on the result obtained by 
Yajima [31] for the existence of propagators associated with linear, time-dependent Hamiltonians. The proof 
in [8] consists of two main steps: a fixed-point argument to show the existence of short-time solutions, based 
on Lipschitz estimates in H2(R3; CNel), and a Grönwall-type argument which relies on energy conservation, 
conservation of the L2(R3; CNel) norm of ψHF and estimates of the solutions ψHF in the H2(R3; CNel) norm.

To the best of our knowledge, since the article by Cancès and Le Bris [8], only a few contributions have 
dealt with the coupling of a system describing electronic evolution with nuclear dynamics; this is the case, for 
instance, in [3], where existence and regularity questions are studied for a similar system, in the case λ = 0. 
Considerable attention has also been devoted to Schrödinger–Poisson-type equations, which include the 
Hartree–Fock and TDKS equations; see, for instance, [2,5–7,9,10,13,18,22,32]. We also mention [28], where 
existence, uniqueness and regularity questions are investigated for TDKS equations set on bounded space 
domains, in relation to control problems. None of the contributions cited above considered the combined 
nuclear and electronic dynamics as described in our system.

1.3. Article outline

This article is organised as follows.
In Section 2, we recall the relevant results from [31] on the construction and properties of a family of 

propagators

U(t, s) : L2(R3;CNel) −� L2(R3;CNel),

with t, s ∈ [0, Θ], associated with the linear parts of the KS Hamiltonians H[X(t), ρ] for t ∈ [0, Θ], with 0 <
Θ < ∞, and some results from [8] on the bounds on the operator norms of these propagators.

In Sections 3 and 4 we define bounded regions Bel(τ) and Bnuc(τ), designed to seek solutions to (1.4) and 
(1.6), respectively, on a time interval [0, τ ], and the mappings

N : Bel(τ) −� Bnuc(τ) ∩ C2([0, τ ];R3Nnuc), E : Bnuc(τ) −� Bel(τ)

which connect these solutions.
In Section 5, in view of a Duhamel-type argument developed in later sections, we state and prove some 

Lipschitz estimates on the nonlinear mapping

ψ �−� VHx[|ψ|2]ψ.
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The restriction q ≥ 7/2 arises from these estimates.
Next, we prove in Section 6 that for some τ > 0 and any fixed ψ ∈ Bel(τ), the Cauchy problem (1.6) has a 

unique solution X ∈ Bnuc(τ) ∩C2([0, τ ]; Bδ(X0)), with Bδ(X0) denoting a closed ball of radius δ centred at 
X0, and the mapping N [ψ] = X is bounded with respect to the C1([0, τ ]; R3Nnuc) topology, and continuous 
as a map from C0([0, τ ]; L2(R3; CNel)

)
to C0([0, τ ]; R3Nnuc

)
. We construct these solutions as fixed points of 

the mapping

T [X](t) = X0 + V 0t +
t∫

0

(t− σ)A(σ,X(σ))dσ.

We stress that here A depends on ψ.
Further, we prove in Section 7 that for q ≥ 7/2, some τ > 0 and any fixed X ∈ Bnuc(τ), the Cauchy 

problem (1.4) has a unique solution ψ ∈ Bel(τ), and the mapping E [X] = ψ is bounded and continuous as a 
map from C0([0, τ ]; R3Nnuc

)
to C0([0, τ ]; L2(R3; CNel)

)
. Similarly, solutions are constructed as fixed points 

of the mapping

F [ψ](t) = U(t, 0)ψ0 − i

t∫
0

U(t, σ)VHx[ρ]ψ(σ)dσ.

Using results from Sections 2 and 5 and [31], we show that fixed points of this mapping are strong solutions 
to (1.4).

We then prove in Section 8 that for q ≥ 7/2 and some τ > 0, the initial-value problem associated with 
the problem (1.1) has a solution (ψ, X) in X (τ). To this end, we construct the mapping

K : Bnuc(τ) −� Bnuc(τ), K = I ◦ N ◦ E ,

where

I : Bnuc(τ) ∩ C2([0, τ ];R3Nnuc) ↪−→ Bnuc(τ)

is the inclusion into Bnuc(τ); we then apply a Schauder-type argument to K, in the spirit of [8]. Unlike in 
[8], we equip Bnuc(τ) with a weaker C0-topology, which takes into account nuclear repulsion. The remainder 
of this section is devoted to uniqueness.

Finally, the Appendix is devoted to the notation we systematically use, comprising that for the norms 
on different function spaces, such as H2(R3; CNel) and Lorentz spaces.

1.4. Related questions

Theorem 1.1 can be generalised to LDA-type nonlinearities which are either sufficiently smooth at the 
origin ρ = 0 or enjoy H2-Lipschitz estimates such as those obtained in this article. This is the case, 
for instance, of λ1ρ

q1−1 − λ2ρ
q2−1 with q1, q2 ≥ 7/2 and λ1, λ2 > 0, which share a similar structure 

with nonlinearities involved in various well-known models in quantum mechanics, such as the Thomas–
Fermi–Dirac–von Weizsäcker model [21]. For this particular example, with one working with the same 
functional setting, it would be interesting to explore, for certain ranges of exponents, the occurrence of 
either a blow-up at finite time in the norm of the solutions or the existence of maximal solutions defined 
for all t ≥ 0; see [11,12].

Also, it would be interesting to identify a functional setting (and a possibly different proof)—the most 
natural one would certainly be H1—in order to capture the physically relevant exponent q = 4/3, which is 
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not covered in the present work. We wonder if a suitable regularisation “at the origin” of the LDA term for 
q = 4/3 would allow one to cover this case as a result of a limit process.

2. Preliminaries

The first observation in this section is that the Newton potential

G[φ1, φ2] := (φ1 φ2) ∗ | · |−1 (2.1)

solution to

−ΔxG = 4πφ1φ2 (2.2)

defines a mapping H2 ×H2 −� W 2,∞.

Lemma 2.1. For all i, j ∈ {1, 2, 3} and every x ∈ R3, it holds that

|G[φ1, φ2](x)| � ‖φ1‖L2‖∇xφ2‖L2 , (2.3)

|∂iG[φ1, φ2](x)| � ‖∇xφ1‖L2‖∇xφ2‖L2 , (2.4)

|∂ijG[φ1, φ2](x)| � ‖φ1‖H2‖φ2‖H2 . (2.5)

Proof. By Hardy’s inequality (A.2) and the properties

∂iG[φ1, φ2] = (φ1φ2) ∗ (xi|x|−3),

∂ijG[φ1, φ2] = [(∂iφ1)φ2 + φ1(∂jφ2)] ∗ (xi|x|−3),

for all i, j and x ∈ R3, it holds that

|G[φ1, φ2](x)| = |(φ1, | · −x|−1φ2)L2 | � ‖φ1‖L2‖∇xφ2‖L2 ,

|∂iG[φ1, φ2](x)| ≤ (| · −x|−1|φ1|, | · −x|−1|φ2|)L2 � ‖∇xφ1‖L2‖∇xφ2‖L2 ,

|∂ijG[φ1, φ2](x)| ≤ (| · −x|−1|∂iφ1|, | · −x|−1|φ2|)L2 + (| · −x|−1|φ1|, | · −x|−1|∂jφ2|)L2

� ‖∇x∂iφ1‖L2‖∇xφ2‖L2+‖∇xφ1‖L2‖∇x∂jφ2‖L2

� ‖φ1‖H2‖φ2‖H2 .

This concludes the proof. �
The following lemma generalises Lemma 3 in [8], and provides us with useful bounds on the functions 

fk�
K : R3Nnuc −� C3 defined as

fk�
K := ∇XK

(ψk, Vext[X]ψ�)L2 ;

namely,

fk�
K (X) = −ZK

(
ψk,

· −XK

| · −XK |3ψ�

)
L2
.

Note that fk�
K effectively depends only on the position XK of the Kth nucleus, and that
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A1
K = − 1

MK

Nel∑
k=1

fkk
K .

Lemma 2.2. For all ψk, ψ� ∈ H2, it holds that

∥∥fk�
K

∥∥
L∞(R3Nnuc ;C3) � ‖∇xψk‖L2‖∇xψ�‖L2

and

∥∥Dfk�
K

∥∥
L∞(R3Nnuc ;C3×3) � ‖ψk‖H2‖ψ�‖H2 . (2.6)

Here, D is the gradient in R3Nnuc . In addition, we have that fk�
K ∈ W 1,∞ ∩ C1 for all K.

Proof. By Lemma 2.1, G[φ1, φ2] ∈ W 2,∞ for all φ1, φ2 ∈ H2. Using

fk�
K (X) = −ZK∇xG[ψk, ψ�](XK),

we get

∥∥fk�
K

∥∥
L∞(R3Nnuc ;C3) � ‖∇xψk‖L2‖∇xψ�‖L2 ,∥∥Dfk�

K

∥∥
L∞(R3Nnuc ;C3×3) � max

XK∈R3

∥∥D2G[ψk, ψ�](XK)
∥∥
C3×3 � ‖ψk‖H2‖ψ�‖H2 .

This shows that fk�
K ∈ W 1,∞. By Sobolev’s embedding in Hölder spaces, ψkψ� ∈ C0,α

loc . With the use of (2.1)
from Lemma 2.1 and standard elliptic regularity, it holds that G[ψk, ψ�] ∈ C2, by which fk�

K ∈ C1. �
In what follows we recall some results on the existence of the propagator for the linear parts of the 

Kohn–Sham-type Hamiltonian H[X(t), ρ] for t ∈ [0, Θ], with 0 < Θ < ∞, for a given nuclear configuration 
X ∈ C1([0, Θ]; R3Nnuc).

For some X ∈ C1([0, Θ]; R3Nnuc) and 0 < Θ < ∞ fixed, we consider the family of linear time-dependent 
Hamiltonians {H lin(t), t ∈ [0, Θ]} ⊂ L(H2(R3; CNel); L2(R3; CNel)):

H lin(t) := −1
2Δx + V (t), (2.7)

where

V (t, ·) := Vext[X(t)]. (2.8)

Note that H lin(t) is the linear part of H[X(t), ρ], and that for any fixed t it is a self-adjoint operator on 
L2(R3; CNel). We emphasise that these expressions depend on the time evolution of the nuclear configuration 
X. This family of Hamiltonians is naturally associated with the Cauchy problem

iψ̇ = H lin(t)ψ, ψ(s) = ψ0,

on a time interval [0, Θ] for some s ∈ [0, Θ]. Equivalently, we can formulate the above as an integral equation

ψ(t) = U0(t− s)ψ0 − i

t∫
s

U0(t− σ)V (σ)ψ(σ)dσ, (2.9)
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where

U0(t) := exp(itΔx/2)

is the free propagator (i.e. the propagator for the free particle), which is an evolution operator on 
H2(R3; CNel). The following lemma is in the spirit of Lemma 4 in [8], which in turn is based on Corol-
lary 1.2 properties (1), (2) and (4), Theorem 1.1 property (2) and Theorem 1.3 properties (5) and (6) in 
[31].

Lemma 2.3. For the family of Hamiltonians {H lin(t), t ∈ [0, Θ]}, there exists a unique family of linear 
evolution operators

U(t, s) : L2(R3;CNel) −� L2(R3;CNel), t, s ∈ [0,Θ],

such that

ψ(t) := U(t, s)ψ0

solves (2.9) on [0, Θ] for all ψ0 ∈ H2(R3; CNel), with

‖ψ(t)‖L2(R3;CNel ) = ‖ψ0‖L2(R3;CNel ),

for all t ∈ [0, Θ]. Moreover, this family has the following properties:

(i) U(t, s)U(s, r) = U(t, r) for all t, s, r ∈ [0, Θ].
(ii) U(t, t) = Id for all t ∈ [0, Θ].
(iii) U(t, s) is a unitary operator on L2(R3; CNel) for all t, s ∈ [0, Θ]:

‖U(t, s)ψ‖L2(R3;CNel ) = ‖ψ‖L2(R3;CNel ).

(iv) For all f ∈ L2(R3; CNel), ((t, s) �−� U(t, s)f) : [0, Θ]2 −� L2(R3; CNel) is a continuous mapping.
(v) U(t, s) ∈ L(H2(R3; CNel)) for all (t, s) ∈ [0, Θ]2.
(vi) For all f ∈ H2(R3; CNel), ((t, s) �−� U(t, s)f) : [0, Θ]2 −� H2(R3; CNel) is a continuous mapping.
(vii) For all f ∈ H2(R3; CNel), the mapping (t, s) �−� U(t, s)f is an element in C1([0, Θ]2; L2(R3; CNel)), 

and the following equations hold in L2(R3; CNel):

i
∂

∂t
(U(t, s)f) = H lin(t)U(t, s)f,

i
∂

∂s
(U(t, s)f) = −U(t, s)H lin(s)f.

(viii) For all γ > 0, there is a constant BΘ,γ of the form

BΘ,γ = A1+CγΘ
γ , Aγ , Cγ > 0,

such that if

‖Ẋ‖C0([0,Θ];R3Nnuc ) ≤ γ,

then for all t, s ∈ [0, Θ],

‖U(t, s)‖L(H2(R3;CNel )) ≤ BΘ,γ .
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Proof. The result in the case Nel = Nnuc = 1 was proved in [8, Lemma 4]. We observe that the argument 
in [8] is robust enough to be easily adapted to our more general context of arbitrary Nel, Nnuc ∈ N. Indeed, 
since the linear Hamiltonians H lin(t) do not depend on an electronic configuration ψ, and act on every 
element ψk independently, the result for general Nel follows from the case Nel = 1. In particular, properties 
(i)–(vii) can be justified with an obvious adaptation of the case Nel = 1 proved in [31, Corollary 1.2 (1), 
(2) and (4), Theorem 1.1 (2) and Theorem 1.3 (5) and (6)]. Property (viii) can be justified also by one 
arguing exactly as for the case Nel = Nnuc = 1 in [8, Lemma 4], observing that our additional terms in the 
expression for V can be estimated in the same way. �
3. Definition of the electronic feasible region Bel

Let τ > 0 be finite and define

γ := |V 0| + 1, (3.1)

where the term “+1” allows us to cover the case V 0 = 0. Let us consider Bτ,γ as given in Lemma 2.3 with 
Θ = τ , and where γ is as above. We can therefore define the radius

α(τ) := 2Bτ,γ‖ψ0‖H2(R3;CNel )

for the ball centred at the initial configuration ψ0 ∈ H2(R3; CNel):

Bα(ψ0) = {ψ ∈ H2(R3;CNel)|‖ψ − ψ0‖H2(R3;CNel ) ≤ α}.

Finally, let us define the electronic feasible region for the time interval [0, τ ] as

Bel(τ) := {ψ ∈ C1([0, τ ];L2(R3;CNel)) ∩ C0([0, τ ];Bα(ψ0)) | ψ(0) = ψ0},

equipped with the C0([0, τ ]; L2(R3; CNel)) norm, which is designed to contain solutions ψ to the Cauchy 
problem associated with (1.4) with ψ(0) = ψ0 on the time interval [0, τ ], which we call “feasible electronic 
configurations”.

4. Definition of the nuclear feasible region Bnuc

For all 0 < ε < minK �=L{|X0
K −X0

L|}, we set

δ(τ) := minK �=L{|X0
K −X0

L|} − min{δrep(τ), ε}
2 > 0,

where

δrep(τ) :=
[(Nnuc∑

K=1
MK

∣∣V 0
K

∣∣2 +
Nnuc∑

K,L=1,L �=K

ZKZL∣∣X0
K −X0

L

∣∣
)

eτ + 16
Nnuc∑
K=1

Z2
K

MK
‖ψ‖2

C0([0,τ ];H1(R3;CNel ))
(
eτ − 1

)]−1

arises from a repulsion argument, given in Lemma 4.1. Note that ε > 0 ensures the strict positivity of δ(τ), 
which defines the radius for the ball centred at the initial configuration X0 ∈ R3Nnuc , with X0

K �= X0
L for 

K �= L:

Bδ(X0) = {X ∈ R3Nnuc ||X −X0| ≤ δ}.
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Then, by the triangle inequality, for all X ∈ Bδ(X0) and K �= L, it holds that

|XK −XL| ≥ min
K′ �=L′

∣∣X0
K′ −X0

L′
∣∣− 2

∣∣X −X0∣∣ ≥ min
K′ �=L′

∣∣X0
K′ −X0

L′
∣∣− 2δ(τ) = min{δrep(τ), ε} > 0.

We define the nuclear feasible region for the time interval [0, τ ] as

Bnuc(τ) := {X ∈ C1([0, τ ];Bδ(X0)) |X(0) = X0, Ẋ(0) = V 0, ‖Ẋ‖C0([0,τ ];R3Nnuc ) ≤ γ},

with γ as in (3.1). This region is equipped with the C0([0, τ ]; R3Nnuc) topology, and is designed to contain 
short-time solutions X to the Cauchy problem associated with (1.6) with X(0) = X0 and Ẋ(0) = V 0 on 
the interval [0, τ ], which we call “feasible nuclear configurations”.

This definition of δ(τ) is suggested by an a priori lower bound on the nuclear distances |XK(t) −XL(t)|, 
K �= L, which is based on Grönwall’s lemma. We have the following lemma.

Lemma 4.1. Fix ψ ∈ C0([0, τ ]; H1(R3; CNel)
)
, and X0 ∈ R3Nnuc such that X0

K �= X0
L for K �= L. Let X

solve (1.6), and let X(0) = X0. Then, for all t ∈ [0, τ ] and K �= L,

|XK(t) −XL(t)| ≥ δrep(τ).

Proof. Writing the momenta PK := MKẊK , we define the classical reduced Hamiltonian

Hnn(X,P ) := 1
2

Nnuc∑
K=1

|PK |2
MK

+ Wnn(X),

with Wnn as in (1.7). Fix ψ ∈ C0([0, τ ]; H1(R3; CNel)
)
. Now

d
dt [Hnn(X,P )] =

Nnuc∑
K=1

[
∇XK

Hnn(X,P ) · ẊK + ∇PK
Hnn(X,P ) · ṖK

]

=
Nnuc∑
K=1

PK

MK
· {∇XK

[Wnn(X)] + MKẌK}

(1.6)= −
Nnuc∑
K=1

PK

MK
· (∇XK

Vext[X], ρ)L2

≤
Nnuc∑
K=1

1
2MK

[
|PK |2 + |(∇XK

Vext[X], ρ)L2 |2
]

≤ Hnn(X,P ) + 8
Nnuc∑
K=1

Z2
K

MK
‖ψ‖2

C0([0,τ ];H1(R3;CNel )), (4.1)

by which, with the use of Grönwall’s inequality, on [0, τ ]

Hnn(X,P ) ≤ 1
2eτ

[Nnuc∑
K=1

MK

∣∣V 0
K

∣∣2 +
Nnuc∑

K,L=1,L �=K

ZKZL∣∣X0
K −X0

L

∣∣ + 16
Nnuc∑
K=1

Z2
K

MK
‖ψ‖2

C0([0,τ ];H1(R3;CNel ))

]

− 8
Nnuc∑
K=1

Z2
K

MK
‖ψ‖2

C0([0,τ ];H1(R3;CNel )). (4.2)
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In (4.1), we use the fact that, by Hardy’s inequality, for all K = 1, . . . , Nnuc,

|(∇XK
Vext[X], ρ)L2 | =

∣∣∣(− ZK
· −XK

| · −XK |3 , ρ
)
L2

∣∣∣ ≤ ZK

Nel∑
k=1

∥∥| · −XK |−1ψk

∥∥
L2

≤ 2ZK

Nel∑
k=1

‖∇xψk‖L2 ≤ 2
√

2ZK‖∇xψ‖L2(R3;CNel ) ≤ 2
√

2ZK‖ψ‖H1(R3;CNel ).

Estimate (4.2) is enough to conclude the proof, as for all K �= L we have

1
2

1
|XK −XL|

≤ 1
ZKZL

Wnn(X) ≤ Wnn(X) ≤ Hnn(X,P ). �

Remark 4.1. A similar argument yields an a priori estimate of the nuclear velocity Ẋ.

5. Lipschitz estimates

In this section, we obtain Lipschitz estimates on the mapping ψ �−� VHx[ρ]ψ := (VH[ρ] + Vx[ρ])ψ.

Lemma 5.1 (Lipschitz estimates on the Hartree term). For all ψ, ψ′ ∈ H1(R3; CNel), with ρ′ := |ψ′|2,

‖VH[ρ]ψ − VH[ρ′]ψ′‖L2(R3;CNel ) �
√
Nel‖ψ − ψ′‖L2(R3;CNel )×

×
[ Nel∑
k=1

(‖∇xψk‖L2(R3;C3) + ‖∇xψ
′
k‖L2(R3;C3))‖ψ′‖L2(R3;CNel ) +

Nel∑
�=1

‖ψ�‖L2‖∇xψ�‖L2(R3;C3)

]
. (5.1)

Moreover, for all ψ, ψ′ ∈ H2(R3; CNel),

‖VH[ρ]ψ‖H2(R3;CNel ) �
√

Nel

Nel∑
k=1

‖ψk‖2
H1‖ψ‖H2(R3;CNel ), (5.2)

‖VH[ρ]ψ − VH[ρ′]ψ′‖H2(R3;CNel ) �
√

Nel‖ψ − ψ′‖H2(R3;CNel )×

×
Nel∑
k=1

[(‖ψk‖H1 + ‖ψ′
k‖H1)‖ψ′‖H2(R3;CNel ) + ‖ψk‖2

H1 ]. (5.3)

Proof.

Proof of (5.1).
By adding and subtracting the term (|ψ′

�|2 ∗ | · |−1)ψ′
k, we can write for all k = 1, . . . , Nel,

‖(VH[ρ]ψ − VH[ρ′]ψ′)k‖L2 ≤
Nel∑
�=1

[‖(|ψ�|2 ∗ | · |−1)(ψk − ψ′
k)‖L2︸ ︷︷ ︸

=: (I)

+ ‖((|ψ�|2 − |ψ′
�|2) ∗ | · |−1)ψ′

k‖L2︸ ︷︷ ︸
=: (II)

]. (5.4)

With the use of the Cauchy–Schwarz inequality in (5.5) and (5.7), Hardy’s inequality in (5.6) and (5.8), 
and the triangle inequality in (5.8),

(I) ≤ ‖|ψ�|2 ∗ | · |−1‖L∞‖ψk − ψ′
k‖L2 ≤ esssup{|(|ψ�|, | · −x|−1|ψ�|)L2 |}‖ψ − ψ′‖L2(R3;CNel )
x∈R3
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≤ esssup
x∈R3

{‖ψ�‖L2‖| · −x|−1ψ�‖L2}‖ψ − ψ′‖L2(R3;CNel ) (5.5)

� ‖ψ�‖L2‖∇xψ�‖L2(R3;C3)‖ψ − ψ′‖L2(R3;CNel ) (5.6)

and

(II) ≤ ‖(|ψ�|2 − |ψ′
�|2) ∗ | · |−1‖L∞‖ψ′

k‖L2

≤ esssup
x∈R3

{|(|ψ�| − |ψ′
�|, | · −x|−1(|ψ�| + |ψ′

�|))L2 |}‖ψ′‖L2(R3;CNel )

≤ esssup
x∈R3

{‖|ψ�| − |ψ′
�|‖L2(‖| · −x|−1ψ�‖L2 + ‖| · −x|−1ψ′

�‖L2)}‖ψ′‖L2(R3;CNel ) (5.7)

� (‖∇xψ�‖L2(R3;C3) + ‖∇xψ
′
�‖L2(R3;C3))‖ψ′‖L2(R3;CNel )‖ψ� − ψ′

�‖L2 (5.8)

� (‖∇xψ�‖L2(R3;C3) + ‖∇xψ
′
�‖L2(R3;C3))‖ψ′‖L2(R3;CNel )‖ψ − ψ′‖L2(R3;CNel ). (5.9)

Combining (5.6) and (5.9) with (5.4), we get (5.1).

Proof of (5.2).
With G as in (2.1), we can write

VH[ρ]ψ =
Nel∑
k=1

G[ψk, ψk]ψ.

Note that for all φ1, φ2, φ3 ∈ H2,

Δx(G[φ1, φ2]φ3)
(2.2)= G[φ1, φ2]Δxφ3 + 2∇x(G[φ1, φ2]) · ∇xφ3 − 4πφ1φ2φ3.

Using (2.3) and (2.4) from Lemma 2.1, we obtain

‖G[φ1, φ2]φ3‖L2 ≤ ‖G[φ1, φ2]‖L∞‖φ3‖L2 � ‖φ1‖H1‖φ2‖H1‖φ3‖H1 ,

‖G[φ1, φ2]Δxφ3‖L2 ≤ ‖G[φ1, φ2]‖L∞‖Δxφ3‖L2 � ‖φ1‖H1‖φ2‖H1‖φ3‖H2 ,

‖∇x(G[φ1, φ2]) · ∇xφ3‖L2 ≤ ‖G[φ1, φ2]‖W 1,∞‖∇xφ3‖L2(R3;C3) � ‖φ1‖H1‖φ2‖H1‖φ3‖H1 .

On the other hand, by Hölder’s and Sobolev’s inequalities,

‖φ1φ2φ3‖L2 ≤ ‖φ1‖L6‖φ2‖L6‖φ3‖L6 � ‖φ1‖H1‖φ2‖H1‖φ3‖H1 .

This gives for all k = 1, . . . , Nel,

‖(VH[ρ]ψ)k‖H2 ≤
Nel∑
�=1

‖G[ψ�, ψ�]ψk‖H2 �
Nel∑
�=1

‖ψ�‖2
H1‖ψ‖H2(R3;CNel ).

By our combining these estimates, (5.2) follows.

Proof of (5.3).
As in the proof of (5.1), we bound for all k = 1, . . . , Nel,

‖Δx(VH[ρ]ψ − VH[ρ′]ψ′)k‖L2 ≤
Nel∑
�=1

{‖Δx[G[ψ�, ψ�](ψk − ψ′
k)]‖L2︸ ︷︷ ︸+ ‖Δx[G[|ψ�| + |ψ′

�|, |ψ�| − |ψ′
�|]ψ′

k]‖L2︸ ︷︷ ︸}.

=: (I) =: (II)
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As for (5.2), we can bound (I) using (φ1, φ2, φ3) = (ψ�, ψ�, ψk −ψ′
k) and can bound (II) using (φ1, φ2, φ3) =

(|ψ�| + |ψ′
�|, |ψ�| − |ψ′

�|, ψk). Hence, by the triangle inequality,

‖Δx(VH[ρ]ψ − VH[ρ′]ψ′)‖L2(R3;CNel ) � (B) :=

=
√
Nel

Nel∑
k=1

[
‖ψk‖2

H1 + (‖ψk‖H1 + ‖ψ′
k‖H1)‖ψ′‖H2(R3;CNel )

]
‖ψ − ψ′‖H2(R3;CNel ). (5.10)

On the other hand, by (5.1) we also have

‖VH[ρ]ψ − VH[ρ′]ψ′‖L2(R3;CNel ) � (B). (5.11)

Hence, by (5.10) and (5.11), (5.3) immediately follows. �
By the Cauchy–Schwarz inequality, for all CNel-valued functions ψ, ψ′, we have

|ψ · ∇xψ
′| ≤ |ψ||∇xψ

′|. (5.12)

Lemma 5.2 (Mean-value estimates for the density). For all a ≥ 1/2, we have

|ρa − ρ′ a| �a (‖ρ‖a−1/2
L∞ + ‖ρ′‖a−1/2

L∞ )|ψ − ψ′|. (5.13)

Proof. By the fundamental theorem of calculus

|ρa − ρ′ a| = ||ψ|2a − |ψ′|2a| =
∣∣∣∣

1∫
0

d
dt [|ψ

′ + t(ψ − ψ′)|2a]dt
∣∣∣∣

�a (|ψ| + |ψ′|)2a−1|ψ − ψ′| �a (|ψ|2a−1 + |ψ′|2a−1)|ψ − ψ′|
= (ρa−1/2 + ρ′ a−1/2)|ψ − ψ′|,

which yields (5.13). �
Lemma 5.3 (Mean-value estimates for the density gradient). For all b ≥ 3/2, it holds that

|∇x(ρb) −∇x(ρ′ b)| �b (Q1|∇xψ| + Q2|∇xψ
′|)|ψ − ψ′| + Q3|∇xψ −∇xψ

′|, (5.14)

where

Q1 = ρb−1, Q2 = (ρb−3/2 + ρ′ b−3/2)ρ′ 1/2, Q3 = ρb−1ρ′ 1/2.

Proof. Using ∇xρ = ∇xψ · ψ + ψ · ∇x(ψ) and (5.12) for the pair (ψ, ψ), we have

|∇xρ| � ρ1/2|∇xψ|. (5.15)

Since

|∇x(ρb)| �b ρ
b−1|∇xρ|,

adding and subtracting the term ρb−1∇xρ
′, we get for all b ≥ 1,
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|∇x(ρb) −∇x(ρ′ b)| �b ρ
b−1|∇xρ−∇xρ

′| + |ρb−1 − ρ′ b−1||∇xρ
′|.

By adding and subtracting ψ′ · ∇x(ψ) and ψ′ · ∇xψ, and using (5.12) for the pairs (ψ−ψ′, ψ), (ψ′, ψ − ψ′), 
(ψ − ψ′, ψ) and (ψ′, ψ − ψ′), we get

|∇xρ−∇xρ
′| = |ψ · ∇x(ψ) − ψ′ · ∇x(ψ′) + ψ · ∇xψ − ψ′ · ∇x(ψ′)|
≤ |(ψ − ψ′) · ∇x(ψ)| + |ψ′ · ∇x(ψ − ψ′)| + |(ψ − ψ′) · ∇xψ| + |ψ′ · ∇x(ψ − ψ′)|
� |∇xψ||ψ − ψ′| + ρ′ 1/2|∇xψ −∇xψ

′|. (5.16)

By (5.13) with a = b − 1 ≥ 1/2 and (5.15) for ρ′, we get

|ρb−1 − ρ′ b−1||∇xρ
′| �b (ρb−3/2 + ρ′ b−3/2)ρ′ 1/2|∇xψ

′||ψ − ψ′|.

Putting these estimates together, we get (5.14). �
Lemma 5.4 (Lipschitz estimates on the local nonlinearity). Let q ∈ [1, ∞) and λ ∈ R. For any fixed p ∈ [1, ∞]
and for all ψ, ψ′ ∈ H2(R3; CNel) ∩ Lp(R3; CNel), it holds that

‖Vx[ρ]ψ − Vx[ρ′]ψ′‖Lp(R3;CNel ) �q,λ

Nel∑
k=1

[
‖ψk‖2(q−1)

H2 + ‖ψ′
k‖

2(q−1)
H2

]
‖ψ − ψ′‖Lp(R3;CNel ). (5.17)

Moreover, for all q ≥ 7/2 and any λ ∈ R, we have

‖Vx[ρ]ψ − Vx[ρ′]ψ′‖H2(R3;CNel ) ≤ Lq,λ(max{‖ψ‖H2(R3;CNel ), ‖ψ′‖H2(R3;CNel )})‖ψ − ψ′‖H2(R3;CNel ), (5.18)

where Lq,λ : R+
0 −� R+

0 is a polynomial function which vanishes at the origin.

Proof.

Proof of (5.17).
By the fundamental theorem of calculus,

|Vx[ρ]ψ − Vx[ρ′]ψ′| = |λ|||ψ|2(q−1)ψ − |ψ′|2(q−1)ψ′|

�λ

∣∣∣
1∫

0

d
dt

[
|ψ′ + t(ψ − ψ′)|2(q−1)(ψ′ + t(ψ − ψ′))

]
dt
∣∣∣

�q |ψ − ψ′|
1∫

0

|ψ′ + t(ψ − ψ′)|2(q−1)dt

≤ (|ψ| + |ψ′|)2(q−1)|ψ − ψ′| �q (ρq−1 + ρ′ q−1)|ψ − ψ′|.

Since H2 is embedded into L∞,

‖ρ‖aL∞ �a

Nel∑
k=1

‖ψk‖2a
H2 (5.19)

for all a > 0. By our taking a = q − 1 > 0, (5.17) follows.
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Proof of (5.18).
Taking p = 2 in (5.17), we need only the L2(R3; CNel) norm of Δx(Vx[ρ]ψ − Vx[ρ′]ψ′) in addition to get 

the H2(R3; CNel) norm estimate. Using the product rule for the Laplacian in R3, we get

Δx(Vx[ρ]ψ − Vx[ρ′]ψ′) = λ
{
ρq−1Δxψ − ρ′ q−1Δxψ

′︸ ︷︷ ︸
=: (I)

+ 2[∇x(ρq−1) · ∇xψ −∇x(ρ′ q−1) · ∇xψ
′]︸ ︷︷ ︸

=: (II)

+ Δx(ρq−1)ψ − Δx(ρ′ q−1)ψ′︸ ︷︷ ︸
=: (III)

}
, (5.20)

which is in CNel . We discuss the terms one by one.

Term (I).
By adding and subtracting the term ρq−1Δxψ

′ and using (5.13) with a = q − 1 > 1, we get

|(I)| ≤ |ρq−1||Δxψ − Δxψ
′| + |ρq−1 − ρ′ q−1||Δxψ

′|

�q A1|Δxψ
′||ψ − ψ′| + A2|Δxψ − Δxψ

′|, (5.21)

where

A1 = ‖ρ‖q−3/2
L∞ + ‖ρ′‖q−3/2

L∞ , A2 = ‖ρ‖q−1
L∞ .

Term (II).
By adding and subtracting the term ∇x(ρq−1) · ∇xψ

′, we get

|∇x(ρq−1) · ∇xψ −∇x(ρ′ q−1) · ∇xψ
′| ≤ |∇x(ρq−1)||∇xψ −∇xψ

′| + |∇xψ
′||∇x(ρq−1) −∇x(ρ′ q−1)|.

We then get

|∇x(ρq−1)| = (q − 1)|ρq−2||∇xρ|
(5.15)
� (q − 1)‖ρ‖q−3/2

L∞ |∇xψ|.

Using this and (5.14) with b = q − 1 > 2, we get

|(II)| �q (B1|∇xψ||∇xψ
′| + B2|∇xψ

′|2)|ψ − ψ′| + (B3|∇xψ| + B4|∇xψ
′|)|∇xψ −∇xψ

′|, (5.22)

where

B1 = ‖ρ‖q−2
L∞ , B2 = ‖ρ′‖1/2

L∞(‖ρ‖q−5/2
L∞ + ‖ρ′‖q−5/2

L∞ ),

B3 = ‖ρ‖q−3/2
L∞ , B4 = ‖ρ‖q−2

L∞ ‖ρ′‖1/2
L∞ .

Term (III).
By adding and subtracting the term Δx(ρq−1)ψ′, we get

|(III)| ≤ |Δx(ρq−1)|︸ ︷︷ ︸
=: (a)

|ψ − ψ′| + |Δx(ρq−1) − Δx(ρ′ q−1)|︸ ︷︷ ︸
=: (b)

‖ρ′‖1/2
L∞ .

Using Δxρ = ψ · Δxψ + Δxψ · ψ + 2|∇xψ|2 and the Cauchy–Schwarz inequality, we get
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|Δxρ| � ‖ρ‖1/2
L∞ |Δxψ| + |∇xψ|2. (5.23)

Hence,

(a) �q (q − 2)|ρ|q−3|∇xρ|2 + |ρ|q−2|Δxρ|
(5.15)
� ‖ρ‖q−2

L∞
[
(2q − 3)|∇xψ|2 + ‖ρ‖1/2

L∞ |Δxψ|
]
.

By similar reasoning, we get, by adding and subtracting the terms ρq−3|∇xρ
′|2 and ρq−2Δxρ

′,

(b) �q (q − 2)
(
|ρ|q−3 ||∇xρ|2 − |∇xρ

′|2|︸ ︷︷ ︸
=: (i)

+ |ρq−3 − ρ′ q−3||∇xρ
′|2

)
︸ ︷︷ ︸

=: (ii)

+|ρ|q−2 |Δxρ− Δxρ
′|︸ ︷︷ ︸

=: (iii)

+ |ρq−2 − ρ′ q−2||Δxρ
′|︸ ︷︷ ︸

=: (iv)

.

By (5.15), we get

(i) ≤ (|∇xρ| + |∇xρ
′|)|∇xρ−∇xρ

′|
(5.16)
� (‖ρ‖1/2

L∞ |∇xψ| + ‖ρ′‖1/2
L∞ |∇xψ

′|)
(
|ψ − ψ′||∇xψ| + ‖ρ′‖1/2

L∞ |∇xψ −∇xψ
′|
)
.

Furthermore, using (5.13) with a = q − 3 ≥ 1/2 (here is where we use the restriction q ≥ 7/2) and (5.15)
for ρ′, we get

(ii) �q (‖ρ‖q−7/2
L∞ + ‖ρ′‖q−7/2

L∞ )‖ρ′‖L∞ |∇xψ
′|2|ψ − ψ′|.

In addition, by adding and subtracting the terms ψ′ ·Δxψ and Δxψ ·ψ′, and using the triangle and Cauchy–
Schwarz inequalities, we get

(iii) =
∣∣2(|∇xψ|2 − |∇xψ

′|2) + (ψ − ψ′) · Δxψ + (Δxψ − Δxψ
′) · ψ′

+ (ψ − ψ′) · Δxψ + (Δxψ − Δxψ′) · ψ′∣∣
� (|∇xψ| + |∇xψ

′|)|∇xψ −∇xψ
′| + |Δxψ||ψ − ψ′| + ‖ρ′‖1/2

L∞ |Δxψ − Δxψ
′|.

Furthermore, using (5.13) with a = q − 2 > 1 and (5.23) for ρ′, we obtain

(iv) �q (‖ρ‖q−5/2
L∞ + ‖ρ′‖q−5/2

L∞ )(‖ρ′‖1/2
L∞ |Δxψ

′| + |∇xψ
′|2)|ψ − ψ′|.

Altogether, we get

|(III)| �q

(
C1|∇xψ|2 + C2|∇xψ||∇xψ

′| + C3|∇xψ
′|2 + C4|Δxψ| + C5|Δxψ

′|
)
|ψ − ψ′|

+ (C6|∇xψ| + C7|∇xψ
′|)|∇xψ −∇xψ

′| + C8|Δxψ − Δxψ
′|, (5.24)

where

C1 = ‖ρ‖q−5/2
L∞ (‖ρ‖1/2

L∞ + ‖ρ′‖1/2
L∞), C2 = ‖ρ‖q−3

L∞ ‖ρ′‖L∞ ,

C3 = ‖ρ′‖L∞
[
‖ρ‖q−7/2

L∞ (1 + ‖ρ‖L∞) + ‖ρ′‖q−7/2
L∞ (1 + ‖ρ′‖L∞)

]
,

C4 = ‖ρ‖q−3/2
L∞

(
‖ρ‖1/2

L∞‖ρ′‖1/2
L∞ + 1

)
, C5 = ‖ρ′‖L∞

(
‖ρ‖q−5/2

L∞ + ‖ρ′‖q−5/2
L∞

)
,

C6 = ‖ρ‖q−5/2
L∞ ‖ρ′‖1/2

L∞(‖ρ‖1/2
L∞ + ‖ρ′‖1/2

L∞), C7 = ‖ρ‖q−3
L∞ ‖ρ′‖1/2

L∞(‖ρ‖L∞ + ‖ρ′‖L∞),

C8 = ‖ρ‖q−2
L∞ ‖ρ′‖L∞ .
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Conclusion of the proof of (5.18).

The function L can be split into terms and expressed as L = L0 + LI + LII + LIII. As discussed at the 
start of this proof, L0 is the contribution of estimate (5.17) for p = 2. The other terms stem from (I), (II) 
and (III) in (5.20), and are obtained by one taking the L2 norm in (5.21), (5.22) or (5.24), respectively. For 
instance, in the expression for LIII, all scalars Ci can be bounded with the use of (5.19). Likewise, the term 
|ψ − ψ′| and the remaining factors involving C1 and C3 can be bounded with their H2 norms. The other 
summands, and LI and LII, can be estimated similarly, and this concludes the proof. �
Lemma 5.5 (Lipschitz estimates for the nonlinearity). For q ≥ 7/2 and any λ ∈ R, there exists a polynomial 
function which vanishes at the origin Lq,λ : R+

0 −� R+
0 such that for all ψ, ψ′ ∈ Bel(τ),

‖VHx[ρ]ψ − VHx[ρ′]ψ′‖C0([0,τ ];H2(R3;CNel )) ≤ Lq,λ(α(τ) + ‖ψ0‖H2(R3;CNel ))‖ψ − ψ′‖C0([0,τ ];H2(R3;CNel )),

(5.25)

‖VHx[ρ]ψ‖C0([0,τ ];H2(R3;CNel )) ≤ (α(τ) + ‖ψ0‖H2(R3;CNel ))Lq,λ(α(τ) + ‖ψ0‖H2(R3;CNel )). (5.26)

Proof. By (5.3) in Lemma 5.1 and (5.18) in Lemma 5.4, we have for all ψ, ψ′ ∈ C0([0, τ ]; H2(R3; CNel)),

‖VHx[ρ]ψ − VHx[ρ′]ψ′‖C0([0,τ ];H2(R3;CNel )) ≤
≤ Lq,λ(max{‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel ))})‖ψ − ψ′‖C0([0,τ ];H2(R3;CNel )), (5.27)

where Lq,λ is a polynomial by construction. Note that (5.25) follows from (5.27) by the definition of Bel(τ). 
In particular, (5.26) follows from (5.27) by our setting ψ′ ≡ 0. �
6. Existence and uniqueness of nuclear configurations

In this section, we prove a local-in-time existence and uniqueness result for the Cauchy problem associated 
with (1.6) for given ψ ∈ Bel(τ) and X(0) = X0 and Ẋ(0) = V (0), with X0, V 0 ∈ R3Nnuc such that X0

K �= X0
L

for 1 ≤ K �= L ≤ Nnuc.

Lemma 6.1. Let V 0 ∈ R3Nnuc and X0 ∈ R3Nnuc be given, with X0
K �= X0

L for K �= L.
Then there exists τ > 0 such that the following properties hold. For given ψ ∈ Bel(τ), the Cauchy 

problem associated with the system (1.6) with X(0) = X0 and Ẋ(0) = V 0 has a unique short-time solution 
X ∈ Bnuc(τ) ∩ C2([0, τ ]; Bδ(X0)). The mapping

N : ψ ∈ Bel(τ) �−� X ∈ Bnuc(τ) ∩ C2([0, τ ];R3Nnuc)

is bounded with respect to the C1([0, τ ]; R3Nnuc) topology, and is continuous as a map from C0([0, τ ]; L2(R3;
CNel)

)
to C0([0, τ ]; R3Nnuc

)
.

Proof. Part 1: Existence and uniqueness of X in C2([0, τ ]; Bδ(X0)).
Since ψ and so ρ are given, we write the acceleration function from (1.6) without parameters for now: 

A = A(t, X). Note that t is an explicit variable for the A1
K terms, but not for the A2

K terms.
We define the compact set

κ(τ) := [0, τ ] ×Bδ(X0).

Note that we drop the dependence of this set on τ . By the triangle inequality, for all X ∈ Bδ(X0) and 
K = 1, . . . , Nnuc,
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|XK | ≤ |X| ≤ |X0| + |X −X0| ≤ |X0| + δ(τ). (6.1)

First, we prove A is continuous in (t, X) on κ. To this end, we pick a sequence {(tn, Xn)}n∈N ⊂ κ

with (tn, Xn) n−�∞
−−−−� (t∗, X) ∈ κ. The functions A1

K give for all n, with the use of the Cauchy–Schwarz and 
Hardy inequalities,

|A1
K(tn, Xn) −A1

K(t∗, Xn)| �
Nel∑
k=1

(|XnK − · |−2, |(ψk(tn, ·))2 − (ψk(t∗, ·))2|)L2

�
Nel∑
k=1

(
|XnK − · |−1 max

t∈[0,τ ]
|ψk(t, ·)|, |XnK − · |−1|ψk(tn, ·) − ψk(t∗, ·)|

)
L2

�
Nel∑
k=1

‖∇xψk‖L∞([0,τ ];L2(R3;C3))‖∇xψk(tn, ·) −∇xψk(t∗, ·)‖L2(R3;C3)
n−�∞
−−−−� 0

as ψ ∈ C0([0, τ ]; H1(R3; CNel)). Using this and Lemma 2.2, by which A1
K(t∗, ·) ∈ C0(R3Nnuc ; C3), we get

|A1
K(tn, Xn) −A1

K(t∗, X)| ≤ |A1
K(tn, Xn) −A1

K(t∗, Xn)| + |A1
K(t∗, Xn) −A1

K(t∗, X)| n−�∞
−−−−� 0

for all n. The functions A2
K are not explicitly time-dependent, and are continuous on Bδ(X0), and hence 

on κ.
Since A is continuous on the compact set κ, it is also uniformly bounded on κ. By Lemma 2.2,

‖A1
K‖C0([0,τ ];W 1,∞(Bδ(X0);C3)) � ‖ψ‖2

C0([0,τ ];H2(R3;CNel )),

since ψ ∈ Bel(τ). The functions A2
K are bounded on Bδ(X0) by

‖A2
K‖L∞(Bδ(X0);C3) �

Nnuc∑
L=1,L �=K

∥∥∥ 1
|XK −XL|2

∥∥∥
L∞(Bδ(X0);C)

.

Furthermore, by Lemma 2.2, A1
K(t, ·) is uniformly Lipschitz continuous for all t ∈ [0, τ ] and K, as

‖DA1
K(t, ·)‖L∞(R3;C3×3) �

Nel∑
k=1

‖Dfkk
K (t, ·)‖L∞(R3;C3×3) � ‖ψ‖2

C0([0,τ ];H2(R3;CNel )),

since ψ ∈ Bel(τ). For the A2
K terms, we note that the functions X �−� (XK −XL)|XK −XL|−3 are locally 

Lipschitz on Bδ(X0). Therefore, A is Lipschitz continuous in X ∈ Bδ(X0) and uniformly in t ∈ [0, τ ]. We 
denote the corresponding Lipschitz constant by CL, dropping its dependence on τ .

We now define T as the following mapping on the complete metric space C0([0, τ ]; Bδ(X0)), equipped 
with the C0([0, τ ]; R3Nnuc) norm:

T [X](t) := X0 + V 0t +
t∫

0

(t− σ)A(σ,X(σ))dσ. (6.2)

By the boundedness of A,

‖T [X] −X0‖C0([0,τ ];R3Nnuc ) ≤ |V 0|τ + τ2

2 ‖A‖C0(κ;C3Nnuc )
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for all X ∈ C0([0, τ ]; Bδ(X0)). Note that T maps C0([0, τ ]; Bδ(X0)) into itself, as for τ > 0 small enough it 
holds that

|V 0|τ + τ2

2 ‖A‖C0(κ;C3Nnuc ) ≤ δ(τ).

Hence, for all X, X ′ ∈ C0([0, τ ]; Bδ(X0)),

‖T [X] − T [X ′]‖C0([0,τ ];R3Nnuc ) ≤ max
t∈[0,τ ]

t∫
0

(t− σ)|A(σ,X(σ)) −A(σ,X ′(σ))|dσ

≤ CLτ
2

2 ‖X −X ′‖C0([0,τ ];R3Nnuc ).

Note also that T is a strict contraction on C0([0, τ ]; Bδ(X0)) in the C0([0, τ ]; R3Nnuc) norm, as we can 
always shrink τ > 0 so that

CLτ
2

2 < 1

holds. By the contraction mapping theorem, T has a unique fixed point in C0([0, τ ]; Bδ(X0)). Because of 
this, (1.6) has a unique short-time solution in C2([0, τ ]; Bδ(X0)).

Part 2: Localisation of X in Bnuc(τ).
Integrating the ordinary differential equation in (1.6), we get

‖Ẋ‖C0([0,τ ];R3Nnuc ) ≤ |V 0| + τ‖A‖C0(κ;C3Nnuc ).

Note that we can pick τ > 0 small enough so that

τ‖A‖C0(κ;C3Nnuc ) ≤ 1

holds. Therefore, X ∈ Bnuc(τ) ∩ C2([0, τ ]; Bδ(X0)).

Part 3: Boundedness and continuity of N .
From (6.1) with (3.1), N is bounded in the C1([0, τ ]; R3Nnuc) norm:

‖X‖C1([0,τ ];R3Nnuc ) ≤ |X0| + δ(τ) + γ.

To prove continuity of N in the C0([0, τ ]; R3Nnuc) norm, we consider a sequence {ψn}n∈N ⊂ Bel(τ) such that 
ψn

n−�∞
−−−−� ψ ∈ Bel(τ) in the C0([0, τ ]; L2(R3; CNel)) norm. Similarly to X = N [ψ], we define Xn := N [ψn]

and ρn := |ψn|2. Note that X and Xn are fixed points of the mapping T introduced in part 1 of the proof. 
Using this, we have for all t ∈ [0, τ ],

|(Xn −X)(t)| ≤
t∫

0

(t− σ)|A[ρn](X(σ)) −A[ρ](X(σ))|dσ, (6.3)

where
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|A[ρn](Xn(σ)) −A[ρ](X(σ))| ≤ (I) + (II),

(I) :=
Nnuc∑
K=1

|A1
K [ρn](Xn(σ)) −A1

K [ρ](X(σ))|,

(II) :=
Nnuc∑
K=1

|A2
K(Xn(σ)) −A2

K(X(σ))|.

We further bound

(I) � (Ia) + (Ib),

(Ia) :=
Nel∑
k=1

∣∣∣(ψk(t, ·),Ξ(· −XK)(ψnk(t, ·) − ψk(t, ·)))L2 + (ψnk(t, ·) − ψk(t, ·),Ξ(· −XnK)ψnk(t, ·))L2

∣∣∣,
(Ib) :=

Nel∑
k=1

|(ψk(t, ·),Ξ(· −XnK)ψnk(t, ·))L2 − (ψk(t, ·),Ξ(· −XK)ψnk(t, ·))L2 |,

where we use for short-hand notation the function Ξ : R3 −� R3 (almost everywhere), x �−� x|x|−3. 
Arguing as in [8, p. 980], we state that (Ia) is bounded by

βn :=
Nel∑
k=1

sup
(t,x)∈[0,τ ]×R3

(| · −x|−1|ψk(t, ·) + ψnk(t, ·)|, | · −x|−1|ψnk(t, ·) − ψk(t, ·)|)L2
n−�∞
−−−−� 0,

as ψn
n−�∞
−−−−� ψ in C0([0, τ ]; L2(R3; CNel)). We also have

(Ib) �
Nel∑
k=1

‖∇xG[ψk, ψnk](XnK) −∇xG[ψk, ψnk](XK)‖C0([0,τ ];C3) ≤ CL
1,n|Xn −X|,

where G is as in (2.1), and where we used the fact that the functions ∇xG[ψk, ψnk] are uniformly Lipschitz 
continuous in X for uniformly all t ∈ [0, τ ]. We note that (II) is also uniformly Lipschitz continuous, with 
some Lipschitz constant CL

2,n. For all n, CL
1,n and CL

2,n are uniformly bounded by CL, since all ψn and ψ are 
taken from the bounded set Bel(τ). Altogether, from (6.3) we obtain

‖Xn −X‖C0([0,τ ];R3Nnuc ) � τ2‖Xn −X‖C0([0,τ ];R3Nnuc ) + τ2βn.

It is then clear that for τ small enough the conclusion follows. �
7. Existence and uniqueness of electronic configurations

In this section, we prove a local-in-time existence and uniqueness result for the Cauchy problem associated 
with (1.4) for given X ∈ Bnuc(τ) and ψ(0) = ψ0 ∈ H2(R3; CNel).

Lemma 7.1. Let q ≥ 7/2 and λ ∈ R. Let ψ0 ∈ H2(R3; CNel) be given. Then there exists τ > 0 such that the 
following holds. For given X ∈ Bnuc(τ), the Cauchy problem associated with the system (1.4) with ψ(0) = ψ0

has a unique short-time solution ψ in Bel(τ).

Proof. The proof is based on Lemma 2.3, which ensures the existence and the L(H2(R3; CNel)) bounds of the 
propagator U(t, s) for the family of linear Hamiltonians {H lin(t), t ∈ [0, τ ]} from (2.7), and on Lemma 5.5, 
which ensures that the nonlinear mapping ψ �−� VHx[ρ]ψ is locally Lipschitz in H2(R3; CNel).
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We define F as the following mapping on the complete metric space C0([0, τ ]; Bα(ψ0)), equipped with 
the C0([0, τ ]; H2(R3; CNel)) norm:

F [ψ](t) := U(t, 0)ψ0 − i

t∫
0

U(t, σ)VHx[ρ]ψ(σ)dσ.

Note that we obtain for all ψ ∈ C0([0, τ ]; Bα(ψ0)), using Lemma 2.3 (ii),

F [ψ](0) = U(0, 0)ψ0 = ψ0. (7.1)

Note also that, provided

[
1 + Bτ,γ + τBτ,γ(2Bτ,γ + 1)Lq,λ(α + ‖ψ0‖H2(R3;CNel ))

]
≤ 2Bτ,γ , (7.2)

F maps the complete metric space C0([0, τ ]; Bα(ψ0)) into itself as

‖F [ψ] − ψ0‖C0([0,τ ];H2(R3;CNel )) =

=
∥∥∥[U(·, 0) − Id]ψ0 − i

·∫
0

U(·, σ)VHx[ρ]ψ(σ)dσ
∥∥∥
C0([0,τ ];H2(R3;CNel ))

≤ Bτ,γ

(
‖ψ0‖H2(R3;CNel ) + τ‖VHx[ρ]ψ‖C0([0,τ ];H2(R3;CNel ))

)
+ ‖ψ0‖H2(R3;CNel ) (7.3)

(5.26)
≤

[
1 + Bτ,γ + τBτ,γ(2Bτ,γ + 1)Lq,λ(α + ‖ψ0‖H2(R3;CNel ))

]
‖ψ0‖H2(R3;CNel )

(7.2)
≤ 2Bτ,γ‖ψ0‖H2(R3;CNel ) = α,

where we used Lemma 2.3 (viii) in (7.3). Moreover, note that, provided

τBτ,γLq,λ(α(τ) + ‖ψ0‖H2(R3;CNel )) < 1, (7.4)

F is a contraction on C0([0, τ ]; Bα(ψ0)) in the C0([0, τ ]; H2(R3; CNel)) norm, as for all ψ, ψ′ ∈
C0([0, τ ]; Bα(ψ0)),

‖F [ψ] −F [ψ′]‖C0([0,τ ];H2(R3;CNel )) =
∥∥∥∥

·∫
0

U(·, σ)(VHx[ρ]ψ(σ) − VHx[ρ′]ψ′(σ))dσ
∥∥∥∥
C0([0,τ ];H2(R3;CNel ))

≤ τBτ,γ‖VHx[ρ]ψ − VHx[ρ′]ψ′‖C0([0,τ ];H2(R3;CNel )) (7.5)
(5.25)
≤ τBτ,γLq,λ(α + ‖ψ0‖H2(R3;CNel ))‖ψ − ψ′‖C0([0,τ ];H2(R3;CNel )),

where we used Lemma 2.3 (viii) in (7.5). By the contraction mapping theorem, F has a unique fixed point 
in C0([0, τ ]; Bα(ψ0)).

Note that we can always select τ > 0 small enough such that the inequalities (7.2) and (7.4) are satisfied. 
Recall that Bτ,γ and α are of the form

Bτ,γ = A1+Cγτ
γ , α(τ) = 2A1+Cγτ

γ ‖ψ0‖H2(R3;CNel ),

with Aγ , Cγ > 0 as defined as in Lemma 2.3 (viii). If we pick Aγ and Cγ large, (7.2) is true for τ = 0 and, 
by continuity, for τ > 0 small enough.
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It is now left to prove that this fixed point, denoted simply by ψ, is also of class C1([0, τ ]; L2(R3; CNel)); 
namely, it solves (1.4) strongly on [0, τ ]. To this end, we consider the following identity, which holds for all 
0 ≤ t < t′ ≤ τ :

i
ψ(t′) − ψ(t)

t′ − t
= (R) := i

U(t′, 0) − U(t, 0)
t′ − t

ψ0 +
t∫

0

U(t′, σ) − U(t, σ)
t′ − t

VHx[ρ]ψ(σ)dσ

+
t′∫
t

U(t′, σ)
t′ − t

VHx[ρ]ψ(σ)dσ.

Further, we show that

‖(R) −H[X(t), ρ]ψ(t)‖L2(R3;CNel )
t′−�t
−−−−� 0.

This implies that ψ(·) is differentiable as a mapping [0, τ ] �−� L2(R3; CNel) such that

iψ̇(t) = H[X(t), ρ]ψ(t).

Note, in particular, that for a given X ∈ Bnuc(τ), H[X(·), ρ]ψ(·) is a continuous mapping [0, τ ] �−�
L2(R3; CNel), which implies that ψ ∈ C1([0, τ ]; L2(R3; CNel)). We bound

‖(R) −H[X(t), ρ]ψ(t)‖L2(R3;CNel ) ≤ (I) + (II),

(I) :=
∥∥∥iU(t′, 0) − U(t, 0)

t′ − t
ψ0 +

t∫
0

U(t′, σ) − U(t, σ)
t′ − t

VHx[ρ]ψ(σ)dσ −H lin(t)ψ(t)
∥∥∥
L2(R3;CNel )

,

(II) :=
∥∥∥

t′∫
t

U(t′, σ)
t′ − t

VHx[ρ]ψ(σ)dσ − VHx[ρ]ψ(t)
∥∥∥
L2(R3;CNel )

.

We get

lim
t′−�t

(I) =
∥∥∥i ∂

∂t
[U(t, 0)ψ0] +

t∫
0

∂

∂t
[U(t, σ)VHx[ρ]ψ(σ)]dσ −H lin(t)ψ(t)

∥∥∥
L2(R3;CNel )

=
∥∥∥H lin(t)[U(t, 0)ψ0] +

t∫
0

−iH lin(t)[U(t, σ)VHx[ρ]ψ(σ)]dσ −H lin(t)ψ(t)
∥∥∥∥
L2(R3;CNel )

(7.6)

= ‖H lin(t)[F [ψ(t)] − ψ(t)]‖L2(R3;CNel ) = 0, (7.7)

where we used Lemma 2.3 (vii) (see also [31, Theorem 1.3 (6)]) in (7.6), the linearity of the Hamiltonians 
H lin(t), and ψ being a fixed point of F in (7.7). On the other hand,

(II) ≤ (a) + (b),

(a) :=
∥∥∥ 1
t′ − t

t′∫
U(t, σ)VHx[ρ]ψ(σ)dσ − VHx[ρ]ψ(t)

∥∥∥
L2(R3;CNel )

,

t
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(b) := 1
t′ − t

∥∥∥
t′∫
t

[U(t′, σ) − U(t, σ)]VHx[ρ]ψ(σ)dσ
∥∥∥
L2(R3;CNel )

.

In the limit, (a) goes to zero, because of the fundamental theorem of calculus for Bochner integrals and 
Lemma 2.3 (ii). Moreover,

lim
t′−�t

(b) ≤ lim
t′−�t

1
t′ − t

t′∫
t

‖[U(t′, σ) − U(t, σ)]VHx[ρ]ψ(σ)‖L2(R3;CNel )dσ

≤ lim
t′−�t

‖[U(t′, ·) − U(t, ·)]VHx[ρ]ψ‖C0([0,T ],L2(R3;CNel )) = 0, (7.8)

where we used the uniform continuity of U(t, s)VHx[ρ]ψ(s) on [0, T ]2 together with Lemma 2.3 (iv) in (7.8). 
Since ψ also is a fixed point of F , by which ψ(0) = F [ψ](0) = ψ0 (see (7.1)), we know ψ is a strong solution 
to (1.4) on [0, τ ].

We now show the uniqueness of the short-time solution ψ to (1.4) in the class C1([0, τ ]; L2(R3; CNel)) ∩
C0([0, τ ]; Bα(ψ0)): although the classical contraction mapping theorem also provides uniqueness, this is only 
in the class C0([0, τ ]; Bα(ψ0)). So now we prove uniqueness in the different space C1([0, τ ]; L2(R3; CNel)). To 
this end, we let ψ and ψ′ be two short-time solutions to (1.4) in C1([0, τ ]; L2(R3; CNel)). First, (ψ−ψ′)(0) =
ψ0 − ψ0 = 0. Moreover, for all k = 1, . . . , Nel, using the partial differential equation in (1.4), we get

d
dt (‖ψk − ψ′

k‖2
L2) = d

dt ((ψk − ψ′
k, ψk − ψ′

k)L2)

= (ψ̇k − ψ̇′
k, ψk − ψ′

k)L2 + (ψ̇k − ψ̇′
k, ψk − ψ′

k)L2 = (I) + (II),

where, using the fact that the linear Hamiltonians H lin(t) are self-adjoint on L2(R3; CNel), we have

(I) = i
[
(ψk − ψ′

k, (H lin(t)(ψ − ψ′))k)L2 − ((H lin(t)(ψ − ψ′))k, ψk − ψ′
k)L2

]
= 0

and

(II) = i
[
((VHx[ρ]ψ − VHx[ρ′]ψ′)k, ψk − ψ′

k)L2 − ((VHx[ρ]ψ − VHx[ρ′]ψ′)k, ψk − ψ′
k)L2

]
= 2Im((VHx[ρ]ψ − VHx[ρ′]ψ′)k, ψk − ψ′

k)L2 .

Using this, we get

d
dt

(
‖ψ − ψ′‖2

L2(R3;CNel )
)

=
Nel∑
k=1

d
dt(‖ψk − ψ′

k‖2
L2)

= 2Im(VHx[ρ]ψ − VHx[ρ′]ψ′, ψ − ψ′)L2(R3;CNel )

≤ C‖ψ − ψ′‖2
L2(R3;CNel ),

where C = C(‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel )), τ, q, λ, Nel) > 0 stems from the Cauchy–
Schwarz inequality and our combining (5.1) from Lemma 5.1 and (5.17) from Lemma 5.4. Finally, by 
Grönwall’s lemma, we get ψ = ψ′, and this concludes the proof. �
Lemma 7.2. Let q ≥ 7/2 and λ ∈ R. Let τ > 0 be such that the following holds: for given X ∈ Bnuc(τ), 
ψ ∈ Bel(τ) is the unique short-time solution to (1.4). Then the mapping
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E : X ∈ Bnuc(τ) �−� ψ ∈ Bel(τ)

is bounded and continuous as a map from C0([0, τ ]; R3Nnuc
)

to C0([0, τ ]; L2(R3; CNel)
)
.

Proof. Since Bel(τ) is a bounded subset of C0([0, τ ]; L2(R3; CNel)), the mapping E is bounded in the 
C0([0, τ ]; L2(R3; CNel)) norm. To prove continuity of E as a map from C0([0, τ ]; R3Nnuc

)
to C0([0, τ ]; L2(R3;

CNel)
)
, we consider a sequence {Xn}n∈N ⊂ Bnuc(τ) such that Xn

n−�∞
−−−−� X ∈ Bnuc(τ) in the 

C0([0, τ ]; R3Nnuc) norm. Similarly to ψ = E [X], we define ψn := E [Xn] with ρn := |ψn|2. Then

i
∂

∂t
(ψn − ψ) = H[X, ρ](ψn − ψ) + ζn, (ψn − ψ)(0) = 0,

with

ζn := ζ1
n + ζ2

n + ζ3
n,

ζ1
n := Vext[Xn]ψn − Vext[X]ψ − Vext[X](ψn − ψ) = (Vext[Xn] − Vext[X])ψn,

ζ2
n := VH[ρn]ψn − VH[ρ]ψ − VH[ρ](ψn − ψ)

=
Nel∑
k=1

{Re
[
(ψnk − ψk)(ψnk + ψk)

]
∗ | · |−1}ψn, (7.9)

ζ3
n := Vx[ρn]ψn − Vx[ρ]ψ − Vx[ρ](ψn − ψ) = λ[ρq−1

n − ρq−1]ψn,

where we used |a|2−|b|2 = Re[(a− b)(a +b)] in (7.9). We denote by {H[X(t), ρ], t ∈ [0, T ]} the family of KS 
Hamiltonians for the given X ∈ Bnuc(τ). Note that since ψ and thus ρ are fixed now, these Hamiltonians 
are acting linearly on ψn − ψ, and can thus be written, similarly to (2.7), as

H(t) = −1
2Δx + V (t) + VHx[ρ]

with V from (2.8). The linear potential V (t) + VHx[ρ] satisfies Assumption (A.1) in [31, Theorem 1.1]; 
hence, there exists a family of evolution operators {U(t, s), (t, s) ∈ [0, T ]2}, associated with this family of 
Hamiltonians, satisfying properties (i)–(iv) of Lemma 2.3. By this, from which it follows that for fixed 
t ∈ [0, T ], U(t, ·)ζn ∈ C0([0, t], L2(R3; CNel)), and [31, Corollary 1.2 (4)], we can argue as in [8, p. 982], and 
the corresponding integral representation holds for all t ∈ [0, T ]:

(ψn − ψ)(t) = −i

t∫
0

U(t, σ)ζn(σ)dσ.

Using Lemma 2.3 (iii), we bound for all n ∈ N and t ∈ [0, τ ]

‖(ψn − ψ)(t)‖L2(R3;CNel ) �
∑

j∈{1,2,3}

t∫
0

‖ζjn(σ)‖L2(R3;CNel )dσ.

So now we deduce L2(R3; CNel) estimates on ζjn(σ) for j ∈ {1, 2, 3} for all σ ∈ (0, t), using the 
fact that ψn and ψ are elements in Bel(τ), which makes them uniformly bounded with respect to n
in C0([0, τ ]; H2(R3; CNel)). For j = 1, as noted in [8, p. 982], it holds for all 0 < σ < t ≤ τ ≤ T that

‖ζ1
n(σ)‖L2(R3;CNel ) ≤ C1,n

n−�∞
−−−−� 0
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for some C1,n = C1,n(α, ψ0) > 0. For j = 2, we use the mapping G from (2.1). This gives for all σ ∈ (0, t),

‖ζ2
n(σ)‖L2(R3;CNel ) ≤

Nel∑
k=1

‖G[ψnk(σ) − ψk(σ), ψnk(σ) + ψk(σ)]‖L∞‖ψn(σ)‖L2(R3;CNel )

�
Nel∑
k=1

‖ψnk(σ) − ψk(σ)‖L2‖ψnk(σ) + ψk(σ)‖H2‖ψn‖L∞([0,τ ];L2(R3;CNel ))

≤ C2‖ψn(σ) − ψ(σ)‖L2(R3;CNel )

for some C2 = C2(α, ψ0) > 0. For j = 3 and all σ ∈ (0, t),

‖ζ3
n(σ)‖L2(R3;CNel )

(5.13)
�q,λ (‖ρn(σ)‖q−3/2

L∞ + ‖ρ(σ)‖q−3/2
L∞ )‖ρn(σ)‖1/2

L∞‖ψn(σ) − ψ(σ)‖L2(R3;CNel )

(5.19)
≤ C3‖ψn(σ) − ψ(σ)‖L2(R3;CNel )

for some C3 = C3(q, α, ψ0) > 0. Combining these three estimates, we have for all t ∈ [0, τ ],

‖(ψn − ψ)(t)‖L2(R3;CNel ) ≤ C1,nτ + (C2 + C3)
t∫

0

‖(ψn − ψ)(σ)‖L2(R3;CNel )dσ.

By Grönwall’s lemma, we conclude that for all t ∈ [0, τ ],

‖(ψn − ψ)(t)‖L2(R3;CNel ) ≤ C1,nτe
(C2+C3)t,

and this concludes the proof. �
8. Proof of Theorem 1.1

In this section, we prove the main result, Theorem 1.1.

Lemma 8.1. Let q ≥ 7/2 and λ ∈ R. Further, let ψ0 ∈ H2(R3; CNel), V 0 ∈ R3Nnuc and X0 ∈ R3Nnuc be 
given, with X0

K �= X0
L for K �= L.

Then there exists τ > 0 such that the initial-value problem associated with the system (1.1) with ψ(0) = ψ0, 
X(0) = X0 and Ẋ(0) = V 0 has a solution (ψ, X) ∈ X (τ).

Proof. Let τ > 0 be such that the following statements hold. For given ψ ∈ Bel(τ), (1.6) has a unique solution 
X ∈ Bnuc(τ) ∩ C2([0, τ ]; Bδ(X0)), and for given X ∈ Bnuc(τ), (1.4) has a unique solution ψ ∈ Bel(τ). The 
existence of such τ was proven in Lemmas 6.1 and 7.1. We define the inclusion

I : Bnuc(τ) ∩ C2([0, τ ];R3Nnuc) ↪−→ Bnuc(τ),

which is a continuous and compact mapping. Also, we define the mapping

K : Bnuc(τ) −� Bnuc(τ), K := I ◦ N ◦ E .

Since by Lemma 6.1, N is bounded in the C1([0, τ ]; R3Nnuc) topology, by the Arzelà–Ascoli theorem it 
follows that K is a compact mapping, where Bnuc(τ) is equipped with the C0([0, τ ]; R3Nnuc) topology.

By the classical Schauder fixed-point theorem, K has a fixed point X in Bnuc(τ). If we set ψ := E [X], the 
corresponding pair (ψ, X) is the desired solution, and this concludes the proof. �
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Lemma 8.2. Let q ≥ 7/2 and λ ∈ R. Let (X, ψ), (X ′, ψ′) ∈ X (τ) be two solutions to (1.1) for some τ > 0. 
Then, for all t ∈ [0, τ ],

|(Ẍ − Ẍ ′)(t)| ≤ C[|(X −X ′)(t)| + ‖(ψ − ψ′)(t)‖L3,∞(R3;CNel )], (8.1)

‖(ψ − ψ′)(t)‖L3,∞(R3;CNel ) ≤ C

t∫
0

1√
t− σ

[|(X −X ′)(σ)| + ‖(ψ − ψ′)(σ)‖L3,∞(R3;CNel )]dσ, (8.2)

where C = C(‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel ))).

Proof. We focus on justifying each estimate separately, as follows.

Proof of (8.1). In this proof, we use for short-hand notation the function Ξ : R3 −� R3 (almost every-
where), x �−� x|x|−3 again.

For all t ∈ [0, τ ] and K = 1, . . . , Nnuc,

|(ẌK − Ẍ ′
K)(t)| ≤ |A1

K [ρ(t)](X(t)) −A1
K [ρ′(t)](X ′(t))| + |A2

K(X(t)) −A2
K(X ′(t))|

≤ (I) + (II) + (III),

(I) := |A1
K [ρ(t)](X(t)) −A1

K [ρ(t)](X ′(t))|,
(II) := |A1

K [ρ(t)](X ′(t)) −A1
K [ρ′(t)](X ′(t))|,

(III) := |A2
K(X(t)) −A2

K(X ′(t))|.

By Lemma 2.2 on the force functions, A1
K [ρ] are uniformly Lipschitz continuous in the nuclear variable for 

all t ∈ [0, τ ] and K, by which

(I) �
Nel∑
k=1

|(ψk(t),Ξ(· −XK(t))ψk(t))L2 − (ψk(t),Ξ(· −X ′
K(t))ψk(t))L2 |

(2.6)
≤ CI|(XK −X ′

K)(t)| ≤ CI|(X −X ′)(t)|

for some CI = CI(‖ψ‖C0([0,τ ];H2(R3;CNel ))) > 0. Also,

(II) ≤ CII‖(ψ − ψ′)(t)‖L3,∞(R3;CNel )

for some CII = CII(‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel ))) > 0 by Hölder’s inequality in Lorentz 
spaces (A.1) and the fact that ‖ · ‖−2

R3 ∈ L3/2,∞. Since X, X ′ ∈ Bnuc(τ), we bound (III) similarly to the 
bounding in part 1 of the proof of Lemma 6.1:

(III) �
Nnuc∑

L=1,L �=K

|Ξ((XK −XL)(t)) − Ξ((X ′
K −X ′

L)(t))| �δ,X0 |(X −X ′)(t)|.

Since these results hold for all K, (8.1) follows.

Proof of (8.2). Similarly to the proof of Lemma 7.1,

i
∂

∂t
(ψ − ψ′) = −1

2Δx(ψ − ψ′) + Vext[X](ψ − ψ′) + VHx[ρ](ψ − ψ′) + ζ̃,

(ψ − ψ′)(0) = 0,
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where ζ̃ := ζ̃
1

+ ζ̃
2

+ ζ̃
3
, with for j ∈ {1, 2, 3}, ζ̃

j
being ζjn with (Xn, ψn) �−� (X ′, ψ′). As the operator 

−Δx/2 generates the free propagator U0, we write the equivalent integral equation for all t ∈ [0, τ ]:

(ψ − ψ′)(t) = −i

t∫
0

U0(t− σ){Vext[X(σ)](ψ − ψ′)(σ) + VHx[ρ](ψ − ψ′)(σ) + ζ̃(σ)}dσ.

We recall that by Lemma 6 in [8], for all σ ∈ (0, τ ] and f ∈ L3/2,∞, it holds that

‖U0(σ)f‖L3,∞ � 1√
σ
‖f‖L3/2,∞ .

Using this estimate, we obtain for all t ∈ [0, τ ] and k = 1, . . . , Nel,

‖(ψk − ψ′
k)(t)‖L3,∞ �

t∫
0

1√
t− σ

[
‖(Vext[X(σ)](ψ − ψ′))k(σ)‖L3/2,∞

+ ‖(VH[ρ](ψ − ψ′))k(σ)‖L3/2,∞ + ‖(Vx[ρ](ψ − ψ′))k(σ)‖L3/2,∞

+
∑

j∈{1,2,3}
‖(ζ̃

j
(σ))k‖L3/2,∞

]
dσ.

Since ‖ · ‖−1
R3 ∈ L3,∞, by Hölder’s inequality on L3/2,∞, we obtain for all σ ∈ (0, t) and k = 1, . . . , Nel,

‖(Vext[X(σ)](ψ − ψ′))k(σ)‖L3/2,∞ �
Nnuc∑
K=1

‖| · −XK(σ)|−1‖L3,∞‖(ψk − ψ′
k)(σ)‖L3,∞

� ‖| · |−1‖L3,∞‖(ψk − ψ′
k)(σ)‖L3,∞

� ‖(ψk − ψ′
k)(σ)‖L3,∞ .

Note also that

‖(VH[ρ](ψ − ψ′))k(σ)‖L3/2,∞ � ‖ρ(σ) ∗ | · |−1‖L3,∞‖(ψk − ψ′
k)(σ)‖L3,∞ (8.3)

� ‖ρ(σ)‖L1‖| · |−1‖L3,∞‖(ψk − ψ′
k)(σ)‖L3,∞ (8.4)

≤ CH‖(ψk − ψ′
k)(σ)‖L3,∞

for some CH = CH(‖ψ‖C0([0,τ ];H2(R3;CNel ))) > 0. Here we used Hölder’s inequality on L3/2,∞ in (8.3) and 
Young’s convolution inequality on L3,∞ in (8.4). Moreover,

‖(Vx[ρ](ψ − ψ′))k(σ)‖L3/2,∞ �λ ‖[ρ(σ)]q−1‖L3,∞‖(ψk − ψ′
k)(σ)‖L3,∞ (8.5)

� ‖[ρ(σ)]q−1‖L3‖(ψk − ψ′
k)(σ)‖L3,∞ (8.6)

≤ Cx‖(ψk − ψ′
k)(σ)‖L3,∞ (8.7)

for some Cx = Cx(‖ψ‖C0([0,τ ];H2(R3;CNel )), q) > 0. Here we used Hölder’s inequality on L3/2,∞ in (8.5)
and Proposition 4.2 from [4] in (8.6). In (8.7), we used Sobolev’s inequality with interpolation, and the 
embedding of H2 into L∞, by which, with θ := 6(q − 1) > 6,
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‖[ρ(σ)]q−1‖3
L3 �q

Nel∑
k=1

‖[ψk(σ)](θ−6)+6‖L1

�
Nel∑
k=1

‖ψk(σ)‖θ−6
L∞ ‖ψk(σ)‖6

L6 �
Nel∑
k=1

‖ψk‖θC0([0,τ ];H2).

On the other hand,

‖(ζ̃
1
(σ))k‖L3/2,∞ �

Nnuc∑
K=1

‖(| · −XK(σ)|−1 − | · −X ′
K(σ)|−1)ψ′

k(σ, ·)‖L3/2,∞

=
Nnuc∑
K=1

‖(| · −(XK −X ′
K)(σ)|−1 − | · |−1)ψ′

k(σ, · + X ′
K)‖L3/2,∞

� ‖ψ′
k(σ)‖L∞

Nnuc∑
K=1

‖| · |−1| · −(XK −X ′
K)(σ)|−1‖L3/2,∞ |(XK −X ′

K)(σ)| (8.8)

� ‖ψ′
k‖C0([0,τ ];H2)‖| · |−1‖L3,∞

Nnuc∑
K=1

‖| · −(XK −X ′
K)(σ)|−1‖L3,∞ |(XK −X ′

K)(σ)| (8.9)

�Nnuc ‖ψ′
k‖C0([0,τ ];H2)‖| · |−1‖2

L3,∞ |(X −X ′)(σ)|

� ‖ψ′
k‖C0([0,τ ];H2)|(X −X ′)(σ)|,

where we used the triangle inequality written as || · | − | · −(XK −X ′
K)(σ)|| ≤ |(XK −X ′

K)(σ)| in (8.8), and 
Hölder’s inequality in L3/2,∞ and the embedding of H2 into L∞ in (8.9). Moreover,

‖(ζ̃
2
(σ))k‖L3/2,∞ �

Nel∑
�=1

‖{[(ψ� − ψ′
�)(σ)(ψ� + ψ′

�)(σ)] ∗ | · |−1}ψ′
k(σ)‖L3/2,∞

�
Nel∑
�=1

‖[(ψ� − ψ′
�)(σ)(ψ� + ψ′

�)(σ)] ∗ | · |−1‖L6,∞‖ψ′
k(σ)‖L2,∞ (8.10)

�
Nel∑
�=1

‖[(ψ� − ψ′
�)(σ)(ψ� + ψ′

�)(σ)] ∗ | · |−1‖L6,2‖ψ′
k(σ)‖L2 (8.11)

� ‖ψ′
k‖C0([0,τ ];H2)

Nel∑
�=1

‖(ψ� − ψ′
�)(σ)(ψ� + ψ′

�)(σ)‖L6/5,2‖| · |−1‖L3,∞ (8.12)

� ‖ψ′
k‖C0([0,τ ];H2)

Nel∑
�=1

[‖ψ�(σ)‖L2 + ‖ψ′
�(σ)‖L2 ]‖(ψ� − ψ′

�)(σ)‖L3,∞ (8.13)

≤ C2‖(ψ − ψ′)(σ)‖L3,∞(R3;CNel )

for some C2 = C2(‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel ))) > 0. Here we used Hölder’s inequality 
on L3/2,∞ in (8.10), Proposition 4.2 from [4] in (8.11), Young’s convolution inequality on L6,2 in (8.12) and 
Hölder’s inequality on L6/5,2 in (8.13). Finally,

‖(ζ̃
3
(σ))k‖L3/2,∞

(5.13)
�q,λ ‖[ρ(σ)]q−3/2 + [ρ′(σ)]q−3/2‖L∞‖ψ′

k(σ)|ψ(σ) − ψ′(σ)|‖L3/2,∞

�
[
‖ρ(σ)‖q−3/2

L∞ + ‖ρ′(σ)‖q−3/2
L∞

]
‖ψ′

k(σ)‖L3,∞‖|(ψ − ψ′)(σ)|‖L3,∞(R3;CNel ) (8.14)
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�q

[ Nel∑
�′=1

‖ψ�′(σ)‖2q−3
H2 +

Nel∑
k′=1

‖ψ′
k′(σ)‖2q−3

H2

]
‖ψ′

k(σ)‖L3

Nel∑
�=1

‖(ψ� − ψ′
�)(σ)‖L3,∞ (8.15)

≤ C3‖(ψ − ψ′)(σ)‖L3,∞(R3;CNel ) (8.16)

for some C3 = C3(‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel )), q) > 0. Here we used Hölder’s inequality 
on L3/2,∞ in (8.14), (5.19) and Proposition 4.2 from [4] in (8.15), and Sobolev’s embedding theorem with 
interpolation in (8.16). Since all these estimates hold for all σ ∈ (0, t), and k = 1, . . . , Nel, (8.2) follows. �
Proof of Theorem 1.1. Let τ > 0 be such that the following statements hold. For given ψ ∈ Bel(τ), (1.6) has 
a unique solution X ∈ Bnuc(τ) ∩ C2([0, τ ]; Bδ(X0)), and for given X ∈ Bnuc(τ), (1.4) has a unique solution 
ψ ∈ Bel(τ). The existence of such τ was proven in Lemmas 6.1 and 7.1. The existence of the solution 
(X, ψ) ∈ X (τ) to (1.1) was proven in Lemma 8.1. Uniqueness of this solution follows from Lemma 8.2. For 
two solutions (X, ψ), (X ′, ψ′) ∈ X (τ) and p > 2, we define the function h ∈ C0([0, τ ]; R+

0 ) by

h(t) := [|(X −X ′)(t)| + ‖(ψ − ψ′)(t)‖L3,∞(R3;CNel )]p.

Since X and X ′ both solve (1.6) on [0, τ ] and thus are fixed points of the mapping T in (6.2), for all t ∈ [0, τ ],

|(X −X ′)(t)| ≤
t∫

0

(t− σ)|(Ẍ − Ẍ ′)(σ)|dσ.

Using this in combination with Lemma 8.2 in (8.17) and Hölder’s inequality, we have for all t ∈ [0, τ ],

h(t) �p C

{ t∫
0

(
t− σ + 1√

t− σ

)
[|(X −X ′)(σ)| + ‖(ψ − ψ′)(σ)‖L3,∞(R3;CNel )]dσ

}p

(8.17)

� C
∥∥∥(t− · + 1√

t− ·

)
h1/p

∥∥∥p
L1([0,t];R)

� C
∥∥∥t− · + 1√

t− ·

∥∥∥p
Lp′ ([0,t];R)

‖h1/p‖pLp([0,t];R) �τ C

t∫
0

h(σ)dσ,

where C = C(‖ψ‖C0([0,τ ];H2(R3;CNel )), ‖ψ′‖C0([0,τ ];H2(R3;CNel ))) is from Lemma 8.2. Using Grönwall’s in-
equality, we obtain h ≤ 0 on [0, τ ]. Since h ≥ 0 too by definition, and h(0) = 0 since X(0) = X ′(0) = X0

and ψ(0) = ψ′(0) = ψ0, we get h ≡ 0, by which (X, ψ) = (X ′, ψ′). This completes the proof. �
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Appendix A. Notation

Throughout this article, we use the following notation:

• We use A � B to denote |A| ≤ CB, where 0 < C < ∞.
• We use A �α,β B to denote dependence on parameters α and β: so |A| ≤ Cα,βB with 0 < Cα,β < ∞. 

In our notation, A �α B �β Γ means that A �α,β Γ.

Further, we use the following normed spaces:

• We use the notation Lp,r(R3) = Lp,r, p ∈ [1, ∞), r ∈ [1, ∞], for Lorentz spaces, with
– the radial nonincreasing rearrangement of measurable functions f on R3

f∗(t) = inf{s > 0||{x ∈ R3||f(x)| > s}| ≤ t},

– the average of f∗

f∗∗(t) = 1
t

t∫
0

f∗(s)ds,

– the norms

‖f‖rLp,r =
∞∫
0

|t1/pf∗∗(t)|r dt
t

on Lp,r, r < ∞, and

‖f‖Lp,∞ = sup
t∈R

|t1/pf∗∗(t)|

on the weak Lebesgue spaces Lp,∞.
• We use the notation W k,p(R3) = W k,p and W k,2 = Hk, k ∈ N, p ∈ [1, ∞], for classical Sobolev spaces, 

setting in particular

‖f‖2
H2 = ‖f‖2

L2 + ‖Δf‖2
L2 .

Further, we use the following inequalities:

• Hölder’s inequality on Lorentz spaces [24]. Let f ∈ Lp1,q1 and g ∈ Lp2,q2 , with p1, p2 ∈ (0, ∞) and 
q1, q2 ∈ (0, ∞]. Then

‖f · g‖Lr,s �p1,p2,q1,q2 ‖f‖Lp1,q1 ‖g‖Lp2,q2 , (A.1)

with 1/r = 1/p1 + 1/p2 and 1/s = 1/q1 + 1/q2.
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• Young’s convolution inequality on Lorentz spaces [33, Theorem 2.10.1]. Let f ∈ Lp1,q1 and g ∈ Lp2,q2 , 
with 1/p1 + 1/p2 > 1. Then

‖f ∗ g‖Lr,s ≤ 3r‖f‖Lp1,q1‖g‖Lp2,q2 ,

with 1/r = 1/p1 + 1/p2 − 1 and s ∈ [1, ∞] such that 1/q1 + 1/q2 ≥ 1/s.
• Hardy’s inequality [16]:

‖|x− ·|−1f‖L2 ≤ 2‖∇f‖L2 (A.2)

for all f ∈ H1 and x ∈ R3.
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