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Abstract: The human-centered design (HCD) approach places humans at the center of design in
order to improve both products and processes, and to give users an effective, efficient and satisfying
interactive experience. In industrial design and engineering, HCD is very useful in helping to
achieve the novel Industry 5.0 concept, based on improving workers’ wellbeing by providing
prosperity beyond jobs and growth, while respecting the production limits of the planet as recently
promoted by the European Commission. In this context, the paper proposes an ergonomic assessment
method based on the analysis of the workers’ workload to support the design of industrial products
and processes. This allows the simultaneous analysis of the physical and cognitive workload of
operators while performing their tasks during their shift. The method uses a minimum set of non-
invasive wearable devices to monitor human activity and physiological parameters, in addition to
questionnaires for subjective self-assessment. The method has been preliminarily tested on a real
industrial case in order to demonstrate how it can help companies to support the design of optimized
products and processes promoting the workers’ wellbeing.

Keywords: human-centered design; human factors; workload assessment; design for ergonomics;
product design

1. Introduction

The modern industrial scenario is looking for sustainable and resource-efficient flexi-
ble production models, based on optimized interactions between people, machines, and
products [1]. In this context, machines, products, and people are required to support
each other in task execution and decision-making. Therefore, the role of human work
is changing; today humans can be easily supported by machines in physically intensive
or dangerous tasks, while they need to control the processes and face high-level tasks
(e.g., problem-solving, abstraction, managing) by increasing the cognitive load [2]. Tasks
will become increasingly shared between humans and machines, requiring not only new
models to manage and control the processes [3], but also to understand and consider the
users’ needs [4], according to human-centered approaches adopted to both processes [5]
and products [6].

In this context, the European Commission has recently promoted a complementary
new approach, called Industry 5.0, where “the wellbeing of the worker is placed at the
centre of the production process and uses new technologies to provide prosperity beyond
jobs and growth while respecting the production limits of the planet” [7]. Such an approach
focuses on promoting a more sustainable vision in industry to ensure a win-win for both
companies and society. Specifically, Industry 5.0 aims at a more human-centric, resilient and
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sustainable approach to the design of industrial operations systems, including production,
logistics, and maintenance.

Designing human-centric products and processes is an already known practice, how-
ever it is one that is still poorly used within industry. Human-centered design (HCD)
is a design method based on an iterative process that systematically involves the users
during all product/process development phases; this has been successfully applied since
its early conception, emphasizing the humanistic approach and the way in which products,
workplaces, devices and technology are designed [8–10]. HCD is intrinsically related to the
human pillar of sustainability, which focuses on the importance of involving users in the
making of products or services [11]. The role of HCD has been widely exploited, however
it is becoming more and more significant today in the definition of modern workplaces and
smart, assistive products, with the final aim being to support operators so they can achieve
higher levels of performance, to assure comfort and safety, and to enable a more efficient
human-machine interaction. This fact implies the rethinking of factory processes from a
human perspective, integrating human factors in system design and development. The
so-called human factors integration (HFI) technique [12] pushed to adopt the most suitable
technologies necessary to validate the new processes and create new interaction product
features and interfaces to valorize human capabilities [13]. This consists of applying the
existing knowledge about users’ needs and limitations, as well as ergonomics within engi-
neering process design to optimize the workers’ wellbeing and to finally improve working
conditions and results. Nevertheless, today the main challenge is to understand how to
effectively realize HFI by selecting the most suitable techniques required to evaluate the
user experience (UX) and the human-machine interaction according to the specific context
of application, in order to mutually enhance the system performance and the workers’ well-
being [14,15]. The user experience refers to the user’s perceptions and responses that result
from the use of a system, product, or service; this includes users’ emotions, perceptions,
comfort, and behaviors [16]. However, the human factors assessment in the automotive
industry has, to date, mainly focused on physical ergonomics, analyzing the risks related
to incongruous postures and the handling of loads, without considering the cognitive and
emotional aspects [17]. Human factors have been introduced in engineering that consider
the physical risks that correlate with possible musculoskeletal disorders, and that concur-
rently assess the psychological, social, and cultural needs of human beings [16], in order
to guarantee human comfort and safety, and consequently to improve user performance.
Indeed, for human performance optimization, it is fundamental to avoid stressful physical
and mental conditions, cognitive under- and over-loads. For this reason, the analysis of
physical and cognitive ergonomics is becoming more and more indispensable, even in the
industrial sector.

In this context, this paper proposes an ergonomic method to assess the operator’s
experience in terms of physical and cognitive workload, trying also to distinguish between
cognitive demand and stress, to support the design of industrial products and processes.
The paper’s main contributions are:

1. The definition of a novel holistic ergonomic assessment method, which includes both
physical and cognitive ergonomic evaluations, and that can easily be adopted during
workers’ shifts within industrial environments;

2. An improved analysis of human cognitive conditions that represents the most critical
aspect in the modern industrial scenario, where interaction is more complex, mentally
demanding, and potentially stressful;

3. A focus on industrial task analysis, as the majority of the existing literature is aimed
towards other domains (e.g., healthcare, aviation).

The paper is structured as follows: Section 2 presents the research background;
Section 3 describes the proposed assessment method in detail; Section 4 describes the
experimental study; Section 5 discusses the achieved results; and finally Section 6 is about
the conclusions and recommendations for future work.
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2. Research Background

Ergonomics is an applied science concerned with designing things (i.e., products,
processes, tasks, environments) to make with the aim being that people use them efficiently
and safely, thus improving the system performance and overall worker satisfaction [18].
For years physical ergonomics has been recognized as an area that focuses on physical and
musculoskeletal aspects, however there has been a realization that cognitive ergonomics
also plays a fundamental role, and in order to improve human performance and satisfaction,
cognitive ergonomics must be taken into account. This was first demonstrated in the design
of nuclear power plants and air traffic control systems. In the last 5–6 years, cognitive
workload assessment has also spread into industrial sectors, from process manufacturing
to transport, construction, and energy [17]. The main objective of cognitive ergonomics
is to improve the performance of human tasks in complex, dynamic and technologically
advanced environments, through the design of effective support, understanding the funda-
mental principles of human activities associated with the principles of engineering design
and development. As such, it has been demonstrated that the optimization of physical
and mental workload, comfort, and perceived effort is necessary to prevent disorders and
stressful conditions, assuring the best human performances [19]. This would consequently
lead to systems and environments optimal design, product, and process quality enhance-
ment and, at last, industrial cost reduction. The physical and cognitive factors that can
affect the users’ performance and the quality of human-machine interaction are several:
from the level of the perceived workload to task complexity, the overload of information,
or time pressure.

2.1. Physical Comfort Evaluation

Physical effort assessment mainly refers to the study of the postures assumed by the
operators during the work shift and the efforts in handling of loads, tools, and equipment,
depending on the features of the operating spaces and the workstation layout. Postural risk
generally considers manual handling of loads and repetitive movements, favoring the onset
of muscle–skeletal disorders and pathologies, the so-called work-related musculoskeletal
disorders (WMSDs) [20]. For these reasons, many methods have been developed to
assess the factors related to physical risk exposure. Among these factors, we can find the
frequency of movements and their duration, use of tools, awkward postures, postural
loading, effect of vibration, and so on [21]. The reference legislation for assessing the
risk related to the assumption of incongruous postures is wide and includes different
aspects [22–25]. Among the several available, the most applied methods are the Rapid
Upper Limb Analysis (RULA, which includes particular attention to the neck, trunk,
shoulders, arms and wrists) [26], the Rapid Entire Body Assessment (REBA, that considers
all the body parts, included the inferior ones) [27], the Ovako Working posture Analysis
System (OWAS, which consists of a four-digit number, representing the: (1) back; (2) arms;
(3) lower limbs; and (4) handled load classification) [28]. Also, the Occupational Repetitive
Actions (OCRA) analysis considers the frequency and repetitiveness of movements, use of
force, type of posture, recovery period distribution and additional factors, and provides
two separate indices (shoulder and elbow/wrist/hand) for each of the right and left sides
of the body [29]. The NIOSH equation allows the assessment of the risks involved in
material handling tasks (for loads ≥ 3kg) [30]. The acquisition of the data necessary to
perform the analysis has been based, for decades, on the direct observation of the operator
during the execution of a specific task, by an experienced ergonomist. The spread of motion
capture devices has then been exploited to automate this phase, with considerable benefits
in terms of time, costs, and accuracy of results [31].

2.2. Cognitive Evaluation

Cognitive assessment involves the analysis of psychological processes such as aware-
ness, understanding, human information elaboration, reasoning, and the use of knowledge,
as it concerns human interaction with other system components. The analysis of the Mental
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Workload (MWL) is one of the most widely studied topics; it “emerges from the interaction
between the requirements of a task, the circumstances under which it is performed, and
the skills, behaviors, and perceptions of the operator” [32]. MWL assumes that each person
has a relatively limited cognitive capacity that deals with auditory, verbal, and visual
material; this capacity is likened to a pool from which resources can be drawn to meet the
demands of ongoing tasks [33]. Moreover, the response to the same stimuli differs among
users, being different in the capabilities of everyone. MWL can positively or negatively
affect human performances; in this direction, measuring the MWL means to quantify
the mental “cost” of performing a task in order to predict the performances [34]. In the
design of industrial systems, measuring the MWL can help to identify sources of errors
and understand the complexity of a task as perceived by workers. According to [35] the
MWL assessment methods are classified into four main broad categories: performance
assessment method, self-assessment (or subjective scaling) method, physiological measure-
ments method, and job and task analysis. Examples of common performance parameters
are response, reaction time, accuracy, error rate, estimation time, and objective speed [36].
The combination of different methods is necessary to have a clearer picture of the perceived
workload, due to the complexity of cognitive processes. Self-assessment measures allow
the user to subjectively evaluate the perceived workload needed to accomplish a task, using
questionnaires or psychometric scales. This evaluation is based on the personal experience
of the interaction with the system and is obtained from the direct estimation of task diffi-
culty. The most used tool for workload subjective assessment, applied in several research
studies, is the multidimensional questionnaire NASA Task Load Index (NASA-TLX) that
allows the assessment of six different domains (mental, physical, and temporal demands,
performance, effort, and frustration) [37–39]. Such data can be used to understand how
the workload varies over time or to compare the operators’ perceived workload (e.g.,
with and without a particular tool, or between different systems). Physiological measures
consider physiological responses of the human body that are believed to be correlated
with MWL. Indeed, changes in specific parameters, such as heart rate (HR), heart rate
variability (HRV), eye activity (like pupil diameter, gaze entropy, and eye movements’
velocity), brain activity (EEG), breathing rate (BR), galvanic skin response or electrodermal
activity (GSR or EDA), can be indirect indicators of mental workload [40–42]. However,
all the mentioned physiological parameters can be easily influenced by external factors
such as physical activity, environment, and psychological elements (such as emotional
involvement) that are not related to the analyzed activity [43], so the analysis has to be
properly tailored to the specific context. Also, high levels of inter- and intra-individual
variability of biometric indices exist, and sometimes it could be difficult to distinguish
MWL from stress or mental fatigue.

2.3. Stress Evaluation

Stress is a concept that includes a wide spectrum of variables and cognitive processes
and, for this reason, can be misinterpreted or confused with other kinds of negative emo-
tions. Stress can be described as two general types of response: anxiety or frustration,
and the physiological response of the sympathetic nervous system, which emerges after a
challenge or threat. As for the mental workload, even stress can affect human performance.
Even if the multimodal dimension of stress makes the research field very broad, accord-
ing to [35], stress can be detected through four main criteria: physiological; behavioral;
psychological; and biochemical. The most common analyses typically include the subjec-
tive assessment method based on self-report, such as the State-Trait Anxiety Inventory
(STAI) [44] or the Numerical Analogue Scale (NAS) [45]. Diversely, mental fatigue is de-
fined as the loss of work capacity triggered by prolonged periods of demanding cognitive
activity [46], due to technical complications, time pressure, distractions, interruptions,
errors, or increased workload [47]. According to [48], psychological stress is the effect of
all conditions with a mental impact on a subject, either cognitive or emotional. As such, it
emerges when the perceived demands of the environment exceed a person’s ability to cope
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with these demands [49]. Stress is also defined as a “state of high general arousal and nega-
tively tuned but unspecific emotion, which appears as a consequence of stressors acting
upon individuals” [50]. Reactions caused by stress such as changes in skin conductance
(sweating), heart rate (tachycardia), blood pressure (increase), during and immediately af-
ter performing a stressful task, have been demonstrated. However, physiological reactions
emerge while experiencing both negative stress and positive stress [50], and, through the
monitoring of physiological signals, only the intensity can be assessed, not the valence. For
this reason, studies found that the reliability of stress measurement can be improved by
combining physiological and psychological, subjective measures [51].

The main limitations of the current research are related to the lack of structured, ready
to use methodologies for the assessment of the operator’s workload in industrial contexts,
considering the different perspectives. Indeed, even if several studies exist regarding the
workers’ physical ergonomics, and recent studies are emerging about the analysis of the
operators’ cognitive load, a comprehensive assessment method, suitable also for on-field
analysis, is still missing. For this reason, the aim of the paper is to design and develop a
holistic workload assessment method, considering the physical and mental efforts that the
operator feels and perceives during the work shift, supported by preliminary experimental
evidence. The proposed method also tries to distinguish between the mental workload and
stress related to the task activities.

3. The Proposed Method for Operators’ Workload Assessment

The proposed assessment method has been designed to support the design of every
kind of industrial product, process, or environment: it allows the simultaneous analysis of
both the physical and cognitive workload of operators while performing habitual tasks
during the work shift. The method has been defined to be cause the minimum amount
of intrusion as possible for the operator: this involves a minimum set of non-invasive
wearable devices for the monitoring of motions and physiological parameters, and only
two questionnaires for the subjective self-assessment of cognitive conditions. In fact, if the
set-up is not properly defined, this may influence the physical and cognitive perception,
altering the overall user experience of the operator.

The user is asked to wear a set of trackers to enable motion capture for postural and
activity analysis, together with an eye-tracker device for eye activity monitoring, and a
bracelet for biometric monitoring. Motion capture allows a physical workload analysis,
while the two latter devices (i.e., eye tracking and bracelet) are able to collect different
kinds of physiological parameters, such as heart rate (HR), inter-beat interval (IBI, RR),
electrodermal activity (EDA), pupil diameter (PD), that can be properly combined to moni-
tor the cognitive workload, and to detect eventual mental overload and stressful conditions.
To strengthen the reliability of the cognitive assessment, the method also includes the
administration of questionnaires (NAS and NASA-TLX) for the self-assessment of the
perceived cognitive and emotional conditions, before and after the execution of the tasks.
NAS is a unidimensional scale that consists of a line divided into 10 intervals, numbered
from 0 to 10, where 0 indicates the absence of perceived stress, and 10 the presence of a
very strong stress. The worker is asked to select the whole number (0–10 integers) that best
reflects the intensity of the perceived stress immediately after the tasks’ execution. Also,
the scale must be answered before starting the tasks to record the basal level of perceived
stress, and at the end of the procedure, after a brief period of rest to verify that the stress
perception came back to the basal level. The NAS questionnaire has been selected among
other questionnaires as studies suggest it as a valid, effective, and easy-to-implement tool
for the rapid assessment of perceived stress in the industrial environment. On the other
side, the multidimensional NASA-TLX has been chosen to discriminate between different
cognitive and emotional states. Indeed, through the six items, it is possible to evaluate
not only the perceived mental demand, but also the feelings of frustration, effort, and
the performance. The worker is asked to fulfil the questionnaire at the end of the task
execution. Moreover, the assessment method includes the analysis of the performances to
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be correlated with the cognitive conditions. By video recording and reporting the actions
of the operators, it is possible to analyze the execution times and the committed errors,
which may derive from unbalanced mental workload.

The proposed assessment method is based on the combined analysis referring to
the postural risk, the mental workload, and the stress. Different classes of parameters
are considered:

1. Human body segment position and motions into the three-dimensional space, col-
lected by the motion capture systems;

2. Pupil diameter collected by the eye tracking system;
3. Physiological parameters referring to the user’s cardiovascular activity (i.e., HR and

RR) and skin conductance (i.e., EDA), collected by the biometric wearable device;
4. Subjective assessment based on NAS and NASA-TLX questionnaires;
5. Performance data like execution time, collected by video analysis.

A proper integration and processing of such parameters can provide an early assess-
ment of the physical effort, the mental workload and the perceived stress. In particular,
physical effort is usually assessed by ergonomic indexes, such as RULA or REBA. The
general score of a posture obtained by the use of these indexes indicates the potential risk of
development of musculoskeletal disorders, according to different scales. Usually the higher
the score, the higher the degree of risk. For the assessment of the cognitive conditions,
scientific studies have proved that HR increases as MWL increases, and HRV decreases
with increasing mental demand [52]. These cardiovascular parameters may change if the
measurements are taken after, and not during, the stressful or mentally demanding event.
They could also vary consistently with different levels of stress [53]. For this reason, it is
essential to monitor the physiological parameters for the entire duration of the activity
to be analyzed. With regard to the eye-related metrics, variations due to a high level
of MWL are present in pupil diameter (increment), fixation frequency (decrement), and
saccadic frequency (decrement). Opposing results about fixation duration, blink duration
and frequency are available in the literature [54–56]. For this reason, in this work, the
focus is on the pupil diameter. Furthermore, some studies have highlighted the relation-
ship between the electrodermal activity (EDA) and mental states such as stress, anxiety,
fatigue, emotional involvement, mental load, and the level of the excitement caused by
the perceived emotion [57]. However, electrodermal activity is considered “one of the
most sensitive psychophysiological indicators of stress” [50]. Generally the eye-related
parameters are used to evaluate the mental workload, while the cardiovascular parameters,
along with the electrodermal activity being monitored, are exploited to assess the human
stress [58]. Moreover, the performance analysis should be considered in the workload
assessment. Indeed, a lowered and/or irregular performance may indicate that the user is
reaching unacceptable levels of MWL. Through the secondary task method, it is possible to
calculate the mental load associated with the primary one [59].

Figure 1 shows the proposed technological set-up and the related collected data to
provide the assessment of workers’ physical effort, mental workload, and stress.

The proposed assessment method is based on a previous study [60] focused on the
definition of a unique UX index to be used during virtual task execution to support the
design of assembly human tasks. The previous method has been refined in order to be more
robust and general-purpose, and properly extended to better discriminate the cognitive
assessment between mental workload and stress.
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Figure 1. The proposed framework for the operators’ workload assessment.

The physical assessment is calculated using the motion capture system. Using the
position of body segment trackers, the instant RULA score of operators performing the task
for each body side (right and left) can be extracted. The RULA subtask score is calculated
as the maximum value reached during the sub-task execution between right and left side,
as follows:

RULA subtask = RULA max

(
RULA right , RULA le f t

)
(1)

From physiological data analysis, a set of parameters are defined as follows. Heart
activity parameter (HA) is calculated as:

HA =
HR mean − HR baseline
HR max − HR baseline

(2)

where HR mean is the mean value of the specific user’s HR as collected during the task
execution, HR baseline is the mean HR value as recorded during the user’s baseline phase,
and HR max is the maximum HR value reached during the task execution for each user.

Similarly, RR variability (RR) is calculated as follows:

RR =
RR mean − RR baseline
RR max − RR baseline

(3)

where RR mean and RR max are calculated in the same manner as the previous parameter
during the task execution, while RR baseline is the mean RR value as recorded during the
user’s baseline phase.

Similarly, pupil activity parameter (PA) is calculated as follows:

PA =
PD mean − PD baseline
PD max − PD baseline

(4)

where PD user is defined as the mean value of the specific user’s PD as recorded during
the task execution, PD baseline is the mean PD value as recorded during the user’s base-
line phase, and PD max is the maximum PD value as recorded for each user during the
task performance.
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With the same approach, electrodermal activity (EDA) is calculated as follows:

EDA =
EDA mean − EDA baseline
EDA max − EDA baseline

(5)

where EDA mean and EDA max are calculated in the same manner as the previous parame-
ters during task performance while EDA baseline is the mean EDA value as recorded during
the user’s baseline phase.

Performance analysis is mainly based on the time taken to accomplish the task, col-
lecting data from video analysis. With regard to performance analysis, the User Time (UT)
parameter is calculated considering the user time performance. The time to accomplish
the task is clocked for each user (T) and compared with the time employed by the user
who took less time (T min) and the time employed by the user who took the longest time
(T max), as shown in the following equation:

UT =
T − T min

T max − T min
(6)

The subjective assessment is used to weight the calculated physiological parameters,
to include the operator’s perceptions. The NASA-TLX assesses the perceived workload
according to six questions for each user on a 100-graduations scale: for this study we
considered the Mental Demand judgment to weight the PD parameter, the Frustration
Level judgment to weight the RR parameter, the Effort Level judgment to weight the HA
parameter, and finally the Overall Performance judgment to weight the UT parameter.
Each judgment is then normalized to a 5-point scale. According to this, a set of weights
ranging from 1 to 5 can be defined to consider the user’s subjective experience. Similarly,
from NAS questionnaires, this score (structured on a 1 to 10 scale and normalized to a
5-point scale) has been considered to weight the EDA parameter.

The above-mentioned parameters, properly weighted as described, are used to gen-
erate three workload metrics: the Postural Workload (PW), the Mental Workload (MW)
and Stress (S). The PW is calculated as follows, considering the mean value of RULA score
during the task:

PW = mean (RULA subtask) (7)

while the MW one is computed as:

MW= ω1 ∗ PA + ω3 ∗ HA + ω5 ∗ UT (8)

where ω1 is the Mental Demand weight, ω3 is the Effort weight (since it also considers the
mental effort) and ω5 is the Performance weight (since the scientific literature relates it to
the mental demand), and finally the S is defined as follows:

S= −ω2 ∗ RR + ω4 ∗ EDA (9)

where ω2 is Frustration weight and ω4 is NAS derived weight.

4. Experimental Study
4.1. The Industrial Case Study

The industrial case study has been developed in collaboration with CNH Industrial
(CNHi), a global leader in the design and development of a wide range of vehicles, from
agricultural to construction machinery, industrial and commercial vehicles, buses and
special vehicles, as well as the relative engines and transmissions. In particular, the case
study in the tractor field focuses on a set of maintenance tasks to be carried out on tractors
during their life. This case is particularly interesting since it involves both product and
process design; indeed, the final task sequence and working environment result from the
combination of the product design, affecting the set of actions for product disassembly
and assembly to intervene during the maintenance, and the process design, linked to the
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ideal sequence that users have to follow to accomplish each specific task. Moreover, tractor
maintenance can be both physically and mentally demanding, depending on the tractor
layout and task complexity. In addition, serviceability has a crucial role in the daily use
of the tractor and highly influences the product sales. For these reasons, the company
decided to push the design for serviceability of its products and further investigate how
maintenance activities are accomplished in order to enhance the product quality.

The selected case study addresses one of the most frequent and time-consuming
maintenance tasks: the engine oil filter replacement. This activity is usually carried out
by the farmer or the tractor owner, and rarely by the CNHi service workers, and is very
frequent since this is required after approximately 600 working hours, which corresponds
to about 75 working days (considering a working day of 8 h). The workflow consists of
disassembling of a set of machine parts to access the filter, the replacement of the exhausted
oil filter with a new one, and the reassembly of the product parts. Contextually with
the engine oil filter replacement, the temperature sensor of the pre-fuel filter is usually
controlled and eventually replaced, as also suggested by the tractor maintenance handbook.

The current process for the engine oil filter replacement presents some critical issues,
as reported by users over the years, mainly related to the oil filter accessibility. Indeed,
the filter is actually positioned beyond the power steering tubes and other components
that are hard to remove, meaning that the entire process is quite challenging if one is
to avoid any damage to the tractor components during the disassembly and reassembly
sequence. However, CNHi engineers and designers do not have exact knowledge of the
users’ workload in order to guide the product redesign.

The current task sequence for the engine oil filter replacement is shown in Table 1. For
each subtask, the last column indicates if any tool is required. If the subtask requires no
tools, it means that it can be executed using bare hands. Figure 2 represents the location
where this task is executed on the tractor, using a virtual representation of the entire product
and a virtual mannequin.

Table 1. Engine oil filter replacement sequence of task.

No. Subtask Adopted Tools

1 Remove electrical wiresbracket Wrench
2 Remove cover bracket Socket wrench
3 Unplug electrical switch None
4 Unscrew engine oil filter with tools Strap wrench
5 Unscrew engine oil filter manually None
6 Disconnect power steering pipes (n.2) Wrench
7 Unplug gasoline pipe None
8 Unplug temperature sensor electrical switch None
9 Unscrew pre-fuel filter with tools Strap wrench
10 Finalize to unscrew pre-fuel filter manually None
11 Unscrew temperature sensor from pre-fuel filter None
12 Screw the new temperature sensor on the pre-fuel filter None
13 Screw the pre-fuel filter manually None
14 Finalize to screw the pre-fuel filter with tools Strap wrench
15 Plug temperature sensor into electrical switch None
16 Plug gasoline pipe None
17 Pump the gasoline into the filters None
18 Connect power steering pipes (n.2) manually None
19 Connect power steering pipes (n.2) with tools Wrench
20 Fill new filter with oil None
21 Screw engine oil filter manually None
22 Screw engine oil filter with tools Strap wrench
23 Plug electrical switch None
24 Mount cover bracket Socket wrench
25 Mount electrical wiresbracket Wrench
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Figure 2. Product layout and tractor engine part involved in the case study.

The case study was executed in the XiLab laboratory of the University of Modena and
Reggio Emilia, in order to easily apply the proposed protocol analysis as defined for the
research. In order to replicate the desired task with high fidelity, a physical mock-up of
the tractor engine part involved in the process was recreated in the laboratory, as shown
in Figure 3. This was built using some original parts of the tractor, such as the filters
(e.g., oil filter, fuel filter), the supports, the fuel pipes and the cover bracket. These parts
were mounted on a wooden structure supported by a metallic stand. Electrical wires
were replicated using plastic pipes similar to the original ones for size and shape, in order
to have the same encumbrance. Moreover, the electrical wire brackets and the electrical
connectors were printed using a 3D printer, as the original parts were not available.

Figure 3. Case study mock-up replicated in lab and testing workstation.

Near to the mock-up, a table was positioned to offer the users the tools needed for the
maintenance task and to position the unmounted parts as they would usually appear in
the repair shop and workshops. For the research purposes, such a table was also used to
position a laptop used to administer the questionnaires when needed.

4.2. The Experimental Protocol for User Testing

The proposed method for the ergonomic assessment as described in Section 3 has
been adjusted to match the needs of the specific case study. A detailed assessment protocol
has been defined to successfully apply the proposed method to the selected case and to
make data collection feasible.
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Tests were executed involving one user at a time. Firstly, a brief pre-test questionnaire
had been defined and administered to the user to collect demographic information and
to understand the familiarity with devices and operations performed during the test.
A specific code had been assigned to each participant to keep the data anonymous. In
particular, the survey allowed the analysis of:

1. Demographic data such as gender, age, weight, height, educational qualification,
occupational role;

2. Previous experience with manual working tasks like the ones performed during the
trial (e.g., use of wrenches, screwing, working with electrical wires, etc.);

3. Familiarity with the use of wearable devices (e.g., activity trackers, smartwatches,
sensorised t-shirts, etc.).

After the demographic survey, an instructional video was shown to the user in order
to carefully explain the sequence of tasks that must be fulfilled during the trial. After that,
the assessment protocol was presented, as shown in Figure 4, followed by a Q&A session
to clarify any eventual doubts on the various testing phases. In order to better discriminate
between different levels of stress and cognitive load that may be experienced during the
task execution, the protocol was organized into three different phases, dividing the entire
task sequence into three parts. Each part provided a different level of cognitive workload,
in order to test the human parameters variation and to check the robustness of the task
design. Users were not aware of the improved or reduced level of workload created during
each phase: only the researchers knew. When the procedure was clear and understood, the
test could begin.

Figure 4. Workload assessment protocol.
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Subsequently, each participant was assisted in wearing the smart devices for the
motion capture and monitoring of human physiological parameters. The motion capture
was used to track the user’s full-body movements during the execution of all subtasks
to analyze the physical risk and detect any improper and dangerous postures. Biometric
monitoring was performed from the beginning until the end of the test, both during the
tasks execution and while answering the questionnaires, to support the objective analysis
of physical and cognitive conditions. The overall duration of the test for each user was
about thirty minutes, and the temporal length of the experimental procedure was similar to
the one needed for the engine oil filter replacement at the shop floor. The entire procedure
was video-recorded using two cameras: an external camera in a fixed position, which
provided an observer’s viewpoint, and the eye-tracking camera mounted on eye-tracking
glasses, which provided the users’ viewpoint.

Three-minutes of signal recording from the wearable sensors (i.e., ECG data, EDA, eye-
tracking data) in resting condition (upright, being still) were established at the beginning
and at the end of the task execution to, respectively, analyze the baseline and the supposed
variations in physiological signals, before and after performing the tasks. Also, in these
two slots, the NAS assessment was requested about the level of perceived stress. NAS 0 is
the assessment at the beginning, collected during the baseline before any task execution,
while NAS 4 is the assessment at the end during resting after the entire task execution.
Such NAS measures are useful when evaluating the trend of the perceived stress before,
during, and after the execution of the different tasks, and thus to compare the perceived
stress between restful and stressful conditions. After NAS 0, a 1-min warm-up session was
scheduled to help the participant to become familiar with the use of the tools, the primary
tasks, and the interfering task for the analysis of the cognitive load.

The protocol divides the entire tasks sequence into three different phases:

1. Phase 1—task execution with increased stress: in the first phase the participant
has to remove the electrical wires bracket, the cover bracket, unplug the electrical
switch, unscrew the engine oil filter with tools, unscrew the engine oil filter manually,
disconnect the power steering pipes, unplug the gasoline pipe, and unplug the
temperature sensor electrical switch. The expected duration is about five minutes. For
this reason, to increment the stress, a 4-min countdown is shown to the participant
introducing time pressure.

2. Phase 2—task execution with increased cognitive load (dual task): in the second
phase the participant has to unscrew the pre-fuel filter with tools, finalize to unscrew
the pre-fuel filter manually, unscrew the temperature sensor from the pre-fuel filter,
screw the new temperature sensor on the pre fuel filter, screw the pre-fuel filter
manually, finalize to screw the pre-fuel filter with tools, plug the temperature sensor
electrical switch, plug the gasoline pipe, pump the gasoline into the filters, connect
the power steering pipes manually, and then with tools. To increase the cognitive
load, a secondary task has been inserted. The participant, while performing the main
task in the most accurate manner, must count backward from 874, with steps of 7,
until the completion of the main task. The backward counting task is often chosen
as an interfering task as it involves multiple cognitive resources without requiring
visual processing.

3. Phase 3—task execution in standard conditions: in the third part the participant has
to fill the new filter with oil, screw the engine oil filter manually, and then with tools,
plug the electrical switch, mount the cover bracket, and then the electrical wires
bracket. In this phase, the steps are executed in normal conditions, without adding
any stressful or mentally demanding events.

After each phase, each participant was asked to complete NASA-TLX and NAS to
self-assess the perceived level of workload and stress. Thus, after phase 1, NASA-TLX 1 and
NAS 1 were collected and so on, according to the protocol phases. Thus, the NASA-TLX
and the NAS are, respectively, answered three and five times. Since NASA-TLX refers
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to the workload related to the execution of a specific task, it cannot be used to record a
baseline at rest.

4.3. Experimental Data Monitoring

The experimental set-up involved a set of hardware and software tools to collect the
necessary data to properly apply the proposed method.

About the hardware, the case study involved the use of the following tools, as shown
in Figure 5:

1. HTC Vive Trackers 3.0: they are small, interchangeable motion tracking accessories
that can be attached to any part of the body, by proper straps, in order to achieve the
motion capture of a joint or a body segment. Each tracker calculates its position based
on the infrared signals emitted from a set of base stations that have to be properly
positioned in the space. In this specific case, the user wears the trackers, according to
a predefined configuration (i.e., two trackers on the arms, one on the belt and two on
the legs).

2. Empatica E4: it is a wrist-wearable device able to record a set of physiological data
of the user, using different types of sensors. In particular, the photoplethysmogram
(PPG) sensor measures the Blood Volume Pulse (BVP), from which the heart rate
(HR) and inter beat interval (IBI) can be derived. Moreover, the electrodermal activity
(EDA) sensor measures the changes in skin conductance resulting from the sympa-
thetic nervous system activity. The device also has a 3-axis accelerometer and an
infrared thermopile.

3. Tobii Pro Glasses 2: this is a mobile, wearable eye tracking system that looks like
a pair of glasses, equipped with four infrared cameras (two cameras for each eye)
that records eye movements. The system consists of the head unit (glasses) and the
recording unit, in which are stored batteries, and an SD memory card that is usually
hung on the belt. A full HD camera in the head unit provides the user point of view.
Glasses are also equipped with a microphone, accelerometers, and gyroscopes to track
the head movements.

4. External camera: this provides the video recording of the user and the workspace
environment from a fixed position.

Figure 5. Human monitoring devices used during user testing.
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Furthermore, the case study exploits different tools:

1. XRErgo: a standalone application developed in Unity 3D, which allows the evaluation
of the users’ postures and working conditions in both real environments and virtual
simulations with motion capture. In the case study, it exploits the HTC Vive trackers
as the motion capture system to create a digital twin of the operator, animated in
real-time, and assesses postural risk by RULA method.

2. Steam VR: software that streams the real time position of the Vive Trackers in XRErgo
attached to arms, legs and back in XRErgo in order to perform the ergonomic analysis.

3. E4 realtime: an application for the real time streaming of data from Empatica to a
smartphone or a tablet. This is used to control Empatica E4 calibration and data
recording. The application automatically uploads to the cloud the data collected
during the tests, to be further analyzed and processed.

4. Kubios HRV Standard: this tool provides a detailed HRV analysis to calculate RR data
from HR and HRV data collected during the tests.

The temperature in the room was measured and was constant at 24 ◦C, thanks to the
air conditioning system. The room does not have windows and during the task execution
the doors were closed so the light sources are totally artificial, provided by neon lamps
positioned on the ceiling. During task execution in the laboratory there was silence, and
there were no other sources of noise.

4.4. Participants Involved in the Preliminary User Testing

The preliminary user testing involved eight participants with a mean age of 25.6 years
old (SD = 2.236). Participation in the test was voluntary and no reward was given. All
participants signed an informed consent before the test. All of them presented normal
vision and did not need corrective lenses, and none of the participants had heart conditions.
The demographic survey provided us with information about users’ gender, age, height
and weight, level of experience in engine maintenance tasks, familiarity with the use of
mechanical tools and with the use of monitoring devices. User data is summed up in
Table 2.

Table 2. User data.

Demographic Info Physical Data Previous Experience
(5-Points Likert Scale)

Operator
Code Gender Age Height

ANSUR
Height

Percentile
Weight

ANSUR
Weight

Percentile

In Main-
tenance
Tasks

In Using
Mechanical

Tools

In Using
Monitoring

Devices

Op1 M 28 178 65p 65 5p 1 3 1
Op2 M 26 180 75p 74 20p 2 4 5
Op3 F 27 167 75p 54 10p 3 5 5
Op4 M 31 168 15p 80 40p 3 5 5
Op5 M 23 182 85p 67 10p 1 3 2
Op6 M 27 173 40p 71 15p 4 5 4
Op7 M 25 172 30p 62 5p 1 3 4
Op8 M 25 193 99p 85 55p 1 2 3

5. Results and Discussion

For each operator and each phase of the experimental testing, the PW, MW and S
metrics are calculated according to the equations described in Section 3.

5.1. Physical Assessment

As detailed in Section 3, the physical workload assessment is mainly based on motion
capture and RULA index calculation, to allow the calculation of the PW metric. During
testing, the user’s actions were monitored and collected by full body motion capture and
properly elaborated to provide a real-time RULA score for each sub-task. Table 3 synthesizes
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the results collected about the PW, grouped for users and for phases. In particular, the
last row of the table shows the PW average score for each operator on all phases, while
the last two columns report the average PW score for each sub-task and for each phase,
respectively. From the analysis of the results, we can notice that Op8 (99p) and partially
Op5 (85p) scores are higher than the other operators in most of the sub-tasks, probably
due to the greater height that forces them to stay bent forward to reach the components.
The more critical sub-task that reached the maximum PW average score is the manual
connection of the power steering pipes, followed by the plug of the temperature sensor
switch. The former is critical in terms of arms position and duration, while the latter is
critical due to the low position of the temperature sensor, which forces the operator to bend
down to assure the correct visibility to properly insert the connector. Anyway, the average
PW score for each phase did not highlight relevant differences, even if phase 2 collected a
generally higher PW score, as shown in Figure 6.

Table 3. Results about Physical Workload (PW).

Number Task op1
(65p)

op2
(75p)

op3
(75p)

op4
(15p)

op5
(85p)

op6
(40p)

op7
(30p)

op8
(99p)

PW
Sub-Task

PW
Phase

Phase 1

1 Remove electrical wires bracket 1 3 3 3 3 1 3 3 2.5

2.9

2 Remove cover bracket 3 3 3 3 4 1 3 5 3.1
3 Unplug electrical switch 3 3 3 3 5 1 3 5 3.3
4 Unscrew engine oil filter with tools 3 3 3 3 3 1 3 3 2.8
5 Unscrew engine oil filter manually 4 3 3 3 3 1 3 3 2.9
6 Disconnect power steering pipes (n.2) 4 3 3 3 3 1 5 4 3.3
7 Unplug gasoline pipe 3 2 3 3 3 1 3 5 2.9
8 Unplug temperature sensor electical switch 3 3 4 3 3 1 3 3 2.9

Phase 2

9 Unscrew pre-fuel filter with tools 3 3 3 3 3 3 3 3 3.0

3.3

10 Finalize to unscrew pre-fuel filter manually 2 3 3 3 3 3 4 3 3.0
11 Unscrew temperature sensor from pre-fuel filter 3 3 3 3 3 3 4 3 3.1
12 Screw the new temperature sensor on the pre fuel filter 3 3 3 3 3 3 4 2 3.0
13 Screw the pre-fuel filter manually 3 3 4 3 4 3 3 4 3.4
14 Finalize to screw the pre-fuel filter with tools 3 3 3 3 3 3 3 3 3.0
15 Plug temperature sensor electical switch 4 3 4 3 4 3 3 4 3.5
16 Plug gasoline pipe 3 3 3 4 4 3 3 4 3.4
17 Pump the gasoline into the filters 3 3 3 3 4 3 3 5 3.4
18 Connect power steering pipes (n.2) manually 4 3 4 3 4 3 5 5 3.9
19 Connect power steering pipes (n.2) with tools 3 3 3 3 4 3 3 4 3.3

Phase 3

20 Fill new filter with oil 3 3 3 3 3 3 3 3 3.0

3.1

21 Screw engine oil filter manually 3 3 3 3 4 3 3 3 3.1
22 Screw engine oil filter with tools 3 3 3 3 3 3 3 2 2.9
23 Plug electrical switch 3 3 3 3 3 3 3 3 3.0
24 Mount cover bracket 3 3 3 3 3 3 5 3 3.3
25 Mount electrical wires bracket 3 4 3 3 3 3 3 4 3.3

PW operator 3 3 3.2 3 3.4 2.4 3.4 3.6

Figure 6. Physical Workload scores for test phases (with SD).



Appl. Sci. 2021, 11, 12066 16 of 21

5.2. Cognitive Assessment

As detailed in Section 3, the cognitive workload assessment combines the operators’
perceived evaluation with the biometric monitoring. This allows a more reliable assess-
ment to be obtained, based on both subjective and objective measures, in order to avoid
partial and untrustworthy considerations. For this reason, the methodology weighs the
collected physiological parameters with the results of the self-assessment questionnaires,
for each phase.

The first analysis focused on the results of the subjective evaluations, through NAS
and NASA-TLX, to understand the perceived workload related to the different phases of
the trials independently by the variations in their physiological parameters during the
execution of the tasks.

The NAS scale has been answered before the execution of the tasks (NAS0) to record
the basal level of perceived stress, immediately after each of the three different test phases
(NAS1, NAS2, NAS3) to distinguish between eventual different stress levels, and at the
end of the test, after a restful period (NAS4) to verify that the perceived stress came back
to the basal level. Notably, the first trial phase involves a more stressful execution forced
by a time limit, and in the second phase an increased mental effort is compelled by the
secondary task (i.e., counting backward), while in the third phase the tasks are executed
without additional stressors. In Figure 7 the trend of the perceived stress by NAS, averaged
over all the operators, is shown. The perceived stress increases from the beginning of phase
1 to the end of phase 2, and then decreases until the end of phase 3. Even if the protocol
supposed that the first phase is the most stressful one in a technical sense, operators on
average felt more stressed during the second one. This is probably due to the weak border,
from a user perspective, between stress and mental load. Indeed, the need to correctly
perform two different operations (instead of one), leads to an increment of the mental
demand, as well as of stress and fatigue contemporarily. Consequently, stress perception
decreases in phase 3 (NAS3 is lower than NAS1) and drops down under the initial basal
level at the end of phase 3 (NAS4 < NAS0 likely due to the fact that performance anxiety is
perceived at the beginning of testing).

Figure 7. NAS average results (with SD).

Similarly, the results from NASA-TLX were analyzed as average values on all opera-
tors, for each phase and for the six different domains within the NASA-TLX, as shown in
Figure 8.
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Figure 8. NASA-TLX average results.

The mental demand, as expected, is widely higher in phase 2. Moreover, phase 2
also showed higher perceived effort and frustration with respect to the other phases.
Therefore, the cognitive and emotional involvements are higher when a dual task (i.e.,
executing the task and counting) is asked to be executed. However, the necessity to obtain
a good performance is greater in phase 3, probably as the final result of the engine oil
filter replacement is fulfilled in this phase. Concerning frustration, this is higher in phase 1
due to the countdown, while the perceived effort is greater in phase 3 probably as a
result of an accumulation effect. Similarly, even the physical demand constantly increases
from phase 1 to phase 3, due to the passing of time doing similar actions. The highest
perception of temporal demand during phase 1 is obviously due to the imposed time limit
for task execution.

Figure 9 shows the S and MW metrics, computed with the physiological parameters
as presented in Section 3.

Figure 9. Mental workload and Stress average scores on test phases.

As foreseen by the protocol, a higher stress level should be measured in phase 1, and
a greater mental workload in phase 2. Instead, the algorithm reveals that both stress and
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mental workload are comparable in phases 1 and 3, while they are both higher in phase 2,
during the execution of the dual task. Indeed, the physiological response to a stimulus
does not have a univocal meaning. This result confirms what we found in the literature:
the biometric measures reflect different internal states (e.g., variations in the arousal, the
valence, the level of stress, or mental workload) during the execution of a task [54]. In
particular, the proposed method concretely distinguishes between the mental effort and the
emotional involvement of the operator during working activities. Even if the experimental
protocol is thought to increase the stress by providing a time limit, and to increase the
mental load by adding a secondary task, results show that the countdown does not impact
on the user’s emotional involvement, while a greater stress is experienced during the dual
activity as experienced in phase 2. Moreover, Figure 9 allows two further considerations:

1. The mental workload slightly changes in the range of 25–33% among the different
phases, confirming that the operator keeps the attention and concentration constant
during the trial;

2. The stress level had minor variation (3–5%) during phase 1 and 3, while it showed
a greater variation (54%) during phase 2. This means that the secondary task has a
higher impact on the feeling of stress and frustration rather than on the mental effort.
This is probably related to the fact that the manual operations needed to replace the
engine oil filter do not require a high cognitive load.

3. The experimental study also presented several limitations, especially related to:
4. The limited number of users involved in the testing that do not allow a statistical

relevance;
5. Some technical issues related to the devices used for human monitoring, in particular

the lack of data during the collection of RR signals from EMPATICA E4 and of PD
variations in the data from the Tobii Glasses were observed by some users.

6. Conclusions

The main purpose of this paper is to propose a holistic, experimental method for the
assessment of operators’ workload, including physical and cognitive ergonomics, suitable
for application in an industrial environment. In this work, a specific protocol for the
analysis of physical effort, mental workload, and stress level is proposed, based on a
preliminary numerical–experimental model. The proposed model has been validated in a
laboratory on an industrial case study by experimental user testing, involving eight users.
An ad hoc experimental set-up has been defined and developed to be as minimally invasive
as possible for the operator, while at the same time being as complete as possible for the
workload assessment.

From the analysis of the results, it can be stated that the provided workload assessment
can help designers and engineers to highlight the most critical issue in a specific task
sequence in order to redesign the process or the product preventing work related diseases.
In particular, the physical workload data obtained by motion capture has allowed us to
highlight the most uncomfortable and risky actions or sub-tasks, the main visibility or
reachability issues, or eventual product layout criticalities. Moreover, such analysis is
combined with the assessment of the cognitive workload, organized between mental effort
and perceived stress. Such a model suggests a moving toward a more human-centric
approach in the industrial design of products and processes, contemporarily considering
physical and mental users’ demands in system design. Indeed, only with a careful analysis
of the entire human-machine interaction and all the working conditions that may generate
excessive demanding activities and/or stressful events, would it be possible to improve the
human performance, and consequently, the industrial outcomes. The experimental study
finally showed some limitations, mainly due to the small sample of participants and to the
quality of collected data. Future works will involve different kinds of devices to collect the
same physiological parameters, to define the most robust technological set-up. Moreover,
a greater number of test users will be enrolled in the study to statistically validate the
workload assessment method.
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Abbreviations

BR breathing rate
BVP blood volume pulse
EDA electrodermal activity
EEG electroencephalography
GSR galvanic skin response
HR heart rate
HRV heart rate variability
IBI inter-beat interval
MW mental workload parameter
MWL mental workload
NAS numerical analog scale
NASA-TLX NASA task load index
PA pupil activity parameter
PD pupil diameter
PPG photoplethysmography
PW postural workload parameter
REBA rapid entire body assessment
RR beat-by-beat variations
RULA rapid upper limb assessment
STAI state trait anxiety inventory
UT user time parameter
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