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To the Editor:

The risk of deterioration during acute hypoxemic respiratory failure
(AHRF) treated by noninvasive respiratory support demands
monitoring of the patient’s inspiratory effort (1, 2) to avoid delay to
mechanical ventilation (MV) (3–5). Despite the fact that respiratory
rate (RR) and composite indices such as respiratory rate-oxygenation
(ROX) (6) and heart rate, acidosis, consciousness, oxygenation, and
respiratory rate (HACOR) (7) might recognize patients at major
failure risk, these only indirectly account for the inspiratory effort.
Esophageal manometry provides an accurate quantification of effort;
however, it is unpractical in real life (8, 9). The nasal pressure swing
(DPnose) during tidal breathing is highly correlated with the
esophageal pressure swing (DPes) in patients with AHRF (10). The
aim of this post hoc analysis of a prospective study (www.clinicaltrials.
gov, NCT 03826797) was to assess the accuracy of DPnose in
predicting early (24-h) failure of high-flow nasal oxygen (HFNO) to
treat AHRF.

Consecutive patients with AHRF who were admitted into the
respiratory intensive care unit (RICU) of the University Hospital
of Modena in Modena, Italy, between January 1, 2021 and June
30, 2022 and started on HFNO were eligible for enrollment
(Optiflow and AIRVO, Fisher and Paykel Healthcare Ltd.). Verbal
or written informed consent was obtained as appropriate. An age
.18 years, peripheral SpO2

,90% under conventional oxygen
supply by Venturi mask with an inspiratory fraction of 0.5 and
consent to receive nasal manometry were criteria for inclusion.
The need for immediate intubation, use of noninvasive ventilation
(NIV) or MV within the same admission, concomitant
hypercapnia, cardiogenic pulmonary edema, chronic obstructive
pulmonary disease, chest wall neuromuscular diseases,
parenchymal interstitial abnormalities, nasal tract anatomical
alterations, and long-term oxygen regimen were criteria for
exclusion.

Patients’ characteristics were collected on admission into the
RICU when all patients started HFNO (Time 1 [T1]). DPnose was
measured by attending staff who were blinded to the purpose of the
study. In 69 patients (68%) out of the total,DPes recording was
simultaneously taken. At T1 and 2 hours after HFNO initiation
(Time 2 [T2]),DPnose,DPes, arterial blood gases, PaO2

/FiO2
ratio, RR,

HACOR, and ROX were assessed.
The decision to escalate fromHFNO either to helmet/facemask

NIV orMV (i.e., failure) was taken by the attending physician (8),
who was blinded to the results forDPnose.

The primary outcome was the accuracy of DPnose in predicting
failure of HFNO at T2. The comparison between DPnose and the ROX
index in predicting failure and the correlation between DPnose and
DPes at different time points were also considered.

Receiver operating characteristic curves and the area under the
curve (AUC) were calculated to test accuracy. The optimal cutoff of
DPnose was chosen according to Youden’s J statistic to maximize the
sum of sensitivity and specificity.

The comparison of accuracy between DPnose and the ROX index
tailed was assessed using Delong’s test. Correlation analysis using
Pearson’s r or Spearman’s r coefficient, as appropriate, was
conducted at different time points.

Post hoc, we tested the accuracy and the optimal cutoff of
DPnose in predicting escalation to MV and the correlations
between DPnose, and DPes, and the ROX index. A two-sided test
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Table 1. Characteristics of the Study Population and Measurements (Baseline and 2 h after High-flow Nasal Oxygen Initiation)
Grouped by Outcome (Failure or Success)

Variable
Overall

(N=102; 100%)

Outcome

P Value
Failure

(n=35; 34.3%)
Success

(n=67; 65.7%)

Age, yr, median (IQR) 69 (56–75) 67 (56–78) 70 (56–75) 0.6
Male, n (%) 71 (67) 26 (74.3) 45 (67.2) 0.5
BMI, kg/m2, median (IQR) 23 (19–27) 24 (21–27) 22.5 (18–26) 0.3
Diagnosis and test
COVID-19, n (%) 91 (89.2) 33 (94.3) 58 (86.6) 0.3
Non–COVID-19, n (%) 11 (10.7) 2 (5.7) 9 (13.4) 0.3

GCS, score, median (IQR) 15 (15–15) 15 (15–15) 15 (15–15) 0.9
APACHE II score, median (IQR) 11 (7–15) 11 (7–14) 11 (9–15) 0.8
SAPS II score, median (IQR) 28 (23–33) 29 (24–33) 28 (23–34) 0.9
SOFA score, median (IQR) 3 (3–3) 3 (3–3) 3 (3–3) 0.6
Baseline (Time 1)
HACOR score, median (IQR) 4 (3–5) 5 (4–6) 4 (3–5) 0.1
ROX index score, median (IQR) 6.9 (5.8–8.6) 6.6 (5.5–7.7) 7.4 (6.1–9.1) 0.1
PaO2

/FiO2
, mm Hg, median (IQR) 133 (115–152) 125 (102–141) 140 (123–160) 0.1

FiO2
, %, median (IQR) 50 (45–60) 55 (50–60) 50 (40–60) 0.1

PaO2
, mm Hg, median (IQR) 66 (60.4–72) 64 (62.5–71.4) 66 (60–72) 0.7

PaCO2, mm Hg, median (IQR) 32.7 (31.2–34) 32 (29.9–34.1) 33 (31.2–34.5) 0.1
HR, bpm, median (IQR) 93 (78–102) 95 (76–102) 93 (72–98) 0.6
RR, bpm, median (IQR) 26 (24–28) 26 (25–30) 26 (24–28) 0.1
DPes, cm H2O, median (IQR) 13.5 (11–16.3) 15.2 (12.6–18) 12.2 (10–15.8) 0.04
DPnose, cm H2O, median (IQR) 6 (4.6–8) 6.8 (5.6–8.2) 5.6 (4.2–7) 0.03

2 h after HFNO (Time 2)
HACOR score, median (IQR) 4 (3–5) 5 (4–5) 4 (3–4) ,0.0001
ROX index score, median (IQR) 7.9 (5.9–10.9) 5.6 (5.2–6) 9.2 (8–11.6) ,0.0001
PaO2

/FiO2
, mm Hg, median (IQR) 131 (112–152) 111 (101–127) 144 (130–175) ,0.0001

FiO2
, %, median (IQR) 50 (45–60) 65 (60–70) 45 (35–55) ,0.0001

PaO2
, mm Hg, median (IQR) 67.4 (62.2–72.6) 72 (64–77) 67 (62–70) 0.01

PaCO2, mm Hg, median (IQR) 34.5 (32.4–36.7) 32 (30–34) 36.1 (33.7–37) ,0.0001
HR, bpm, median (IQR) 90 (78–100) 96 (78–102) 88 (80–100) 0.7
RR, bpm, median (IQR) 24 (21–26) 26 (25–27) 21 (20–24) ,0.0001
DPes, cm H2O, median (IQR) 8 (6–14) 16 (14–17) 6.5 (5–8) 0.01
DPnose, cm H2O, median (IQR) 3.2 (2.7–6) 7 (6–8) 3 (2.1–3.2) ,0.0001

Definition of abbreviations: APACHE II =Acute Physiology and Chronic Health Evaluation II; BMI=body mass index; bpm=beats per minute;
COVID-19=coronavirus disease; GCS=Glasgow Coma Scale; HACOR=heart rate, acidosis, consciousness, oxygenation, and respiratory rate;
HFNO=high-flow nasal oxygen; HR=heart rate; IQR= interquartile range; ROX=respiratory rate-oxygenation; RR=respiratory rate; SAPS II=Simplified
Acute Physiology Score II; SOFA=Sequential Organ Failure Assessment; DPes=esophageal pressure swing; DPnose=nasal pressure swing.
Data are presented as n (%) for dichotomous values or median (IQR) for continuous values. Continuous variables were compared using the
Student’s t test or Mann-Whitney U test, as appropriate. Differences in categorical variables were assessed with the chi-square test or Fisher
exact test, as appropriate.

Figure 1. Receiver operating characteristic analyses for high-flow nasal oxygen (HFNO) early failure (24 h). DPnose 2 hours after HFNO initiation
in the whole population (A) and in those patients without esophageal pressure assessment (B). AUC=area under the curve; CI =confidence
interval; DPnose =nasal pressure swings.
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P, 0.05 was considered statistically significant (SPSS package,
version 25.0; IBM Corp.).

Of 210 eligible patients, 102 were enrolled in accordance with
the exclusion criteria. Of these, 91 (89.2%) were diagnosed with
coronavirus disease (COVID-19)–related pneumonia, and 43 had
been included in a previous publication (10). Of the enrolled patients,
35 (34.3%) failed HFNOwithin 24 hours (between 6 and 12 h).

Table 1 shows the patients’ characteristics. At any time, those
who failed showed higherDPnose and DPes compared with those who
succeeded; at T2, group differences were observed in HACOR, ROX,
PaO2

/FiO2
ratio, PaCO2

, RR, and breathing effort.
DPnose at T2 accuracy of prediction was high (Figure 1A), being

5.1 cmH2O, the cutoff value of risk. At T2, no difference was found
when comparing the AUC ofDPnose with ROX (AUC=0.98; 95%
confidence interval [CI], 0.96–1, P, 0.0001), whose threshold value
of risk for failure was 6.52. Among patients without esophageal
manometry (n=69),DPnose still showed a high accuracy of prediction
(Figure 1B).

Only three of those patients who failed reported ROX.6.52,
whereas all three showedDPnose.5.1 cmH2O (6.7 cmH2O, 7.5 cm
H2O, and 6.5 cmH2O). Two patients withDPnose,5.1 cmH2O failed,
whereas the reported ROXwas,6.52 (4.21 and 6.03, respectively).
DPnose andDPes showed significantly high correlation (R

2 =0.91,
P, 0.0001) that persisted at any time point (averageDPes/DPnos
ratio=2.21, SD=0.32). Moreover, an inverse correlation was found
between ROX and bothDPnose (R

2 = 0.34, P, 0.0001) andDPes
(R2 =0.35, P, 0.0001).DPnose accuracy prediction toMV (n=12) was
high (0.917; 95% CI, 0.86–0.98, P, 0.0001), being 6 cmH2O, the risk
threshold value.

In a real-life cohort of patients with AHRF undergoing HFNO,
DPnose showed excellent accuracy in predicting early failure, similar to
that displayed by ROX. Given that the decision to upgrade to NIV or
MVwas based on clinical variables, the high accuracy of ROX in
predicting failure of HFNO is not surprising. The similar accuracy of
DPnose (the only measurement to which the staff and attending
physician remained blinded in our clinical decision) strengthened the
association with outcome, avoiding incorporation bias.

The inverse correlation between the ROX index and both DPes
andDPnose was weak, although the significant level of correlation
between DPnos and ROXmight suggest that they are only partially
measuring the same phenomenon. Although ROX can be easily
measured without additional equipment, we feel that the integration
ofDPnose as a physiological variable might provide more thorough
information in patients with AHRF at risk of deterioration, thus
assisting clinicians in their decision-making process. In this line, tidal
DPnose shows strong correlation withDPes, thus making it a valid
surrogate marker of the patient’s inspiratory effort during
spontaneous breathing (10).

Given the limits of the study (monocentric and explorative
design, unbalanced population with the majority of patients with
COVID-19, post hoc analysis, lack of a validation cohort, and issues
related to DPes assessment), the present findings should be
interpreted with caution. Moreover, the role of airflow in influencing

DPnose during spontaneous breathing needs further investigation.
Notwithstanding, should data be confirmed in multicentric and
empowered studies, these might pave the way for a novel, minimally
invasive, and practical tool that allows real-time monitoring of the
breathing effort of patients with AHRF.�
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