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Abstract 

 

The Irpinia region is one of the most seismically active areas of Italy due to ongoing, late-

orogenic extension in the axial zone of the Apennine mountain belt. However, the 3D 

architecture and the nature of the faults that drive this extension are still uncertain, posing 

challenges to seismic hazard assessment. Here, we address these uncertainties by integrating a 

new catalogue of high-resolution micro-seismicity (ML<3.5) complemented by earthquake 

focal mechanisms, with existing 3D seismic velocity models and geological data. We found 

that micro-seismicity is primarily taking place along a segmented, approximately 60 km long, 

deep-seated, Mesozoic normal fault that was inverted during the shortening stages of the 

Apennine orogeny and then extensionally reactivated during the Quaternary. These findings 

suggest that multiple events of reactivation of long-lived faults can weaken their strength, 

making them prone to co-seismic remobilization under newly imposed strain fields in active 

mountain belts.  

 

1. Introduction 

 

The Irpinia region, located in the axial zone of the Neogene southern Apennines mountain belt 

(e.g., Ippolito et al., 1975; Roure et al., 1991; Cello and Mazzoli, 1999; Pescatore et al., 1999; 

Menardi Noguera and Rea, 2000; Patacca and Scandone, 2007; Ciarcia and Vitale, 2024), is 

one of the most seismically active areas of Italy, due to ongoing, late-orogenic extension (~3 

mm/yr, D’Agostino, 2014; e.g., Ascione et al., 2013 and references therein). In 1980, the Irpinia 

region was struck by a MS 6.9 earthquake (the largest Italian event in the last 100 years) that 

originated from a complex multi-segment rupture process (e.g., Bernard and Zollo, 1989) and 

caused severe damage and thousands of fatalities in a wide epicentral area. During the last four 

decades, a moderate aftershock and background seismicity has continuously affected the 

crustal volume delimited by the faults that were activated during the 1980 MS 6.9 Irpinia 

earthquake (e.g., De Matteis et al., 2012; Amoroso et al., 2014). Furthermore, since 2005, the 

monitoring of the Irpinia region by dense seismic networks (Irpinia Seismic Network, ISNet, 

and the Istituto Nazionale di Geofisica e Vulcanologia network, INGV) revealed the occurrence 

of persistent seismicity with magnitude near 0 (De Landro et al., 2015; Amoroso et al. 2017; 
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D’Agostino et al. 2018; Festa et al. 2021; Picozzi et al. 2019; Palo et al. 2023a, 2023b; Scotto 

di Uccio, 2024).  

 

However, the 3D architecture and the nature of the faults that are being remobilized nowadays, 

which may control this seismicity and drive the ongoing extension, are not yet well-understood. 

These uncertainties pose significant challenges for seismic hazard assessment in this highly 

active and densely populated region of southern Italy. In this work, we address these 

uncertainties by the integrated analysis of a newly reconstructed, high-resolution catalogue of 

approximately 15 years of micro-seismicity (ML<3.5) complemented by newly calculated and 

compiled earthquake focal mechanisms, with existing 3D seismic velocity models (De Landro 

et al., 2022), and available geological models based on surface geology and seismic 

interpretation (e.g., Ascione et al., 2013, 2020). 

 

2. Geological structure and evolution of the axial zone of the southern Apennines 

 

The architecture of the axial zone of the southern Apennines is characterized by a two-layer 

structure (Mazzoli et al., 2014; Fig. 1). The upper layer consists of a far-travelled (> 50 km) 

allochthonous assemblage forming an intensely deformed, thin-skinned fold and thrust belt. 

This overlies a less deformed, thick-skinned lower layer. The thin-skinned belt primarily 

involves Mesozoic-Cenozoic successions of the Apennine Platform (shallow-water carbonates) 

and of the Lagonegro Basin (shallow-water to pelagic limestones, radiolarian cherts and 

shales). Conversely, the deeper thick-skinned belt involves the 6 to 8 km thick shallow-water 

carbonate succession of the Apulian Platform, as well as the Lower Triassic siliciclastic 

deposits located at its base and the underlying basement. The recent tectonic emplacement of 

the thin-skinned belt is testified by the occurrence, in its footwall, of Pliocene to Lower 

Pleistocene foreland basin deposits resting on top of the Apulian Platform carbonates and 

penetrated by numerous oil wells (Mazzoli et al., 2001). Since the middle Pleistocene the axial 

zone of the southern Apennines is undergoing a phase of late-orogenic extension (Cello et al., 

1982; Cinque et al., 1993; Hippolyte et al., 1994; Butler et al., 2004; Caiazzo et al., 2006). This 

extension led to the development of neo-formed, Quaternary extensional faults that dissect the 

mountain belt (black faults in the section of Fig. 1) and is responsible for the ongoing seismicity 

within the study area.  
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Importantly for this work, the thick-skinned belt (where the seismicity is mostly focused) is 

comprised of deep-seated, steeply-dipping reverse faults mainly formed by the reverse/oblique-

slip reactivation (‘inversion’) of pre-existing Mesozoic normal faults (Butler et al., 2004; 

Shiner et al., 2004; Mazzoli et al., 2000, 2008; Ascione et al., 2013, 2020; Amoroso et al., 

2014, 2017). These structures control the so-called Apulian inversion belt (Mazzoli et al., 

2008). The inversion tectonics model for the Apulian Platform shortening-related structures 

was derived by the interpretation of high-resolution seismic reflection profiles calibrated with 

numerous oil wells and subsequent depth conversion, cross-section balancing and restoration 

(e.g., Shiner et al., 2004). Shortening-related reactivation of inherited faults in the Apulian 

Platform carbonates was unravelled by the interpretation of high-quality seismic data also in 

the outer zone of the southern Apennines by Bitonte et al. (2021). The latter authors also 

documented fault propagation into the foreland basin deposits as a result of such fault 

reactivation. Within the study area, the development of the Apulian inversion belt was 

controlled by the reverse/oblique-slip reactivation of a SW-dipping Mesozoic normal fault (red 

fault in the cross-section of Fig. 1). This structure produced a prominent uplift of the Apulian 

Platform carbonates in its hanging wall (Ascione et al., 2013, 2020). The carbonate culmination 

is dissected by a deeply rooted Quaternary horst, which NW-dipping boundary fault was 

associated with the Ms 6.9 main shock of the 1980 Irpinia earthquake (Ascione et al., 2013, 

2020; Amoroso et al., 2014). 

 

3. Seismological data and methods 

 

The micro-seismicity catalogue at the base of this work was obtained by analysing a data set 

consisting of about 2400 micro-earthquakes, with local magnitude (ML) ranging between 0.5 

and 3.2. These events were recorded by 42 ISNet and INGV stations from August 2005 to 

December 2022. We used manually picked first P- and S-wave arrival times from ISNet 

bulletin (http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi) and integrated 

manually picks from INGV stations (see SM1 in Supplementary Material). Initially, we located 

the events with a probabilistic method (NLLoc, Lomax et al. 2009) and a 3D velocity model 

optimized for the area (De Landro et al., 2022), which allowed to obtain a first location 

catalogue with an average RMS residual of 0.15 s and horizontal location errors within 1.5 km 

(average 800 m) and vertical location errors  within 2 km (average 1.2 km) for the 85% of 

events. Successively, we refined the absolute 3D location with the double-difference approach 
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(HypoDD, Waldauser & Ellswort, 2000) by using catalogue (CT) and cross-correlation (CC) 

differential times (Schaff & Waldauser, 2005). The final residual RMS was 0.008 s for CC data 

and 0.03 s for CT data. The final horizontal and vertical location errors were within 100 meters 

for most of the events. For further details on the used location strategy and method see SM2 in 

Supplementary Material. The final dataset is available in De Landro (2024).  

 

As a further constraint on the fault geometry and kinematics, the composite focal mechanisms 

of significant clusters of this new micro-seismicity catalogue were also calculated using the 

consolidated code FPFIT (Reasenberg, 1985). Similarly to Festa et al. (2021) and Muzellec et 

al. (2023), we evaluated, for four selected hypocentre clusters, the composite focal mechanisms 

(red “beach ball” in Fig. 2) by integrating the polarities of co-located events for the construction 

of more constrained mechanisms. Furthermore, where it was not possible to calculate 

composite focal mechanisms due to the lack of hypocentre clusters, we integrated four 

additional focal mechanisms of single events (dark grey “beach ball” in Fig. 2). These were 

selected among the focal mechanisms available from the ISNet bulletin and refined by using 

the 3D location. To validate this selection, we compared them with those obtained by De 

Matteis et al. (2012), in which the author performed an extensive analysis of focal mechanisms 

and refined the stress field of the Irpinia region. For further details on focal mechanism data, 

calculation, evaluation and selection, and uncertainties see SM3 and Table SM3 in 

Supplementary Material and De Landro (2024).  

 

As a constraint on the depth and geometry of the top of the Apulian Platform carbonates, we 

used the 3D P-wave velocity model of De Landro et al. (2022). This model was built using a 

linearized, tomographic approach in which about 13000 P- and S-wave arrival times were 

inverted to retrieve, jointly, the location of about 1500 earthquakes of ISNet catalogue and the 

P- and S-phases velocity parameters. Similarly to Amoroso et al. (2014, 2017), a multi-scale 

strategy was applied starting from a coarser parameterization up to a finer one of 3x3x1 km3, 

with a forward grid of 500 m of step. The model resolution was assessed with the integration 

of the resolution matrix, composed by intrinsic resolution and spreading function, and the 

density of ray around each node.  
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4. Spatial distribution of micro-seismicity and P-wave velocities 

 

Earthquake hypocentres within the study area mostly extend from about 3 km to 14 km depth 

and are generally distributed along an about 20 km wide, 60 km long, NW-SE-elongated belt 

(Figs. 1, 2). Within this distribution, distinct features can be recognized from horizontal and 

vertical sections through the data.  

 

On horizontal sections (Fig. 2A), from approximately 10 km depth and downward, hypocentres 

are roughly aligned along two NW-SE-elongated clusters, each ca. 5 km to 10 wide and ca. 30 

km long (see red dashed lines in Fig. 2A). These two clusters are arranged in a geometry in 

which a SE cluster steps NW-ward to the right into a NW cluster, the latter being associated 

with the largest concentration of hypocentres. Notably, at all depths, the volume in which this 

step occurs is characterized by a decreased density of hypocentres. From approximately 8 km 

depth and upwards, these two clusters become shorter and less clearly defined while another 

NW-SE-elongated cluster more prominently emerges located to the SW of the NW cluster. 

This other cluster is ca. 5 to 10 km wide and 30 km long, being best identifiable on the 8 km 

and 6 km depth horizontal sections (see blue dashed lines in Fig. 2A).  

 

On vertical sections perpendicular to the NW-SE map-view clusters (i.e., NE-SW; Fig. 2B), 

earthquake hypocentres forming the two major, right-stepping map-view clusters overall align 

into a primary, locally discontinuous, SW-dipping cluster ca. 5 to 10 km wide, recognizable 

throughout the study area (see red dashed lines in Fig. 2B). This cluster widens upwards near 

the centre of the study area (section III in Fig. 2B). In contrast, the shallower NW-SE-elongated 

cluster in the NE sector of the study area corresponds to a NW-dipping, ca. 5 to 10 km wide 

cluster in cross-section (see blue dashed lines in Fig. 2B).  

 

From approximately 10 km depth upwards on horizontal sections, the two major NW-SE-

elongated hypocentre clusters roughly coincide with a distinct NW-SE boundary in the P-wave 

velocity model, between higher velocities in the SW and lower velocities in the NE (Fig. 2A). 

In all vertical sections, this feature manifests as a prominent deepening of low P-wave 
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velocities from SW to NW (Fig. 2B). This is best highlighted by the 4.5 km/s, 5 km/s and 5.5 

km/s isovelocity contours and approximately occurs across the primary SW-dipping cluster of 

hypocentres (Fig. 2B). It is worth noting that this deepening is largest in the central and north-

western parts of the study area (Fig. 2).  

 

In the 10 km, 8 km, and 6 km depth sections (Fig. 2A), the boundary between higher and lower 

velocities shows a curved morphology in map view, taking on a more N-S orientation at the 

location of the step between the two deep NW-SE-elongated hypocentre clusters. This curved 

deepening of low velocities is clearly depicted by the 5.5 km/s isovelocity surface (Fig. 3).  

 

5. Earthquake focal mechanisms 

 

The four composite and the four compiled, single event earthquake focal mechanisms within 

the study area all display an approximately pure dip-slip, extensional kinematics (Fig. 2 A, B; 

see also De Landro, 2024 and Table SM3 in Supplementary Material), in agreement with the 

regional strain field of the study area (De Matteis et al., 2012; Festa et al., 2021; Bello et al., 

2021; Ricigliano Eqk report, RISSC-Lab 2024). In general, each focal mechanism has nodal 

planes striking roughly NW-SE sub-parallel to the overall orientation of the earthquake 

hypocentre clusters, although minor variations to these orientations exist. For example, some 

focal mechanisms include an about N-S-oriented nodal plane  (e.g., focal mechanisms 1, 3, 5, 

7, 8, Fig. 2A), while others include an approximately E-W-oriented nodal plane (e.g., focal 

mechanism 2, Fig. 2A). Dip angles of the focal mechanism nodal planes are also overall 

consistent with the dip of the main earthquake hypocentre clusters (i.e., either SW- or NE-

dipping; Fig. 2B). However, while some focal mechanisms are associated with two moderately 

dipping nodal planes (e.g., focal mechanisms 2, 3, 7, 8, Fig. 2B), others display a pair of nodal 

planes in which one is steeply dipping and the other one is gently dipping (focal mechanisms 

1, 4, 5, 6, Fig. 2B).  

 

6. Discussion and conclusions 
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As we have seen, the deep geological structure within the study area is that of an Apulian 

Platform carbonates culmination bounded in the NE by, and uplifted along, an inverted 

Mesozoic normal fault (cross-section in Fig. 1). When integrating the seismological data 

presented above with this geological information, several coherent features become apparent 

(Fig. 4). In particular, (i) the shallow high P-wave velocities nearly coincide with the uplifted 

Apulian Platform carbonates, and (ii) the primary SW-dipping cluster of hypocentres 

approximately aligns with the inverted Mesozoic normal fault (red fault in the section of Fig. 

1) responsible for this uplift. Since both seismological features are recognizable throughout the 

study area, we infer that a structural model in which Apulian Platform carbonates are uplifted 

along an inverted SW-dipping Mesozoic normal fault holds for the entire study area (Fig. 4). 

Furthermore, considering that both earthquake hypocentres and P-wave velocities are right-

stepped (Figs. 2 and 3), the inverted fault may be confidently interpreted as also stepped in 

map view (Fig. 4). This is further supported by results of gravity data modelling (Improta et 

al., 2003; see also De Landro et al., 2015), which show that the depocenter ahead of the inverted 

fault is also right-stepped in map view. This feature most likely reflects the original 

segmentation of the precursor normal fault, which comprised two fault segments separated by 

a relay zone (e.g., Camanni et al., 2023, and references therein).  

 

The inverted Mesozoic normal fault coincides both in map view and cross-section with an 

approximately 5 to 10 km wide zone of earthquake hypocentres (Figs. 2 and 4), rather than 

with a well-delineated feature. We interpret this as due to the combined effect of this structure 

being likely a broad fault zone (a common feature for faults, e.g., Childs et al., 2009) rather 

than an individual fault surface (see also De Matteis et al., 2012 for a similar interpretation of 

the micro-seismicity in the Irpinia region), and of the uncertainty in the event's location. 

However, the overall dip and strike of the fault zone is well-consistent with that of the nodal 

planes of the focal mechanisms (i.e., NW-SE striking and SW-dipping, Fig. 4).  

 

For the northern part of the study area (i.e., north of the step of the inverted fault), the attitude 

of the faults included in this new structural model (Fig. 4) is consistent with that derived from 

the 0 s and 40 s sub-events of the 1980 Irpinia earthquake (Westaway and Jackson, 1984; 

Bernard and Zollo, 1989; Pantosti and Valensise, 1990; Pingue et al., 1993; Amoruso et al., 

2005, 2011). On the other hand, for the southern part of the study area this new structural model 

is consistent with the minority interpretation provided by Amoruso et al. (2005, 2011) for the 
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20 s sub-event (which most authors interpreted to have occurred along a NE-dipping fault, in 

some case interpreted to be low angle, e.g., Bernard and Zollo, 1989).  

 

The micro-seismicity within the study area is associated with ongoing late-orogenic extension, 

in agreement with focal mechanisms that display normal sense kinematics (e.g., this study;  De 

Matteis et al. 2012; Festa et al. 2021; Fig. 4). This may appear counterintuitive, since we found 

that most seismicity is taking place along an inverted fault that preserves its reverse net 

displacement associated with the uplift of Apulian Platform carbonates (Figs. 1 and 4). This 

fault is long-lived and has been active with a normal sense of movement in the Mesozoic and 

reactivated with a reverse/oblique-slip kinematics during the Apennine orogeny. We suggest 

that these multiple slip events weakened the strength of the fault, making it prone to further 

remobilization (‘negative inversion’) under the newly-imposed extensional strain field 

affecting the Irpinia region. While in the SE part of the study area this is the only fault driving 

ongoing extension, in the NW sector this fault is acting in association with two further neo-

formed faults that define a Quaternary horst within the Apulian Platform carbonates (one of 

these two faults, i.e. the NE dipping one, generated the Ms 6.9 main shock of the 1980 Irpinia 

earthquake and contains most of the micro-seismicity; Fig. 4). This occurs in a sector where 

the net displacement of the inverted fault is maximum, as shown by the highest deepening of 

P-wave velocities that define the deepest top Apulian Platform carbonates in the fault footwall; 

Fig. 2). Based on this observation, we suggest that the need for extensional readjustment is 

most pronounced in this sector, thus requiring the involvement of all three faults.  

 

These findings have broader implications for other active mountain belts characterized by a 

thick-skinned style of deformation and inversion tectonics (e.g., Taiwan: Lacombe and 

Mouthereau, 2002, Camanni et al., 2014, 2016; Western Alps: Mosar et al., 1999; Zagros: 

Tavani et al., 2020). When assessing seismic hazard in such mountain belts, particular attention 

should be directed towards long-lived faults. The results of this work also indicate that this 

should be done regardless of the consistency between the geological displacement of the fault 

and the kinematics of the newly-imposed strain field. 
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Figure 1. Geological setting of the study area in the southern Apennines mountain belt 

(modified after Ascione et al., 2020). Note that the Quaternary, neo-formed normal faults are 

only shown in the section, which is based on the integration of surface geological data with 

subsurface constraints provided by the CROP 04 deep seismic reflection profile (Mazzotti et 

al., 2007) calibrated with oil-well logs (Patacca, 2007). The box in the map corresponds to the 

map area of Fig. 2 A. 

Figure 2. Horizontal (A) and vertical (B) sections through the P-wave velocity model by De 

Landro et al. (2022) and earthquake hypocentres (this study) within the Irpinia region. 

Earthquake hypocentres (shown as white dots) are projected within ±1 km and within ±2 km 

on either side of the horizontal and vertical sections, respectively. The dimension of 

hypocentres is related to the local magnitude, as indicated in the legend. The P-wave isovelocity 

contours are displayed every 0.5 km/s and the thicker ones correspond to the 4.5 km/s, 5 km/s 

and 5.5 km/s contours. The white line indicates the boundary of resolution of the P-wave 

velocity model. Locations of the vertical sections in B are indicated in the 4 km horizontal 

section in A. Focal mechanisms of event clusters (i.e., composite focal mechanisms; red “beach 

ball”) and single event (dark gray “beach ball”), numbered following the NW-SE direction, are 

plotted using a lower hemisphere projection in A and along vertical planes parallel to the 

sections in B. The dashed red and blue lines are traced approximately through the middle and 

parallel to the long axis of the wide SW- and NE-dipping hypocentres clusters, respectively.  

 

Figure 3. 5.5 km/s isovelocity surface of the P-wave velocity model by De Landro et al. (2022) 

within the study area. Note the deepening of low P-wave velocity material from SW to NE, 

and how this takes place along a curved interface.  

 

Figure 4. 3D block diagram of the central part of the study area built by integrating the new 

micro-seismicity catalogue of this work, with P-wave velocity (De Landro et al., 2022) and 

available geological data (Ascione et al., 2013, 2020) data. The diagram comprises two portions 

displaced for visualization purposes (complete block diagram in the upper left corner). The 

location of the top vertical section through the middle of the diagram coincides with that of the 

geological cross-section in Fig. 1 and with that of section III of Fig. 2B, while the bottom 

section corresponding to the SE side of the block diagram coincides with section IV of Fig. 
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2B. Earthquake hypocentres (shown as white dots) are projected from 2 km on either side of 

the vertical sections. Focal mechanisms correspond to 4, 6, 7 in Fig. 2A, seen in map views.  
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