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Editorial on the Research Topic

In vivo investigations on neurological disorders: From traditional

approaches to forefront technologies

Alterations in neuronal functionality can produce neurological disorders (ND) that

may be investigated by in vitro or in vivomethodologies. In vivo investigations performed

on animal models of ND provide information about brain activity in pathological

and physiological conditions. New technologies recently developed represent a crucial

and irreplaceable step in the research on ND. For instance, optogenetics (Huidobro

et al., 2017; Kim et al., 2017; Deisseroth, 2021), random noise stimulation (Terney

et al., 2008; Herrera-Murillo et al., 2022), and two-photon laser scanning microscopy

(Lendvai et al., 2000; Mizuno et al., 2014), complemented with other technologies, such

as electrophysiological recordings (Curia et al., 2011) and behavioral tests (Vega-Rivera

et al., 2021), may cover several aspects of one pathology.

Electroencephalography (EEG) monitors electrical brain activity in sleepy or awake

animals. Analysis of the waveforms can increase knowledge about brain functionality,

providing suitable electrical biomarkers to detect a disorder or to follow its progression

(Levenstein et al., 2017; Trenado et al., 2019; Girardeau and Lopes-dos-Santos, 2021;

Speers and Bilkey, 2021).

Optogenetics is a neurostimulation technique that uses low-intensity light with

different waveforms to produce or modulate electrophysiological responses in genetically

modified neurons opening promising revolutionary applications in neurological

therapeutics in in vivo preclinical studies (Biselli et al., 2021; Deisseroth, 2021; Bansal

et al., 2022). Recently, opto-non-genetics has been developed, in which neurostimulation
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with visible light of high-intensity produces inhibition of

neuronal firing (Ait Ouares et al., 2019; Ghirga et al., 2020).

Interestingly, this last technique could also allow the use of

visible light for therapeutic purposes in pathologies related to

neuronal hyper-excitability. On the other hand, chemogenetics

(Sternson and Roth, 2014; Eisdorfer et al., 2022; Parusel et al.,

2022; Singer et al., 2022) is a forefront technique that frequently

uses the in vivo injection of a viral vector to induce the

expression of genetically modified G-protein coupled receptors

(GPCR), which are inert for endogenous ligands but specifically

activated by “designer drugs.” These expressed receptors are

termedDREADDs (Receptors Exclusively Activated by Designer

Drugs) (Urban and Roth, 2015; Burnett and Krashes, 2016; Roth,

2016; Smith et al., 2021; Mueller et al., 2022). We can compare

it with optogenetics, which employs viral vectors to induce,

in excitable cells, the expression of light-activated proteins

sensitive to specific types of light (“designer light” at particular

wavelengths). In the case of optogenetics, the genetically

modified proteins are the opsins (channels or pumps), as the

channelrhodopsin-2 (ChR2); in the case of chemogenetics, the

genetically modified entities are the DREADS (i.e., the modified

GPCRs). Because the use of viral vectors in chemogenetics

has the potential to be applied in future clinical trials,

then animal research to examine their safety is necessary.

Other forms of chemiluminescence include bioluminescence.

In vivo bioluminescence imaging facilitates the non-invasive

visualization of biological processes, such as gene activity in

living animals using bioluminescent proteins (Aswendt et al.,

2013; Hochgräfe and Mandelkow, 2013).

Two-photon laser scanning microscopy is used for deep

tissue imaging in living animals. For instance, the emergence

and disappearance of dendritic spines in adult mice (Lendvai

et al., 2000) and the dynamic changes in dendrites and axons

in developing mice can be observed (Mizuno et al., 2014; Luo

et al., 2016; Nakazawa et al., 2018). On the other hand, functional

imaging using fluorescent calcium indicators is also possible

(Mizuno et al., 2018). Intravital two-photon microscopy should

also boost our knowledge of brain circuit formation and circuit

changes in ND.

Magnetic resonance imaging (MRI) is a non-invasive

multiplanar imaging (image generation) technique, helpful in

investigating biological functions with both functional and

structural images showing both activity and anatomy (Ikemoto

et al., 2022). It is widely used in the neurological field to

analyze the presence of ND in humans (Nwosu et al., 2022), and

thanks to the relatively recent development of MRI machine for

laboratory animals, its use in in vivo preclinical investigations

has recently grown fast, providing further information about ND

(Clemente-Moragón et al., 2022; Ji et al., 2022; Ndode-Ekane

et al., 2022).

The behavioral animal models for the study of ND are

useful to induce a pathology, mainly after manipulating specific

conditions (Belzung and Lemoine, 2011; Kumar et al., 2013;

Deguil and Bordet, 2021). Albeit an animal model does not cover

all the symptoms of one pathology (validity criteria) (Kumar

et al., 2013), their use is a powerful approach to studying the

neurobiological bases of ND (McGonigle, 2014; Planchez et al.,

2019). Further, the inclusion of behavioral animal models in

the study of ND offers the advantage of evaluating the possible

factors that may contribute to the development of the problem

and the potential treatments to solve it in an integral preparation

(Virdee et al., 2012; Phillips et al., 2018; Planchez et al., 2019).

This Research Topic has gathered six original articles and

one mini-review from prominent scientists in the field. The

collection of papers on this Research Topic provides an up-to-

date insight into current knowledge and an overview of different

in vivo technologies in experimental and clinical ND studies. The

content of each of these articles is summarized below.

Stevens et al. examined the optimal features and toxicity

levels of a viral vector, the canine adenovirus type 2 (CAV2).

In particular, they employed different volumes and viral particle

numbers to examine the selective expression, and toxicity levels

of a DREADD expressed by CAV2 called hM3Dq, with potential

application for chemogenetic modulation of loculs coeruleus

noradrenergic (LC-NA) neurons in rats. The authors identified

the optimal conditions (low and medium volume with 0.1× 109

viral particles of CAV2) for the safe and specific transduction of

LC neurons with DREADDs technology to study the role of the

LC-NA system in health conditions and during specific ND.

Taraschenko et al. found that three different monoclonal

antibodies derived from a single encephalitis patient with

seizures did not affect motor or anxiety behaviors in mice.

Antibody administration and seizures did not alter the

expression of astrocytic and microglial markers of inflammation

in the hippocampus. However, mice treated with antibodies

demonstrated an increased mRNA expression of hippocampal

CCL2, a pro-inflammatory chemokine relevant for the

persistence of seizures in other seizure models. In particular,

higher CCL2 expression correlated with higher seizure burden.

The paper by Taraschenko et al. suggests that the development

of monoclonal antibodies obviates the need to rely on

cerebrospinal fluid supply from affected patients and provides

a powerful tool to study the biological effects of antibodies in

encephalitis models.

Narcisse et al. contributed to the retinal neurodegeneration

study by monitoring the progressive retinal degeneration in the

visual cortex in mice with traditional methods to characterize

the process and compare it with the Ca2+ bioluminescence

caption as an index of neuronal activity. The authors used

the number of active neurons in the visual cortex and

neural activation to measure the progressive deterioration

during aging and compared it with the intensity of Ca2+-

bioluminescence response to visual stimulus. These data are

strengthening with the evidence of the correlation between

the eyes’ electroretinography signal and the retina’s thinning

(measured by Optical Coherence Tomography) as the index of
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retinal degeneration progresses. Together this evidence sustains

that Ca2+ bioluminescence caption imaging constitutes a non-

invasive strategy to characterize activities of the visual cortex

of retinal degenerative process and constitutes a tool for

longitudinal monitoring studies. Also, the authors show the

value of bioluminescence over autofluorescence, phototoxicity,

and lower resolution electrical methods currently available.

Nakagawa-Tamagawa et al. found that a gain-of-function

mutation, I1166T, in Cav1.2 affects neuronal migration

and axonal projection during cerebrocortical development.

Furthermore, their findings suggested that the Cav1.2 I1166T

mutation affects cortical development and callosal projection

formation through the Ca2+-dependent pathway and β

subunit-interaction. These results suggest that Timothy

syndrome-like disorder in patients with the Cav1.2 I1166T

mutation is associated with abnormal neuronal migration

and/or callosal projections.

In their mini-review, Bando et al. summarized the roles

of ion channels and transporters in the regulation of electrical

properties and Ca2+ signaling during neocortical development.

They discussed links between abnormal electrical signaling

caused by dysfunction of ion channels or transporters and

ND. They also discussed the application of optical techniques

to address the physiological mechanisms of neocortical

development and the pathophysiology of channelopathies.

Atmospheric-pressure gas plasma (APP) is plasma that

can be maintained in the surrounding atmosphere without

the necessity to apply additional pressure to contain it.

Although APP devices were first used for sterilization

of contaminated matter (Laroussi, 1996), now they are

employed in diverse medical applications. In this Research

Topic, Chen et al. evaluated the therapeutic efficacy of this

exciting forefront technique. In particular, they applied

intermittent inhalation of gas plasma (APP jet) in a rat

ischemic stroke model. These authors found that post-

stroke treatment with this APP jet intervention could

reduce the ischemic lesion progression and decrease cerebral

infarction volume, which might provide a new promising

technology for ischemic stroke treatment (Kuriakose and Xiao,

2020).

Rao et al. found that dendritic patterning and synapse

formation are impaired in RasGAP-suppressed neurons in

the cerebral cortex. The findings provided insights into

the pathophysiology of brain disease due to dysfunction of

RasGAPs, such as the causative gene of neurofibromatosis type

I. The results suggested that dendritic and synaptic development

changes could be associated with the cognitive disabilities seen

in patients with neurofibromatosis type I.

Conclusions

In this Research Topic, we describe the peculiar features

of several traditional and forefront technologies and present

some of their applications, demonstrating the importance of

preclinical research in neuroscience and showing that the

replacement of laboratory animals is not always possible.
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