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A B S T R A C T

The Precedence-Constrained Minimum-Cost Arborescence problem, in which precedence constraints are
enforced on pairs of vertices, has been recently proposed. The purpose of the constraints is to prevent the
formation of directed paths along the tree that violate a precedence relationship. The problem has been shown
to be NP-hard, and formulations for the problem have been proposed in the literature.

This work introduces a branch-and-bound algorithm based on a Lagrangian relaxation for solving the
problem. The results show that the newly proposed method is 74.6% faster, on average, compared to the
state-of-the-art methods recently available in the literature.
1. Introduction

The Minimum-Cost Arborescence problem (MCA) is a well-studied
problem in the area of graph theory. The objective of the problem is to
find a directed minimum-cost spanning tree in a directed graph rooted
at some vertex 𝑟 called the root. Chu and Liu (1965), and Edmonds
(1967), independently proposed the first polynomial time algorithm
for solving the problem. The most efficient implementation of the
algorithm was later on proposed by Gabow et al. (1986). The Minimum-
Cost Arborescence problem can be formally described as follows. A
directed graph 𝐺 = (𝑉 ,𝐴) is given where 𝑉 = {1,… , 𝑛} is the set of
vertices, 𝑟 ∈ 𝑉 is the root of the arborescence, and 𝐴 ⊆ 𝑉 ×𝑉 is the set
of arcs with a cost 𝑐𝑖𝑗 associated with every arc (𝑖, 𝑗) ∈ 𝐴. The objective
of the problem is to find a minimum-cost directed spanning tree in 𝐺
rooted at 𝑟, i.e. a set 𝑇 ⊆ 𝐴 of 𝑛 − 1 arcs, such that there is a unique
directed path from 𝑟 to every other vertex 𝑗 ∈ 𝑉 ∖{𝑟} in the subgraph
induced by 𝑇 .

Variations of the MCA with different objective function and/or
constraints have appeared in the literature since the MCA was first
proposed. The Constrained Arborescence Augmentation problem (Li et al.,
2017) can be described as follows. Given a weighted directed graph
𝐺 = (𝑉 ,𝐴) and an arborescence 𝑇 = (𝑉 ,𝐴𝑟) rooted at 𝑟 ∈ 𝑉 , the
objective of the problem is to find a subset of arcs 𝐴′ from 𝐴−𝐴𝑟 with
the sum of the weights of the arcs in 𝐴′ is minimized, and there still
exists an arborescence in the graph 𝐺′ = (𝑉 ,𝐴𝑟 ∪ 𝐴′ − 𝑎) for each arc
𝑎 ∈ 𝐴𝑟. The Maximum Colorful Arborescence problem (Fertin et al., 2017)
is an NP-hard problem (Fertin et al., 2017) that is described as follows.
Given a weighted directed acyclic graph, a set of colors 𝐶, with each
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vertex in the graph having a specified color from 𝐶, the objective of the
problem is to find a maximum-weight arborescence in which no color
appears more than once. The Resource-Constrained Minimum-Weight
Arborescence problem (Fischetti and Vigo, 1997) is another NP-hard
problem (Fischetti and Vigo, 1997) which can be described as follows.
Given a weighted directed graph with each vertex associated with a
finite resource, the objective of the problem is to find a minimum-cost
arborescence such that the sum of the outgoing arcs from each vertex in
the arborescence is at most equal to the resource associated with that
vertex. The Capacitated Minimum Spanning Tree problem (Gouveia and
Lopes, 2005) is another NP-hard problem (Gouveia and Lopes, 2005)
that can be described as follows. Given a root vertex 𝑟 ∈ 𝑉 and an
integer 𝑄, with each vertex 𝑗 ∈ 𝑉 ∖{𝑟} is associated with a non-negative
integer demand 𝑞𝑗 , the objective of the problem is to find a minimum
spanning tree rooted at 𝑟, such that any subtree off the root 𝑟, the sum of
the weights of the vertices of that subtree is at most 𝑄. Other interesting
variations of the MCA problem can be found in Cai et al. (2004), Frieze
and Tkocz (2021) and Morais et al. (2019).

A variation of the MCA, named the Precedence-Constrainted
Minimum-Cost Arborescence problem (PCMCA), where a set of prece-
dence constraints is included between pairs of vertices, was proposed
by Dell’Amico et al. (2021). More formally, given a set 𝑅 of ordered
pairs of vertices, for each precedence (𝑠, 𝑡) ∈ 𝑅 any path in the
arborescence that includes both 𝑠 and 𝑡 must visit 𝑠 before visiting 𝑡.
The objective of the problem is to find an arborescence of minimum
total cost that satisfies the precedence constraints. A mathematical
programming model was also discussed in the paper. Other Mixed
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Fig. 1. Comparing a MCA and a PCMCA solution. The graph on top is the instance
graph with its respective arc costs, with the precedence relationship (3, 1) ∈ 𝑅
highlighted in red. The graph on the bottom left shows the optimal MCA, whereas
the graph on the bottom right shows the optimal PCMCA. The MCA solution is not a
feasible PCMCA solution since vertex 1 precedes vertex 3 on the same directed path
and (3, 1) ∈ 𝑅.

Integer Linear Programming models for the PCMCA were proposed in
Chou et al. (2023) and Dell’Amico et al. (2023).

The solving approach we propose is inspired by that discussed in
Lucena (1992) and Escudero et al. (1994). In particular, in Escudero
et al. (1994) a Lagrangian relax-and-cut approach for the Sequential
Ordering Problem was introduced. The algorithm proposed works by re-
laxing some of the constraints in a Lagrangian fashion. This reduces the
overall problem to a MCA problem. Later, Toth and Vigo (1995) pro-
posed a Lagrangian relax-and-cut algorithm for the Capacitated Shortest
Spanning Arborescence, where a Lagrangian relaxation reduced the main
problem again to a MCA problem.

Fig. 1 presents an example that shows the difference between the
classic MCA and the PCMCA. The example instance graph with its re-
spective arc costs is shown in the figure on the top, with the precedence
relationship (3, 1) highlighted in red. The figure on the bottom left
shows a feasible MCA solution with a cost of 4. The MCA solution is
infeasible for the PCMCA since (3, 1) ∈ 𝑅, and vertex 1 belongs to the
directed path connecting 𝑟 to vertex 3. To make the solution feasible
for the PCMCA, vertex 1 must succeed vertex 3 on the same directed
path, or the two vertices must reside on two disjoint paths. A PCMCA
feasible solution with a cost of 5 is shown on the bottom right of the
figure.

The present work proposes a branch-and-bound (B&B) algorithm
based on a Lagrangian relaxation for solving the PCMCA based on a
Mixed Integer Linear Programming (MILP) model recently proposed
in Chou et al. (2023). The rest of the paper is organized as follows.
Section 2 discusses a MILP model for the PCMCA. Section 3 introduces
a Lagrangian relaxation of the model previously introduced. Section 4
describes the B&B algorithm we propose to solve the PCMCA. Com-
putational results are presented in Section 5, while conclusions are
summarized in Section 6.

2. An integer linear programming model

A MILP formulation for the PCMCA was previously proposed
in Chou et al. (2023), and is at the basis of the present study. The formu-
2

lation extends the basic connectivity constraint for the MCA (Houndji
et al., 2017), such that it respects the precedence constraint between
vertex pairs. Considering a set 𝑆 ⊆ 𝑉 ∖{𝑟}, a constraint is added for
each 𝑘 ∈ 𝑆, which forces that at least one active arc must enter 𝑆
originating from the set of vertices that are allowed to precede 𝑘 on
the path connecting 𝑟 to 𝑘.

Let 𝑥𝑖𝑗 be a variable associated with every arc (𝑖, 𝑗) ∈ 𝐴, such that
𝑥𝑖𝑗 = 1 if arc (𝑖, 𝑗) ∈ 𝑇 and 0 otherwise, where 𝑇 is the resulting optimal
arborescence. Let 𝑉𝑘 = {𝑖 ∈ 𝑉 ∶ (𝑘, 𝑖) ∉ 𝑅} be the set of vertices that
can precede 𝑘 on the same path connecting 𝑟 to 𝑘 without introducing
a precedence violation. Note that according to the definition 𝑘 ∈ 𝑉𝑘,
ince (𝑘, 𝑘) ∉ 𝑅. The PCMCA can be formulated as follows.

in
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 (1)

s.t.
∑

(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝑉 ∖{𝑟} (2)

∑

(𝑖,𝑗)∈𝐴∶
𝑖∈𝑉𝑘∖𝑆,𝑗∈𝑆

𝑥𝑖𝑗 ≥ 1 ∀𝑘 ∈ 𝑉 ∖{𝑟},∀𝑆 ⊆ 𝑉𝑘∖{𝑟} ∶ 𝑘 ∈ 𝑆 (3)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴 (4)

Constraints (2) enforce that every vertex 𝑣 ∈ 𝑉 ∖{𝑟} must have a
single parent. Constraints (3) model the connectivity constraints, that
is every vertex 𝑘 ∈ 𝑉 ∖{𝑟} must be reachable from the root. The set
of constraints (3) is the core of the model. The inequalities ensure
the connectivity of the arborescence as they reduce to the classical
connectivity constraints for the MCA which are ∑

(𝑖,𝑗)∈𝐴∶𝑖∉𝑆,𝑗∈𝑆 𝑥𝑖𝑗 ≥
∀𝑆 ⊆ 𝑉 ∖{𝑟} when the set 𝑅 of precedence relationships is empty.

This is true because 𝑉𝑘 = 𝑉 for all 𝑘 ∈ 𝑉 ∖{𝑟} when 𝑅 is an empty set.
Constraints (3) also impose the precedence relationships, which imply
that every vertex 𝑘 ∈ 𝑉 ∖{𝑟} must not be reachable from the root 𝑟
through vertex 𝑡 if (𝑘, 𝑡) ∈ 𝑅. Finally, Constraints (4) define the domain
of the variables.

Going back to constraints (3), they impose the precedence relation-
ships as follows. A violating path is defined as a path which contains
both 𝑠 and 𝑡, but visits 𝑡 before visiting 𝑠 for some (𝑠, 𝑡) ∈ 𝑅. If a
candidate solution contains a violating path, then by removing 𝑡 and its
incident arcs from the solution, then 𝑠 is no longer reachable from the
root. Inequalities (3) will enforce 𝑠 to be reachable from 𝑟 through the
vertices that are allowed to precede 𝑠 (i.e. 𝑉𝑠). Fig. 2 shows an example
of how a violating path is resolved. The details can be found in the
caption of the figure.

The precedence-enforcing set of constraints (3) is what makes the
problem NP-hard compared to the MCA, which is solvable in polyno-
mial time (Edmonds, 1967). Therefore, reducing the set of constraints
(3) to the classical connectivity constraints only, as explained earlier,
would reduce the problem to a MCA and make the problem easier to
solve. Furthermore, an optimal solution of the relaxed model provides
a lower bound on the optimal solution of the PCMCA instance.

3. A Lagrangian relaxation

In this section we present a relaxation of the PCMCA obtained by
relaxing the precedence-enforcing constraints (3), and leaving only the
classical connectivity constraints of the MCA, and thus making the dual
problem solvable in polynomial time.

Formally, as explained in Section 3, the set of constraints (3)
can be split into two sets. The first set enforces that every vertex is
reachable from the root (connectivity constraints). Conversely, for any
vertex 𝑠 that is part of a precedence relationship (i.e. ∃(𝑖, 𝑠) ∈ 𝑅), the
second set of constraints enforces that vertex 𝑠 is reachable from the
root through a path not containing vertex 𝑡 if (𝑠, 𝑡) ∈ 𝑅 (precedence-

enforcing constraints). Splitting constraints (3) into the two sets of
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Fig. 2. Example on how constraints (3) resolve violating paths. The figure on the left
s a candidate solution that contains a violating path from 𝑡 to 𝑘. The two figures in the
iddle show the two possible inequalities (3) for vertex 𝑘, where the vertices under

he red dashed line is the set of vertices 𝑆, and the vertices above the dashed red line
s the set of vertices 𝑉𝑘∖𝑆. The dashed black arrows in the figure are the set of arcs
hat could be part of a feasible solution. The figure on the right shows one possible
easible solution after enforcing constraints (3).

onstraints results in the following model for the PCMCA.

in
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 (5)

s.t.
∑

(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝑉 ∖{𝑟} (6)

∑

(𝑖,𝑗)∈𝐴∶
𝑖∉𝑆,𝑗∈𝑆

𝑥𝑖𝑗 ≥ 1 ∀𝑆 ⊆ 𝑉 ∖{𝑟} (7)

∑

(𝑖,𝑗)∈𝐴∶
𝑖∈𝑉𝑘∖𝑆,𝑗∈𝑆

𝑥𝑖𝑗 ≥ 1 ∀𝑘 ∈ 𝑉 ∖{𝑟} ∶ ∃(𝑠, 𝑘) ∈ 𝑅,∀𝑆 ⊆ 𝑉𝑘∖{𝑟} ∶ 𝑘 ∈ 𝑆 (8)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴 (9)

Constraints (7) are now the connectivity constraints that enforce
every vertex to be reachable from the root. Constraints (8) are the
precedence-enforcing constraints which enforce every vertex 𝑘 to be
eachable from the root through a path not containing 𝑡 if (𝑘, 𝑡) ∈ 𝑅.

An immediate relaxation of the PCMCA can be obtained by remov-
ing the precedence-enforcing constraints (8), thus reducing the problem
to a MCA. The MCA can be solved in polynomial time using Edmond’s
algorithm (Edmonds, 1967) that has a computational complexity of
𝑂(𝐸𝑉 ), or a faster implementation proposed by Gabow et al. (1986)
that has a computational complexity of 𝑂(𝐸 log𝑉 ) for sparse graphs,
and 𝑂(𝑉 2) for dense graphs.

A stronger lower bound can however be obtained by adding con-
straints (8) to the objective function (5) in a Lagrangian relaxation
fashion (see Fisher (1981)).

3.1. The relaxed model

Let 𝜆𝑘𝑆 ≥ 0 be a Lagrangian multiplier for each 𝑘 ∈ 𝑉 ∖{𝑟} ∶ ∃(𝑠, 𝑘) ∈
𝑅 and 𝑆 ⊆ 𝑉𝑘∖{𝑟} ∶ 𝑘 ∈ 𝑆. A Lagrangian relaxation of PCMCA can be
obtained by introducing the precedence-enforcing constraints (8) in the
objective function, with their corresponding Lagrangian multipliers 𝜆.

The following Lagrangian relaxation of the PCMCA can be obtained.

min
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 +

∑

𝑘∈𝑉 ∖{𝑟}∶
∃(𝑠,𝑘)∈𝑅

∑

𝑆⊆𝑉𝑘∖{𝑟}∶
𝑘∈𝑆

𝜆𝑘𝑆

⎛

⎜

⎜

⎜

⎝

∑

(𝑖,𝑗)∈𝐴∶
𝑖∈𝑉𝑘∖𝑆,𝑗∈𝑆

1 − 𝑥𝑖𝑗

⎞

⎟

⎟

⎟

⎠

(10)

s.t.
∑

(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝑉 ∖{𝑟} (11)

∑

(𝑖,𝑗)∈𝐴∶
𝑖∈𝑉 ∖𝑆,𝑗∈𝑆

𝑥𝑖𝑗 ≥ 1 ∀𝑆 ⊆ 𝑉 ∖{𝑟} (12)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴 (13)
3

Using a modified cost matrix 𝑐′ defined as:

𝑐′𝑖𝑗 = 𝑐𝑖𝑗 −
∑

𝑘∈𝑉 ∖{𝑟}∶
𝑖∈𝑉𝑘

∑

𝑆⊆𝑉𝑘∖{𝑟}∶
𝑘,𝑗∈𝑆,𝑖∉𝑆

𝜆𝑘𝑆 (14)

the objective function (10) can be rewritten as the following.

min
∑

(𝑖,𝑗)∈𝐴
𝑐′𝑖𝑗𝑥𝑖𝑗 +

∑

𝑘∈𝑉 ∖{𝑟}

∑

𝑆⊆𝑉𝑘∖{𝑟}∶
𝑘∈𝑆

𝜆𝑘𝑆 (15)

For any given set of nonnegative multipliers 𝜆, the optimal solution
of the Lagrangian relaxation is a valid lower bound for the PCMCA
Fisher (1981). Moreover, since the Lagrangian relaxation calls for
finding a MCA of the modified cost matrix 𝑐′, it can be optimally solved
in polynomial time using one of the algorithms mentioned earlier.

3.2. Solving the Lagrangian relaxation

In this section we describe a subgradient optimization procedure for
the set of Lagrangian multipliers 𝜆.

In our implementation of the subgradient optimization procedure,
the set of Lagrangian multipliers 𝜆 is passed as a parameter, as it is
possible to solve the relaxation starting from an empty or a precom-
puted set of multipliers, possibly with a non-zero value. Using a set
of precomputed Lagrangian multipliers is useful when the procedure is
being used inside a B&B algorithm (see Section 4), as the Lagrangian
multipliers constructed for a parent node in the search-tree can be
passed down to that node’s children which in turn could speed up the
convergence of the procedure.

Algorithm 1 describes the optimization procedure used for com-
puting values for the set of Lagrangian multipliers 𝜆, and therefore
calculating a lower bound for the original PCMCA instance. Let 𝑀 be
a user-defined parameter which represents the maximum number of
iterations, and 𝑚 is the iterations counter, starting from 0. Let 𝑥𝜆 be
the optimal solution of the MCA problem based on the modified cost
matrix 𝑐′ relative to 𝜆. Let 𝑃 be the set of all violating paths in 𝑥𝜆, such
that each 𝑝 ∈ 𝑃 is a sequence of vertices belonging to a violating path
that starts with 𝑡 and ends with 𝑠 such that (𝑠, 𝑡) ∈ 𝑅. Let 𝛼 ∈ R+ be the
step size, which is a step taken in the direction of a positive subgradient.
Different procedures for computing the step size 𝛼 are possible and a
few of them will be described in Section 5. Let 𝐿(𝑐, 𝜆) be a function
which returns the optimal solution of the Lagrangian relaxation based
on cost matrix 𝑐 and the current set of Lagrangian multipliers 𝜆. Let
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒(𝑥𝜆) be a function which returns a set of violating paths in the
solution 𝑥𝜆. Finally, let 𝑔 be the value of a subgradient. The function
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒(𝑥𝜆) has a computational complexity of 𝑂(|𝑉 |

2), and can be
riefly summarized as follows. Given an arborescence 𝑇 , for each vertex
∈ 𝑉 we traverse the arborescence 𝑇 in a backward direction starting

rom 𝑠. If vertex 𝑡 ∈ 𝑉 is reached during the traversal and (𝑠, 𝑡) ∈ 𝑅,
then the path from 𝑡 to 𝑠 is added to the set of violating paths returned
by the function.

Step 5 finds an optimal solution of the MCA instance based on the
objective function (15). Step 6 updates the value of the lower bound
as the maximum between the current 𝐿𝐵 value, and the value of the
objective function (15). Step 7 finds the set of all violating paths in the
solution 𝑥𝜆. A path is considered violating if it starts with 𝑡 and ends
with 𝑠 such that (𝑠, 𝑡) ∈ 𝑅. Step 9 finds the set of vertices belonging
to the set S, which are all the vertices in 𝑝 without 𝑡. Step 10 adds the
corresponding Lagrangian multiplier 𝜆𝑠𝑆 to the set of multipliers 𝜆, with
a user-defined non-negative initial value. Steps 13 and 14 update the
value of the Lagrangian multiplier 𝜆𝑘𝑆 . The value of step size 𝛼 ∈ R+ is
a user-defined value.

A common practice is to remove the subset of Lagrangian multipliers
in 𝜆 that had a value of 0 during the last 𝑘 iterations. This process can
be added to Algorithm 1 before optimizing the Lagrangian multipliers
at step 12. However, adding this step might not be beneficial when

the number of Lagrangian multipliers that get a 0 value is very small
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Algorithm 1 Subgradient Method for Solving the Lagrangian Relax-
ation
1: procedure ComputeLB(𝜆, 𝑐, 𝑀)
2: 𝑚 = 0
3: 𝐿𝐵 = 0
4: do
5: 𝑥𝜆 = 𝐿(𝑐, 𝜆)
6: 𝐿𝐵 = max(𝐿𝐵, 𝑐′𝑥𝜆 + 𝜆)
7: 𝑃 = Separate(𝑥𝜆)
8: for all 𝑝 = {𝑡, 1, 2,… , 𝑠} ∈ 𝑃 do
9: 𝑆 = 𝑝∖{𝑡}
0: 𝜆 = 𝜆 ∪ 𝜆𝑠𝑆
1: end for
2: for all 𝜆𝑘𝑆 ∈ 𝜆 do
3: 𝑔 = 1 −

∑

(𝑖,𝑗)∈𝐴∶
𝑖∈𝑉𝑘∖𝑆,𝑗∈𝑆

𝑥𝜆𝑖𝑗

4: 𝜆𝑘𝑆 = max(0, 𝜆𝑘𝑆 + 𝛼𝑔)
5: end for
6: 𝑚 = 𝑚 + 1
7: while 𝑃 ≠ 𝜙 and 𝑚 < 𝑀
8: end procedure

compared to the total number of multipliers. Some preliminary experi-
ments suggested that this is the case for our problem. We observed only
around 10%–15% of the multipliers were going to 0, so the overhead
required to periodically check them was not justified. At the same
time, the total memory footprint was in fact not substantially reduced.
Therefore, we decided to remove multipliers with value 0 only during
branching (see Section 4.3).

4. A branch-and-bound algorithm

In this section we describe a branch-and-bound (B&B) algorithm for
the exact solution of the PCMCA.

4.1. Data structures

The proposed B&B algorithm contains two main data structures,
the search-tree, and the search-tree node. The search-tree represents the
et of all possible MCA solutions of the original instance, but only a
ubset of those solutions are feasible PCMCA solutions. Note that a
easible PCMCA solution is not necessarily a leaf node in the search-
ree, as solving the Lagrangian relaxation might result in a feasible,
ut suboptimal, PCMCA solution. The search-tree node denoted as
represents a feasible MCA solution or a feasible PCMCA solution

nd contains information about that solution. The following sections
escribe the type of information that is stored inside the search-tree
nd the search-tree node.

.1.1. Search-tree
The following information is stored inside the search-tree data

tructure:

• 𝐿𝐵: is the current lower bound value for the optimal solution of
the PCMCA instance.

• 𝑈𝐵: is the current upper bound value for the PCMCA instance,
which is the best known solution value, according to objective
function (1).

• SearchTreeNodes: is a minimum priority queue that contains the
set of all search-tree nodes that are currently unexplored in the
search-tree.
4

4.1.2. Search-tree node
The following information is stored inside the search-tree node data

structure:

• 𝜆: is the set of Lagrangian multipliers related to this search-tree
node.

• 𝑐′: is the modified cost matrix of the graph 𝐺 relative to the set
of Lagrangian multipliers 𝜆.

• Pred: is a vector of size |𝑉 |, where 𝑉 [𝑗] = 𝑖 if 𝑖 is the parent of 𝑗
in the optimal MCA solution associated with the search-tree node.
To indicate the root of the arborescence we set 𝑉 [𝑟] = −1.

• 𝐿𝐵: is a lower bound value for the optimal PCMCA solution under
the search-tree node, that is the value of objective function (15)
associated with the solution represented by Pred.

• 𝑐 ∶ is the reduced cost matrix of 𝐺 relative to the MCA solution
of the search-tree node. The MCA is solvable as a linear program,
and thus the reduced costs can be computed.

4.2. Lower bound and upper bound computation

A lower bound on the optimal solution of node 𝑣 in the search-
tree, named 𝐿𝐵(𝑣), is computed using Algorithm 1, based on the set of
agrangian multipliers 𝜆 and cost matrix 𝑐′ that are stored in node 𝑣.
he lower bound on the optimal solution of the PCMCA instance (global

ower bound) named 𝐿𝐵 is equal to 𝐿𝐵(𝑣), where 𝑣 is the search-tree
node on the top of the priority queue SearchTreeNodes.

An upper bound on the optimal solution of the PCMCA instance
is found once a node 𝑣 in the search-tree contains a feasible PCMCA
solution (an MCA solution that does not contain a violating path). The
𝑈𝐵 value is updated if the cost of the solution value is less than the
current value of 𝑈𝐵.

.3. Branching scheme

In the proposed B&B algorithm the tree is traversed according to a
est-first search strategy, that is the node with the lowest lower bound
alue (𝐿𝐵) is expanded first. The search-tree node with the lowest

lower bound value can be found in constant time as it resides on
the top of the priority queue SearchTreeNodes, that is stored inside
the Search-tree data structure. Note that a depth-first search strategy,
which explored the search tree as far as possible along each branch
of the search-tree before backtracking, was considered. However, the
computational results obtained while using such a strategy produced an
overall increase in the solution time. This was due on the one hand to
the slow convergence of the lower bounds, and on the other hand to the
worse incumbent solution encountered in the beginning of the search,
that led to a less effective pruning and consequently to the exploration
of a larger portion of the solution space.

At each node 𝑣 of the search-tree, let 𝑃 ′ ⊂ 𝐴 be a violating path that
belongs to the solution at node 𝑣. Recall that a path is violating if it
starts with vertex 𝑡 and ends with vertex 𝑠 such that (𝑠, 𝑡) ∈ 𝑅. For each
(𝑖, 𝑗) ∈ 𝑃 ′, we create a new search-tree node which forbids arc (𝑖, 𝑗),
nd imposes all the arcs that precede arc (𝑖, 𝑗) in the path 𝑃 ′. In our
mplementation, an arc is forbidden to appear in the solution by setting
𝑖𝑗 = ∞, and an arc (𝑖, 𝑗) is imposed to appear in the solution by setting
𝑘𝑗 = ∞ for each 𝑘 ≠ 𝑖. The Lagrangian multipliers related to node 𝑣 that
ave a non-zero value, are copied to the newly created nodes from 𝑣.
ote that this strategy removes, as a side effect, multipliers with value
. Finally, the search-tree nodes that are created from node 𝑣 are added
o the priority queue after computing their 𝐿𝐵 value, and the value

of 𝐿𝐵 is eventually updated accordingly. Once a search-tree node is
xpanded, it is removed from the priority queue SearchTreeNodes.

Fig. 3 shows an example of how a search-tree node is expanded.
Each search-tree node is represented by a rectangle, red arcs indicate
forbidden arcs, and blue arcs indicate imposed arcs. In this example,
we have the violating path {(𝑡, 1), (1, 2), (2, 3), (3, 𝑠)}. For each arc in the
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Fig. 3. An example which shows how a search-tree node containing a violating path is
xpanded into four separate search-tree nodes. Each rectangle represents a search-tree
ode. Red arrows indicate forbidden arcs, while blue arrows indicate imposed arcs in
he solution.

Fig. 4. An example which shows an additional set of arcs that are forbidden to appear
n the solution when a certain path rooted at 𝑘 is imposed in the solution. In this

example, dashed red arrows indicate a precedence relationship, blue arrows indicate
imposed arcs, and all red arrows indicate forbidden arcs. Arc (5, 𝑘) is forbidden to
appear in the solution as (1, 5) ∈ 𝑅 and arc (𝑘, 1) is imposed in the solution. Arc (6, 𝑘)
is forbidden to appear in the solution as (3, 6) ∈ 𝑅, and a path rooted at 𝑘 is imposed
in the solution that includes vertex 3.

violating path, we forbid that arc to appear in the solution, and all
the arcs preceding that arc on the path are imposed to be part of the
solution. By doing so, the search-tree node containing a violating path
is expanded into |𝐴′

| search-tree nodes, where |𝐴′
| is the number of

arcs in the violating path selected.

4.4. Instance reduction, pruning and bypass rules

Once a new search-tree node is created, it is possible to forbid
another set of arcs (other than the ones removed during branching) that
creates a violating path as follows. If a directed path 𝑝 ⊂ 𝐴 rooted at
𝑘 ∈ 𝑉 is imposed in the solution, then 𝑐𝑖𝑘 = ∞ for all (𝑖, 𝑘) ∈ 𝐴 such that
(𝑗, 𝑖) ∈ 𝑅 and 𝑗 appears in the path 𝑝. An example of this is illustrated
in Fig. 4. An arc (𝑖, 𝑗) ∈ 𝐴 is forbidden if ⌈𝐿𝐵(𝑣) + 𝑐𝑖𝑗⌉ ≥ 𝑈𝐵, where 𝑐
is the reduced cost matrix at node 𝑣, and 𝑈𝐵 is the upper bound or the
best-known solution. Finally, a search-tree node 𝑣 can be pruned from
the search-tree if 𝐿𝐵(𝑣) ≥ 𝑈𝐵, or if the node does not contain feasible
MCA solution rooted at 𝑟.

In the B&B algorithm, a bypass rule is also enforced as follows. If the
number of nodes generated in the search tree reaches 2000 nodes, the
MILP model introduced in Section 2 is solved for the original problem
instance. The bypass rule is enforced in order to avoid the size of
the search-tree from growing too large and going out of count, since
once the search-tree grows too large, the lower bound on the optimal
solution improves very slowly, and feasible solutions are found less and
less frequently.

5. Experimental results

The computational experiments for evaluating the proposed B&B
algorithm are based on the benchmark instances of TSPLIB (Reinelt,
5

1991), SOPLIB (Montemanni et al., 2008) and COMPILERS (Shobaki
and Jamal, 2015) originally proposed for the Sequential Ordering Prob-
lem (SOP) (Escudero, 1988). The benchmark instances are the same
instances previously adopted in Dell’Amico et al. (2021), Chou et al.
(2023) and Dell’Amico et al. (2023) for PCMCA.

All the experiments are performed on an Intel i7 processor running
at 1.8 GHz and equipped with 8 GB of RAM. The B&B algorithm and
the MILP model are implemented in C++ 11, and are complied with
Microsoft C/C++ Optimizing Compiler v19.

5.1. Lagrangian relaxation

5.1.1. Step size
In the subgradient method there are many different types of step

size rules, and the selection of which rule to use can substantially affect
the performance of the algorithm (Bazaraa and Sherali, 1981). In this
section we compare the convergence of the method using three step
size rules from the literature: constant step size, diminishing step size, and
-diminishing step size.

The constant step size is a positive real number that does not change
ith each iteration.

The diminishing step size is a positive real value which decreases
ith each iteration. The formula for calculating a diminishing step size

s 𝛼𝑘 = 𝑎
𝑘 , where 𝛼𝑘 is the step size at iteration 𝑘, and 𝑎 is a real positive

value.
The 𝑝-diminishing step size is similar to the diminishing step size

rule, however it does not decrease at each iteration. The step size
value decreases every time the value of the objective function decreases
compared to the previous iteration. The formula for calculating a 𝑝-
iminishing step size is 𝛼𝑘 = 𝑎

𝑝 , where 𝛼𝑘 is the step size at iteration 𝑘, 𝑎
is a real positive value, and 𝑝 is an integer positive value. The value of 𝑝
starts at 1, and every time the value of the objective function decreases
compared to the previous iteration the value of 𝑝 is incremented by 1,
and the new step size value is calculated using the beforementioned
formula.

Fig. 5 compares the value of objective function (15) at the root
node for a subset of the representative instances using a constant step
size 𝛼𝑘 = 0.1, compared to using a diminishing step size as explained
earlier with 𝑎 = 1, and a 𝑝-diminishing step size as explained earlier
also with 𝑎 = 1. Each case is run for a total of 100 iterations.
The results suggests that using a constant step size, the value of the
objective function typically tends to oscillate, which sometimes gives
the advantage of escaping a local optima, and the value of the objective
function is increased at a faster rate in the first few iterations. On the
other hand, using a diminishing step size, convergence is sometimes
faster, and feasible solutions are found much quicker compared to using
a fixed step size. This in turn helps in pruning the search-tree and
reducing the size of the explored solution space. This is the case since
the value of the objective function oscillates less frequently compared
to a fixed step size, and thus feasible solutions are retrieved with a
relatively small optimality gap. The 𝑝-diminishing step size rule has a
very similar behavior to the diminishing step size rule in most cases,
but convergence happens at a higher rate, with feasible solutions found
more frequently.

In general, the 𝑝-diminishing step size rule is expected to perform
better when compared to the other two step size rules, as it behaves
similar to a constant step size as long as the value of the objective
function is increasing at each iteration, and once the value of the
objective function decreases compared to the previous iteration, the
step size is decreased which helps to prevent the value of the objective

function from oscillating over time.
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Fig. 5. Comparing the value of the objective function at each iteration using a fixed
step size 𝛼𝑘 = 0.1, diminishing step size 𝛼𝑘 = 1

𝑘
, and 𝑝-diminishing step size 𝛼𝑘 = 1

𝑝
.

5.1.2. Number of iterations
Increasing the number of iterations 𝑀 in the subgradient method

could potentially tighten the lower bound value computed for a search-
tree node. However, that would likely lead to increasing the number of
multipliers in the objective function (15), in addition to the MCA being
6

Fig. 6. Comparing the increase in the number Lagrangian multipliers for the root node
at each iteration using a fixed step size 𝛼𝑘 = 0.1, diminishing step size 𝛼𝑘 = 1

𝑘
, and

𝑝-diminishing step size 𝛼𝑘 = 1
𝑝
.

computed at each iteration, and thus increasing the computation time
per node. Fig. 5 shows also the value of the lower bound at the rood
node of the B&B tree at each iteration for three step size rules of the
subgradient method. In the three subfigures, the curve starts to plateau
around iteration 20. The value of 𝑀 = 10 is chosen as it balances well
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Table 1
Overall computational results for comparing the MILP solver and the B&B algorithm for TSPLIB instances.

Instance MILP (Chou et al., 2023) B&B \w 𝛼𝑘 = 0.1 B&B \w 𝛼𝑘 = 1
𝑘

B&B \w 𝛼𝑘 = 1
𝑝

Name |𝑉 | |𝐴| |𝑅| 𝑧∗ Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

br17.10 18 258 48 25 0 0.015 1 0.004 0 0.001 0 0.004
br17.12 18 251 55 25 0 0.016 1 0.004 0 0.006 0 0.006
ESC07 9 50 22 1531 0 0.031 0 0.000 0 0.001 0 0.000
ESC11 13 128 28 1752 0 0.031 0 0.000 0 0.001 0 0.000
ESC12 14 146 36 1138 0 0.016 0 0.001 0 0.001 0 0.001
ESC25 27 640 62 1041 0 0.063 0 0.001 0 0.002 0 0.001
ESC47 49 2225 127 703 0 0.547 1 0.013 1 0.009 0 0.018
ESC63 65 3800 360 56 0 0.218 4 0.095 3 0.036 1 0.052
ESC78 80 5880 440 502 0 0.047 0 0.019 0 0.008 0 0.012
ft53.1 54 2745 117 3917 5 0.375 6 0.051 3 0.028 1 0.021
ft53.2 54 2727 135 3978 55 0.547 19 0.158 11 0.128 8 0.107
ft53.3 54 2540 322 4242 0 0.453 7 0.116 39 0.384 11 0.102
ft53.4 54 1998 864 4882 0 0.047 9 0.064 7 0.096 6 0.067
ft70.1 71 4814 156 32846 0 2.750 2 0.043 2 0.043 1 0.039
ft70.2 71 4783 187 32930 0 2.719 4 0.143 4 0.099 5 0.122
ft70.3 71 4616 354 33431 145 38.250 170 6.622 75 2.607 92 2.789
ft70.4 71 3506 1464 35179 369 6.281 45 0.662 136 2.371 14 0.395
rbg048a 50 1906 544 204 0 0.031 0 0.010 1 0.007 0 0.005
rbg050c 52 2043 609 191 0 0.047 3 0.034 3 0.031 1 0.011
rbg109 111 6662 5548 256 0 0.094 0 0.025 0 0.019 0 0.017
rbg150a 152 12317 10635 373 1 0.219 0 0.041 0 0.028 0 0.031
rbg174a 176 16496 14304 365 1 0.313 1 0.083 0 0.044 0 0.046
rbg253a 255 34082 30688 375 0 1.125 0 0.162 0 0.162 11 0.636
rbg323a 325 56451 48849 754 0 1.047 0 0.265 0 0.204 0 0.235
rbg341a 343 62320 54986 610 0 3.031 13 1.706 7 0.634 5 0.579
rbg358a 360 71987 57253 595 0 5.812 1 0.595 0 0.259 0 0.262
rbg378a 380 79678 64342 559 36 19.047 597 77.582 12 3.342 223 32.326
kro124p.1 101 9868 232 32597 0 1.782 2 0.064 2 0.064 2 0.062
kro124p.2 101 9833 267 32851 27 3.281 151 5.268 224 8.884 137 5.440
textbfkro124p.3 101 9635 465 33779 98 7.469 2000 308.242 2000 294.649 2000 279.382
kro124p.4 101 7596 2504 37124 0 1.672 16 0.669 66 3.399 12 0.531
p43.1 44 1796 96 2720 128 1.765 0 0.002 0 0.003 0 0.003
p43.2 44 1773 119 2720 237 4.359 0 0.002 0 0.004 0 0.039
p43.3 44 1711 181 2720 134 1.437 1 0.056 1 0.066 1 0.065
p43.4 44 1311 581 2820 353 2.797 2 0.041 0 0.011 0 0.009
prob.100 100 9662 238 650 4 743.969 125 5.565 48 2.377 37 1.560
prob.42 42 1622 100 143 0 0.032 0 0.002 0 0.002 0 0.007
ry48p.1 49 2245 107 13095 54 0.609 132 1.289 159 1.386 107 1.073
ry48p.2 49 2231 121 13103 0 0.235 15 0.197 13 0.138 10 0.099
textbfry48p.3 49 2125 227 13886 146 2.156 2000 24.712 2000 20.654 1961 18.655
ry48p.4 49 1661 691 15340 32 0.313 77 0.664 126 1.049 43 0.409

Average 45 20.855 132 10.616 121 8.372 114 8.420
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between the tightness of the lower bound and computation time, and
so that the number of multipliers does not grow too large.

The rate of increase of the number of the Lagrangian multipliers
at the root node using different step size rules can be seen in Fig. 6.
For the majority of the instances, preliminary experiments clearly
suggested an increase in the solution time (sometimes considerable)
and a slight reduction in the number of generated nodes. This leads
to the conclusion that setting 𝑀 = 10 provides a good balance between
omputation time and performance.

.2. Overall results

The results of the B&B algorithm with different step size rules
re presented and compared with the current state-of-the-art results
eported in Chou et al. (2023), that are obtained by solving the MILP
odel introduced in Section 2. The results of the methods discussed

n Dell’Amico et al. (2021) and Dell’Amico et al. (2023) are not com-
ared against in this work as they are generally dominated with compu-
ation times that are 906.2% and 131.6% higher than those presented
n Chou et al. (2023) on average.

The MILP model from Chou et al. (2023) is solved using CPLEX
2.8.1 CPLEX is run with its default parameters, and single threaded

1 IBM ILOG CPLEX Optimization Studio: https://www.ibm.com/products/
log-cplex-optimization-studio.
7

standard Branch-and-Cut algorithm is applied for solving the model,
with BestBound node selection, and MIP emphasis set to MIPEmpha-
isOptimality. The maximum number of iterations 𝑀 = 10 is used for
he B&B algorithm.

Tables 1–3 report the results for the three benchmark sets. The
ables compare the performance of the current state-of-the-art solver
escribed in Chou et al. (2023) with the B&B algorithm introduced in
ection 4 using different step size rules. In all the tables, column Name
eports the name of the instance, column |𝑉 | reports the number of
ertices in the instance graph, column |𝐴| reports the number of arcs
n the instance graph, and column |𝑅| reports the number of precedence
elationships for each instance. Column 𝑧∗ reports the value of the
ptimal solution of each instance. For each computational method
onsidered, we report the following columns: Column Nodes contains
he number of nodes generated in the search-tree; Column Time [s]
ontains the solution time in second.

An overview of the results show that the B&B algorithm optimally
olves the three benchmark sets. The MILP from Chou et al. (2023) has
n average solution time of 27.5 s, while the B&B algorithm has an
verage solution time of 8.9 (a 67.6% decrease) seconds with 𝛼𝑘 = 0.1,
n average solution time of 5.9 (a 78.5% decrease) seconds with 𝛼𝑘 = 1

𝑘 ,
and an average solution time of 6.2 (a 77.5% decrease) seconds with
𝛼𝑘 = 1

𝑝 . To solve the MILP from Chou et al. (2023) 77 search-tree nodes
are generated on average, while the B&B algorithm generates 96 (a
24.7% increase) nodes on average with 𝛼𝑘 = 0.1, 74 (a 3.9% decrease)
nodes with 𝛼 = 1 , and 73 (a 5.2% decrease) nodes with 𝛼 = 1 .
𝑘 𝑘 𝑘 𝑝

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
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Table 2
Overall computational results for comparing the MILP solver and the B&B algorithm for SOPLIB instances.

Instance MILP (Chou et al., 2023) B&B \w 𝛼𝑘 = 0.1 B&B \w 𝛼𝑘 = 1
𝑘

B&B \w 𝛼𝑘 = 1
𝑝

Name |𝑉 | |𝐴| |𝑅| 𝑧∗ Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

R.200.100.1 200 39403 397 29 0 0.875 0 0.040 0 0.031 0 0.030
R.200.100.15 200 9381 16858 454 177 64.812 1585 61.350 719 20.733 739 21.166
R.200.100.30 200 7989 19036 529 10 0.875 8 0.181 21 0.348 10 0.200
R.200.100.60 200 12547 19725 6018 0 0.094 0 0.049 0 0.048 0 0.056
R.200.1000.1 200 39403 397 887 0 0.656 0 0.031 0 0.028 0 0.029
R.200.1000.15 200 8644 17252 5891 87 7.860 50 1.006 71 1.267 29 0.653
R.200.1000.30 200 7941 19061 7653 0 0.297 7 0.178 13 0.230 6 0.147
R.200.1000.60 200 12450 19672 6666 0 0.094 0 0.064 0 0.046 0 0.051
R.300.100.1 300 89103 597 13 0 2.250 0 0.077 0 0.064 0 0.097
R.300.100.15 300 15619 40601 575 139 55.734 517 22.353 94 4.739 190 9.592
R.300.100.30 300 16446 43483 756 0 0.562 3 0.236 1 0.165 1 0.168
R.300.100.60 300 27864 44569 708 0 0.375 1 0.196 1 0.184 0 0.159
R.300.1000.1 300 89103 597 715 0 2.515 0 0.067 0 0.062 0 0.062
R.300.1000.15 300 15750 40589 6660 73 16.531 13 0.695 52 2.366 9 0.474
R.300.1000.30 300 16970 43290 8693 0 0.453 14 0.648 10 0.299 3 0.205
R.300.1000.60 300 27629 44559 7678 0 0.297 2 0.249 2 0.193 2 0.211
R.400.100.1 400 158803 797 6 2 9.750 0 0.141 0 0.122 0 0.115
textbfR.400.100.15 400 24381 73961 699 109 44.922 2000 425.474 2000 268.596 2000 291.932
R.400.100.30 400 28156 78076 712 0 2.031 2 0.481 3 0.397 5 0.633
R.400.100.60 400 49022 79452 557 0 0.328 0 0.379 0 0.285 0 0.322
R.400.1000.1 400 158803 797 780 0 2.797 0 0.130 0 0.106 0 0.119
R.400.1000.15 400 23785 74218 7382 91 24.000 702 41.821 199 10.402 168 9.102
R.400.1000.30 400 28074 77989 9368 38 6.563 27 2.376 51 4.411 31 2.510
R.400.1000.60 400 49155 79405 7167 0 0.500 0 0.351 0 0.354 0 0.348
R.500.100.1 500 248503 997 3 0 11.812 0 0.194 0 0.179 0 0.189
R.500.100.15 500 33522 117854 860 38 21.156 31 2.873 15 1.442 5 0.896
R.500.100.30 500 42873 122264 710 15 3.562 7 1.278 11 1.714 13 1.726
R.500.100.60 500 76419 124257 566 0 0.844 0 0.685 0 0.639 0 0.632
R.500.1000.1 500 248503 997 297 0 4.469 0 0.214 0 0.177 0 0.192
R.500.1000.15 500 34519 117314 8063 0 15.063 5 1.256 6 0.860 6 0.823
R.500.1000.30 500 42790 122387 9409 0 3.125 9 1.217 17 1.749 6 0.891
R.500.1000.60 500 76231 124270 6163 0 0.875 0 0.773 0 0.613 0 0.632
R.600.100.1 600 358203 1197 1 0 733.375 0 0.314 0 0.248 0 0.303
R.600.100.15 600 45825 170772 568 0 5.312 0 1.302 1 0.973 0 0.983
R.600.100.30 600 59865 177036 776 0 2.375 5 2.080 3 1.207 2 1.132
R.600.100.60 600 109237 179207 538 0 0.906 0 0.225 0 0.981 0 1.076
R.600.1000.1 600 358203 1197 322 0 8.625 0 0.303 0 0.260 0 0.299
R.600.1000.15 600 47457 169898 9763 0 12.766 4 1.155 5 1.238 1 1.143
R.600.1000.30 600 60330 176864 9497 0 2.969 3 1.184 7 1.375 2 1.228
R.600.1000.60 600 109595 179104 6915 0 0.922 0 0.336 0 0.987 0 1.089
R.700.100.1 700 487903 1397 2 0 314.875 0 0.446 0 0.336 0 0.380
R.700.100.15 700 58858 234155 675 0 6.875 8 2.587 1 1.544 2 1.734
R.700.100.30 700 80436 241484 590 0 1.250 0 0.975 0 0.973 0 0.961
R.700.100.60 700 148401 243968 383 0 1.422 0 0.994 0 0.982 0 0.991
R.700.1000.1 700 487903 1397 611 0 13.891 0 0.440 0 0.358 0 0.402
R.700.1000.15 700 59223 233939 2792 0 1.875 0 0.825 0 0.889 0 0.881
R.700.1000.30 700 81226 241265 2658 0 0.828 0 0.926 0 0.952 0 0.911
R.700.1000.60 700 148861 243953 1913 0 1.375 0 0.935 0 0.962 0 0.952

Average 16 29.494 104 12.127 69 7.023 67 7.476
The bypass rule described in Section 4.4 is invoked for three
utlier instances (highlighted in the tables): kro124p.3, ry48p.3, and
R.400.100.15, once the size of the search tree grows larger than
2000 nodes. Without applying the bypass rule on these instances, and
enforcing a time limit of 1 h on the computation time, the results for
the three instances were as follows. The instance kro124p.3 times out
with an optimality gap of 0.951% with 𝛼𝑘 = 0.1, 3.125% with 𝛼𝑘 = 1

𝑘 ,
and 3.029% 𝛼𝑘 = 1

𝑝 . Instance ry48p.3 is solved to optimality with an
average (among the B&B methods) solution time of 23.014 s, and 2530
nodes are generated on average. The instance R.400.100.15 is solved
optimally with 𝛼𝑘 = 1

𝑘 and 𝛼𝑘 = 1
𝑝 , with an average solution time of

00.396 s, and 4542 nodes are generated on average. With 𝛼𝑘 = 0.1
the B&B times out on the instances with an optimality gap of 0.855%.

Excluding from the statistics the three outlier instances where the
bypass rule is invoked, solving the MILP from Chou et al. (2023) takes
on average 27.7 s, while the B&B algorithm has an average solution
time of 2.4 (a 91.3% decrease) seconds with 𝛼𝑘 = 0.1, an average
solution time of 0.9 (a 96.8% decrease) seconds with 𝛼𝑘 = 1

𝑘 , and an
average solution time of 1.1 (a 96.0% decrease) seconds with 𝛼 = 1 .
8

𝑘 𝑝
In terms of the number of nodes generated in the search-tree, solving
the MILP from Chou et al. (2023) requires 75 nodes on average, while
the B&B algorithm generates 45 (a 40.0% decrease) nodes on average
with 𝛼𝑘 = 0.1, 23 (a 69.3% decrease) nodes with 𝛼𝑘 = 1

𝑘 , and 22 (a
70.7% decrease) nodes with 𝛼𝑘 = 1

𝑝 . In summary, when excluding the
three outlier instances, the B&B algorithm is on average 94.7% faster,
with 60% less nodes generated in the search-tree.

In conclusion, the results show that using a B&B algorithm that is
based on a Lagrangian relaxation of the problem is generally faster than
current state-of-the-art methods, except on a very small subset of the
instances.

6. Conclusions

This work introduces a branch-and-bound algorithm that is based on
a Lagrangian relaxation for the Precedence-Constrained Minimum-Cost
Arborescence problem.

The experimental results show that the newly proposed algorithm
is 74.6% faster on average at solving standard benchmark instances
compared to state-of-the-art methods currently available.
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Table 3
Overall computational results for comparing the MILP solver and the B&B algorithm for COMPILERS instances.

Instance MILP (Chou et al., 2023) B&B \w 𝛼𝑘 = 0.1 B&B \w 𝛼𝑘 = 1
𝑘

B&B \w 𝛼𝑘 = 1
𝑝

Name |𝑉 | |𝐴| |𝑅| 𝑧∗ Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

gsm.153.124 126 1165 7611 185 3 0.140 0 0.019 0 0.012 0 0.016
gsm.444.350 353 1851 61612 1542 0 0.094 0 0.246 0 0.204 0 0.198
gsm.462.77 79 1365 2591 292 0 0.031 0 0.037 1 0.052 0 0.039
jpeg.1483.25 27 471 170 71 4 0.047 0 0.042 0 0.007 0 0.003
jpeg.3184.107 109 1845 5220 411 0 0.093 0 0.057 1 0.036 4 0.040
jpeg.3195.85 87 2359 2769 13 5674 897.312 9 2.992 6 2.940 6 3.062
jpeg.3198.93 95 2660 3357 140 401 9.704 27 0.334 68 0.551 162 2.742
jpeg.3203.135 137 2549 8352 507 7 0.125 6 0.075 1 0.028 0 0.022
jpeg.3740.15 17 237 35 33 0 0.031 33 0.099 31 0.098 5 0.019
jpeg.4154.36 38 651 445 74 0 0.063 0 0.014 4 0.036 65 0.526
jpeg.4753.54 56 940 1184 146 6 0.109 0 0.010 0 0.011 0 0.004
susan.248.197 199 3232 18495 588 0 0.125 1 0.063 0 0.048 0 0.053
susan.260.158 160 2795 11649 472 0 0.141 4 0.142 8 0.178 7 0.137
susan.343.182 184 2923 15759 468 19 0.359 12 0.355 8 0.203 13 0.365
typeset.10192.123 125 4558 5767 241 0 0.500 42 0.909 103 1.371 96 1.159
typeset.10835.26 28 573 132 60 0 0.031 0 0.002 0 0.001 0 0.001
typeset.12395.43 45 1130 513 125 0 0.078 0 0.004 0 0.003 0 0.003
typeset.15087.23 25 346 167 89 0 0.047 4 0.013 3 0.022 2 0.012
typeset.15577.36 38 783 390 93 0 0.015 0 0.002 0 0.002 0 0.017
typeset.16000.68 70 1990 1588 67 144 7.172 424 5.393 3 1.123 9 0.151
typeset.1723.25 27 603 86 54 21 0.110 127 0.888 117 0.558 106 0.528
typeset.19972.246 248 1797 30419 979 0 0.062 0 0.093 0 0.078 0 0.083
typeset.4391.240 242 2463 28620 837 0 0.094 2 0.105 1 0.083 1 0.087
typeset.4597.45 47 1268 533 133 0 0.031 0 0.009 0 0.051 0 0.004
typeset.4724.433 435 3354 93961 1819 0 0.172 0 0.038 0 0.372 0 0.405
typeset.5797.33 35 422 445 93 0 0.032 0 0.037 0 0.003 0 0.009
typeset.5881.246 248 2247 30187 979 0 0.343 14 0.255 5 0.133 19 0.295

Average 233 33.965 26 0.453 13 0.304 18 0.370
Future work to enhance the performance of the B&B algorithm will
e related to the use of different subgradient methods (e.g. Projected
Subgradient methods), and different step size rules. Moreover, different
pruning and branching techniques can be devised for the evolution of
the search-tree. Finally, different formulations of the problem could be
considered.
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