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In this paper, we define the homological Morse numbers of a filtered cell complex in 
terms of relative homology of nested filtration pieces, and derive inequalities relating 
these numbers to the Betti tables of the multi-parameter persistence modules 
of the considered filtration. Using the Mayer-Vietoris spectral sequence we first 
obtain strong and weak Morse inequalities involving the above quantities, and then 
we improve the weak inequalities achieving a sharp lower bound for homological 
Morse numbers. Furthermore, we prove a sharp upper bound for homological Morse 
numbers, expressed again in terms of the Betti tables.
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1. Introduction

Topological data analysis [4] relies on algebraic topology to extract complex information from data, with 
the aim of recognizing complicated patterns, inferring the topological structure underlying the data or, more 
generally, complementing and enhancing standard techniques in data analysis. Persistent homology, one of 
the most successful methods of topological data analysis, summarizes the topology of the data at multiple 
scales, controlled by one measured parameter, and produces informative signatures based on homology [28]. 
As understanding complex correlations in multivariate data is one of the general goals of data analysis, 
the development of a multivariate version of persistent homology, called multi-parameter persistence or 
multi-persistence [7] is drawing increasing interest.

In persistent homology and multi-parameter persistence, algebraic objects called persistence modules are 
used to encode the data in a suitable way for the extraction of topological invariants. Typically, persistence 
modules are obtained from datasets endowed with measurements via an intermediate step, in which a com-
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binatorial or topological object (e.g., a simplicial complex or, more generally, a cell complex) is constructed 
from the data points. As data are discrete, without loss of generality from the algebraic point of view, we can 
use elements of Zn (n ≥ 1) to encode the values of n measurements. Filtering the given data according to 
increasing values of the measurements (in the coordinate-wise partial order of Zn), and applying homology, 
one obtains the corresponding n-parameter persistence module [28].

In the literature, the study of persistence modules has been tackled mainly from two different perspectives. 
In the first works appeared in the literature about persistence theory, a dataset was encoded as a manifold, 
and the measurements on it as a Morse function on it. In this perspective, persistence can be grounded in 
Morse theory, with persistence modules determined by pairs of critical points of functions that give birth and 
death to a topological feature [2,10,13,29]. This paradigm has also a combinatorial counterpart developed 
for accelerating computations and based on discrete Morse theory [1,26]. In the combinatorial setting the 
role of critical points is played by critical cells.

From a different standpoint, it was soon realized that the persistent homology of a filtered finite simplicial 
complex is simply a particular graded module over a polynomial ring [32]. Therefore, forgetting about the 
data and the measurements that yield them, persistence modules can be studied using tools of commutative 
algebra. In particular, new invariants for persistence modules can be obtained by considering the Betti 
tables1 of a minimal free resolution of theirs [7]. There is, however, an important difference between the study 
of n-parameter persistence modules and the classical commutative algebra approach to graded modules: n-
parameter persistence modules are usually obtained as the homology of a cell complex associated with data, 
and the connection between the algebraic object and the underlying cell complex is part of the investigation. 
The focus of the present article is precisely on the relation between the invariants of n-parameter persistence 
modules and the filtered cell complex from which it is obtained.

When the number of filtering parameters n is equal to 1, this dual perspective is easily interpreted by 
noticing that births are captured by the 0th Betti table and deaths by the 1st Betti table of persistence 
modules. Persistence theory is thus a canonical way of pairing births and deaths.

For n ≥ 2 things get more complicated as there is no way of paring births and deaths in a natural way, 
and Betti tables do not mirror entrance of critical cells in the filtration. In [19], this is heuristically explained 
by the presence of virtual critical cells.

Borrowing from the terminology of discrete Morse theory, where Morse numbers are defined as the number 
of critical cells in the various dimensions, we introduce the notion of a homological Morse number (see below 
and Section 2.3) to mean the dimension of the homology of a piece of the filtration relative to the union of 
all the pieces entered before.

The main goal of the present paper is to provide insights on the interplay between the values of the Betti 
tables of a persistence module in any number n ≥ 1 of parameters, and the homological Morse numbers of 
an n-filtration inducing it.

In order to do so, we consider persistence modules obtained applying the qth homology functor to an 
n-parameter filtration {Xu}u∈Zn of a finite cell complex X. The corresponding pth Betti table ξqp : Zn → N

is obtained as the pth homology of the Koszul complex associated with the persistence module, a strategy 
already used in [19] and later in [24]. As for the homological Morse numbers μq(u) of degree q at grade 
u ∈ Zn of the filtration, we define them as the dimension of the homology at grade u relative to the previous 
grades: μq(u) := dimHq(Xu, ∪jX

u−ej ). Informally, μq(u) is the number of critical cells of Xu − ∪jX
u−ej

whose entrance is reflected in a change of qth homology. More formally, the homological Morse number 
μq(u) can be seen as the “natural” lower bound, in terms of homology, for the number of critical cells of 
dimension q entering at grade u (see Section 2.3).

1 In commutative algebra Betti tables are often called (multi-graded) Betti numbers, but we prefer avoiding calling them so to 
avoid confusion with the Betti numbers of persistent homology groups.
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Under these assumptions, we present inequalities relating the homological Morse numbers μq(u) of a 
multi-filtration of a cell complex and the homology invariants of the Koszul complex of the persistence 
module obtained from it. In other words, we obtain Morse-type inequalities for multi-parameter persistence.

We start with the strong Morse inequalities according to which an alternating sum of the entries of the 
Betti tables of the persistence modules of X at grade u ∈ Zn (where the summation is on the homology 
degrees while the filtration grade is fixed) is bounded from above by an alternating sum of the homological 
Morse numbers of the filtration of X at grade u. This is Theorem 5.1:

Theorem. For each q ≥ 0, and each fixed grade u ∈ Zn, we have

q∑
i=0

(−1)q+iμi(u) ≥
q∑

i=0
(−1)q+i

(
ξi0(u) −

i+1∑
p=1

ξi+1−p
p (u)

)
.

As usual, the strong inequalities imply the weak Morse inequalities, given in Corollary 5.2:

Corollary. For each q ≥ 0, and each fixed grade u ∈ Zn, we have

μq(u) ≥ ξq0(u) −
q+1∑
p=1

ξq+1−p
p (u).

Moreover, we can define the Euler characteristic of a filtration at grade u by considering the relative 
homology of (Xu, ∪jX

u−ej ) and setting

χ(Xu,∪jX
u−ej ) :=

∑
q

(−1)q dimHq(Xu,∪jX
u−ej ).

It is interesting to see how this notion of Euler characteristic of a filtration relates to the Betti tables of 
its persistence modules. As shown in Theorem 6.2, for q large enough, the qth strong Morse inequality is 
actually an equality:

Theorem. χ(Xu, ∪jX
u−ej ) =

∑dimX+1
i=0 (−1)i

∑i
p=0 ξ

i−p
p (u).

The weak Morse inequalities of Corollary 5.2 are too weak to be also sharp. In order to achieve sharpness, 
we improve them by proving Theorem 7.3, which can be summarized as follows.

Theorem. For an n-parameter filtration {Xu}u∈Zn , for each grade u ∈ Zn, and for each q ≥ 0,

μq(u) ≥ ξq0(u) + ξq−1
1 (u) −

n−1∑
p=1

ξq−p
p+1(u) + R,

where R is a non-negative integer.

Examples are provided to show that these estimates are sharp for every number of parameters n. In 
particular, these inequalities show that a non-trivial pth Betti table at u does not need the entrance of 
a critical cell at u as the presence of positive and negative terms in the right-hand side compensate each 
other. This is different from what happens when n = 1. Indeed, in the case of a single parameter, the above 
inequalities reduce to μq(u) ≥ ξq0(u) + ξq−1

1 (u). Since in one-parameter persistence ξq0 counts the number of 
persistence births in homology of degree q, and ξq−1

1 counts the number of persistence death in homology 



4 A. Guidolin, C. Landi / Journal of Pure and Applied Algebra 227 (2023) 107319
of degree q − 1, these inequalities say that, when n = 1, in order to have a birth or a death we necessarily 
need the entrance of a critical cell, as is well known.

On the other hand, in Theorem 7.5 we also present the inverse inequalities, proven to be sharp as well, 
showing that a non-zero homological Morse number at grade u of the filtration necessarily causes some Betti 
table to become non-trivial:

Theorem. For an n-parameter filtration {Xu}u∈Zn , for each grade u ∈ Zn, and for each q ≥ 0, we have

μq(u) ≤
n∑

i=0
ξq−i
i (u).

We observe that when n = 1 these new bounds reduce to μq(u) ≤ ξq0(u) +ξq−1
1 (u). Here it is important to 

underline that these inequalities hold thanks to the fact that we are considering homological Morse numbers 
and not the numbers of all critical cells entering at u.

All the inequalities provided in this paper are obtained via the Mayer-Vietoris spectral sequence associated 
with a double complex built from the filtration of X. This strategy generalizes that of [22] where the 
particular case of n = 2 is studied applying the Mayer-Vietoris homology exact sequence. In particular, 
differently from papers like [5,17,23], where the Mayer-Vietoris spectral sequence is used in the context of 
single-parameter persistent homology to merge local data into global information, we work only locally at 
a fixed grade u of the multi-parameter filtration, but considering all the possible homology degrees.

At a basic level, our inequalities prove that a persistence module having “large” Betti tables at grade 
u does not necessarily come from a filtration with a large number of critical cells entering at u unless the 
pth Betti tables with p ≥ 2 are trivial. On the other hand, a large homological Morse number necessarily 
implies large values in the Betti tables of specific indices.

This is a more diversified behavior than the case n = 1, in which we have μq(u) = ξq0(u) + ξq−1
1 (u) by 

combining the inequalities introduced above. In other words, the homological Morse number of degree q is 
equal to the number of births in degree q plus the number of deaths in degree q − 1.

At a higher level, we believe our results are interesting from different perspectives. Firstly, in contrast 
to the state of the art in the literature where multi-parameter persistence modules are usually studied as 
obtained by applying homology in an arbitrary but fixed degree, our inequalities show the interplay among 
persistent homology modules at all the various homology degrees simultaneously. In particular, we can see 
that, contrary to one-parameter persistence where the entrance of a critical cell of dimension q can modify 
only the persistence modules in degree q or q − 1, for multi-parameter persistence the effect of its entrance 
may involve many more homology degrees.

Secondly, starting from Knudson’s observation in [19] about the fact that the Betti tables in multi-
parameter persistence are determined not only by elements corresponding to real critical cells in the 
filtration, but also by elements corresponding to virtual cells, our inequalities allow for a measure of the gap 
between the number of real critical cells and that of virtual critical cells.

Organization of the article. In Section 2 we review the needed background on cell complexes, Morse in-
equalities and persistence modules, and provide a brief description of the Mayer-Vietoris spectral sequence. 
In Section 3 we describe the Koszul complex of a multi-parameter persistence module and its Betti tables. 
In Section 4 we introduce the Mayer-Vietoris spectral sequence of a multi-parameter filtration and show 
its relation with the Betti tables. In Section 5 we derive Morse inequalities for multi-parameter persistence 
modules, which are applied in Section 6 to obtain Euler characteristic formulas for the relative homology 
of the filtration. In Section 7 we improve our Morse inequalities using the Mayer-Vietoris spectral sequence 
and show the sharpness of our lower and upper bound for homological Morse numbers in terms of the Betti 
tables.



A. Guidolin, C. Landi / Journal of Pure and Applied Algebra 227 (2023) 107319 5
2. Preliminaries

2.1. Chain complexes, cell complexes and homology

Let F be a fixed field. In this work, we consider bounded finitely generated chain complexes C∗ =
(Cq, ∂q)q∈Z over F , simply called chain complexes, meaning that Cq = 0 whenever q < 0 or q ≥ m, for 
some m ∈ N, and each Cq is a finite dimensional vector space over F . Let us further assume that a 
distinguished (finite) F -basis Xq of each Cq is given, so that Cq

∼=
⊕

σ∈Xq
Fσ. A chain complex C∗ endowed 

with such distinguished bases is called a based chain complex. We use the notation C∗(X) = (Cq(X), ∂q)q∈Z
to explicitly recall the fixed bases X of C∗. We can express the differentials ∂q : Cq(X) → Cq−1(X) with 
respect to the fixed bases as

∂q(τ) =
∑

σ∈Xq−1

κ(τ, σ)σ

for each τ ∈ Xq; in other words, for each τ ∈ Xq and σ ∈ Xq−1, we denote by κ(τ, σ) the coefficient with 
which σ appears in ∂q(τ).

The distinguished bases of C∗ inherit a combinatorial structure which coincides with the abstract notion 
of a cell complex as introduced by Lefschetz [21] (see also [18]). In topological data analysis, considering this 
equivalent combinatorial perspective is sometimes advantageous, since a cell complex is usually constructed 
from the data and hence interpretable in the concrete situation at hand. A cell complex is a finite graded 
set X = �q∈ZXq, whose elements are called cells, endowed with an incidence function κ : X ×X → F . A 
cell σ ∈ Xq is called a q-cell or a cell of dimension q, denoted dim σ = q. The dimension of X is defined 
as the maximum dimension of its cells. The incidence function must satisfy the following conditions: (i) 
κ(τ, σ) 	= 0 implies dim τ = dim σ+1, and (ii) for each τ and σ in X, it holds 

∑
ρ∈X κ(τ, ρ) ·κ(ρ, σ) = 0. We 

regard X as the graded poset endowed with the partial order ≤ generated by the covering relation σ < τ

whenever κ(τ, σ) 	= 0.
We underline that based chain complexes constitute a rather general setting, since chain complexes 

canonically associated with many combinatorial or topological objects (such as simplicial complexes, cubical 
complexes, finite CW complexes) fall within this definition.

As an example, an abstract simplicial complex Δ given by a collection of non-empty finite subsets of a 
given set S, with the property of being closed under taking subsets, can be regarded as a cell complex as 
follows: each σ ∈ Δ containing q + 1 elements can be viewed as a q-cell, and called a q-simplex, and in 
particular singletons are called vertices. Fixing an ordering for vertices induces an ordering on the elements 
of each simplex, and one can define the incidence function

κ(τ, σ) :=
{

(−1)i if σ is obtained from τ by removing its (i + 1)th element
0 otherwise

which induces the usual simplicial boundary map.
A collection of subsets Aq ⊆ Xq freely generates a chain subcomplex C∗(A) ⊆ C∗(X) if and only if 

A = �q∈ZAq is a subcomplex of X, meaning that, endowed with the restriction of the incidence function of 
X, it is a cell complex in its own right. Given a cell complex X and a subcomplex A ⊆ X, the relative chain 
complex C∗(X, A) is defined as the chain complex (Cq(X)/Cq(A), ∂′

q)q∈Z, with ∂′
q being the differential

induced by ∂q on the quotient.
Applying qth homology to a chain complex C∗ gives the F -module Hq(C∗) = ker ∂q/ im ∂q+1, denoted 

Hq(X) if the chain complex has a distinguished basis X. Analogously, the notation Hq(X, A) is used for 
homology of a relative chain complex C∗(X, A). In this paper, homology is always assumed to be over a 
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fixed field F , so that taking homology or relative homology of a complex always gives (finite-dimensional) 
F -vector spaces.

2.2. Standard Morse inequalities

Given a (non-negatively graded) chain complex C∗ = (Cq, ∂q) and setting cq := dimCq, the strong Morse 
inequalities are:

q∑
i=0

(−1)q+ici ≥
q∑

i=0
(−1)q+i dimHi(C∗), (2.1)

for all q ≥ 0. These inequalities are obtained via standard linear algebra by observing that the equations

dimHi(C∗) = dim ker ∂i − dim im ∂i+1 = ci − dim im ∂i − dim im ∂i+1,

for all i, imply that the difference between the left-hand side and the right-hand side of (2.1) is dim im ∂q+1. 
Strong inequalities imply weak Morse inequalities: cq ≥ dimHq(C∗) for all q ≥ 0. As is well known, they are 
obtained simply by observing that cq =

∑q
i=0(−1)q+ici +

∑q−1
i=0 (−1)q−1+ici and applying the corresponding 

strong inequalities.
Moreover, if C∗ is bounded, for values of q sufficiently large the strong inequalities are actually equalities 

involving the Euler characteristic χ(C∗) :=
∑

q≥0(−1)qcq of C∗: it holds that

χ(C∗) =
∑
q≥0

(−1)q dimHq(C∗).

Weak Morse inequalities represent constraints on the number of generators of a chain complex C∗, which 
can be improved by replacing C∗ with a chain complex quasi-isomorphic to it with less generators. This 
strategy is used, for example, in [12] where, endowing a regular cell complex X with a discrete Morse 
function f , C∗(X) is shown to be quasi-isomorphic to the Morse complex containing only the critical cells 
of f . Thus, cq can be taken to coincide with the number of critical cells of f with dimension q. Similarly, in 
the case of a PL Morse function defined on a simplicial complex, strong and weak inequalities hold with cq
being the number of critical vertices of index q [8].

2.3. Multi-filtrations and multi-parameter persistence

Persistent homology was originally introduced as a method to encode in a single object the evolution of 
the homology of a family of nested cell complexes (usually simplicial complexes) parametrized by a linearly 
ordered set of indexes, such as the integers or the reals [2,10,13,29]. Later it became clear that families of 
nested complexes parametrized over other sets of indices can be equally relevant (see, e.g., [28] for a review). 
In particular, multi-persistence [7] treats the case of integer parameters along multiple directions, that is a 
grid. This is the setting we consider here.

For an integer n ≥ 1, indicating the grid dimension, we denote by [n] the set {1, 2, . . . , n}, by {ej}j∈[n]
the standard basis of Zn, and by � the coordinate-wise partial order on Zn: if u = (ui), v = (vi) ∈ Zn, we 
write u � v if and only if ui ≤ vi, for all 1 ≤ i ≤ n.

An n-parameter persistence module V consists in a collection {V u}u∈Zn of F -vector spaces and a collection 
{ϕu,v : V u → V v}u�v∈Zn of linear maps such that ϕu,w = ϕv,w◦ϕu,v whenever u � v � w, and ϕu,u = idV u , 
for all u.

In applications, persistence modules usually originate from filtrations of cell complexes. An n-filtration
of a complex X is a family X = {Xu}u∈Zn of subcomplexes of X such that Xu ⊆ Xv whenever u � v. If 
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n > 1 we refer to X = {Xu}u∈Zn generically as a multi-filtration, as opposed to the case n = 1 that is called 
simply a (single-parameter) filtration. The index u ∈ Zn is called a filtration grade. If σ ∈ Xu−

⋃n
j=1 X

u−ej , 
then u is called an entrance grade of σ in X . The dimension of X is, by definition, the dimension of X.

Throughout this article, we make the important assumption that all filtrations X = {Xu}u∈Zn we 
consider arise from the sublevel sets of an order-preserving function f : (X, ≤) → (Zn, �), where the partial 
order on X is defined in Section 2.1. This means that Xu = {σ ∈ X | f(σ) � u}, for every u ∈ Zn. In 
topological data analysis, such a filtration of a cell complex X is usually called one-critical [6] because every 
cell σ ∈ X admits exactly one entrance grade. In what follows, this assumption on filtrations will be crucial, 
as it ensures that, for each subset σ ⊆ [n], setting eσ =

∑
j∈σ ej , we have

⋂
j∈σ

Xu−ej = Xu−eσ . (2.2)

Additionally, we assume all filtrations to be bounded by requiring that Xu 	= ∅ implies 0 � u, and that 
Xu = X whenever u is sufficiently large.

Applying the qth homology functor to an n-filtration X = {Xu}u∈Zn yields the n-parameter persistent 
homology module Vq = {V u

q , ιu,vq }u�v∈Zn , with V u
q = Hq(Xu) and ιu,vq : Hq(Xu) → Hq(Xv) induced by 

the inclusion maps Xu ↪→ Xv for u � v. We denote this persistence module by Vq = Hq(X ). Inspired 
by the one-parameter situation where a critical filtration grade is characterized by the property that the 
relative homology of the pair (Xu, Xu−1) is non-trivial (cf., e.g., [11]), a grade u ∈ Zn of a multi-filtration 
X = {Xu}u∈Zn will be said to be a critical filtration grade of index q if Hq(Xu, ∪jX

u−ej ) is non-trivial. 
Clearly, critical filtration grades are a subset of entrance grades. We call the number

μq(u) := dimHq(Xu,∪n
j=1X

u−ej ) (2.3)

the homological Morse number of degree q at u ∈ Zn. Informally, we can think of μq(u) as the number of 
critical cells whose entrance at u ∈ Zn has an effect on qth homology of the filtration. The connection with 
the number of critical cells with entrance grade u, as defined in discrete Morse theory [12,20] (with the notion 
of critical depending on the choice of a discrete gradient vector field, also called an acyclic matching), can 
be made rigorous. Let mq(u) denote the qth Morse number at u of the filtration X , defined as the number 
of critical q-cells with entrance grade u; then mq(u) ≥ μq(u) [22, Prop. 1], for every choice of an acyclic 
matching used to define mq(u).

2.4. The Mayer-Vietoris spectral sequence

In this subsection we provide a brief description of the Mayer-Vietoris spectral sequence. We follow [3, 
Ch. VII] and adapt the construction to the case of cell complexes. The Mayer-Vietoris spectral sequence is a 
particular case of a spectral sequence associated with a double complex, a standard construction that can be 
found in most books on homological algebra (see for example [25,30,31]). More details on the Mayer-Vietoris 
spectral sequence in our situation of interest are given in Section 4.

Let X be a cell complex (as defined in Section 2.1) and let {Xj}j∈J be a collection of subcomplexes of 
X, with J a totally ordered index set. The Mayer-Vietoris spectral sequence relates the homology of the 
union of the collection ∪j∈JX

j with the homology of the subcomplexes Xj and their intersections ∩j∈σX
j

for σ ⊆ J . The nerve Σ of the collection {Xj}j∈J is defined as the abstract simplicial complex of all σ ⊆ J

such that ∩j∈σX
j 	= ∅. For all p ≥ 0 we denote Σp the set of p-simplices of Σ, which are of the form 

σ = {j1 < · · · < jp+1}. For all p, consider the chain complexes

Cp,∗ =
⊕

C∗(∩j∈σX
j)
σ∈Σp
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with differential maps

δp,∗ : Cp,∗ → Cp−1,∗ (2.4)

between them defined as follows: for 1 ≤ 
 ≤ p + 1 and σ = {j1 < · · · < jp+1} consider ∂�σ :=
{j1, . . . , ̂j�, . . . , jp+1}, obtained by removing j�; then, for p ≥ 1, observe that the inclusions C∗(∩j∈σX

j) ↪→
C∗(∩j∈∂�σX

j) induce chain maps δ(�)
p,∗ : Cp,∗ → Cp−1,∗ and define δp,∗ :=

∑p
i=0(−1)iδ(p+1−i)

p,∗ . A chain map 
ε∗ = δ0,∗ : C0,∗ → C∗(∪j∈JX

j) is induced in a similar way by the inclusions C∗(Xj) ↪→ C∗(∪j∈JX
j). To 

facilitate our manipulations in the following sections, in the definition of δp,∗ we made a different choice 
from [3] regarding the alternating signs, which leads however to an isomorphic construction of the double 
complex.

The following sequence of chain complexes is exact (see [3]):

0 ←− C∗(∪j∈JX
j) ε∗←− C0,∗

δ1,∗←−− C1,∗ ←− · · · ←− Cp−1,∗
δp,∗←−− Cp,∗ ←− · · · (2.5)

We note that if the index set J is finite and m = |J |, then Cp,∗ = 0 for all p ≥ m. We will henceforth refer 
to the sequence of chain complexes C0,∗

δ1,∗←−− · · · δp,∗←−− Cp,∗ ←− · · · as the truncation of the exact sequence 
(2.5). As a consequence of the definitions, this is a double complex

Cp,q =
⊕
σ∈Σp

Cq(∩j∈σX
j)

with the horizontal differential δp,q : Cp,q → Cp−1,q we just introduced, and the vertical differential ∂p,q :
Cp,q → Cp,q−1 induced by the differential of C∗(X), with a sign change of (−1)p to ensure that squares 
are anticommutative (that is, ∂p−1,qδp,q + δp,q−1∂p,q = 0), which is the convention we choose for double 
complexes in this article.

Let T∗ denote the total complex of the double complex {Cp,q, δp,q, ∂p,q}p,q∈Z, which is the chain complex 
with chain groups Tk and differentials dTk are defined by

Tk :=
⊕

p+q=k

Cp,q, dTk :=
∑

p+q=k

(δp,q + ∂p,q).

The Mayer-Vietoris spectral sequence of the collection {Xj}j∈J is defined as the spectral sequence associated 
with the first filtration F I

p of T∗ (see e.g. [30, Ch. 10] for details), given by F I
pTk :=

⊕
i≤p Ci,k−i, with 

differentials induced by dT . The Mayer-Vietoris spectral sequence converges to the homology H∗(∪j∈JX
j)

of the union ∪j∈JX
j , since it can be shown [3] that H∗(T∗) ∼= H∗(∪j∈JX

j).

3. The Koszul complex of persistence and its Betti tables

The direct analysis of an n-parameter persistence module when n > 1 is in general quite complicated due 
to the lack of a finite or at least tame family of indecomposable summands for such objects, as proved by 
Gabriel in [14]. Hence, one often resorts to simpler albeit incomplete algebraic invariants of a persistence 
module. In this paper we focus on the Betti tables (also called multi-graded Betti numbers) of a persistence 
module, calculated via the homology of its Koszul complex.

Betti tables have been studied since early works on multi-parameter persistence [7,19] where it was noted 
that there is an equivalence between the category of n-parameter persistence modules and the category 
of n-graded modules over the polynomial ring S := F [x1, . . . , xn]. Explicitly, the correspondence takes 
a persistence module {V u, ϕu,v} to the n-graded S-module 

⊕
u∈Zn V u with the action of S defined by 

xi · z = ϕu,u+ei(z), for all z ∈ V u and all i ∈ [n]. This correspondence allows for the use of tools from 
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commutative algebra to study persistence modules. We refer the reader to [27] for background on such 
invariants for n-graded modules, while here we adopt the point of view of persistence modules.

Given an n-parameter persistence module V , and regarding it as an n-graded S-module V =
⊕

u∈Zn V u

via the equivalence of categories mentioned above, the ith Betti table (or multi-graded Betti numbers) of V
is defined as ξi : Zn → N with

ξi(u) = dimF (TorSi (V,F)(u)),

for all u ∈ Zn and all i ∈ {0, 1, . . . , n}, where TorSi (V, F)(u) is the part of grade u of TorSi (V, F) viewed as an 
n-graded S-module. By definition of TorSi (V, F), the ith Betti table ξi(u) of V at u can thus be calculated 
by applying the functor − ⊗S F to a free resolution of V , taking ith homology of the resulting chain complex 
and considering the dimension over F of the part of grade u of the homology module.

The general property TorSi (V, F) ∼= TorSi (F , V ) from homological algebra (see, e.g., [30, Theorem 7.1]) 
provides an alternative way to calculate the ith Betti table of V by applying the functor − ⊗S V to a free 
resolution of F and taking ith homology. This yields an equivalent definition of the Betti tables of V based 
on its Koszul complex. Given an n-graded S-module V =

⊕
u∈Zn V u, the Koszul complex of V at grade 

u ∈ Zn, denoted K∗(x1, . . . , xn; V )(u), is the part of grade u of the (n-graded) chain complex K∗ ⊗S V , 
where K∗ = K∗(x1, . . . , xn) is the classical Koszul complex of S, defined for example in [27, Def. 1.26] or 
[9, Ch. 17.2]. Below, we provide an explicit definition of K∗(x1, . . . , xn; V )(u). Since K∗ is a (minimal) free 
resolution of F ∼= S/〈x1, . . . , xn〉 [27, Prop. 1.28], as observed above the ith homology module of the chain 
complex K∗ ⊗S V has dimensions (over F) in the various grades u ∈ Zn coinciding with the Betti table ξi
of V . In other words, for each u ∈ Zn,

ξi(u) = dimF Hi(K∗(x1, . . . , xn;V )(u)).

For our purposes, we focus on the Betti tables ξqi of the persistent homology module Vq arising from the 
qth homology of a filtration {Xu}u∈Zn . For each i ∈ {0, 1, . . . , n}, the module appearing in degree i in the 
chain complex K∗(x1, . . . , xn; Vq)(u) is

Ki(x1, . . . , xn;Vq)(u) =
⊕
|σ|=i

Hq(Xu−eσ) (3.1)

with eσ :=
∑

j∈σ ej and σ ⊆ [n]. The modules Ki(x1, . . . , xn; Vq)(u) are zero for all i /∈ {0, 1, . . . n}. The 
differentials of K∗(x1, . . . , xn; Vq)(u) are defined in terms of the maps ιv,wq : Hq(Xv) → Hq(Xw) that define 
Vq as follows: the restriction of

di : Ki(x1, . . . , xn;Vq)(u) → Ki−1(x1, . . . , xn;Vq)(u) (3.2)

to each direct summand Hq(Xu−eσ ) of its domain, with σ = {j1 < j2 < . . . < ji}, is

di| =
i−1∑
r=0

(−1)rι
u−eσ,u−e∂i−rσ

q ,

where ∂i−rσ := {j1, . . . , ̂ji−r, . . . , ji}. As we said, ξqi (u) can be defined as the dimension (over F) of the ith 
homology module of K∗(x1, . . . , xn; Vq)(u).

Let us examine the map d1 in the Koszul complex. This map, sometimes called the merge map and 
denoted meruq , is the composition of the available maps εuq followed by iuq , making the diagram
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⊕
j Hq(Xu−ej ) Hq(∪jX

u−ej )

Hq(Xu)
meruq =d1

εuq

iuq (3.3)

commute. Here, εuq is the map induced by the obvious inclusions, whose restriction to each direct summand 
Hq(Xu−ej ) of the domain is the map Hq(Xu−ej ) → Hq(∪jX

u−ej ) induced in homology by Xu−ej ↪→
∪jX

u−ej . The map iuq is induced in homology by the inclusion ∪jX
u−ej ↪→ Xu.

4. The Mayer-Vietoris spectral sequence of a multi-filtration

Let {Xu}u∈Zn be an n-parameter filtration of a cell complex X. For a fixed grade u ∈ Zn of this filtration, 
consider the collection of cell subcomplexes {Xu−ej}j∈[n]. If n = 2, it is well-known that there is a short 
exact sequence

0 −→ C∗(Xu−e1 ∩Xu−e2) −→ C∗(Xu−e1) ⊕ C∗(Xu−e2) −→ C∗(Xu−e1 ∪Xu−e2) −→ 0

inducing in homology the Mayer-Vietoris long exact sequence, which clarifies the relation between the ho-
mology of Xu−e1 ∩Xu−e2 , Xu−e1 , Xu−e2 and Xu−e1 ∪Xu−e2 . This can be generalized for n > 2 via the 
Mayer-Vietoris spectral sequence relating the homology of ∩j∈σX

u−ej , for all σ ⊆ [n], to the homology of 
∪j∈[n]X

u−ej . Even if the Mayer-Vietoris spectral sequence can be defined for general collections of subcom-
plexes as seen in Section 2.4, in this article we will focus on the collection {Xu−ej}j∈[n] for a fixed grade 
u ∈ Zn. Here, we provide more details on the Mayer-Vietoris spectral sequence associated with the collection 
of subcomplexes {Xu−ej}j∈[n], in preparation to describe the connection with the Koszul complex.

Given an n-parameter filtration {Xu}u∈Zn , fix a grade u ∈ Zn and consider the collection of subcomplexes 
{Xu−ej}j∈[n]. Considering the intersections of all possible subcollections of {Xu−ej}, we can define a double 
complex C∗,∗ = {Cp,q, δp,q, ∂p,q}p,q∈Z with

Cp,q :=
{⊕

|σ|=p+1 Cq(∩j∈σX
u−ej ) if p, q ≥ 0

0 otherwise,
(4.1)

for σ ⊆ [n], and with the two differentials δp,q : Cp,q → Cp−1,q and ∂p,q : Cp,q → Cp,q−1 defined as in 
Section 2.4. The Mayer-Vietoris spectral sequence is the (first quadrant) spectral sequence associated with 
the filtration {F I

pT∗ =
⊕

i≤p Ci,∗−i}p∈Z of the total complex T∗ of C∗,∗, and it converges to H∗(T∗) ∼=
H∗(∪j∈[n]X

u−ej ). Let us recall (see e.g. [30,31]) that convergence of the spectral sequence to H∗(T∗) is 
expressed by isomorphisms E∞

p,q
∼= FpHk(T∗)/Fp−1Hk(T∗), for all p, q and k = p +q, where {FpH∗(T∗)}p∈Z

is the induced filtration on H∗(T∗) defined by

FpHk(T∗) := im(fp
k : Hk(F I

pT∗) → Hk(T∗)), (4.2)

with fp
k being the map induced by the inclusion F I

pT∗ ↪−→ T∗.
A key observation for this work is that, as we showed in (2.2), the one-criticality assumption on the 

n-parameter filtration ensures that ∩j∈σX
u−ej = Xu−eσ , with eσ :=

∑
j∈σ ej , for each σ ⊆ [n]. Keeping 

this in mind, we want to explicitly describe the low-degree pages of the spectral sequence, as is possible for 
spectral sequences associated with double complexes (see e.g. [30,31]).

The 0-page of the Mayer-Vietoris spectral sequence associated with the collection {Xu−ej}j∈[n] has terms 
E0

p,q = Cp,q =
⊕

|σ|=p+1 Cq(Xu−eσ ) and differentials d0
p,q = ∂p,q : Cp,q → Cp,q−1 induced by the differentials 

of C∗(X), up to a (−1)p sign change (see Section 2.4). The terms of the 1-page are therefore
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E1
p,q = Hq(Cp,∗) = Hq

( ⊕
|σ|=p+1

C∗(Xu−eσ)
)
∼=

⊕
|σ|=p+1

Hq(Xu−eσ ).

Let us explicitly write the 1-page of the Mayer-Vietoris spectral sequence in our setting:

...
...

...

E1
0,q =

⊕
j Hq(Xu−ej ) E1

1,q =
⊕

j<h Hq(Xu−ej−eh) · · · E1
n−1,q = Hq(Xu−e[n])

...
...

...

E1
0,1 =

⊕
j H1(Xu−ej ) E1

1,1 =
⊕

j<h H1(Xu−ej−eh) · · · E1
n−1,1 = H1(Xu−e[n])

E1
0,0 =

⊕
j H0(Xu−ej ) E1

1,0 =
⊕

j<h H0(Xu−ej−eh) · · · E1
n−1,0 = H0(Xu−e[n])

δ1,q δ2,q δn−1,q

δ1,1 δ2,1 δn−1,1

δ1,0 δ2,0 δn−1,0

We display only the first quadrant p, q ≥ 0, since elsewhere the terms E1
p,q are null. Moreover, the columns of 

indices p = 0, 1, . . . , n − 1 we showed in the diagram are the only (possibly) non-null ones. The differentials 
d1
p,q : E1

p,q → E1
p−1,q are the maps induced in homology by the horizontal differentials δp,q of the double 

complex, which we denote δp,q. Explicitly, the differential

d1
p,q = δp,q : E1

p,q
∼=

⊕
|σ|=p+1

Hq(Xu−eσ) −→ E1
p−1,q

∼=
⊕
|τ |=p

Hq(Xu−eτ ) (4.3)

is the linear map acting on each direct summand Hq(Xu−eσ ) of the domain by

d1
p,q| =

p∑
i=0

(−1)iι
u−eσ,u−e∂p+1−iσ

q ,

where ι
u−eσ,u−e∂�σ
q denotes the map induced in qth homology by the inclusion C∗(Xu−eσ) ↪→ C∗(Xu−e∂�σ ), 

for each for 1 ≤ 
 ≤ p + 1. Let us recall that, if σ = {j1 < · · · < jp+1}, we denote ∂�σ := {j1 < · · · <
ĵ� < · · · < jp+1}. We observe that each row in the 1-page {E1

p,q, d
1
p,q}p,q∈Z is the truncation of a Koszul 

complex, for each degree q of homology. More precisely, the qth row {E1
p,q, d

1
p,q}p∈Z is a truncated version of 

the Koszul complex K∗(x1, . . . , xn; Vq)(u), with the chain group K0(x1, . . . , xn; Vq)(u) = Hq(Xu) replaced 
by the zero vector space. We will prove the details of this claim in Proposition 4.1.

We obtain the 2-page of the Mayer-Vietoris spectral sequence by taking homology of the horizontal chain 
complexes in the 1-page. For our purposes, we are not as interested in its terms as we are in their dimensions 
(as vector spaces), which we express as follows in terms of the Betti tables ξqi (u), dropping in the notation 
the dependence on u for readability’s sake:
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...
...

...

dimE2
0,q = dim im merq +ξq1 dimE2

1,q = ξq2 · · · dimE2
n−1,q = ξqn

...
...

...

dimE2
0,1 = dim im mer1 +ξ1

1 dimE2
1,1 = ξ1

2 · · · dimE2
n−1,1 = ξ1

n

dimE2
0,0 = dim im mer0 +ξ0

1 dimE2
1,0 = ξ0

2 · · · dimE2
n−1,0 = ξ0

n

As before, we have only n (possibly) non-null columns, corresponding to p = 0, . . . , n −1. For 1 ≤ p ≤ n −1, 
it is clear why the multi-graded Betti numbers appear in the table, since they are defined as the dimension 
of the homology groups of the Koszul complex. In Proposition 4.1 we prove the equalities in the column 
p = 0, upon rigorously checking the claims we made regarding the 1-page.

Proposition 4.1. For each q ≥ 0, the qth row {E1
p,q, d

1
p,q}p∈Z of the 1-page of the Mayer-Vietoris 

spectral sequence associated with {Xu−ej}j∈[n] coincides with the truncation of the Koszul complex 
K∗+1(x1, . . . , xn; Vq)(u). The terms of the 2-page have dimension

dimE2
p,q =

⎧⎪⎨
⎪⎩

dim im meruq +ξq1(u) if p = 0
ξqp+1(u) if 1 ≤ p ≤ n− 1
0 otherwise

Proof. For all p, q ≥ 0, it is clear that E1
p,q =

⊕
|σ|=p+1 Hq(Xu−eσ) coincides with Kp+1(x1, . . . , xn; Vq)(u) as 

defined in (3.1). Comparing the explicit description (4.3) of the differentials d1
p,q = δp,q with the differentials 

dp of the Koszul complexes K∗(x1, . . . , xn; Vq)(u), defined in (3.2), we observe that they coincide up to a 
shift in grading: δp,q = dp+1, for all p ≥ 1.

Since E2
p,q

∼= ker d1
p,q/ im d1

p+1,q for all p, q ≥ 0, it follows that dimE2
p,q = ξqp+1(u) for all p ≥ 1. We remark 

that dimE2
p,q = ξqp+1(u) = 0 if p ≥ n. It is also clear that dimE2

p,q = 0 if p < 0. If p = 0, as an effect of the 
truncation of the Koszul complex (which clearly does not affect the other columns) we have

dimE2
0,q = dim (K1(x1, . . . , xn;Vq)(u)/imd2)

= dim
(
⊕jHq(Xu−ej )/imδ1,q

)
= dim(⊕jHq(Xu−ej )) − dim imδ1,q

= dim im meruq + dim ker meruq − dim imδ1,q

= dim im meruq + ξq1(u),

where the last two equalities follow from the existence of the differential

d1 = meruq : K1(x1, . . . , xn;Vq)(u) = ⊕jHq(Xu−ej ) −→ K0(x1, . . . , xn;Vq)(u) = Hq(Xu)

in the non-truncated Koszul complex. �
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Remark 4.2. Since dim im meruq = dimHq(Xu) − ξq0(u), if p = 0 the statement of Proposition 4.1 can be 
equivalently expressed as dimE2

0,q = dimHq(Xu) − ξq0(u) + ξq1(u).

Let us now focus on convergence and on the ∞-page of the Mayer-Vietoris spectral sequence.

Proposition 4.3. Let {Xu}u∈Zn be an n-parameter filtration. The Mayer-Vietoris spectral sequence of 
{Xu−ej}j∈[n], for a fixed grade u ∈ Zn, has En

p,q = E∞
p,q, for all p, q, and

Hk(∪jX
u−ej ) ∼=

⊕
p+q=k

En
p,q =

k⊕
i=0

En
i,k−i, (4.4)

for all k ≥ 0.

Proof. Since Er
p,q = 0 for all q and r whenever p < 0 or p ≥ n, for each term En

p,q both the incoming 
differential dnp+n,q−n+1 : En

p+n,q−n+1 → En
p,q and the outgoing differential dnp,q : En

p,q → En
p−n,q+n−1 are 

trivial, so En
p,q = En+1

p,q = · · · = E∞
p,q. We saw in Section 2.4 that the spectral sequence converges to 

H∗(T∗) ∼= H∗(∪jX
u−ej ). Recall that E∞

p,q
∼= FpHk(T∗)/Fp−1Hk(T∗), for every p, q and k = p + q, where 

{FpH∗(T∗)}p∈Z is the filtration on H∗(T∗) defined by (4.2). Since the spectral sequence is in the first 
quadrant, we have 

⊕k
i=0 E

n
i,k−i =

⊕k
i=0 E

∞
i,k−i

∼= Hk(T∗). �
Let us now consider diagram (3.3) and observe that, for the Mayer-Vietoris spectral sequence associated 

with {Xu−ej}j∈[n], the map εuq is induced in homology by the chain map ε∗ :
⊕

j C∗(Xu−ej ) → C∗(∪jX
u−ej )

induced by the inclusions Xu−ej ↪→ ∪jX
u−ej . We end this section by showing in Theorem 4.5 that the 

image of εuq is isomorphic to the term E∞
0,q of the spectral sequence. We first need to state a general result 

in homological algebra [3, p. 165–166], a proof of which can be found, in a cohomological setting, in [16, 
III.7, Lemma 12].

Lemma 4.4. Let C∗,∗ = {Cp,q, δp,q, ∂p,q} be a first quadrant double complex with associated total complex T∗, 
let K∗ be a chain complex and let ε∗ : C0,∗ → K∗ be a chain map. Assume that

0 ←− K∗
ε∗←− C0,∗

δ1,∗←−− C1,∗ ←− · · · ←− Cp−1,∗
δp,∗←−− Cp,∗ ←− · · ·

is an exact sequence of chain complexes. Consider the induced chain map ε̃∗ : T∗ → K∗ defined by the maps 
ε̃k : Tk = C0,k ⊕ · · · ⊕ Ck,0 → Kk sending (c0, . . . , ck) to εk(c0). Then ε̃∗ induces isomorphisms

Hk(ε̃∗) : Hk(T∗) → Hk(K∗)

in homology, for each k ∈ Z.

Theorem 4.5. The terms of the ∞-page of the Mayer-Vietoris spectral sequence of {Xu−ej}j∈[n] having index 
p = 0 satisfy

E∞
0,q

∼= im
(
εuq :

⊕
j

Hq(Xu−ej ) → Hq(∪jX
u−ej )

)
. (4.5)

Proof. The Mayer-Vietoris spectral sequence is the spectral sequence associated with the filtration {F I
pT∗ =⊕

i≤p Ci,∗−i}p∈Z of the total complex T∗ of the double complex C∗,∗ introduced in (4.1). Consider the 
induced filtration {FpH∗(T∗)}p∈Z on H∗(T∗) defined as in (4.2). Since C∗,∗ is a first quadrant double 
complex, FpHk(T∗) = 0 whenever p < 0. In particular, for p = 0 we have
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E∞
0,q

∼= F0Hq(T∗)
F−1Hq(T∗)

= F0Hq(T∗) = im(f0
q : Hq(F I

0T∗) → Hq(T∗)). (4.6)

We complete the proof by showing that im f0
q
∼= im εuq . Since F I

0T∗ = C0,∗ and the chain map ε∗ : C0,∗ →
C∗(∪jX

u−ej ) fits into the exact sequence (2.5), we can apply Lemma 4.4 and conclude that the induced 
map ε̃∗ : T∗ → C∗(∪jX

u−ej ), which makes the triangle

C0,∗ T∗

C∗(∪jX
u−ej )

ε∗
ε̃∗

commutative, induces isomorphisms in homology. By applying qth homology and observing that Hq(C0,∗) =⊕
j Hq(Xu−ej ) we obtain the commutative triangle

⊕
j Hq(Xu−ej ) Hq(T∗)

Hq(∪jX
u−ej )

εuq

f0
q

∼=

which combined with (4.6) completes the proof. �
5. Morse inequalities for persistence modules

Inspired by the standard Morse inequalities reviewed in Section 2.2, our goal in this section is to prove 
analogous inequalities for persistence modules obtained from an underlying (multi)-filtered cell complex 
X = {Xu}u∈Zn , n ≥ 1:

Theorem 5.1. For each q ≥ 0, and each fixed grade u ∈ Zn, we have

q∑
i=0

(−1)q+iμi(u) ≥
q∑

i=0
(−1)q+i

(
ξi0(u) −

i+1∑
p=1

ξi+1−p
p (u)

)
,

with μq(u) = dimHq(Xu, ∪jX
u−ej ), ξqp(u) = dimHp(K∗(x1, . . . , xn; Vq)(u)), and Vq = Hq(X ).

In our setting, the right-hand side of the inequality involves the Betti tables of the Koszul complex 
K∗(x1, . . . , xn; Vq) of the persistence modules Vq associated with a multi-filtration X of X. They play the 
same role as the Betti numbers in standard Morse inequalities. Similarly, the left-hand side involves the 
homological Morse numbers μq(u), defined (see Section 2.3) as the dimension of the q-th relative homology 
group of the pair (Xu, ∪jX

u−ej ).
Before proving the theorem, let us state as a consequence an analogue of the weak Morse inequalities 

which follow from the strong ones of Theorem 5.1 in the usual way (see Section 2.2).

Corollary 5.2. For each q ≥ 0, and each fixed grade u ∈ Zn, we have

μq(u) ≥ ξq0(u) −
q+1∑

ξq+1−p
p (u).
p=1
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Proof. Using the inequality of Theorem 5.1 for both q and q − 1 we obtain

μq(u) =
q∑

i=0
(−1)q+iμi(u) +

q−1∑
i=0

(−1)q−1+iμi(u)

≥
q∑

i=0
(−1)q+i

(
ξi0(u) −

i+1∑
p=1

ξi+1−p
p (u)

)
+

q−1∑
i=0

(−1)q−1+i

(
ξi0(u) −

i+1∑
p=1

ξi+1−p
p (u)

)

= ξq0(u) −
q+1∑
p=1

ξq+1−p
p (u). �

Let us now prove Theorem 5.1. First, let us recall a simple but useful fact.

Proposition 5.3. In an exact sequence of finite-dimensional vector spaces with a final zero

Ad
fd−→ Bd

gd−→ Cd
hd−→ Ad−1

fd−1−−−→ · · · h1−→ A0
f0−→ B0

g0−→ C0
h0−→ 0

we have

d∑
i=0

(−1)d+i dimAi +
d∑

i=0
(−1)d+i dimCi ≥

d∑
i=0

(−1)d+i dimBi.

Proof. Consider the exact sequence

0 → ker fd → Ad
fd−→ Bd

gd−→ Cd
hd−→ Ad−1

fd−1−−−→ · · · h1−→ A0
f0−→ B0

g0−→ C0
h0−→ 0.

The fact that the alternating sum of the dimensions vanishes can be expressed as

d∑
i=0

(−1)d+i dimAi +
d∑

i=0
(−1)d+i dimCi = dim ker fd +

d∑
i=0

(−1)d+i dimBi,

which implies our claim. �
We are now ready to prove our strong Morse inequalities.

Proof of Theorem 5.1. As usual, we denote by {Er
p,q, d

r
p,q} the Mayer-Vietoris spectral sequence associated 

with {Xu−ej}j∈[n] for the fixed grade u ∈ Zn of the statement. For each r, we will be interested only in the 
terms Er

p,q indexed by (p, q) ∈ Ik, where Ik := {(p, q) ∈ Z2 | p, q ≥ 0 and p + q ≤ k}, for a fixed k ≥ 0. It is 
however convenient for the sake of bookkeeping to consider all (p, q) ∈ Z2 such that p ≥ 0 and 0 ≤ p +q ≤ k, 
keeping in mind that Er

p,q = 0 if q < 0. For fixed r, p, k ≥ 0 consider the chain complex

· · · → Er
p,k−p

dr
p,k−p−−−−→ Er

p−r,k−p+r−1
dr
p−r,k−p+r−1−−−−−−−−−→ · · · → 0. (5.1)

It is clear that every such chain complex, built using the appropriate terms and differentials of the r-page, 
eventually ends with zero terms. Even if in the Mayer-Vietoris spectral sequence the chain complex (5.1)
may extend on the left with non-zero terms, we now consider only the portion displayed in (5.1), restricting 
to terms of total degree not larger than k. By the standard strong Morse inequalities (2.1) we have

∑
(−1)� dimEr

p−�r,k−p+�(r−1) ≥
∑

(−1)� dimEr+1
p−�r,k−p+�(r−1).
�≥0 �≥0
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Allowing p ≥ 0 to vary, it is easy to observe that each term Er
p′,q′ with (p′, q′) ∈ Ik appears in one (and 

only one) of the chain complexes (5.1). Keeping k fixed, we can sum over all p ≥ 0 and obtain
∑
p≥0

∑
�≥0

(−1)� dimEr
p−�r,k−p+�(r−1) ≥

∑
p≥0

∑
�≥0

(−1)� dimEr+1
p−�r,k−p+�(r−1).

The choice of signs in the alternating sums is such that the terms of total degree k− i have sign (−1)i, for 
each i ≥ 0. We can therefore write this inequality as

k∑
i=0

(−1)k+i
∑

p+q=i

dimEr
p,q ≥

k∑
i=0

(−1)k+i
∑

p+q=i

dimEr+1
p,q . (5.2)

Let us recall now that for the n-page, by convergence of the spectral sequence (see Proposition 4.3) we have

k∑
i=0

(−1)k+i
∑

p+q=i

dimEn
p,q =

k∑
i=0

(−1)k+i dimHi(∪jX
u−ej ).

By (repeatedly) applying (5.2) we obtain

k∑
i=0

(−1)k+i dimHi(∪jX
u−ej ) =

k∑
i=0

(−1)k+i
∑

p+q=i

dimEn
p,q ≤

k∑
i=0

(−1)k+i
∑

p+q=i

dimE2
p,q, (5.3)

and since by Proposition 4.1 we know that 
∑

p+q=i dimE2
p,q = dimHi(Xu) − ξi0(u) +

∑i+1
p=1 ξ

i+1−p
p (u), we 

have

k∑
i=0

(−1)k+i dimHi(∪jX
u−ej ) ≤

k∑
i=0

(−1)k+i dimHi(Xu) +
k∑

i=0
(−1)k+i

(
i+1∑
p=1

ξi+1−p
p (u) − ξi0(u)

)
. (5.4)

On the other hand, applying Proposition 5.3 to the long exact sequence of relative homology of the pair 
(Xu, ∪jX

u−ej ),

Hk(∪jX
u−ej ) −→ Hk(Xu) −→ Hk(Xu,∪jX

u−ej ) −→ Hk−1(∪jX
u−ej ) −→ · · · −→ H0(Xu,∪jX

u−ej ) −→ 0,

yields the inequality

k∑
i=0

(−1)k+i dimHi(∪jX
u−ej ) +

k∑
i=0

(−1)k+i dimHi(Xu,∪jX
u−ej ) ≥

k∑
i=0

(−1)k+i dimHi(Xu),

which combined with (5.4) yields

k∑
i=0

(−1)k+i dimHi(Xu,∪jX
u−ej ) ≥ −

k∑
i=0

(−1)k+i

(
i+1∑
p=1

ξi+1−p
p (u) − ξi0(u)

)
. �

6. Euler characteristic for persistence modules

In this section we derive, using our strong Morse inequalities, Euler characteristic formulas for the relative 
homology of a multi-filtration X = {Xu}u∈Zn involving the Betti tables. Euler characteristic formulas are 
ubiquitous in homological algebra, as they are based on a general and well-known result valid for any free 
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and bounded chain complex. For n-parameter persistence modules, for example, the Euler characteristic 
of a minimal free resolution is considered in [15]. Here, we consider instead the Euler characteristic of the 
chain complex C∗(Xu, ∪jX

u−ej ) for any fixed grade u ∈ Zn.
Firstly, it is worth observing that, in our setting, the Euler characteristic of C∗(Xu) can be expressed in 

terms of Betti tables as follows.

Proposition 6.1. For persistence modules Vq = Hq(X ) obtained from an n-parameter filtration X =
{Xu}u∈Zn , it holds that

χ(Xu) :=
∑
p,q≥0

(−1)p+q
∑
v�u

ξqp(v),

with χ(Xu) :=
∑

q≥0(−1)q dimHq(Xu).

Proof. Proposition 2.3 of [24] states the following relation between the point-wise dimension at u ∈ Zn of a 
(finitely presented) n-parameter persistence module V and its Betti tables ξj , which is an easy consequence 
of Hilbert’s Syzygy theorem:

dimV u =
n∑

j=0
(−1)j

∑
v�u

ξj(v).

Applying this formula in the particular case of a persistence module Vq = Hq(X ), we obtain
∑
q≥0

(−1)q dimHq(Xu) =
∑
p,q≥0

(−1)p+q
∑
v�u

ξqp(v). �

We consider now the Euler characteristic of the pair (Xu, ∪jX
u−ej ), defined as

χ(Xu,∪jX
u−ej ) :=

∑
q≥0

(−1)q dimHq(Xu,∪jX
u−ej ),

which in our notation is equal to 
∑

q≥0(−1)qμq(u). We derive the following result on the Euler characteristic 
χ(Xu, ∪jX

u−ej ) as a corollary of our strong Morse inequalities (Theorem 5.1).

Theorem 6.2. Given an n-parameter filtration X = {Xu}u∈Zn , for each fixed grade u ∈ Zn the Euler 
characteristic of the pair (Xu, ∪jX

u−ej ) is related to the Betti tables of persistent homology of X by

χ(Xu,∪jX
u−ej ) =

∑
0≤p+q≤d+1

(−1)p+qξqp(u) =
∑
p,q

(−1)p+qξqp(u),

where d is the dimension of X .

Remark 6.3. The first equality of the statement can be written also as χ(Xu, ∪jX
u−ej ) =∑d+1

i=0 (−1)i
∑i

p=0 ξ
i−p
p (u). The second equality of the statement is not a simple rewriting of the alter-

nating sum, as the sum in the right-hand side ranges over all p, q ∈ Z. Some possibly non-zero ξqp(u) are 
thus involved, which do not appear in the first alternating sum. Let us recall that in our setting the possibly 
non-zero ξqp(u) have indices 0 ≤ p ≤ n and 0 ≤ q ≤ d.

Remark 6.4. We can consider the Euler characteristic of an n-parameter persistence module as defined in 
[15] for the persistence module Vq = Hq(X ), for any fixed q ≥ 0, which corresponds in our notations to 
χ(Vq) :=

∑n (−1)p
∑

n ξqp(u). Theorem 6.2 clarifies its relation with χ(Xu, ∪jX
u−ej ):
p=0 u∈Z
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∑
q

(−1)qχ(Vq) =
∑
u∈Zn

χ(Xu,∪jX
u−ej ).

Proof. For each fixed grade u ∈ Zn, it is clear that ξqp(u) = 0 whenever q > d. By the standard argument 
on the last strong inequality of a bounded chain complex (see Section 2.2), Theorem 5.1 yields the equality

d∑
i=0

(−1)d+iμi(u) =
d∑

i=0
(−1)d+i

(
ξi0(u) −

i∑
p=0

ξi−p
p+1(u)

)
. (6.1)

The left-hand side of (6.1) is (−1)dχ(Xu, ∪jX
u−ej ) and the right-hand side can be rearranged as the sum

d∑
i=0

(−1)d+iξi0(u) −
d∑

i=0
(−1)d+i

i∑
p=0

ξi−p
p+1(u) =

d+1∑
i=0

(−1)d+iξi0(u) −
d∑

i=0
(−1)d+i

i∑
p=0

ξi−p
p+1(u)

=
d+1∑
i=0

(−1)d+i
i∑

p=0
ξi−p
p (u)

=
d+1∑
i=0

(−1)d+i
∑

p+q=i

ξqp(u)

= (−1)d
d+1∑
i=0

(−1)i
∑

p+q=i

ξqp(u),

where the first equation is obtained by subtracting ξd+1
0 (u) = 0 and the following ones are obtained formally. 

This yields the first equality of the statement.
The second equality of the statement is obtained by repeating the proof with m := d + n in place of d, 

observing that ξqp(u) = 0 whenever p + q > m, as a consequence of the facts described in Section 4. �
7. Improving Morse inequalities

In this section we improve the weak Morse inequalities given in Corollary 5.2. Theorem 7.3 gives a new 
lower bound for the homological Morse number μq(u) = dimHq(Xu, ∪jX

u−ej ) in terms of Betti tables. 
Reciprocally, Theorem 7.5 will provide an upper bound for the homological Morse number μq(u). Finally, 
we will show that all these new inequalities are sharp.

7.1. A new lower bound for homological Morse numbers

We now derive Theorem 7.3 improving the lower bound of Corollary 5.2 for homological Morse numbers 
as a function of the Betti tables of the persistent homology modules.

Our strategy is based again on the interplay between the long exact sequence of relative homology 
of (Xu, ∪jX

u−ej ) and the Mayer-Vietoris spectral sequence. The connection between them is made via 
commutative triangles as in (3.3). More precisely, we leverage Theorem 4.5. The difference with Theorem 5.1
is that we now track the Betti tables ξqp(u) (which appear as dimensions of the terms of the 2-page of the 
spectral sequence) all the way to the n-page (which coincides with the ∞-page), to use then Theorem 4.5
and convergence of the spectral sequence to H∗(∪jX

u−ej ).
Before proving the lower bound inequality, let us show what we mean by “tracking” the Betti tables 

ξqp(u) by presenting the case of n = 3 parameters as an example. Since the case of bifiltrations (n = 2) 
is treated in [22] using the Mayer-Vietoris long exact sequence, this represents the case with the smallest 
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number of parameters that requires the Mayer-Vietoris spectral sequence instead. As usual, we suppress in 
the notation of the spectral sequence the dependence on the fixed grade u ∈ Z3.
Case n = 3. In this case, the 1-page {E1

p,q, d
1
p,q} of the Mayer-Vietoris spectral sequence of {Xu−ej}j=1,2,3, 

for a fixed grade u ∈ Z3, consists of three non-null columns. As we said in Section 4, the rows correspond 
to truncated Koszul complexes, for each degree of homology q:

...
...

...

E1
0,2 =

⊕
j H2(Xu−ej ) E1

1,2 =
⊕

j<h H2(Xu−ej−eh) E1
2,2 = H2(Xu−

∑3
i=1 ei)

E1
0,1 =

⊕
j H1(Xu−ej ) E1

1,1 =
⊕

j<h H1(Xu−ej−eh) E1
2,1 = H1(Xu−

∑3
i=1 ei)

E1
0,0 =

⊕
j H0(Xu−ej ) E1

1,0 =
⊕

j<h H0(Xu−ej−eh) E1
2,0 = H0(Xu−

∑3
i=1 ei)

δ1,2 δ2,2

δ1,1 δ2,1

δ1,0 δ2,0

By taking homology we obtain the terms E2
p,q of the 2-page. Differentials d2

p,q : E2
p,q → E2

p−2,q+1 between 
them are defined:

...
...

...

E2
0,2 = coker δ1,2 E2

1,2 = ker δ1,2
im δ2,2

E2
2,2 = ker δ2,2

E2
0,1 = coker δ1,1 E2

1,1 = ker δ1,1
im δ2,1

E2
2,1 = ker δ2,1

E2
0,0 = coker δ1,0 E2

1,0 = ker δ1,0
im δ2,0

E2
2,0 = ker δ2,0

d2
2,1

d2
2,0

By Proposition 4.1, the dimensions as vector spaces of the terms of the 2-page are as follows:

...
...

...

dimE2
0,2 = dim im meru2 +ξ2

1(u) dimE2
1,2 = ξ2

2(u) dimE2
2,2 = ξ2

3(u)

dimE2
0,1 = dim im meru1 +ξ1

1(u) dimE2
1,1 = ξ1

2(u) dimE2
2,1 = ξ1

3(u)

dimE2
0,0 = dim im meru0 +ξ0

1(u) dimE2
1,0 = ξ0

2(u) dimE2
2,0 = ξ0

3(u)
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In the 2-page the only non-trivial differentials are of the form d2
2,q, for q ≥ 0, since for p 	= 2 either the 

domain or the target of the differentials d2
p,q is zero. The terms of the 3-page can be expressed as:

...
...

...

E3
0,2 = coker d2

2,1 E3
1,2 = E2

1,2 E3
2,2 = ker d2

2,2

E3
0,1 = coker d2

2,0 E3
1,1 = E2

1,1 E3
2,1 = ker d2

2,1

E3
0,0 = E2

0,0 E3
1,0 = E2

1,0 E3
2,0 = ker d2

2,0

We observe that some terms, and in particular all terms E3
1,q, have already stabilized at the 2-page, meaning 

that taking homology with respect to differentials d2
p,q does not affect them. The dimensions of the terms 

of the 3-page can be derived from the previous arguments:

...
...

...

dimE3
0,2 = (dim im meru2 +ξ2

1(u)) − dim im d2
2,1 dimE3

1,2 = ξ2
2(u) dimE3

2,2 = ξ2
3(u) − dim im d2

2,2

dimE3
0,1 = (dim im meru1 +ξ1

1(u)) − dim im d2
2,0 dimE3

1,1 = ξ1
2(u) dimE3

2,1 = ξ1
3(u) − dim im d2

2,1

dimE3
0,0 = dim im meru0 +ξ0

1(u) dimE3
1,0 = ξ0

2(u) dimE3
2,0 = ξ0

3(u) − dim im d2
2,0

Let us recall that, for n = 3, the 3-page of the Mayer-Vietoris spectral sequence coincides with the ∞-page 
(Proposition 4.3). We have thus kept track of the Betti tables ξqp(u) within the 3-page (that is, ∞-page), 
meaning that we have found expressions for the dimensions of the terms E3

p,q involving the Betti tables. 
Below, we will detail in the general case how this can be used to derive the lower bound inequality for μq(u).
General case n ≥ 2. In order to generalize our argument for multi-filtrations with any number n ≥ 2 of 
parameters, let us prove the following general fact:

Proposition 7.1. For a spectral sequence {Er
p,q, d

r
p,q} of finite dimensional vector spaces, the following state-

ments hold for all p, q and for all r ≥ 2:

1. dimEr+1
p,q = dimE2

p,q −
r∑

i=2
dim im dip,q −

r∑
i=2

dim im dip+i,q−i+1;

2. dimE2
p,q −

r∑
dimE2

p−i,q+i−1 −
r∑

dimE2
p+i,q−i+1 ≤ dimEr+1

p,q ≤ dimE2
p,q.
i=2 i=2
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Proof. 1. For each pair of fixed indices p, q, at each page r there are differentials

Er
p−r,q+r−1

dr
p,q←−− Er

p,q

dr
p+r,q−r+1←−−−−−−− Er

p+r,q−r+1,

so the dimension of Er+1
p,q

∼= ker drp,q/ im drp+r,q−r+1 is

dimEr+1
p,q = dim ker drp,q − dim im drp+r,q−r+1 = dimEr

p,q − dim im drp,q − dim im drp+r,q−r+1.

This argument can be applied recursively to dimEi
p,q for all r ≥ i > 2.

2. The inequality dimEr+1
p,q ≤ dimE2

p,q follows from the fact that Er+1
p,q is a subquotient of Er

p,q, for each 
r. To prove the other inequality, let us observe that, since the dimension of the image of a linear map is 
upper bounded by the dimension of both the domain and the codomain, for each differential dip,q we have

dim im dip,q ≤ dimEi
p−i,q+i−1

and for each differential dip+i,q−i+1 we have

dim im dip+i,q−i+1 ≤ dimEi
p+i,q−i+1.

We can now apply to the right hand side of the equation of (1.) the inequalities

dim im dip,q ≤ dimEi
p−i,q+i−1 ≤ dimE2

p−i,q+i−1

dim im dip+i,q−i+1 ≤ dimEi
p+i,q−i+1 ≤ dimE2

p+i,q−i+1,

for any 2 ≤ i ≤ r. �
It is worth observing that, depending on the indices p, q, r, several differentials and terms in Proposi-

tion 7.1 can be trivial in our situation. For example, in the Mayer-Vietoris spectral sequence associated with 
an n-parameter filtration we know that im dip,q and E2

p−i,q+i−1 are zero whenever p < i, while im dip+i,q−i+1
and E2

p+i,q−i+1 are zero whenever p + i ≥ n.
Moving toward the proof of the lower bound inequality (Theorem 7.3), the following simple fact will be 

useful.

Lemma 7.2. Consider the map iuq : Hq(∪jX
u−ej ) → Hq(Xu) and the commutative triangle meruq = iuq ε

u
q as 

in (3.3). It holds that

dim im iuq ≤ dim im meruq + dimHq(∪jX
u−ej ) − dim im εuq .

Proof. Let us preliminarily observe that, given a composition h of linear maps f : U → V followed by 
g : V → W between finite dimensional vector spaces, we have

dim im g = dim im h + dimV − dim(im f + ker g). (7.1)

Indeed, from

h(U) = g(f(U)) ∼= f(U)/{x ∈ f(U) | g(x) = 0}

we obtain dim im h = dim im f −dim(im f ∩ker g). Now we can sum dim ker g to both sides of the equation, 
use the rank-nullity formula dimker g = dimV −dim im g on the left-hand side, use Mayer-Vietoris’ formula 
to express the right-hand side as dim(im f + ker g), and rearrange to obtain (7.1).
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Applying Equation (7.1) to the commutative triangle (3.3) yields

dim im iuq = dim im meruq + dimHq(∪jX
u−ej ) − dim(im εuq + ker iuq ).

We obtain the stated inequality by observing that dim(im εuq + ker iuq ) ≥ dim im εuq . �
Theorem 7.3. For an n-parameter filtration {Xu}u∈Zn , for each grade u ∈ Zn, and for each q ≥ 0, we have

μq(u) ≥ ξq0(u) + ξq−1
1 (u) −

n−1∑
i=1

ξq−i
i+1(u) + R,

where

R =
n−1∑
r=2

(
r−1∑
i=1

dim im dri,q−i +
n−1∑

i=r+1
dim im dri,q−i +

n−1∑
i=1

dim im dri+r,q−i−r+1

)

is a non-negative integer.

Proof. By standard application of the rank-nullity formula to the long exact sequence of the pair 
(Xu, ∪jX

u−ej ), we know that dimHq(Xu, ∪jX
u−ej ) = dim coker iuq + dim ker iuq−1. Hence, we get

μq(u) = (dimHq(Xu) − dim im iuq ) + (dimHq−1(∪jX
u−ej ) − dim im iuq−1). (7.2)

On the right hand side we can apply Lemma 7.2 to both dim im iuq and dim im iuq−1. We obtain

μq(u) ≥ ξq0(u) −
n−1∑
i=0

dimEn
i,q−i + dimEn

0,q − dim im meruq−1 + dimEn
0,q−1

= ξq0(u) −
n−1∑
i=1

dimEn
i,q−i − dim im meruq−1 + dimEn

0,q−1

(7.3)

by recalling that im εuq
∼= E∞

0,q
∼= En

0,q and Hq(∪jX
u−ej ) ∼= En

0,q ⊕ En
1,q−1 ⊕ · · · ⊕ En

n−1,q−n+1 (Theorem 4.5
and Proposition 4.3), together with the fact that ξq0(u) = dimHq(Xu) − dim im meruq (Section 3). We can 
now observe that, by Proposition 7.1,

dimEn
p,q = dimE2

p,q −
n−1∑
r=2

dim im drp,q −
n−1∑
r=2

dim im drp+r,q−r+1,

to express the last member of the inequality (7.3) as

ξq0(u) −
n−1∑
i=1

(
dimE2

i,q−i −
n−1∑
r=2

dim im dri,q−i −
n−1∑
r=2

dim im dri+r,q−i−r+1

)

− dim im meruq−1 +
(

dimE2
0,q−1 −

n−1∑
r=2

dim im dr0,q−1 −
n−1∑
r=2

dim im drr,q−r

)
.

Proposition 4.1 states that dimE2
p,q = ξqp+1(u) when p > 0, and dimE2

0,q = dim im meruq +ξq1(u). Upon 
substitution of these terms in the previous expression we obtain
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ξq0(u) −
n−1∑
i=1

(
ξq−i
i+1(u) −

n−1∑
r=2

dim im dri,q−i −
n−1∑
r=2

dim im dri+r,q−i−r+1

)

− dim im meruq−1 + dim im meruq−1 + ξq−1
1 (u) −

n−1∑
r=2

dim im dr0,q−1 −
n−1∑
r=2

dim im drr,q−r,

and rearranging:

ξq0(u) + ξq−1
1 (u) −

n−1∑
i=1

ξq−i
i+1(u) +

n−1∑
i=1

n−1∑
r=2

dim im dri,q−i +
n−1∑
i=1

n−1∑
r=2

dim im dri+r,q−i−r+1

−
n−1∑
r=2

dim im dr0,q−1 −
n−1∑
r=2

dim im drr,q−r.

We can now observe that 
∑n−1

r=2 dim im dr0,q−1 = 0, since all the involved differentials target zero spaces, and 
that all the summands of 

∑n−1
r=2 dim im drr,q−r cancel out with some summands of 

∑n−1
i=1

∑n−1
r=2 dim im dri,q−i, 

namely those for which i = r. �
We refer to the inequality μq(u) ≥ ξq0(u) + ξq−1

1 (u) −
∑n−1

i=1 ξq−i
i+1(u) of Theorem 7.3 as lower bound for 

μq(u) in terms of the Betti tables.

7.2. An upper bound for homological Morse numbers

We prove an upper bound in terms of the Betti tables for the homological Morse numbers μq(u) of an 
n-parameter filtration, with n ≥ 2.

Proposition 7.4. For an n-parameter filtration {Xu}u∈Zn , for each grade u ∈ Zn, and for each q ≥ 0, we 
have

dimHq(∪jX
u−ej ) ≤ dim im meruq +

n∑
i=1

ξq−i+1
i (u).

Proof. By Proposition 4.3, Hq(∪jX
u−ej ) ∼= En

0,q⊕En
1,q−1⊕· · ·⊕En

n−1,q−n+1. For all p, q we have dimEn
p,q ≤

dimE2
p,q (Proposition 7.1). We obtain

dimHq(∪jX
u−ej ) ≤ dimE2

0,q + dimE2
1,q−1 + · · · + dimE2

n−1,q−n+1,

hence the claim is a consequence of Proposition 4.1. �
Keeping in mind the equality dim im meruq = dimHq(Xu) − ξq0(u), we note that, in the case of n = 2

parameters, we have E2
p,q = E∞

p,q for all p, q (Proposition 4.3), hence Proposition 7.4 can be stated as an 
equality:

dimHq(Xu−e1 ∪Xu−e2) = dimHq(Xu) − ξq0(u) + ξq1(u) + ξq−1
2 (u).

We can now prove the following upper bound:

Theorem 7.5. For an n-parameter filtration {Xu}u∈Zn , for each grade u ∈ Zn, and for each q ≥ 0, we have

μq(u) ≤
n∑

ξq−i
i (u).
i=0
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Proof. Since meruq = iuq ε
u
q , as in the commutative diagram (3.3), we have

dim im meruq ≤ dim im iuq , (7.4)

for all q ∈ Z and u ∈ Zn. For a fixed grade u ∈ Zn, as a consequence of a simple argument on the long 
exact sequence of relative homology of the pair (Xu, ∪jX

u−ej ), we can write, as we did before in (7.2),

μq(u) = (dimHq(Xu) − dim im iuq ) + (dimHq−1(∪jX
u−ej ) − dim im iuq−1).

By (7.4), the first parenthesis in the right-hand term is upper bounded by dimHq(Xu) − dim im meruq =
ξq0(u). For the second parenthesis we use Proposition 7.4 to see that

dimHq−1(∪jX
u−ej ) ≤ dim im meruq−1 +

n∑
i=1

ξq−i
i (u),

and (7.4) to conclude that

dimHq−1(∪jX
u−ej ) − dim im iuq−1 ≤

n∑
i=1

ξq−i
i (u).

Putting together the inequalities for the two parentheses we obtain the stated upper bound for μq(u). �
7.3. Sharpness of lower and upper bounds

In this subsection we show that, for a fixed u ∈ Zn and q ≥ 0, the lower bound

μq(u) ≥ ξq0(u) + ξq−1
1 (u) −

n−1∑
i=1

ξq−i
i+1(u)

of Theorem 7.3 and the upper bound

μq(u) ≤
n∑

i=0
ξq−i
i (u)

of Theorem 7.5 for μq(u) in terms of the Betti tables are sharp. As the previous inequalities are trivially 
seen to be equalities in the case when X consists of only one 0-cell, we aim at showing that equalities can 
be attained in situations in which any of the involved ξki (u) is non-zero. The examples we provide focusing 
on the case of filtrations with n = 3 parameters are general enough to be easily generalized to any number 
of parameters, as shown for instance in Fig. 1 where the same construction is repeated for n = 1 and q = 0, 
n = 2 and q = 1, n = 3 and q = 2, and can be easily inferred for n > 3 and q = n − 1.

Lower bound For n = 3 and q = 2 we show examples of filtrations {Xu}u∈Zn in which, for a fixed u ∈ Zn, 
μ2(u) = ξ2

0(u) + ξ1
1(u) − ξ1

2(u) − ξ0
3(u) holds and all ξki (u) of the right-hand side are non-zero. First, let us 

notice that taking the disjoint union of two filtered cell complexes results in adding both their homological 
Morse numbers μq and their Betti tables. It is therefore enough to provide examples of the following cases:

(i) μ2(u) = ξ2
0(u) − ξ0

3(u), with ξ2
0(u), ξ0

3(u) > 0,
(ii) μ2(u) = ξ2

0(u) − ξ1
2(u), with ξ2

0(u), ξ1
2(u) > 0,

(iii) μ2(u) = ξ2
0(u) + ξ1

1(u), with ξ2
0(u), ξ1

1(u) > 0.
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Fig. 1. Filtrations with n-parameters (1 ≤ n ≤ 3) of an (n − 1)-sphere for which inequalities of Theorem 7.3 are sharp.

Cases (i) and (ii) in particular illustrate the interesting situation of no critical cells entering at u (which 
implies μ2(u) = 0), with ξ2

0(u) = 1 being compensated by ξ0
3(u) = 1 and ξ1

2(u) = 1, respectively.
For (i), consider Fig. 1 (right), where u is the maximum grade shown in the filtration, and only the grades 

u − eσ with σ ⊆ {1, 2, 3} are shown. In this filtration, Xu is homeomorphic to a 2-sphere, triangulated as 
the boundary ∂Δ3 of a 3-simplex. At the minimum displayed grade u − e1 − e2 − e3, only the union of the 
0-skeleton of Xu and one of its 2-faces has entered the filtration.

For (ii), we can consider a similar filtration with at grade u − e1 − e2 − e3 the union of the 1-skeleton of 
Xu = ∂Δ3 and one of its 2-faces. In this case, then, Xu−e1−e2 = Xu−e1−e3 = Xu−e2−e3 = Xu−e1−e2−e3 .

Finally, for (iii), we can set Xw = ∅ at all grades w, except for Xu−e1 ⊆ Xu which is the inclusion of 
Xu−e1 � S1 into Xu � S2 as its equator, with the entrance of μ2(u) = 2 critical 2-cells at u, and with 
ξ2
0(u) = ξ1

1(u) = 1.

Upper bound For n = 3 and q = 3 we show examples of filtrations {Xu}u∈Zn in which, for a fixed u ∈ Zn, 
μ3(u) = ξ3

0(u) + ξ2
1(u) + ξ1

2(u) + ξ0
3(u) holds and all ξki (u) are non-zero.

Consider the cases (i) and (ii) we illustrated above. Adding a 3-cell at grade u so that Xu = Δ3 we have 
μ3(u) = 1 and, respectively, ξ0

3(u) = 1 or ξ1
2(u) = 1, with the other Betti tables being zero.

Mimicking (iii) described above, if Xw = ∅ at all grades, except for Xu−e1 ⊆ Xu being the inclusion of 
Xu−e1 � S2 into Xu � S3, then we have μ3(u) = 2 and ξ3

0(u) = ξ2
1(u) = 1.
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