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Abstract
In this work, we introduce a generalisation of the Vehicle Routing Problem for a
specific application in the monitoring of a Water Distribution Network (WDN). In
this problem, multiple technicians must visit a sequence of nodes in the WDN and
perform a series of tests to check the quality of water. Some special nodes (i.e., wells)
require technicians to first collect a key from a key centre. The key must then be
returned to the same key centre after the test has been performed, thus introducing
precedence constraints and multiple visits in the routes. To solve the problem, a
Mixed Integer Linear Programming model and an Iterated Local Search have been
implemented. The efficiency of the proposed methods is demonstrated by means of
extensive computational tests on randomly created and real-world instances.
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1. Introduction

Water contamination is related to the presence of one or more chemical compounds or
pathogens to the extent that they become dangerous to consumers and may lead to
diseases. According to a report released by the World Health Organization, contami-
nated drinking water is estimated to cause 485,000 diarrhoeal deaths each year (World
Health Organization, 2019).

Several studies have been conducted to identify the main sources of water pollution
and improve the quality of water thanks to innovative treatment methods and plants,
but still an accidental event, such as a large-scale contamination or a destructive attack
to the transmission system, can significantly affect both the economy and the society.
Moreover, supply, treatment, and distribution of drinking water in urban networks
require substantial expenses. Timely control of Water Distribution Networks (WDNs)
is thus of fundamental importance.

In this paper, a new variant of the Vehicle Routing Problem (VRP) in the context
of WDNs is proposed. In this problem, a set of technicians must visit a set of nodes
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within a network to evaluate the quality of water. When visiting a well, the technicians
need a key to open the well and perform the required tests. Since the technicians do
not have the key, they must visit a specified node at which the key is located, called
key centre in the following, to acquire it. As a result, they need to visit this node before
reaching the well. After the tests have been performed, they must take the key back
to its original key centre before returning to the depot where they started their route.
Note that it is not compulsory to visit the key centre immediately before and after
the well; in other words, the technicians can keep the key with them while visiting
other nodes. If a key centre has the keys for several demand nodes and these nodes
are visited by the same vehicle, the keys can be collected in a single visit. In addition
to that, it is imposed that all nodes are visited and that the duration of any route
performed by a technician does not exceed a maximum travelling time. The aim of the
problem is to minimise the total route duration.

The problem originates from a real-world application that we encountered in
Mashhad (Iran), where 5 technicians daily inspect a WDN comprising 3,124 house-
holds/shops, 293 reservoirs/tanks, 14 treatment plants, 356 wells and 8 key centres.
Apart from the real-world application, the problem is of broad interest as it models
routing problems in service industries where equipment pieces must be collected from
an equipment centre before the execution of the service and then returned to the same
equipment centre at the end of the activity. To solve the problem, we propose a Mixed
Integer Linear Programming (MILP) model, and an Iterated Local Search (ILS) algo-
rithm. While the model managed to solve small-size instances with up to 20 nodes, the
ILS efficiently tackled cases with up to 200 nodes, allowing us to produce good-quality
solutions in short computing times.

In brief, our work makes a number of valuable contributions, namely:

• define a new mathematical formulation for a practical VRP variant with prece-
dence constraints, multiple visits, and maximum route duration constraints;
• implement an ILS algorithm using classical neighbourhood structures adapted
to the specific characteristics of the problem and a new intensification phase;
• evaluate the performance of the proposed methods on randomly created in-
stances;
• perform a comparison with the Asymmetric Distance-Constrained VRP (AD-
VRP) using the benchmark instances by Almoustafa et al. (2013);
• compare the ILS solutions with those used in practice by the company, showing
that the ILS can lead to good improvements in the real-world application;
• solve larger realistic instances derived from the real case study, thus demonstrat-
ing that the ILS performs well also on a larger scale.

The remainder of the paper is organised as follows. In Section 2, the relevant lit-
erature is revised. The problem is formally described in Section 3. Sections 4 and 5
present the MILP model and the ILS algorithm, respectively. Computational results
are described in Section 6, and final conclusions and future research directions are
discussed in Section 7.

2. Literature Review

The VRP is an iconic class of problems in operations research, with applications in the
fields of transportation, distribution, logistics and services. We refer to Toth and Vigo
(2014) for an extensive overview, and to Mor and Speranza (2022) for a recent survey.
The problem we face generalises the VRP by considering precedence constraints and
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multiple visits. In this section, we only revise routing problems involving these two
features, with a focus on real-world applications and algorithmic aspects.

Precedence constraints were first addressed in the seminal work by Balas et al.
(1995) on the asymmetric Travelling Salesman Problem (TSP). Since then, they have
been widely investigated for problems involving a single vehicle (see, e.g., Moon et al.
2002, Sarin et al. 2005, Sun et al. 2018, and Salman et al. 2020), as well as multiple
vehicles (see, e.g., Razali 2015 and Haddadene et al. 2016). In addition, precedence
constraints naturally arise for Pickup-and-Delivery Problems (PDP), where each de-
mand must be first collected at an origin node before being delivered at a destination
node. We refer to Battarra et al. (2014) and Doerner and Salazar-González (2014) for
detailed surveys on PDPs for goods transportation and PDPs for people transporta-
tion, respectively.

Recently, Aziez et al. (2020) studied a multi-PDP with time windows. The problem
was solved exactly using a branch-and-cut algorithm. Dedicated branch-and-cut algo-
rithms were also developed by Hernández-Pérez et al. (2021), to solve the single-vehicle
two-echelon one-commodity PDP, and by Wolfinger and Salazar-González (2021), to
solve a PDP with split loads and transshipments. The problem addressed in the latter
work includes multiple visits to the same node. This is common when split deliveries
are allowed, or multiple pickup and delivery operations can be performed at a single
node. These generalisations were considered by Bruck and Iori (2017), where non-
elementary formulations were proposed for a single-vehicle PDP and then extended to
the cases of split deliveries, intermediate drop-offs, and multiple vehicles.

Overall, we may find many routing problems that are inspired by real-world ap-
plications and involve precedence constraints and multiple visits. Sigurd et al. (2004)
studied an application of a PDP with time windows and precedence constraints aris-
ing in the transportation of live animals. In this case, precedence constraints are given
by veterinary rules, imposing that the livestock holdings are visited in a predefined
sequence to avoid the spread of potential diseases.

A common application that shares many similarities to the problem presented here
is the Technician Routing and Scheduling Problem, which is a generalisation of the
Workforce Scheduling and Routing Problem (see, e.g., Castillo-Salazar et al. 2016 for
a detailed review). Within this context, Zamorano and Stolletz (2017) addressed a re-
lated real-world application arising at a company providing external maintenance ser-
vices for electric forklifts. The authors defined a novel MILP formulation and solved
it using two alternative branch-and-price algorithms based on different decomposi-
tion schemes. Another interesting related application, originating in the context of
electronic transaction equipment maintenance and repair services and involving some
precedence constraints, was described by Mathlouthi et al. (2018), who later solved it
by means of a Tabu Search algorithm (Mathlouthi et al., 2021).

A similar problem structure may also be found in healthcare and home health-
care logistics. Recent works in this field are those of Anaya-Arenas et al. (2021), who
addressed a real-world routing application with precedence constraints arising in the
transportation of biomedical samples from specimen collection centres to specific labo-
ratories, and Polnik et al. (2021), who addressed a real-world home healthcare problem
with time windows and synchronisation constraints.

We notice that none of the cited applications require the technicians to collect, use
and later bring back to a centre a specific equipment. This feature imposes at least
two visits to the equipment centre and is the main characteristic of the new problem
we address in this paper.

Given the NP-hardness of the VRP and of many of its variants, solving these prob-
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lems by complete enumeration may take too long. This particularly applies to practical
applications where the problem scale is large. For this reason, metaheuristic algorithms
are frequently used to tackle real-world VRPs (see, e.g., Elshaer and Awad 2020).
Among single solution-based metaheuristics, the ILS is one of the most popular, and
it is also used to solve many PDP variants (see, e.g., Subramanian et al. 2010, 2013, Li
et al. 2015, and Haddadene et al. 2016 for relevant implementations).

For what concerns WDNs, the literature mainly contains works on the location of
sensors (see, e.g., Rathi and Gupta 2014). The VRP has been applied in many areas,
but, to the best of our knowledge, not yet to the inspection of WDNs. In this paper,
we fill this lack in the literature and propose exact and heuristic solution methods for
a real-world VRP on a WDN.

3. Problem Description

In many problems arising in service industries, technicians must visit different nodes
in a network and perform some required services. The nodes to be visited, called for
simplicity demand nodes in the following, can be divided into two types:

(1) Type I : regular nodes. For these nodes, the technicians can go directly on site
and perform the required services;

(2) Type II : special nodes. For these nodes, the technicians need an equipment to
perform the services. So, they must visit first a specified equipment centre, and
take the equipment. Once all services have been completed at the special node,
the equipment must be returned to its original equipment centre, thus imposing
a second visit.

A simple illustrative example is depicted in Figure 1. It comprises two routes starting
and ending at the depot. One of them visits just regular nodes, so demand nodes of
type I. The second also visits a special node, and is thus forced to pass twice by the
corresponding equipment centre.

Figure 1. An illustrative example of the problem

Formally, we are given a directed graph G = (V,A), where the node set is V =
{0, 1, . . . , n, n + 1} and is partitioned as V = V1 ∪ V2 ∪ V3 ∪ {0, n + 1}. Nodes 0
and n + 1 represent, respectively, the beginning and end of all routes, and in our
application coincide with a unique central depot. Sets V1 and V2 are associated with,
respectively, the demand nodes of types I and II. Set V3 comprises nodes associated
with all equipment centres. With each node i ∈ V2, we associate a predecessor pi ∈ V3

and a successor di ∈ V3. In our application, pi and di correspond to a unique equipment
centre, so they have the same geographical location, but the models and algorithms
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that we propose below can also solve the case in which they correspond to different
locations.

Each demand node must be visited exactly once, while each vehicle visits a par-
ticular equipment centre at most once for picking up all the equipment pieces, and
then another single time for delivering all the equipment pieces that were previously
collected. This implies that, in case a centre has the equipment pieces for multiple
demand nodes and these nodes are visited by a unique vehicle, then such equipment
pieces must be collected all together in a unique visit (to pi), and then later delivered
all together in another visit (to di). We recall that it is not compulsory to visit pi
immediately before i. In other words, the vehicle can collect the equipment for i but
then visit other nodes before reaching i. The same holds for di, which is not required
to be visited immediately after i.

The graph is complete, and with each arc (i, j) ∈ A we associate a travelling time
tij . A service time vi is associated with each node i ∈ V . We suppose that triangle
inequality holds for all our instances (i.e., tij ≤ tik+vk+ tkj for all i, j, k ∈ V ). We are
also given a set K of homogeneous vehicles based at the central depot. Each vehicle
performs a single route. A route starts and ends at the depot. Its duration is given
by the sum of the service and travelling times of the nodes and arcs covered by the
vehicle, and it must not exceed a maximum duration L. Whenever a route visits a
node i of type II, then it must visit also pi and di.

In our application (described in detail in Section 6.6 below), equipment pieces are
keys, equipment centres are key centres, regular nodes are households, shops, reser-
voirs, tanks and treatment plants, and special nodes are wells. The resulting problem,
which we call Vehicle Routing Problem for Water Distribution Networks (VRPWDN),
requires visiting all demand nodes, while satisfying precedence constraints, multiple
visits, and maximum route duration constraints, with the aim of minimising the total
route duration. The VRPWDN is NP-hard in the strong sense, because it generalises
the VRP. In the next sections, we attempt its solution through a MILP model and an
ILS algorithm.

4. Flow-based Model

In this section, we define a flow-based model that formally describe the VRPWDN.
Such model builds upon the formulation presented by Kara (2011) and later used by,
among others, Karaoglan et al. (2012), Naji-Azimi and Salari (2014), and Allahyari
et al. (2015). Two alternative mathematical models, which provided weaker computa-
tional results, are reported in the supplemental online material.

Let xijk be a binary variable taking value 1 if arc (i, j) is covered by vehicle k and 0
otherwise, and fijk be a variable representing the “load” of vehicle k when travelling
along arc (i, j) ∈ A. The load represents the number of nodes visited by vehicle k
before it travels along arc (i, j). We can model the VRPWDN as follows:

(VRPWDNfb) min z(VRPWDNfb) =
∑
k∈K

∑
i∈V \{n+1}

∑
j∈V \{0}

(tij + vi)xijk (1)

subject to∑
k∈K

∑
j∈V \{0}

xijk = 1 i ∈ V1 ∪ V2 (2)

∑
j∈V \{0}

x0jk = 1 k ∈ K (3)
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∑
j∈V \{0}

xijk =
∑

j∈V \{n+1}

xjik i ∈ V \ {0, n+ 1}, k ∈ K (4)

∑
i∈V \{n+1}

∑
j∈V \{0}

(tij + vi)xijk ≤ L k ∈ K (5)

∑
j∈V \{0}

f0jk = 0 k ∈ K (6)

∑
i∈V \{n+1}

fi,n+1,k =
∑

i∈V \{n+1}

∑
j∈V \{0}

xijk − 1 k ∈ K (7)

∑
j∈V \{0}

fijk ≥
∑

j∈V \{n+1}

(fjik + xjik) i ∈ V \ {0, n+ 1}, k ∈ K (8)

∑
j∈V \{0}

(fpijk − fijk + xijk) ≤ (n− 1)(1−
∑

j∈V \{0}

xijk) i ∈ V2, k ∈ K (9)

∑
j∈V \{0}

fpijk ≥
∑

j∈V \{0}

xijk i ∈ V2, k ∈ K (10)

∑
j∈V \{0}

(fdijk − fijk) ≥
∑

j∈V \{0}

xijk i ∈ V2, k ∈ K (11)

xijk ∈ {0, 1} i, j ∈ V, k ∈ K (12)

0 ≤ fijk ≤ (n− 1)xijk i, j ∈ V, k ∈ K (13)

Objective function (1) minimises the total route duration. Constraints (2) impose that
each node i ∈ V1 ∪ V2 has exactly one outgoing arc. Each vehicle starts its route from
the depot and such condition is imposed by means of constraints (3). Constraints (4)
ensure that each node i has exactly one incoming and one outgoing arc. The maximum
duration of each route is bounded by means of constraints (5). Constraints (6) and
(7) impose the load on vehicle k when leaving 0 and entering n + 1, respectively.
Constraints (8) impose the load conservation at node i. Constraints (9)–(11) guarantee
the respect of precedence constraints. Constraints (12) define the domain of the xijk
variables, while constraints (13) impose lower and upper bounds on the fijk variables.

We removed some unnecessary variables from the model by fixing their values to 0,
namely: xipik = xdiik = 0 for i ∈ V2, k ∈ K; x0djk = 0 and x0jk = 0 for j ∈ V2, k ∈ K;
xpi,n+1,k = 0 and xi,n+1,k = 0 for i ∈ V2, k ∈ K. Furthermore, the above model can be
improved by the addition of the following constraints:∑

j∈V \{n+1}

xjpik +
∑

j∈V \{0}

xdijk ≥ 2
∑

j∈V \{n+1}

xjik i ∈ V2, k ∈ K (14)

∑
j∈V \{0}

(fdijk − fpijk) ≥
∑

l∈V \{n+1}:pi=pl

∑
j∈V \{0}

xljk i ∈ V2, k ∈ K (15)

∑
l∈V \{n+1}

(flik − fljk) + nxijk + (n− 2)xjik ≤ (n− 1) i, j ∈ V \ {0, n+ 1}, k ∈ K (16)

Constraints (14) impose that if vehicle k visits node i, then it also visits nodes pi
and di. Since pi may contain keys not only for i but for other nodes, vehicle k may
visit pi but not i, and the same holds for di. For this reason, the equation cannot
be an equality. Constraints (15) enforce that the difference of loads leaving di and pi
must be greater than or equal to the number of arcs covered when going from pi to di.
Constraints (16) are derived from the lifted constraints proposed by Desrochers and
Laporte (1991).
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5. Iterated Local Search

We developed an ILS algorithm with the purpose of finding good-quality VRPWDN
solutions within a limited computational effort. The choice of this metaheuristic is
motivated by its simplicity and effectiveness, in addition to the wide applicability it
has found on related VRPs (see, e.g., Vansteenwegen et al. 2009, Subramanian et al.
2010, 2013, Li et al. 2015, Silva et al. 2015, Haddadene et al. 2016) as well as on
practical applications (see, e.g., Atefi et al. 2018 and Anaya-Arenas et al. 2021).

Following the general framework proposed by Lourenço et al. (2019), the ILS starts
from an initial solution and then improves it by iteratively invoking local search and
perturbation procedures. The pseudo-code of the proposed ILS is provided in Algo-
rithm 1. First, we generate an initial solution x0 by means of a constructive heuristic
algorithm (line 1), and then we improve it with a local search procedure (line 2). The
incumbent solution, x∗, is inserted in the set of best known solutions obtained during
the search, called BKSet (line 3). Next, we execute two phases, one after the other.

In the first phase, a perturbation is applied to x∗ followed by a local search on
the perturbed solution, x′ (lines 5–7). The perturbation is randomly selected between
two shaking procedures described in the following. Let z(x) =

∑
k∈K zk(x) be the

total route duration for solution x and let l(x) = maxk∈K zk(x) be the maximum
route duration for solution x, where zk(x) =

∑
i∈Vk(x)\{n+1}

∑
j∈Vk(x)\{0}(tij + vi) is

the total route duration of vehicle k for solution x and Vk(x) ⊆ V is the set of nodes
visited by vehicle k for solution x. In case x∗′ has lower total route duration than x∗,
or same total route duration but lower maximum route duration, then we use it to
update x∗ (line 9). In such a case, we also insert x∗′ in BKSet (line 10). This set
contains at most the best β solutions found during the search, having the lowest z(x)
and breaking ties by lowest l(x). If, instead, x∗′ does not improve x∗, then x∗ is used
as starting solution to be shaken at the next iteration. This loop is repeated until no
improvement is found for maxiter iterations.

With the aim of further improving the solution obtained, at line 13 we enter the
second ILS phase, in which a new series of improving attempts is performed. The idea
is to intensify the search around the solutions contained in BKSet. For each such
solution, we perform once more a loop of shaking and local search procedures (lines
16–18), which is repeated until the same termination condition used above is met.
Should one of these attempts manage to improve the incumbent solution, this time
only in terms of total route duration, then the search restarts from the beginning of
the first phase (line 22). To the best of our knowledge, no similar intensification phase
can be found in the best-known ILS implementations for PDPs.

In the following, we provide the details of the main elements of the algorithm.

5.1. Initialisation Procedure

Algorithm 2 gives the Initialisation procedure that is used to generate an initial
solution. At the beginning, |K| routes are built in parallel by randomly selecting a
first node i ∈ V1 ∪ V2 per route. In case i belongs to V2, then the predecessor and the
successor of i (i.e., pi and di) are also inserted into the route. In the next |V1∪V2|−|K|
iterations, a new node is randomly selected and inserted into an existing route. In these
iterations, both the node and, in case i ∈ V2, its predecessor and successor are inserted
into the route in the positions that lead to the minimum extra route duration, which
is computed as ed(h, i, j) = thi+vi+tij−thj if, for example, node i is inserted between
node h and node j. Note that the insertion of node i or tuple (pi, i, di) into an existing
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Algorithm 1 Iterated Local Search (ILS)

1: x0 ← Initialisation() ▷ Generate an initial solution
2: x∗ ← LocalSearch(x0)
3: Insert(x∗, BKSet) ▷ BKSet: the set of best known solutions
4: repeat ▷ Phase 1
5: Shake()← Rand{S1, S2} ▷ Randomly select a shaking procedures
6: x′ ← Shake(x∗)
7: x∗′ ← LocalSearch(x′)
8: if z(x∗′) < z(x∗) OR (z(x∗′) = z(x∗) AND l(x∗′) < l(x∗)) then
9: x∗ ← x∗′

10: Insert(x∗, BKSet)
11: end if
12: until no improvement is found for maxiter iterations
13: for j ← 1 to |BKSet| do ▷ Phase 2
14: x∗ ← BKSetj ▷ Select the jth solution ∈ BKSet
15: repeat
16: Shake()← Rand{S1, S2}
17: x′ ← Shake(x∗)
18: x∗′ ← LocalSearch(x′)
19: if z(x∗′) < z(x∗) then
20: x∗ ← x∗′

21: Insert(x∗, BKSet)
22: Go to line 4

23: end if
24: until no improvement is found for maxiter iterations
25: end for
26: return x∗

route is led by the CheapestInsertion procedure, which evaluates among the |K|
routes the best candidate for the expansion. In particular, in case tuple (pi, i, di) is
to be inserted into an existing route, node i is initially inserted into the route in the
position that leads to the minimum extra route duration; then, pi and di are inserted
into the route in the positions that lead to the minimum extra route duration between
node 0 and node i and between node i and node n + 1, respectively, in such a way
that precedence constraints are satisfied. At line 22, the algorithm checks whether the
solution is feasible. If not, then the whole procedure is repeated from scratch.

5.2. Local Search

The LocalSearch procedure invokes, one after the other, the following neighbourhood
structures:

LS1 Swap intra-route: after removing the nodes belonging to V3 (i.e., the equip-
ment centres), two sequences with a maximum of three consecutive nodes (i.e.,
sequences of one, two, or three consecutive nodes) within the same route are
swapped. The equipment centres that were previously removed from the route
are reinserted after the swap in the positions that lead to the minimum extra
route duration and satisfy precedence constraints. An example of swap intra-
route between two sequences, the first involving only node j and the second only
node k, is given in Figure 2-(a). Note that in this example, like in the following
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Algorithm 2 Initialisation Procedure

1: S,V ← ∅
2: for k ← 1 to |K| do ▷ Initialisation of |K| routes in parallel
3: i← Rand{{1, ..., |V1 ∪ V2|} \ V}
4: V ← V ∪ {i} ▷ Add i to the set of visited nodes
5: if i ∈ V2 then
6: rk ← (0, pi, i, di, n+ 1)
7: Insert(rk,S)
8: else
9: rk ← (0, i, n+ 1)

10: Insert(rk,S)
11: end if
12: end for
13: for j ← 1 to |V1 ∪ V2| − |K| do ▷ Expansion of existing routes
14: i← Rand{{1, ..., |V1 ∪ V2|} \ V}
15: V ← V ∪ {i}
16: if i ∈ V2 then
17: CheapestInsertion((pi, i, di), rk ∈ S)
18: else
19: CheapestInsertion(i, rk ∈ S)
20: end if
21: end for
22: if Feasible(S) = 1 then
23: continue
24: else
25: Go to line 1

26: end if
27: return S

ones, nodes pi and di have different positions to make it as general as possible;
LS2 Swap inter-route: after removing the nodes belonging to V3, two sequences with

a maximum of three consecutive nodes are swapped between two routes. The
equipment centres that were previously removed from the routes are reinserted
after the swap in the positions that lead to the minimum extra route duration
and satisfy precedence constraints. If some nodes belonging to V3 are no longer
needed in one of the two routes, their reinsertion is avoided in that route. An
example of swap inter-route between nodes j and n is given in Figure 2-(b);

LS3 Relocate intra-route: after removing the nodes belonging to V3, a sequence with
a maximum of three consecutive nodes is removed and reinserted in a different
position within the same route. The equipment centres that were previously
removed from the route are reinserted after the relocation in the positions that
lead to the minimum extra route duration and satisfy precedence constraints.
An example of relocate intra-route of node i is given in Figure 2-(c);

LS4 Relocate inter-route: after removing the nodes belonging to V3, a sequence with
a maximum of three consecutive nodes is removed and reinserted in a different
route. The equipment centres that were previously removed from the route are
reinserted after the relocation in the positions that lead to the minimum extra
route duration and satisfy precedence constraints. If some nodes belonging to V3

are no longer needed in one of the two routes, their reinsertion is avoided in that
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route. An example of relocate inter-route of node n is given in Figure 2-(d);
LS5 3-opt : after removing the nodes belonging to V3, the classical 3-opt algorithm

of Lin (1965) is applied to the remaining nodes. The equipment centres that were
previously removed from the route are reinserted in the positions that lead to the
minimum extra route duration and satisfy precedence constraints. An example
of the 3-opt algorithm applied to subpath (l, j, k,m) is given in Figure 2-(e).

All the neighbourhood structures invoked by the LocalSearch procedure are clas-
sical efficient neighbourhood structures from the vehicle routing literature that have
been adapted to the problem at hand. Similar neighbourhood structures can be found,
for example, in Subramanian et al. (2010). What is new is the way in which the nodes
belonging to V3 are treated within these algorithms. Indeed, unlike the work of Sub-
ramanian et al. (2010), no feasibility check is needed after each local search move, as
feasibility is guaranteed by the removal and reinsertion of the equipment centres.

Procedures from LS1 to LS4 have all complexity O(n2), whereas LS5 has complexity
O(n3). To limit the computational effort required by LS5, a random logic search is
added. In particular, a candidate route k is selected randomly and potential nodes
belonging to V3 are removed as follows. For each node i in the route, the duration
saving si that could be obtained by removing i and directly connecting the predecessor
and successor nodes of i in the route is computed. Then, the probability of removing i
is set to pi = si/

∑
j sj . By means of the roulette wheel mechanism, three non-adjacent

nodes are selected for removal, and then the resulting route is optimised by a 3-opt
algorithm. A threshold of γ iterations is set to limit the number of attempts.

Each time the LocalSearch procedure is invoked, LS1–LS5 are repeated sequen-
tially, from LS1 to LS5, as long as an improvement is found. If at least one of the
neighbourhood structures finds an improvement, the entire search is repeated starting
from LS1. Note that each neighbourhood structure looks for the first improvement
and implements it; then the search continues until all possible combinations have been
checked (except LS5, for which a maximum number of iterations is set).

5.3. Shaking Procedure

To perturb a solution, we randomly select, with same probability, one of the two
following procedures.

S1 Shaking 1: randomly select a route k and execute a random iteration of the 3-opt
algorithm to update the order of visits. If the total route duration of the current
solution is not worse than αz(x∗), with α being an input parameter, randomly
select a second route k′ and perform another 3-opt iteration. The procedure is
iterated as long as the total route duration of the perturbed solution is not worse
than αz(x∗);

S2 Shaking 2: compute the duration saving obtained by removing any node from the
solution, similarly to what is done in LS5. Then use the roulette wheel mechanism
to select a node i ∈ V \ {0, n + 1}, and remove i from its route. The removal
procedure is iterated until at least α percent of all nodes have been removed.
If the selected node belongs to V2, then its duration saving is computed as the
average duration saving obtained by removing i, pi, and di. At the end of this
step, the algorithm invokes the Initialisation procedure to rebuild a feasible
solution.
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(a) Swap intra-route

(b) Swap inter-route

(c) Relocate intra-route

(d) Relocate inter-route

(e) 3-opt

Figure 2. Illustration of the neighbourhood structures
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6. Computational Results

In this section, we present the results of the computational tests performed to assess
the performance of the proposed methods. The mathematical models and the ILS
were coded in C++. The computational tests were executed on a PC equipped with
an Intel Core i7 CPU processor @ 2.70 GHz and 6 GB of RAM, using CPLEX 12.3
as MILP solver. A time limit of 3,600 CPU seconds was imposed on each execution.
In Section 6.1, we describe the sets of randomly-created instances that we used for
our tests. The results obtained for the flow-based model are reported in Section 6.2,
while the behaviour of the ILS is analysed in Sections 6.3 and 6.4. A comparison on
benchmark instances from the ADVRP literature is reported in Section 6.5, while in
Section 6.6 we report the results of additional computational experiments performed
on realistic instances derived from the case study.

6.1. Randomly-created Instances

We created several random instances to assess the performance of the algorithms under
different situations. In detail, we created two sets of instances, each comprising different
subsets having homogeneous values of |V1 ∪ V2|, (|V2|, |V3|) and |K|, and composed by
three random instances per subset. We obtained the following sets:

• Small-size: 24 instances with |V1 ∪ V2|=10, (|V2|, |V3|) ∈ {(1, 1), (2, 1), (2, 2),
(4, 2), (4, 3)}, and |K| ∈ {1, 2}; 30 instances with |V1 ∪ V2|=15, (|V2|, |V3|) ∈
{(3, 2), (3, 3), (4, 2), (4, 3), (7, 3), (7, 4)}, and |K| ∈ {2, 3}; 30 instances with
|V1 ∪V2|=20, (|V2|, |V3|) ∈ {(2, 2), (3, 2), (3, 3), (5, 3), (10, 4), (10, 6)}, and |K| ∈
{2, 3, 4};
• Medium- and large-size: 30 instances with |V1 ∪ V2|=50, (|V2|, |V3|) ∈ {(5, 5),

(8, 8), (10, 5), (10, 8), (25, 10), (25, 15)}, and |K| ∈ {5, 8, 10}; 30 instances with
|V1 ∪ V2|=100, (|V2|, |V3|) ∈ {(5, 5), (10, 5), (10, 10), (15, 10), (50, 20), (50, 30)},
and |K| ∈ {10, 15, 20}; 30 instances with |V1 ∪ V2|=200, (|V2|, |V3|) ∈ {(10, 10),
(20, 10), (20, 20), (30, 20), (100, 40), (100, 50)}, and |K| ∈ {15, 20, 30}.

For each instance, the coordinates of the nodes are integer values randomly selected
between 0 and 100. The distances between the nodes are computed as the Euclidean
ones, rounded to the second closest digit, and converted into times using a fixed multi-
plier of 30 km/h (i.e., assuming that this is the average speed of vehicles along the net-
work). The maximum duration is set to L = 1.5(

∑
i∈V1∪V2

ti + |K|
∑

i∈V3∪{0} ti)/|K|,
where ti is the average travel time of the arcs leaving i, computed as ti =∑

j∈V \{i} tij/(|V | − 1) for each node i ∈ V \ {n + 1}. The service time vi for each
node i ∈ V1 ∪ V2 ∪ V3 is set to a random integer value between 20 and 40.

In the following, a subset of instances is identified by the tuple (|V1 ∪ V2|, |V2|, |V3|,
|K|), while a single instance is identified by (|V1 ∪ V2|, |V2|, |V3|, |K|, u), where u is a
numerical index going from 1 to 3.

To favour future research on the problem, the randomly-created instances
have been made publicly available at https://github.com/regor-unimore/

Vehicle-Routing-Problem-for-Water-Distribution-Networks.

6.2. Flow-based Model Performance

In this section, the performance of the flow-based model from Section 4 is investigated.
The aggregated results that we obtained are reported in Table 1. Each line reports
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average/total values for a group of three instances having the same numbers of vertices
and vehicles. For each group, columns “zlb” and “zub” give the average lower and upper
bound values, respectively, column “%gap” gives the average percentage gap computed
as 100(zub− zlb)/zub, and column “Sec.” the average run time. In particular, the lower
bound values are those obtained at the end of the execution (i.e., those values obtained
upon proving optimality or reaching a time/memory limit). An entry “tlim” indicates
that the time limit was reached for all the three instances in the group. Column
“opt” gives the total number of instances solved to proven optimality. To assess the
performance of the proposed valid inequalities, all instances were solved with and
without the addition of the valid inequalities. More detailed computational results,
comparing the performance of the flow-based model with two alternative models that
we developed, are reported in the supplemental online material.

Table 1. Performance of the flow-based model (three instances per line).

without valid inequalities with valid inequalities
|V1 ∪ V2| |V2| |V3| |K| zlb zub %gap Sec. opt zlb zub %gap Sec. opt

10 1 1 1 706.39 706.39 0.00 1.68 3/3 706.39 706.39 0.00 1.13 3/3
10 1 1 2 730.91 730.91 0.00 4.31 3/3 730.91 730.91 0.00 3.26 3/3
10 2 1 1 743.25 743.25 0.00 3.79 3/3 743.25 743.25 0.00 3.13 3/3
10 2 1 2 793.75 793.75 0.00 10.81 3/3 793.75 793.75 0.00 9.45 3/3
10 2 2 1 803.96 803.96 0.00 17.28 3/3 803.96 803.96 0.00 16.73 3/3
10 2 2 2 833.78 833.78 0.00 80.97 3/3 833.78 833.78 0.00 75.01 3/3
10 4 2 2 935.49 935.49 0.00 164.14 3/3 935.49 935.49 0.00 74.20 3/3
10 4 3 2 1058.61 1058.61 0.00 323.86 3/3 1058.61 1058.61 0.00 274.33 3/3

sum/avg (10) 825.77 825.77 0.00 75.85 24/24 825.77 825.77 0.00 57.16 24/24

15 3 2 2 1036.61 1036.61 0.00 584.13 3/3 1036.61 1036.61 0.00 509.71 3/3
15 3 2 3 1046.02 1049.45 0.33 1729.31 2/3 1049.45 1049.45 0.00 1325.68 3/3
15 3 3 2 1109.70 1114.68 0.45 1298.50 2/3 1114.68 1114.68 0.00 1104.10 3/3
15 3 3 3 1152.65 1161.09 0.73 1650.61 2/3 1153.10 1160.74 0.65 1358.60 2/3
15 4 2 2 1036.61 1036.61 0.00 581.15 3/3 1036.61 1036.61 0.00 510.81 3/3
15 4 2 3 1084.12 1084.12 0.00 1483.72 3/3 1084.12 1084.12 0.00 1108.56 3/3
15 4 3 2 1141.60 1149.80 0.71 1692.32 2/3 1142.24 1149.80 0.69 1420.98 2/3
15 4 3 3 1187.63 1207.11 1.61 1187.63 2/3 1190.64 1202.40 1.03 1430.51 2/3
15 7 3 3 1342.60 1342.60 0.00 1152.71 3/3 1342.60 1342.60 0.00 908.80 3/3
15 7 4 3 1366.61 1406.45 2.92 tlim 0/3 1372.35 1406.45 2.46 tlim 0/3

sum/avg (15) 1150.42 1158.85 0.67 1496.01 22/30 1152.24 1158.35 0.48 1327.77 24/30

20 2 2 2 1243.47 1278.85 2.77 2069.77 2/3 1243.73 1277.82 2.61 1354.86 2/3
20 2 2 3 1298.19 1338.84 3.04 1742.10 2/3 1294.95 1329.12 2.56 1458.53 2/3
20 3 2 2 1239.80 1274.10 2.69 1669.25 2/3 1243.52 1269.71 2.02 1271.07 2/3
20 3 2 3 1301.73 1301.73 0.00 1428.79 3/3 1301.73 1301.73 0.00 1127.63 3/3
20 3 3 2 1255.36 1299.51 3.40 3381.88 1/3 1260.69 1296.61 2.60 2661.64 1/3
20 3 3 3 1276.88 1321.84 3.40 tlim 0/3 1281.30 1321.84 2.97 tlim 0/3
20 5 3 2 1243.50 1283.32 3.10 3315,16 1/3 1241.98 1280.43 2.91 2986.79 1/3
20 5 3 3 1265.11 1326.69 4.64 tlim 0/3 1270.11 1322.70 3.84 2863.57 1/3
20 10 4 4 1738.23 1878.33 8.06 tlim 0/3 1754.91 1847.21 5.07 tlim 0/3
20 10 6 4 1848.47 1913.72 3.53 tlim 0/3 1856.02 1902.28 2.39 tlim 0/3

sum/avg (20) 1371.07 1421.69 3.46 2800.69 11/30 1374.89 1414.95 2.70 2452.41 12/30

overall sum/avg 1136.47 1157.56 1.48 1556.21 57/84 1138.48 1154.97 1.14 1366.40 60/84

From Table 1, we observe that the flow-based model finds optimal solutions for
all the small-size instances with |V1 ∪ V2| = 10, while for those with |V1 ∪ V2| = 15
and |V1 ∪ V2| = 20, the computer frequently ran out of memory because of the large
model size. Therefore, we cannot prove the optimality of these solutions. However, we
notice that the valid inequalities improve the performance of the model by reducing
the average percentage gap and execution time. As one might expect, the average
lower and upper bound values increase with the number of demand nodes but, more
interestingly, for the same total number of demand nodes, the average lower and upper
bound values increase more for those group of instances in which the number of special
nodes is higher. This is understandable since an increase in the number of special nodes
leads to an increase in the number of detours to the equipment centres (especially if
a technician must visit more than one equipment centre within the same route). In
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particular, looking at the results obtained with the addition of the valid inequalities,
we observe an increase in the average lower and upper bound values of up to 39% for
instances having |V1 ∪ V2| = 10 when |V2| goes from 1 to 4, up to 26% for instances
having |V1 ∪ V2| = 15 when |V2| goes from 3 to 7, and up to 44% for instances having
|V1 ∪ V2| = 20 when |V2| goes from 2 to 10. Similarly, we notice an increase both in
terms of average percentage gap and execution time, which is justified by the increased
complexity of the instances. Conversely, the number of instances solved to optimality
decreases when the number of demand nodes increases and, for the same total number
of demand nodes, when the number of special nodes increases. Overall, we can conclude
that the results prove the need of a good heuristic for these instances. This need is
further motivated by the dimension of the original real-world problem, where the
number of visits per day (i.e., between 53 and 55) is larger than the size of instances
solved to optimality within the time limit.

6.3. ILS Parameter Tuning

The ILS procedure adopts four main parameters (i.e., α, β, γ and maxiter). To set
their values, we randomly selected six instances (two with 0 ≤ n ≤ 20, two with
50 ≤ n ≤ 100, and two with n = 200). We then tested the ILS on these in-
stances by attempting all possible combinations of parameter values chosen in the
sets α ∈ {0.05.0.10, 0.15, 0.25}, β ∈ {2, 5, 10, 20}, γ ∈ {50, 100} and maxiter ∈
{200, 500, 1000, 5000}. The results are reported in Table 2. For each combination of
parameters, column “Sec.” gives the average ILS run time on the six instances, and
column “%gap” gives the average gap computed as the average over the six instances
of 100(zf − zall)/zall. Here, zf is the value of the solution obtained by the given con-
figuration f and zall = minf{zf} is the value of the best solution obtained by all
configurations.

Table 2. ILS parameter tuning. Best configuration in boldface

(γ,maxiter)

(50, 200) (50, 500) (50, 1000) (50, 5000) (100, 200) (100, 500) (100, 1000) (100, 5000)
(α, β) Sec. %gap Sec. %gap Sec. %gap Sec. %gap Sec. %gap Sec. %gap Sec. %gap Sec. %gap

(0.05,2) 1.53 0.91 1.79 0.87 2.13 0.84 2.79 0.82 1.56 0.83 1.80 0.79 1.89 0.78 3.28 0.77
(0.05,5) 1.67 0.76 1.83 0.75 2.27 0.73 2.91 0.72 1.79 0.75 1.90 0.74 2.02 0.74 3.49 0.73
(0.05,10) 1.91 0.76 2.18 0.74 2.66 0.73 3.41 0.72 2.08 0.73 2.19 0.73 2.26 0.73 3.91 0.71
(0.05,20) 1.73 0.76 1.93 0.74 2.34 0.73 2.86 0.72 2.20 0.73 2.35 0.72 2.43 0.69 4.67 0.69

(0.10,2) 2.09 0.08 2.33 0.03 2.68 0.02 3.58 0.01 1.91 0.13 1.97 0.11 2.09 0.10 2.58 0.10
(0.10,5) 2.74 0.08 3.25 0.02 4.02 0.00 5.44 0.00 2.06 0.11 2.38 0.07 2.89 0.06 3.28 0.05
(0.10,10) 3.13 0.08 4.06 0.02 5.04 0.00 6.47 0.00 2.49 0.07 2.61 0.07 3.05 0.06 3.39 0.05
(0.10,20) 3.57 0.08 4.53 0.02 5.23 0.00 8.02 0.00 2.84 0.07 3.11 0.06 3.24 0.06 3.46 0.05

(0.15,2) 1.83 0.43 2.06 0.39 2.30 0.38 3.12 0.35 2.04 0.38 2.37 0.35 2.49 0.35 3.12 0.35
(0.15,5) 2.49 0.40 2.86 0.38 3.13 0.35 5.08 0.35 2.33 0.36 2.59 0.35 3.20 0.34 4.85 0.33
(0.15,10) 3.35 0.40 3.88 0.38 4.16 0.35 6.37 0.35 2.48 0.35 3.79 0.33 4.11 0.33 5.09 0.33
(0.15,20) 4.55 0.40 5.02 0.38 5.23 0.35 8.64 0.35 2.71 0.35 4.26 0.33 4.82 0.33 5.94 0.32

(0.25,2) 2.25 1.34 2.64 1.07 3.30 0.94 4.56 0.92 2.21 0.88 2.27 0.86 2.84 0.86 4.19 0.86
(0.25,5) 2.54 1.18 2.93 0.91 4.05 0.89 5.62 0.89 2.68 0.86 3.16 0.85 3.74 0.85 4.80 0.83
(0.25,10) 3.00 1.16 3.94 0.90 4.94 0.86 7.33 0.86 3.52 0.83 4.86 0.82 6.07 0.82 7.83 0.82
(0.25,20) 3.72 1.16 5.12 0.90 6.31 0.86 8.89 0.86 4.67 0.83 6.13 0.82 6.63 0.82 8.46 0.82

The configuration with α = 0.10, β = 5, γ = 50 and maxiter = 1000 is the one that
obtained the best results (highlighted in bold in the table). It could always achieve the
best solution values, at the expense of a limited increase in the computing time with
respect to configurations adopting a smaller number of iterations. This configuration
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was thus adopted for all successive ILS tests.

6.4. ILS Evaluation

In this section, we investigate the performance of the ILS. In Table 3, the results
of the ILS are compared with those obtained by the flow-based model on groups of
three instances per line. We recall that columns “zlb” and “zub” give the average lower
and upper bound values, respectively, column “opt” the number of proven optimal
solutions, and column “Sec.” the average run time. The ILS was executed five times
on each instance. We report the best, average and worst solution values achieved, as
well as the average gap computed as 100(zavg − zlb)/zavg, in columns “zbest”, “zavg”,
“zworst” and “%gap”, respectively. More in detail, zbest gives the average of the best
solution values produced on the three instances, zavg the average of the average values,
and zworst the average of the worst values. The average computational time is shown
in column “Sec.”.

Table 3. Computational results on small-size instances (three instances per line)

flow-based ILS

|V1 ∪ V2| |V2| |V3| |K| zlb zub Sec. opt zbest zavg zworst %gap Sec.

10 1 1 1 706.39 706.39 1.13 3/3 706.39 706.39 706.39 0.00 0.00
10 1 1 2 730.91 730.91 3.26 3/3 730.91 730.91 730.91 0.00 0.00
10 2 1 1 743.25 743.25 3.13 3/3 743.25 743.25 743.25 0.00 0.00
10 2 1 2 793.75 793.75 9.45 3/3 793.75 793.75 793.75 0.00 0.00
10 2 2 1 803.96 803.96 16.73 3/3 803.96 803.96 803.96 0.00 0.00
10 2 2 2 833.78 833.78 75.01 3/3 833.78 833.78 833.78 0.00 0.00
10 4 2 2 935.49 935.49 74.20 3/3 935.49 935.49 935.49 0.00 0.00
10 4 3 2 1058.61 1058.61 274.33 3/3 1058.61 1058.61 1058.61 0.00 0.00

sum/avg (10) 825.77 825.77 57.16 24/24 825.77 825.77 825.77 0.00 0.00

15 3 2 2 1036.61 1036.61 509.71 3/3 1036.61 1036.61 1036.61 0.00 0.14
15 3 2 3 1049.45 1049.45 1325.68 3/3 1049.45 1049.45 1049.45 0.00 0.22
15 3 3 2 1114.68 1114.68 1104.10 3/3 1114.68 1114.68 1114.68 0.00 0.14
15 3 3 3 1153.10 1160.74 1358.60 2/3 1155.96 1155.96 1155.96 0.25 0.24
15 4 2 2 1036.61 1036.61 510.81 3/3 1036.61 1036.61 1036.61 0.00 0.16
15 4 2 3 1084.12 1084.12 1108.56 3/3 1084.12 1084.12 1084.12 0.00 0.22
15 4 3 2 1142.24 1149.80 1420.98 2/3 1146.56 1146.56 1146.56 0.38 0.20
15 4 3 3 1190.64 1202.40 1430.51 2/3 1202.40 1202.40 1202.40 0.98 0.27
15 7 3 3 1342.60 1342.60 908.80 3/3 1342.60 1342.60 1342.60 0.00 0.21
15 7 4 3 1372.35 1406.45 tlim 0/3 1403.00 1403.00 1403.00 2.18 0.28

sum/avg (15) 1152.24 1158.35 1327.77 24/30 1157.20 1157.20 1157.20 0.43 0.21

20 2 2 2 1243.73 1277.82 1354.86 2/3 1275.44 1275.44 1275.44 2.49 0.26
20 2 2 3 1294.95 1329.12 1458.53 2/3 1316.03 1316.03 1316.03 1.60 0.33
20 3 2 2 1243.52 1269.71 1271.07 2/3 1262.52 1262.52 1262.52 1.50 0.35
20 3 2 3 1301.73 1301.73 1127.63 3/3 1301.73 1301.73 1301.73 0.00 0.41
20 3 3 2 1260.69 1296.61 2661.64 1/3 1277.25 1277.25 1277.25 1.30 0.35
20 3 3 3 1281.30 1321.84 tlim 0/3 1301.37 1301.37 1301.37 1.54 0.61
20 5 3 2 1241.98 1280.43 2986.79 1/3 1265.46 1265.46 1265.46 1.86 0.33
20 5 3 3 1270.11 1322.70 2863.57 1/3 1303.93 1303.93 1303.93 2.59 0.73
20 10 4 4 1754.91 1847.21 tlim 0/3 1833.52 1833.52 1833.52 4.29 0.46
20 10 6 4 1856.02 1902.28 tlim 0/3 1902.28 1902.28 1902.28 2.43 0.53

sum/avg (20) 1374.89 1414.95 2452.41 12/30 1403.95 1403.95 1403.95 2.07 0.44

overall sum/avg 1138.48 1154.97 1366.40 60/84 1150.63 1150.63 1150.63 1.06 0.23

According to the results, for those groups of three instances that were all solved
to optimality by the flow-based model, the ILS obtained the same optimal values in
a shorter computational time. For all the remaining small-size sets, the ILS achieved
better values than the flow-based model in terms of average upper bound values (with-
out proof of their optimality), with an average percentage gap from the average lower
bound values of 0.43% for instances having |V1 ∪ V2| = 15 and 2.07% for instances

15



having |V1 ∪ V2| = 20, which is acceptable given the significant advantage in terms of
computational time.

In Table 4, in which column “σz” gives the average standard deviation, we report the
results of the ILS on medium- and large-size instances. On instances having |V1∪V2| =
50 the average standard deviation is 0.00, on those having |V1 ∪ V2| = 100 it becomes
0.56, while on those having |V1 ∪ V2| = 200 it increases to 0.92, thus resulting in
an overall average standard deviation of 0.49. This confirms the robustness of the
algorithm. Concerning the run time, the ILS took on average 2.09 seconds to solve
instances having |V1 ∪ V2| = 50, 9.60 seconds for those having |V1 ∪ V2| = 100, and
14.73 seconds for those having |V1 ∪ V2| = 200. The overall average run time is 8.81
seconds, proving that the method is suitable for a quick use in practical situations.

Table 4. Computational results on medium- and large-size instances (three instances per line)

ILS

|V1 ∪ V2| |V2| |V3| |K| zbest zavg zworst σz Sec.

50 5 5 5 2583.27 2583.27 2583.27 0.00 1.17
50 5 5 8 2721.90 2721.90 2721.90 0.00 1.59
50 8 8 5 2883.07 2883.07 2883.07 0.00 1.67
50 8 8 8 3001.70 3001.70 3001.70 0.00 2.10
50 10 5 5 2664.02 2664.02 2664.02 0.00 2.09
50 10 5 8 2807.41 2807.41 2807.41 0.00 2.19
50 10 8 5 2863.64 2863.64 2863.64 0.00 1.91
50 10 8 8 3003.07 3003.07 3003.07 0.00 2.52
50 25 10 10 3402.31 3402.31 3402.31 0.00 2.53
50 25 15 10 4364.78 4364.78 4364.78 0.00 3.10

avg (50) 3029.52 3029.52 3029.52 0.00 2.09

100 5 5 10 4430.65 4430.92 4431.53 0.40 7.61
100 5 5 15 4642.24 4642.45 4643.13 0.39 8.29
100 10 5 10 4507.07 4507.27 4508.07 0.45 7.19
100 10 5 15 4750.73 4750.92 4751.65 0.41 8.17
100 10 10 10 4856.94 4857.16 4857.99 0.47 9.03
100 10 10 15 5062.41 5062.62 5063.43 0.45 9.43
100 15 10 10 4826.28 4826.62 4827.96 0.75 9.18
100 15 10 15 5070.19 5070.50 5071.74 0.69 9.90
100 50 20 20 6376.07 6376.67 6377.64 0.67 12.99
100 50 30 20 6891.37 6892.08 6893.25 0.95 14.25

avg (100) 5141.40 5141.72 5142.64 0.56 9.60

200 10 10 15 8244.39 8244.97 8246.12 0.82 9.86
200 10 10 20 8636.53 8637.11 8638.33 0.84 10.34
200 20 10 15 8550.63 8551.32 8552.62 0.98 12.27
200 20 10 20 8814.41 8815.00 8816.05 0.82 13.29
200 20 20 15 9128.90 9129.63 9130.63 0.82 13.66
200 20 20 20 9305.35 9305.98 9307.13 0.81 14.96
200 30 20 15 9372.60 9373.86 9375.17 1.16 14.05
200 30 20 20 9497.20 9498.20 9499.67 1.10 15.70
200 100 40 30 9815.12 9815.76 9817.16 0.87 19.17
200 100 50 30 10806.37 10807.30 10808.64 0.97 24.04

avg (200) 9217.15 9217.91 9219.15 0.92 14.73

overall avg 5796.02 5796.38 5797.10 0.49 8.81

Finally, Table 5 reports a sensitivity analysis on the number of times each ILS
component is invoked, column “#”, and the average percentage of computational
time needed, column “%”, grouped by set of instances. We notice that the number
of times LS1–LS5 are invoked increases with the size of the instances, and the same
holds for S1 and S2. Also, on the small-size sets LS2 and LS3 are the most time-
consuming local search procedures, while for medium- and large-size sets the largest
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effort is required by LS1 and LS4. This is due to the increasing number of intra-route
or inter-route combinations that must be checked by the ILS components, as well as
the removal/reinsertion mechanism of the nodes belonging to V3, the number of which
increases with the size of the instances.

Table 5. Number of times each ILS component is invoked and percentage of the computational time needed

Set LS1 LS2 LS3 LS4 LS5 S1 S2

# % # % # % # % # % # % # %

Small-size 6540 5.37 6540 37.16 6540 27.91 6540 7.39 6540 20.70 894 0.38 979 1.09
Medium-size 8525 56.45 8525 10.15 8525 1.29 8525 21.44 8525 9.62 1107 0.22 1054 0.83
Large-size 9798 48.25 9798 4.38 9798 3.15 9798 34.51 9798 8.92 1118 0.12 1101 0.67

6.5. Comparison on Benchmark ADVRP Instances

In this section, we evaluate the effectiveness of the proposed ILS in solving the ADVRP,
a variant of the Distance-Constrained VRP in which the distance matrix is asymmetric.
The problem was introduced in the seminal work of Laporte et al. (1987) and recently
studied by Almoustafa et al. (2013). The VRPWDN corresponds to the ADVRP when
V2 = V3 = ∅ and vi = 0 for all i ∈ V . Furthermore, travelling distances are considered
instead of travelling times. The performance of the ILS was assessed on the benchmark
ADVRP instances proposed by Almoustafa et al. (2013). In particular, the authors
created 92 instances, 72 of which are small-size and 20 are large-size. For each instance,
three problems were solved by attempting different values of the maximum travelling
distance Dmax. The first attempted value, Dmax(1), was set to +∞, while the other
values were set to Dmax(i) = 0.90LT (i− 1) for i ∈ {2, 3}, with LT (i) representing the
longest route in the solution obtained with maximum travelling distance Dmax(i−1).

The results of our algorithm were compared with the three methods proposed by Al-
moustafa et al. (2013), namely a flow-based ADVRP formulation solved using CPLEX
(CPLEX), a single-start branch-and-bound with random selection (RND), and a multi-
start branch-and-bound (MSBB).

Summary results are shown in Tables 6-8, where, mimicking the tables found in Al-
moustafa et al. (2013), row “#Inst” gives the number of attempted instances (after
removing those instances for which both the RND and the MSBB could not find an
optimal solution), row “#Feas” gives the number of feasible solutions obtained, row
“#No Feas” gives the number of instances for which no feasible solution was found, and
row “Avg. %Gap (all Feas)” gives the average percentage gap from the best solutions
found, computed for those instances in which all algorithms found a feasible solution.
Row “Avg. Time (all Feas)” gives the average time, expressed in seconds, computed
for those instances in which all algorithms found a feasible solution. Rows “Avg. %Gap
(Feas)” and “Avg. Time (Feas)” give, respectively, the average percentage gap from
the best solutions found, computed for those instances in which the algorithm found
a feasible solution, and the average time, expressed in seconds, computed for those
instances in which the algorithm found a feasible solution. Additional row “%Feas”
gives the percentage of instances for which the algorithm found a feasible solution.

Note that we can compare our results with those of Almoustafa et al. (2013) for all
the three sets of problem instances because we used the exact same values computed
by the authors for Dmax(2) and Dmax(3), which were not originally made available but
were kindly provided to us by the authors. Therefore, as an additional contribution of
our work and to encourage future research on the problem, we decided to republish in
our repository the ADVRP benchmark instances accompanied by the values of Dmax(2)

and Dmax(3).
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Table 6. Computational results on 92 ADVRP instances with Dmax(1) = +∞

72 small ADVRP instances 20 large ADVRP instances All 92 ADVRP instances

CPLEX RND MSBB ILS CPLEX RND MSBB ILS CPLEX RND MSBB ILS

#Inst 72 72 72 72 20 20 20 20 92 92 92 92
#Feas 72 72 72 72 2 20 20 20 74 92 92 92
#No Feas 0 0 0 0 18 0 0 0 18 0 0 0

Avg. %Gap (all Feas) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Avg. Time (all Feas) 304.12 0.01 0.01 1.21 1883.16 0.03 0.02 4.06 346.79 0.01 0.01 1.29

Avg. %Gap (Feas) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.02
Avg. Time (Feas) 304.12 0.01 0.01 1.21 1883.16 0.34 0.38 7.95 346.79 0.08 0.09 2.67

%Feas 100.00 100.00 100.00 100.00 10.00 100.00 100.00 100.00 80.43 100.00 100.00 100.00

CPLEX, RND, and MSBB were run on a PC equipped with an Intel Core 2 CPU processor @ 2.40 GHz, while the ILS
was run on a PC equipped with an Intel Core i7 CPU processor @ 2.70 GHz.

Table 7. Computational results on 92 ADVRP instances with Dmax(2) = 0.90LT (1)

72 small ADVRP instances 20 large ADVRP instances All 92 ADVRP instances

CPLEX RND MSBB ILS CPLEX RND MSBB ILS CPLEX RND MSBB ILS

#Inst 72 72 72 72 20 20 20 20 92 92 92 92
#Feas 70 68 69 70 4 20 20 20 74 88 89 90
#No Feas 2 4 3 2 16 0 0 0 18 4 3 2

Avg. %Gap (all Feas) 0.00 0.02 0.01 0.00 2.36 0.00 0.00 0.00 0.13 0.02 0.01 0.00
Avg. Time (all Feas) 885.01 19.24 62.18 0.99 8567.97 0.78 0.77 3.45 1311.84 18.22 58.76 1.13

Avg. %Gap (Feas) 0.00 0.02 0.02 0.00 2.36 0.01 0.01 0.06 0.13 0.01 0.02 0.01
Avg. Time (Feas) 585.32 14.58 63.49 0.97 8567.97 6.22 6.09 6.22 1016.82 12.68 50.59 2.13

%Feas 97.22 94.44 95.83 97.22 20.00 100.00 100.00 100.00 80.43 95.65 96.74 97.83

CPLEX, RND, and MSBB were run on a PC equipped with an Intel Core 2 CPU processor @ 2.40 GHz, while the
ILS was run on a PC equipped with an Intel Core i7 CPU processor @ 2.70 GHz.

Remarkably, the ILS proved to be effective in finding feasible solutions for the
ADVRP. Indeed, among the three problems, the percentage of instances for which
the algorithm found a feasible solution varied between 97.83% and 100.00%, thus
showing a good consistency and outperforming the other methods. When solving the
first problem, the average percentage gap from the best solutions found was very small,
while the average computing times were slightly higher than those of the RND and the
MSBB but much smaller than those of CPLEX. The better performance of the RND
and the MSBB in this problem is motivated by the fast polynomial Hungarian method
on which they are based, that is used as a lower bounding procedure to solve the linear
relaxation of the TSP obtained from the original flow-based ADVRP formulation. The
results show that this method is particularly effective in solving problems in which the
maximum travelling distance is unconstrained. However, when solving the second and
third problems (i.e., in which the maximum travelling distance is constrained and these
constraints become increasingly tight), the average computing times of the RND and
the MSBB considerably increase compared to the ILS. This can be imputed to the fact
that the relaxation solved by the Hungarian method becomes more and more distant
from the set of feasible solutions, and hence less effective in practice.

In terms of solution quality, on small-size instances (which are comparable in size
to our randomly-created instances) the ILS always performs as well, if not better,
than the RND and the MSBB, while on large-size instances (which are larger than our
randomly-created instances) a small average percentage gap from the best solutions
found still remains.

Overall, the ILS proved to be competitive with the RND and the MSBB in terms
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Table 8. Computational results on 73 ADVRP instances with Dmax(3) = 0.90LT (2)

53 small ADVRP instances 20 large ADVRP instances All 73 ADVRP instances

CPLEX RND MSBB ILS CPLEX RND MSBB ILS CPLEX RND MSBB ILS

#Inst 53 53 53 53 20 20 20 20 73 73 73 73
#Feas 53 50 50 53 1 19 19 19 54 69 69 72
#No Feas 0 3 3 0 19 1 1 1 19 4 4 1

Avg. %Gap (all Feas) 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Avg. Time (all Feas) 1177.78 16.72 65.37 0.65 4032.28 4.67 4.66 2.24 1233.75 16.48 64.18 0.68

Avg. %Gap (Feas) 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.11 0.01 0.01 0.00 0.03
Avg. Time (Feas) 1367.35 16.72 65.37 0.64 4032.28 87.30 86.69 4.51 1416.71 36.15 71.24 1.66

%Feas 100.00 94.34 94.34 100.00 5.00 95.00 95.00 95.00 73.97 94.52 94.52 98.63

CPLEX, RND, and MSBB were run on a PC equipped with an Intel Core 2 CPU processor @ 2.40 GHz, while the
ILS was run on a PC equipped with an Intel Core i7 CPU processor @ 2.70 GHz.

of solution quality and outperformed these two methods in terms of percentage of
instances for which the algorithm found a feasible solution and solution time when the
maximum travelling distance is constrained. This further motivates the choice of the
algorithm and confirms its potential in solving more general problems like ours.

6.6. Results on Realistic Instances

The ILS was also tested on realistic instances derived from the case study that moti-
vated our research, namely the daily inspection of the water distribution network of
the city of Mashhad (Iran), which consists of 3,124 households/shops (regular nodes),
293 reservoirs/tanks (regular nodes), 14 treatment plants (regular nodes), 356 wells
(special nodes) and 8 key centres (equipment centres).

We first collected ten real-world instances and the corresponding solutions imple-
mented by the company and compared them with those obtained by the ILS. Each
instance represents a working day involving five technicians, each of whom inspects
around 10 or 11 nodes daily (so that the entire network is inspected around every
two years). For each instance, the company provided the exact locations of the nodes
visited, the service times and the sequence of visits. The real distances were com-
puted with ArcGIS and the maximum duration L was set to 8 hours. The comparison
between the results obtained by the company and those obtained by the ILS is re-
ported in Table 9, where columns “zbest”, “zavg”, “zworst”, “σz” and “Sec.” give the
best, average and worst solution values, the standard deviation and the computa-
tional time of the ILS, respectively. Column “zreal” indicates the real solution value,
while column “%gap” gives the percentage gap between zreal and zavg, computed as
100(zreal − zavg)/zreal. In this case, no comparison with the flow-based model could
be made due to the memory limitations encountered in solving medium-size instances
using CPLEX.

The results show that the ILS can effectively solve real-world instances, improving
the solutions found by the company by 12.85% on average. A simple illustrative com-
parison of two solutions, one implemented by the company and the other obtained by
the ILS, is depicted in Figure 3. The two solutions comprise the five routes of Day
2. We can notice that the solutions implemented by the company are more balanced
than those obtained by the ILS, as the five technicians visit a similar number of nodes.
However, the ILS performs better in minimising the total route duration (578.01 vs
634.05).

With the aim of testing the ILS on larger-size realistic instances, we also generated
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Table 9. Computational results on real-world instances

ILS Company

|V1 ∪ V2| |V2| |V3| |K| Day zbest zavg zworst σz Sec. zreal %gap

54 6 2 5 1 611.40 611.40 611.40 0.00 1.63 687.42 11.06
53 7 1 5 2 578.01 578.01 578.01 0.00 2.07 634.05 8.84
55 6 2 5 3 448.88 448.88 448.88 0.00 2.27 544.81 17.61
54 6 2 5 4 489.93 489.93 489.93 0.00 2.35 540.97 9.43
54 8 4 5 5 541.30 541.30 541.30 0.00 2.68 594.19 8.90
54 6 3 5 6 416.19 416.19 416.19 0.00 2.19 553.13 24.76
53 6 2 5 7 494.49 494.49 494.49 0.00 1.99 540.67 8.54
55 5 2 5 8 486.00 486.00 486.00 0.00 2.46 530.30 8.35
55 7 3 5 9 417.59 417.59 417.59 0.00 1.89 539.88 22.65
54 5 2 5 10 524.86 524.86 524.86 0.00 2.00 572.65 8.35

overall avg 500.87 500.87 500.87 0.00 2.15 573.81 12.85

48 new instances starting from the water distribution network of Mashhad. In detail, we
generated 48 realistic instances, each comprising different subsets having homogeneous
values of |V1 ∪ V2|, (|V2|, |V3|), and |K|, and composed by three random instances per
subset. The resulting sets are: 12 instances with |V1 ∪ V2|=60, (|V2|, |V3|) ∈ {(4, 2),
(4, 3), (6, 2), (6, 3)}, and |K| ∈ {2, 3}; 12 instances with |V1 ∪ V2|=100, (|V2|, |V3|) ∈
{(8, 4), (8, 5), (10, 4), (10, 5)}, and |K| ∈ {4, 5}; 12 instances with |V1 ∪ V2|=150,
(|V2|, |V3|) ∈ {(8, 4), (8, 5), (10, 4), (10, 5)}, and |K| ∈ {4, 5}; 12 instances with |V1 ∪
V2|=200, (|V2|, |V3|) ∈ {(8, 4), (8, 5), (10, 4), (10, 5)}, and |K| ∈ {4, 5}.

For each instance, the geographical coordinates of the nodes were randomly selected
among the given exact locations and the real distances were computed using ArcGIS.
Average service times were considered for the inspection of the nodes. The results
are reported in Table 10. We recall that columns “zbest”, “zavg”, “zworst”, “σz” and
“Sec.” give the best, average and worst solution values, the standard deviation and
the computational time of the ILS, respectively.

The ILS achieved very robust results on instances having |V1∪V2| = 60, for which the
standard deviation is constantly null and the run times are very short. The robustness
of the ILS slightly decreases for instances having |V1 ∪ V2| ∈ {100, 150, 200}, however
remaining acceptable for a practical use. For these instances, the average run times
are around 7.32, 9.80 and 11.08 seconds, respectively. The results show that the ILS
scales very well and can efficiently solve instances that are four times larger than those
commonly faced in the case study.

7. Conclusions

In this paper, we introduced a generalisation of the well-known Vehicle Routing Prob-
lem (VRP), called VRP for Water Distribution Networks (VRPWDN), that includes
precedence constraints among nodes and multiple visits to some of the nodes. The
problem is NP-hard in the strong sense and, to the best of our knowledge, has not yet
been applied in the context of distribution networks where regular inspections must
be performed to detect potential sources of contamination. To solve the VRPWDN,
a flow-based model was proposed, and an Iterated Local Search (ILS) algorithm was
developed.

Extensive computational tests on randomly generated small-size instances were per-
formed to evaluate the performance of the flow-based model. On the same instances,
the accuracy of the ILS in finding good-quality solutions in a short time was proved.
The ILS was also used to perform a series of tests on randomly generated medium-
and large-size instances with up to 200 nodes, confirming its efficacy and robustness.
The ILS also proved to be effective in finding feasible solutions for the Asymmet-
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(a) Day 2 - ILS

(b) Day 2 - Company

Figure 3. An illustrative comparison of VRPWDN solutions in Mashhad (Iran)

ric Distance-Constrained VRP, for which we used the benchmark instances proposed
by Almoustafa et al. (2013). Additional computational tests were executed on ten real-
world instances, comparing the solutions obtained by the ILS with those implemented
by the company, and on larger-size realistic instances derived from the distribution
network of Mashhad (Iran), proving that our methods can be applied with profit in a
practical case and on a larger scale.

Interesting future research directions include the application of the developed tech-
niques to other related VRPs with precedence constraints and multiple visits. In ad-
dition, we are interested in studying the generalisation of the VRPWDN to the case
of multiple periods. In this generalisation, one should first of all determine in which
day inspecting the given nodes, and then creating the routes for each day. We are also
interested in finding other related real-world applications and comparing the results
of the proposed algorithms with the real-world solutions.
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Table 10. Computational results on realistic medium- and large-size instances (three instances per line)

ILS

|V1 ∪ V2| |V2| |V3| |K| zbest zavg zworst σz Sec.

60 4 2 2 263976.92 263976.92 263976.92 0.00 1.67
60 4 3 3 264029.28 264029.28 264029.28 0.00 1.73
60 6 2 2 222473.25 222473.25 222473.25 0.00 2.07
60 6 3 3 291979.18 291979.18 291979.18 0.00 2.35

avg (60) 260614.66 260614.66 260614.66 0.00 1.96

100 8 4 4 399442.47 399442.63 399443.14 0.30 6.41
100 8 5 5 438923.85 438923.90 438924.05 0.09 7.38
100 10 4 4 344216.84 344217.11 344217.64 0.38 7.72
100 10 5 5 376473.23 376473.42 376473.86 0.28 7.78

avg (100) 389764.10 389764.27 389764.67 0.26 7.32

150 8 4 4 438156.93 438157.42 438158.64 0.72 9.64
150 8 5 5 440416.07 440416.44 440417.48 0.61 8.85
150 10 4 4 466864.57 466864.99 466866.19 0.70 10.54
150 10 5 5 569988.53 569988.92 569990.11 0.68 10.17

avg (150) 478856.53 478856.94 478858.11 0.68 9.80

200 8 4 4 491986.12 491986.81 491988.10 0.86 10.76
200 8 5 5 495553.12 495553.59 495555.14 0.88 9.82
200 10 4 4 646227.25 646227.71 646228.81 0.71 11.93
200 10 5 5 696373.63 696374.24 696375.29 0.73 11.80

avg (200) 582535.03 582535.58 582536.83 0.79 11.08

overall avg 427942.58 427942.86 427943.57 0.43 7.54
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