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Regularity Results for Bounded Solutions
to Obstacle Problems with Non-standard
Growth Conditions

Andrea Gentile, Raffaella Giova and Andrea Torricelli

Abstract. In this paper, we consider a class of obstacle problems of the
type

min

{∫
Ω

f(x, Dv) dx : v ∈ Kψ(Ω)

}

where ψ is the obstacle, Kψ(Ω) = {v ∈ u0+W 1,p
0 (Ω,R) : v ≥ ψ a.e. in Ω},

with u0 ∈ W 1,p(Ω) a fixed boundary datum, the class of the admissi-
ble functions and the integrand f(x, Dv) satisfies non standard (p, q)-
growth conditions. We prove higher differentiability results for bounded
solutions of the obstacle problem under dimension-free conditions on
the gap between the growth and the ellipticity exponents. Moreover,
also the Sobolev assumption on the partial map x �→ A(x, ξ) is indepen-
dent of the dimension n and this, in some cases, allows us to manage
coefficients in a Sobolev class below the critical one W 1,n.

Mathematics Subject Classification. 35J87, 49J40, 47J20.

Keywords. Local bounded minimizers, obstacle problems, higher differ-
entiability.

1. Introduction

We prove higher differentiability results for solutions to variational obstacle
problems of the form

min
{∫

Ω

f(x,Dv) dx : v ∈ Kψ(Ω)
}

, (1.1)

where Ω is a bounded open set of Rn, n > 2, ψ : Ω �→ [−∞,+∞) belonging
to the Sobolev class W 1,p

loc (Ω) is the obstacle and

Kψ(Ω) = {v ∈ u0 + W 1,p
0 (Ω,R) : v ≥ ψ a.e. in Ω}
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is the class of the admissible functions, with u0 ∈ W 1,p(Ω) a fixed boundary
datum.

We shall consider integrands f such that ξ �→ f(x, ξ) is C2 and there
exists f̃ : Ω × [0,∞) → [0,∞) such that

f(x, ξ) = f̃(x, |ξ|).
Moreover, we assume that there exist positive constants ν̃, L̃, exponents

p, q with 2 ≤ p < q < p + 1 < +∞ and a parameter 0 ≤ μ ≤ 1 such that the
following assumptions are satisfied

〈Dξξf(x, ξ)λ, λ〉 ≥ ν̃(μ2 + |ξ|2) p−2
2 |λ|2 (F1)

|Dξξf(x, ξ)| ≤ L̃
[
(μ2 + |ξ|2) p−2

2 + (μ2 + |ξ|2) q−2
2

]
(F2)

for almost every x ∈ Ω and every ξ, λ ∈ R
n.

Note that, following [11], the assumptions (F1) and (F2) and the de-
pendence on the modulus imply that there exists a positive constant �̃ such
that

1
�̃
(|ξ|2 − μ2)

p
2 ≤ f(x, ξ) ≤ �̃

[
(μ2 + |ξ|2) p

2 + (μ2 + |ξ|2) q
2

]
(F3)

for almost every x ∈ Ω and every ξ ∈ R
n, i.e. the functional f has non-

standard growth conditions of (p, q)-type as defined and introduced by Mar-
cellini [43,44] and then widely investigated (see for example [5,22,23]) and
more recent [45,46].

Concerning the dependence on the x−variable, we assume that there
exists a non-negative function k(x) ∈ L

p+2
p−q+1 such that

|Dxξf(x, ξ)| ≤ k(x)
[
(μ2 + |ξ|2) p−1

2 + (μ2 + |ξ|2) q−1
2

]
(F4)

for almost every x ∈ Ω and every ξ ∈ R
n.

Let us observe that, in case of standard growth conditions, u ∈ W 1,p
loc (Ω)

is a solution to the obstacle problem (1.1) in Kψ(Ω) if and only if u ∈ Kψ(Ω)
and u is a solution to the variational inequality∫

Ω

〈A(x,Du(x)),D(ϕ(x) − u(x))〉dx ≥ 0 ∀ϕ ∈ W 1,∞
loc (Ω) and ϕ ≥ ψ,

(1.2)

where the operator A(x, ξ) : Ω × R
n → R

n is defined as follows

A(x, ξ) = Dξf(x, ξ).

It is clear that, in case of standard growth, a density argument shows
the validity of (1.2) for every ϕ ∈ Kψ(Ω). Here, dealing with non-standard
growth, it is worth observing that (1.2) holds true also for solutions to (1.1).
More precisely, due to our assumptions q − p < 1 on the gap between the
ellipticity exponent p and the growth exponent q, the validity of (1.2) can
be easily checked as done at the beginning of the proof of the Theorem 1.1
below.

We want to stress that this is not obvious in case of non-standard growth
conditions: already for unconstrained problems, the relation between minima
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and extremals, i.e. solutions of the corresponding Euler Lagrange system,
is an issue that requires a careful investigation (see for example [6] and for
constrained problems see the very recent paper [19]).

From assumptions (F1)–(F4), we deduce the existence of positive con-
stants ν, L, � such that the following p-ellipticity and q-growth conditions are
satisfied by the map A:

〈A(x, ξ) − A(x, η), ξ − η〉 ≥ ν|ξ − η|2 (
μ2 + |ξ|2 + |η|2) p−2

2 (A1)

|A(x, ξ) − A(x, η)| ≤ L|ξ − η|
[(

μ2 + |ξ|2 + |η|2) p−2
2 +

(
μ2 + |ξ|2 + |η|2) q−2

2

]
(A2)

|A(x, ξ)| ≤ �

[(
μ2 + |ξ|2) p−1

2 +
(
μ2 + |ξ|2) q−1

2

]
, (A3)

|DxA(x, ξ)| � k(x)
[
(μ2 + |ξ|2) p−1

2 + (μ2 + |ξ|2) q−1
2

]
(Ã4)

for almost every x ∈ Ω and for every ξ, η ∈ R
n.

Thanks to a characterization of the Sobolev spaces due to Hajlasz [37],

we deduce from (Ã4) that there exists a non-negative function κ ∈ L
p+2

p−q+1
loc (Ω)

such that

|A(x, ξ) − A(y, ξ)| ≤ (κ(x) + κ(y)) |x − y|
[(

μ2 + |ξ|2) p−1
2 +

(
μ2 + |ξ|2) q−1

2

]
(A4)

for almost every x, y ∈ Ω and for all ξ ∈ R
n. As far as we know, regularity

results concerning local minimizers of integral functionals of the Calculus of
Variations under an assumption on the dependence on the x-variable of this
type, have been obtained, for the first time, in [38,39].

The study of the regularity properties of solutions to obstacle problems
has been the object of intense interest in the last years and it has been usually
observed that the regularity of the obstacle influences the regularity of the
solutions to the problem: for linear problems the solutions are as regular as
the obstacle; this is no longer the case in the nonlinear setting for general
integrands without any specific structure. Hence along the years, there has
been an intense research activity in which extra regularity has been imposed
on the obstacle to balance the nonlinearity (see [2,3,20,21]).

Here, as we already said, we are interested in higher differentiability
results since in case of non-standard growth, many questions are still open.
In [4,8,9,18,24–26,29,30,35,36,42,47,51] the authors analyzed how an extra
differentiability of integer or fractional order of the gradient of the obstacle
provides an extra differentiability to the gradient of the solutions, also in
case of standard growth. However, since no extra differentiability properties
for the solutions can be expected even if the obstacle ψ is smooth, unless
some assumption is given on the x-dependence of the operator A, the higher
differentiability results for the solutions of systems or for the minimizers of
functionals in the case of unconstrained problems (see [1,10,12,17,27,28,31–
33,49,50]) have been useful and source of inspiration also for the constrained
case. Differentiability results for solutions defined by duality when the coef-
ficients are in W 1,n can be found in [41].
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For higher regularity results for solutions to non-autonomous elliptic
problems, we also refer to [40], and to very recent paper [15], where both un-
constrained and constrained problems are treated and the optimal assump-
tion for the obstacle is given to get the Lipschitz regularity for the solutions.

It is well known that, for unconstrained problems with (p, q)-growth, the
boundedness of the minimizers can play a crucial role to get regularity for the
gradient, under weaker assumptions on the gap between p and q and on the
data of the problem (see [5]). Here, we will prove that the same phenomenon
happens for the bounded solutions to obstacle problems with (p, q)-growth.

More precisely, we prove the following

Theorem 1.1. Let u ∈ Kψ(Ω) be a solution to the obstacle problem (1.1) and
let A(x, ξ) satisfy the assumptions (A1)–(A4) with 2 ≤ p < q < min{p +
1, p∗ = np

n−p}. Then, if ψ ∈ L∞
loc(Ω) the following implication holds

Dψ ∈ W
1, p+2

p+2−q

loc (Ω) =⇒
(
μ2 + |Du|2

) p−2
4

Du ∈ W 1,2
loc (Ω),

with the following estimate
∫

B R
4

|DVp(Du(x))|2 dx ≤
c(‖ψ‖2

L∞ + ‖u‖2
Lp∗ (BR))

R
p+2
2

·
∫

BR

[
1 +

∣∣∣D2ψ(x)
∣∣∣

p+2
p+2−q

+ |Dψ(x)| p+2
p+2−q + κ

p+2
p−q+1 + |Du(x)|p

]
dx.

(1.3)

We first observe that the assumption of boundedness of the obstacle ψ is
needed to get the boundedness of the solutions (see Theorem 2.4). Therefore,
if we want to remove the hypothesis ψ ∈ L∞, it is sufficient to deal with a
priori bounded minimizers. In this case, we can remove also the hypothesis
q < p∗.

Let us compare, now, our result with the previous ones. All previous
higher regularity results for solutions to obstacle problem in case of non-
standard growth have been obtained under a Sobolev assumption W 1,r(Ω)
with r ≥ n on the dependence on x of the operator A, some of them reveal
also crucial to prove local Lipschitz results for the obstacle problem, see for
instance in [7,14]. Dealing with bounded solutions, we are able to prove our
result assuming that the partial map x �→ A(x; ξ) belongs to a Sobolev class
that is not related to the dimension n but to the ellipticity and the growth
exponents p and q of the functional and this assumption in case p+2

p−q+1 < n

(i.e. p < n−2 and q < n−1
n p+ n−2

n ) improves the higher differentiability result
obtained in [26]. Moreover, our result is obtained under a weaker assumption
also on the gradient of the obstacle, indeed previous result assumed ψ ∈
W 1,2q−p (see [26]) while our hypothesis is ψ ∈ W 1, p+2

p+2−q , and under our
assumption on the gap, i.e. q − p < 1, it results W 1,2q−p ↪→ W 1, p+2

p+2−q .
Note that for p = q we recover exactly our previous result [8] concerning

the obstacle problem with standard growth.
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On the other hand, our result extends to the solutions of constrained
problems the higher differentiability result obtained in [12] for the solutions
to unconstrained problems in case of the integrand f is uniformly convex only
at infinity.

To prove Theorem 1.1, we first verify the validity of the variational
inequality also in the case of non standard growth and then we combine an a
priori estimate for the second derivatives of the local solutions, obtained using
the difference quotient method, with a suitable approximation argument. The
local boundedness of the obstacle, and then of the solutions, allows us to use
two interpolation inequalities that give the higher local integrability L

2(p+2)
p+2−q

for the gradient of the obstacle and the higher local integrability Lp+2 for the
gradient of the solutions. Such higher integrability is the key tool to weaken
the assumption on κ that is the function that control the dependence on
x-variable of the operator A .

We conclude observing that, if the minimizer u is assumed a priori
in a Lebesgue space Lr with r > np

n−p−2 instead of assuming u ∈ L∞ the
interpolation inequality of Lemma 2.1 still gives a higher integrability result
for Du, i.e. Du ∈ L

r
r+2 (p+2). Such higher integrability allows us to obtain the

same higher differentiability result of Theorem 1.1 assuming κ ∈ L
r

(r−p)
(p+2)

p−q+1 .
We’d like to point out that for p < n− 2 and q < 1

n (n− r
r−p )p+ 1

n (n− 2 r
r−p )

we get r
(r−p)

(p+2)
p−q+1 < n that means that we obtain the regularity result again

under a Sobolev assumption on the dependence on the x-variable below the
critical one W 1,n.

2. Notations and Preliminary Results

In this paper we shall denote by C or c a general constant that may vary
on different occasions, even within the same line of estimates. Relevant de-
pendencies on parameters and special constants will be suitably emphasized
using parentheses or subscripts. With the symbol B(x, r) = Br(x) = {y ∈
R

n : |y − x| < r} we will denote the ball centered at x of radius r. We shall
omit the dependence on the center when no confusion arises.

Here we recall some results that will be useful in the following.
The main tools in the proof of Theorem 1.1 are the following Gagliardo-

Nirenberg-type inequalities that we state as lemmas. The proofs of inequal-
ities (2.1) and (2.2) can be found in [5, Appendix A]. For the proof of (2.3)
see for example [48].

Lemma 2.1. For any φ ∈ C1
0 (Ω) with φ ≥ 0, and any C2 map v : Ω → R

N ,
we have ∫

Ω

φ
m

m+1 (p+2)(x)|Dv(x)| m
m+1 (p+2)dx

≤ (p + 2)2
(∫

Ω

φ
m

m+1 (p+2)(x)|v(x)|2mdx

) 1
m+1
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·
[(∫

Ω

φ
m

m+1 (p+2)(x) |Dφ(x)|2 |Dv(x)|p dx

) m
m+1

+n

(∫
Ω

φ
m

m+1 (p+2)(x) |Dv(x)|p−2 ∣∣D2v(x)
∣∣2 dx

) m
m+1

]
, (2.1)

for any p ∈ (1,∞) and m > 1. Moreover, for any μ ∈ [0, 1]∫
Ω

φ2(x)
(
μ2 + |Dv(x)|2

) p
2 |Dv(x)|2 dx

≤ c‖v‖2
L∞(supp(φ))

∫
Ω

φ2(x)
(
μ2 + |Dv(x)|2

) p−2
2 ∣∣D2v(x)

∣∣2 dx

+c‖v‖2
L∞(supp(φ))

∫
Ω

(
φ2(x) + |Dφ(x)|2

) (
μ2 + |Dv(x)|2

) p
2

dx,

(2.2)

for a constant c = c(p).

Lemma 2.2. Let u ∈ Lp(Ω)∩W 2,r(Ω) with 1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞. Then
u ∈ W 1,q(Ω) where q is such that 1

q = 1
2

(
1
p + 1

r

)
and

‖Du‖Lq ≤ C‖u‖ 1
2
W 2,r‖u‖ 1

2
Lp (2.3)

The following is an higher differentiability result to the solutions to (1.1)
when the energy density function f satisfies standard growth conditions. The
proof can be found in [8].

Theorem 2.3. Let A(x, ξ) satisfy the conditions (A1)–(A4) with p = q ≥ 2
and let u ∈ Kψ(Ω) be a solution to the obstacle problem (1.2). Then, if ψ ∈
L∞

loc(Ω) the following implication

Dψ ∈ W
1, p+2

2
loc (Ω) =⇒

(
μ2 + |Du|2

) p−2
4

Du ∈ W 1,2
loc (Ω),

holds true.

Next result has been proved in [7, Theorem 1.1]

Theorem 2.4. Let u in Kψ(Ω) be a solution of (1.1) under the assumptions
(A1) and (A2) with 2 ≤ p ≤ q such that

p ≤ q < p∗ = np
n−p if p < n

p ≤ q < ∞ if p ≥ n

If the obstacle ψ ∈ L∞
loc(Ω), then u ∈ L∞

loc(Ω) and the following estimate

sup
BR/2

|u| ≤
[
sup
BR

|ψ| +
(∫

BR

|u(x)|p∗
dx

)]γ

(2.4)

holds for every ball BR � Ω, for γ(n, p, q) > 0 and c = c(�, ν, p, q, n). We’d
like to remark that in a very recent paper [16] the same result has been proved
under sharp assumptions on the gap between p and q.
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We will use the auxiliary function Vp : Rn → R
n, defined as

Vp(ξ) :=
(
μ2 + |ξ|2) p−2

4 ξ, (2.5)

for which the following estimates hold (see [34]).

Lemma 2.5. Let 1 < p < ∞. There is a constant c = c(n, p) > 0 such that

c−1
(
μ2 + |ξ|2 + |η|2) p−2

2 ≤ |Vp(ξ) − Vp(η)|2
|ξ − η|2 ≤ c

(
μ2 + |ξ|2 + |η|2) p−2

2 ,

(2.6)

for any ξ, η ∈ R
n and ξ �= η. Moreover, for a C2 function g, there is a

constant C(p) such that

C−1
∣∣D2g

∣∣2 (
μ2 + |Dg|2) p−2

2 ≤ |D (Vp(Dg))|2 ≤ C
∣∣D2g

∣∣2 (
μ2 + |Dg|2) p−2

2 .

(2.7)

Now we state a well-known iteration lemma (the proof can be found for
example in [34, Lemma 6.1]).

Lemma 2.6. (Iteration Lemma) Let h : [ρ,R] → R be a nonnegative bounded
function, 0 < θ < 1, A,B ≥ 0 and γ > 0. Assume that

h(r) ≤ θh(s) +
A

(s − r)γ
+ B

for all ρ ≤ r < s ≤ R0 < R. Then

h(ρ) ≤ cA

(R0 − ρ)γ
+ cB,

where c = c(θ, γ) > 0.

2.1. Difference Quotient

To get the regularity of the solutions of the problem (1.1), we shall use the
difference quotient method. We recall here the definition and basic results.

Definition 2.7. Given h ∈ R
n, for every function F : R

n → R the finite
difference operator is defined by

τhF (x) = F (x + h) − F (x).

We recall some properties of the finite difference operator that will be
needed in the sequel. We start with the description of some elementary prop-
erties that can be found, for example, in [34].

Proposition 2.8. Let F and G be two functions such that F,G ∈ W 1,p(Ω),
with p ≥ 1, and let us consider the set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} .

Then
(d1) τhF ∈ W 1,p(Ω|h|) and

Di(τhF ) = τh(DiF ).
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(d2) If at least one of the functions F or G has support contained in Ω|h|
then ∫

Ω

F (x) τhG(x) dx =
∫

Ω

G(x) τ−hF (x) dx.

(d3) We have

τh(FG)(x) = F (x + h)τhG(x) + G(x)τhF (x).

The next result about finite difference operator is a kind of integral
version of Lagrange Theorem.

Lemma 2.9. If 0 < ρ < R, |h| < R−ρ
2 , 1 < p < +∞, and F,DF ∈ Lp(BR)

then ∫
Bρ

|τhF (x)|p dx ≤ c(n, p)|h|p
∫

BR

|DF (x)|p dx.

Moreover ∫
Bρ

|F (x + h)|p dx ≤
∫

BR

|F (x)|p dx.

We conclude this section recalling this result that is proved in [34].

Lemma 2.10. Let F : Rn → R
N , F ∈ Lp(BR) with 1 < p < +∞. Suppose

that there exist ρ ∈ (0, R) and M > 0 such that
n∑

s=1

∫
Bρ

|τs,hF (x)|pdx ≤ Mp|h|p

for every h < R−ρ
2 . Then F ∈ W 1,p(BR,RN ). Moreover

‖DF‖Lp(Bρ) ≤ M.

2.2. Approximation Lemma

We report a Lemma which will be the main tool in the second part of the
proof of our main result. For the proof of this Lemma we refer to [13].

Lemma 2.11. Let f : Ω × R
n → [0,∞) be a Carathéodory function such that

ξ �→ f(x, ξ) is C2 and there exists f̃ : Ω× [0,∞) → [0,∞) such that f(x, ξ) =
f̃(x, |ξ|). Moreover, let us assume that f satisfies assumptions (F1)–(F4).
Then there exists a sequence (fε)ε of Carathéodory functions fε : Ω × R

n →
[0,∞), monotonically convergent to f , such that

(i) for a.e. x ∈ Ω, for every ξ ∈ R
n and for every ε1 < ε2, we have

fε2(x, ξ) ≤ fε1(x, ξ) ≤ f(x, ξ)

(ii) there exists ν̄ > 0 depending only on p and ν̃ such that

〈Dξξfε(x, ξ)λ, λ〉 � ν̄(μ2 + |ξ|2) p−2
2 |λ|2

for a.e. x ∈ Ω, for every ξ ∈ R
n,
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(iii) there exist K0,K1 independent of ε and K̄1 depending on ε such that

K0(|ξ|p − μ2) ≤ fε(x, ξ) ≤ K1

[
(μ2 + |ξ|2) p

2 + (μ2 + |ξ|2) q
2

]
,

fε(x, ξ) ≤ K̄1(ε)(μ2 + |ξ|2) p
2 ,

for a.e. x ∈ Ω, for every ξ ∈ R
n,

(iv) there exists a constant C(ε) > 0 such that

|Dxξfε(x, ξ)| ≤ k(x)
[
(μ2 + |ξ|2) p−1

2 + (μ2 + |ξ|2) q−1
2

]

|Dxξf(x, ξ)| ≤ C(ε)k(x)(μ2 + |ξ|2) p−1
2

for a.e. x ∈ Ω, for every ξ ∈ R
n.

3. Proof of the Theorem 1.1

The proof of the theorem is obtained in two steps: first we establish the a
priori estimate and then we conclude through an approximation argument.

Proof. Step 1: The a priori estimate.
To get the a priori estimate we first need to prove the validity of the

variational inequality (1.2) also in the case of non-standard growth conditions.
Suppose that u is a local solution to the obstacle problem in Kψ(Ω) such

that

Du ∈ W 1,2
loc (Ω) and

(
μ2 + |Du|2

) p−2
4

Du ∈ W 1,2
loc (Ω). (3.1)

Thanks to our assumptions on the exponents p and q we can deduce from
Theorem 2.4 that the solution u to (1.1) is bounded. Such boundedness, with
the a priori assumption (3.1) on the second derivatives of u, allows us to
apply Lemma 2.1 to get the higher integrability Du ∈ Lp+2

loc (Ω).
Concerning the obstacle ψ, by the assumptions ψ ∈ L∞(Ω) and D2ψ ∈

L
p+2

p+2−q (Ω), applying Lemma 2.2, we have Dψ ∈ L
2(p+2)
p+2−q (Ω) ↪→ Lp+2(Ω).

Note that Du ∈ Lp+2
loc (Ω) (and then, obviously, u ∈ W 1,q

loc (Ω)) implies
that the variational inequality (1.2), by a simple density argument, holds true
for every ϕ ∈ W 1,q

loc (Ω).
Indeed, since u ∈ Kψ(Ω), for every v ≥ 0 and every ε > 0 it results

u + εv ≥ ψ, therefore if v ∈ W 1,q
loc (Ω) by minimality of u∫

Ω

f(x,Du(x)) dx ≤
∫

Ω

f(x,Du + εDv(x)) dx

or equivalently∫
Ω

[
f(x,Du(x) + εDv(x)) − f(x,Du(x))

]
dx ≥ 0.

Hence, we have

ε

∫
Ω

∫ 1

0

〈Dξf(x,Du(x) + θεDv(x)),Dv(x)〉dθ dx ≥ 0
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and also ∫
Ω

∫ 1

0

〈Dξf(x,Du(x) + θεDv(x)),Dv(x)〉dθ dx ≥ 0

where we divided both side of previous inequality by ε. We observe that

0 ≤
∫

Ω

∫ 1

0

〈Dξf(x,Du(x) + θεDv),Dv〉dθ dx

≤
∫

Ω

∫ 1

0

|Dξf(x,Du + θεDv(x))||Dv(x)|dθ dx

≤
∫

Ω

∫ 1

0

(μ2 + |Du + θεDv(x)|2) q−1
2 |Dv(x)|dθ dx

≤ c

∫
Ω

(μ2 + |Du(x)|2 + ε2|Dv(x)|2) q−1
2 |Dv(x)|dx, (3.2)

where in the last inequality we used Lemma 8.3 in [34].
Therefore, since v ∈ W 1,q

loc (Ω), by the growth assumption (A3), assuming
without loss of generality ε < 1, we get∫ 1

0

〈Dξf(x,Du(x) + θεDv(x)),Dv(x)〉dθ ≤ μq + |Du|q + |Dv|q ∈ L1(Ω).

Then, applying dominated convergence theorem in (3.2), we have

lim
ε→0

∫
Ω

∫ 1

0

〈Dξf(x,Du(x) + θεDv(x)),Dv(x)〉 dθ dx

=
∫

Ω

〈Dξf(x,Du(x)),Dv(x)〉dx ≥ 0

for every v ∈ W 1,q
0 (Ω), v ≥ 0. At this point it is standard to verify the

inequality (1.2)∫
Ω

〈Dξf(x,Du(x)),Dϕ(x) − Du(x)〉dx ≥ 0.

Now we have to choose suitable test functions ϕ in (1.2) that involve the
different quotient of the solution and at the same time satisfy the conditions
ϕ ∈ W 1,q

loc (Ω) and ϕ ≥ ψ in Ω. To do this, we proceed similarly to what has
been done in [8,18].

Let us fix a ball BR � Ω and arbitrary radii R
2 < r < s < t < λr < R,

with 1 < λ < 2. Let us consider a cut off function η ∈ C∞
0 (Bt) such that

η ≡ 1 on Bs and |Dη| ≤ c
t−s . From now on, with no loss of generality, we

suppose R < 1.
Let v ∈ W 1,q

0 (Ω) be such that

u − ψ + τv ≥ 0 ∀τ ∈ [0, 1], (3.3)

and observe that ϕ = u + τv ≥ ψ for all τ ∈ [0, 1]. For |h| < R
4 , we consider

v1(x) = η2(x) [(u − ψ)(x + h) − (u − ψ)(x)] ,
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so we have v1 ∈ W 1,p+2
0 (Ω), and, for any τ ∈ [0, 1], v1 satisfies (3.3). Indeed,

for a.e. x ∈ Ω and for any τ ∈ [0, 1]

u(x) − ψ(x) + τv1(x) = u(x) − ψ(x) + τη2(x) [(u − ψ)(x + h) − (u − ψ)(x)]
= τη2(x)(u − ψ)(x + h) + (1 − τη2(x))(u − ψ)(x) ≥ 0,

since u ∈ Kψ(Ω) and 0 ≤ η ≤ 1. Therefore, from q−p < 1 we have Lp+2(Ω) ↪→
Lq(Ω) and so we can use ϕ = u + τv1 as a test function in inequality (1.2),
thus getting

0 ≤
∫

Ω

〈A(x,Du(x)),D
[
η2(x) [(u − ψ)(x + h) − (u − ψ)(x)]

]〉dx. (3.4)

Similarly, we define

v2(x) = η2(x − h) [(u − ψ)(x − h) − (u − ψ)(x)] ,

and we have v2 ∈ W 1,p+2
0 (Ω), the inequality (3.3) still is satisfied for any

τ ∈ [0, 1], and we can use ϕ = u + τv2 as test function in (1.2), obtaining

0 ≤
∫

Ω

〈A(x,Du(x)),D
[
η2(x − h) [(u − ψ)(x − h) − (u − ψ)(x)]

]〉dx,

and by means of a change of variable, we have

0 ≤
∫

Ω

〈A(x + h,Du(x + h)),D
[
η2(x) [(u − ψ)(x) − (u − ψ)(x + h)]

]〉dx.

(3.5)

Now we can add (3.4) and (3.5), thus getting

0 ≤
∫

Ω

〈A(x,Du(x)),D
[
η2(x) [(u − ψ)(x + h) − (u − ψ)(x)]

]〉dx

+
∫

Ω

〈A(x + h,Du(x + h)),D
[
η2(x) [(u − ψ)(x) − (u − ψ)(x + h)]

]〉dx,

that is

0 ≤
∫

Ω

〈A(x,Du(x)) − A(x + h,Du(x + h)),

D
[
η2(x) [(u − ψ)(x + h) − (u − ψ)(x)]

]〉dx,

which implies

0 ≥
∫
Ω

〈A(x + h, Du(x + h)) − A(x, Du(x)), η2(x)D [(u − ψ)(x + h) − (u − ψ)(x)]〉dx

+

∫
Ω

〈A(x + h, Du(x + h)) − A(x, Du(x)), 2η(x)Dη(x)

[(u − ψ)(x + h) − (u − ψ)(x)]〉dx.

Previous inequality can be rewritten as follows

0 ≥
∫
Ω

〈A(x + h, Du(x + h)) − A(x + h, Du(x)), η2(x)(Du(x + h) − Du(x))〉dx

−
∫
Ω

〈A(x + h, Du(x + h)) − A(x + h, Du(x)), η2(x)(Dψ(x + h) − Dψ(x))〉dx

+

∫
Ω

〈A(x + h, Du(x + h)) − A(x + h, Du(x)), 2η(x)Dη(x)τh (u − ψ) (x)〉dx
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+

∫
Ω

〈A(x + h, Du(x)) − A(x, Du(x)), η2(x)(Du(x + h) − Du(x))〉dx

−
∫
Ω

〈A(x + h, Du(x)) − A(x, Du(x)), η2(x)(Dψ(x + h) − Dψ(x))〉dx

+

∫
Ω

〈A(x + h, Du(x)) − A(x, Du(x)), 2η(x)Dη(x)τh (u − ψ) (x)〉dx

=: I + II + III + IV + V + V I, (3.6)

so we have

I ≤ |II| + |III| + |IV | + |V | + |V I|. (3.7)

The ellipticity assumption (A1) implies

I ≥ ν

∫
Ω

η2(x)|τhDu(x)|2
(
μ2 + |Du(x + h)|2 + |Du(x)|2

) p−2
2

dx. (3.8)

By virtue of assumption (A2), we have

|II| ≤ L

∫
Ω

η2(x)|τhDu(x)|
[
(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2

2

+(μ2 + |Du(x)|2 + |Du(x + h)|2) q−2
2

]
|τhDψ(x)|dx

= L

∫
Ω

η2(x)|τhDu(x)|(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 |τhDψ(x)|dx

+L

∫
Ω

η2(x)|τhDu(x)|(μ2 + |Du(x)|2 + |Du(x + h)|2) q−2
2 |τhDψ(x)|dx

= : II1 + II2. (3.9)

Let us consider the term II1. If we apply Young’s inequality with expo-
nents (2, 2) and Hölder’s inequality with exponents

(
p+2
4 , p+2

p−2

)
, we get

II1 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+ cε

∫
Ω

η2(x)|τhDψ(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+ cε

(∫
Bt

|τhDψ(x)| p+2
2 dx

) 4
p+2

·
(∫

Bt

(μ2 + |Du(x)|2 + |Du(x + h)|2) p+2
2 dx

) p−2
p+2

,

where we also used the properties of η. Since Dψ ∈ W
1, p+2

p+2−q

loc (Ω) and 2 ≤
p < q < p + 1, we also have Dψ ∈ W

1, p+2
2

loc (Ω), and using both estimates of
Lemma 2.9, we get

II1 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx
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+cε|h|2
(∫

Bλr

|D2ψ(x)| p+2
2 dx

) 4
p+2

·
(∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

.

(3.10)

To estimate the term II2, applying Young’s inequality with exponents
(2, 2) and Hölder’s inequality with exponents

(
p+2

2(p+2−q) ,
p+2

2q−p−2

)
, we get

II2 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+ cε

∫
Ω

η2(x)|τhDψ(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) 2q−p−2
2 dx

≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+ cε

(∫
Bt

|τhDψ(x)| p+2
p+2−q dx

) 2(p+2)−2q
p+2

·
(∫

Bt

(μ2 + |Du(x)|2 + |Du(x + h)|2) p+2
2 dx

) 2q−p−2
p+2

where we used also the properties of η. Since Dψ ∈ W
1, p+2

p+2−q

loc (Ω), we may
use the first and the second estimate of Lemma 2.9, thus obtaining

II2 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+ cε|h|2
(∫

Bλr

|D2ψ(x)| p+2
p+2−q dx

) 2(p+2−q)
p+2

·
(∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) 2q−p−2
p+2

. (3.11)

Plugging (3.10) and (3.11) into (3.9), we get

|II| ≤ 2ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+cε|h|2
(∫

Bλr

|D2ψ(x)| p+2
2 dx

) 4
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

+cε|h|2
(∫

Bλr

|D2ψ(x)| p+2
p+2−q dx

) 2(p+2−q)
p+2

·
(∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) 2q−p−2
p+2

. (3.12)

Arguing analogously, by virtue of assumption (A2) we have

|III| ≤ 2L

∫
Ω

η(x)|Dη(x)||τhDu(x)|
[(

μ2 + |Du(x + h)|2 + |Du(x)|2) p−2
2

+
(
μ2 + |Du(x + h)|2 + |Du(x)|2) q−2

2

]
|τh (u − ψ) (x)|dx
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= c

∫
Ω

η(x)|Dη(x)||τhDu(x)| (μ2 + |Du(x + h)|2 + |Du(x)|2) p−2
2

|τh (u − ψ) (x)|dx

+
∫

Ω

η(x)|Dη(x)||τhDu(x)| (μ2 + |Du(x + h)|2 + |Du(x)|2) q−2
2

|τh (u − ψ) (x)|dx

:= III1 + III2. (3.13)

Using Young’s inequality with exponents (2, 2), Hölder’s inequality with
exponents

(
p+2
4 , p+2

p−2

)
, and the properties of η, we have

III1 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+ cε

∫
Ω

|τh(u − ψ)(x)|2|Dη(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+
cε

(t − s)2

(∫
Bt

|τh(u − ψ)(x)| p+2
2 dx

) 4
p+2

·
(∫

Bt

(μ2 + |Du(x)|2 + |Du(x + h)|2) p+2
2 dx

) p−2
p+2

,

and Lemma 2.9 implies

III1 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+
cε|h|2

(t − s)2

(∫
Bλr

|D(u − ψ)(x)| p+2
2 dx

) 4
p+2

·
(∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

. (3.14)

Similarly, using Young’s inequality with exponents (2, 2), Hölder’s in-
equality with exponents

(
p+2

2(p+2−q) ,
p+2

2q−p−2

)
, the properties of η and

Lemma 2.9, we get

III2 ≤ ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+
cε|h|2

(t − s)2

(∫
Bλr

|D(u − ψ)| p+2
p+2−q dx

) 2(p+2)−2q
p+2

·
(∫

Bλr

(
μp+2 + |Du(x)|p+2

)
dx

) 2q−p−2
p+2

. (3.15)

Plugging (3.14) and (3.15) into (3.13), we get

|III| ≤ 2ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx
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+
cε|h|2

(t − s)2

(∫
Bλr

|D(u − ψ)(x)| p+2
2 dx

) 4
p+2

·
(∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

+
cε|h|2

(t − s)2

(∫
Bλr

|D(u − ψ)| p+2
p+2−q dx

) 2(p+2)−2q
p+2

·
(∫

Bλr

(
μp+2 + |Du(x)|p+2

)
dx

) 2q−p−2
p+2

. (3.16)

For what concerns the term IV , assumption (A4) implies

|IV | ≤ |h|
∫

Ω

η2(x) (κ(x + h) + κ(x))
[(

μ2 + |Du(x)|2) p−1
2 +

(
μ2 + |Du(x)|2) q−1

2

]
|τhDu(x)|dx

= |h|
∫

Ω

η2(x) (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) p−1

2 |τhDu(x)|dx

+|h|
∫

Ω

η2(x) (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) q−1

2 |τhDu(x)|dx

=: IV1 + IV2. (3.17)

If we use Young’s inequality with exponents (2, 2) and the properties of
η, we obtain

IV2 ≤ |h|
∫

Ω

η2(x) (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) q−1

2 |τhDu(x)|dx

≤ ε

∫
Ω

η2(x) |τhDu(x)|2 (
μ2 + |Du(x + h)|2 + |Du(x)|2) p−2

2 dx

+ cε|h|2
∫

Bt

(κ(x + h) + κ(x))2
(
μ2 + |Du(x)|2) 2q−p

2 dx.

Using Hölder’s inequality with exponents
(

p+2
2(p−q+1) ,

p+2
2q−p

)
and

Lemma 2.9 we have

IV2 ≤ ε

∫
Ω

η2(x) |τhDu(x)|2
(
μ2 + |Du(x + h)|2 + |Du(x)|2

) p−2
2

dx

+cε|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) 2p−2q+2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2

)
dx

) 2q−p
p+2

.

(3.18)

Analogously, since κ ∈ L
p+2

p−q+1
loc (Ω) ↪→ Lp+2

loc (Ω), using Young’s inequal-

ity with exponents (2, 2) Hölder’s inequality with exponents
(

p+2
2 , p+2

p

)
, the

properties of η and Lemma 2.9, we get

IV1 ≤ ε

∫
Ω

η2(x) |τhDu(x)|2 (
μ2 + |Du(x + h)|2 + |Du(x)|2) p−2

2 dx
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+cε|h|2
(∫

Bλr

κp+2(x)dx

) 2
p+2

·
(∫

Bt

(
μp+2 + |Du(x)|p+2

)
dx

) p
p+2

.

(3.19)

Plugging (3.18) and (3.19) into (3.17), we obtain

|IV | ≤ 2ε

∫
Ω

η2(x) |τhDu(x)|2
(
μ2 + |Du(x + h)|2 + |Du(x)|2

) p−2
2

dx

+cε|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) 2p−2q+2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2

)
dx

) 2q−p
p+2

+cε|h|2
(∫

Bλr

κp+2(x)dx

) 2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2

)
dx

) p
p+2

.

(3.20)

The condition (A4) also entails

|V | ≤ |h|
∫
Ω

η2(x) (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) p−1

2 |τhDψ(x)|dx

+|h|
∫
Ω

η2(x) (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) q−1

2 |τhDψ(x)|dx

≤ |h|
(∫

Bt

(κ(x + h) + κ(x))p+2 dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bt

|τhDψ(x)| p+2
2 dx

) 2
p+2

+|h|
(∫

Bt

(κ(x + h) + κ(x))
p+2

p−q+1 dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bt

|τhDψ(x)| p+2
2 dx

) 2
p+2

≤ c|h|2
(∫

Bλr

κp+2(x)dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bλr

∣∣D2ψ(x)
∣∣ p+2

2 dx

) 2
p+2

+c|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bλr

∣∣D2ψ(x)
∣∣ p+2

2 dx

) 2
p+2 (3.21)

where we used Hölder’s inequality with exponents
(
p + 2, p+2

p−1 , p+2
2

)
and(

p+2
p−q+1 , p+2

q−1 , p+2
2

)
, the properties of η and Lemma 2.9.

Finally, using again assumption (A4), the properties of η, Hölder’s in-
equality and Lemma 2.9, we have

|V I| ≤ 2|h|
∫
Ω

η(x) |Dη(x)| (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) p−1

2 |τh (u − ψ) (x)|dx

+2|h|
∫
Ω

η(x) |Dη(x)| (κ(x + h) + κ(x))
(
μ2 + |Du(x)|2) q−1

2 |τh (u − ψ) (x)|dx
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≤ c|h|
t − s

(∫
Bt

(κ(x + h) + κ(x))p+2 dx

) 1
p+2

·
(∫

Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bt

|τh (u − ψ) (x)| p+2
2 dx

) 2
p+2

+
c|h|
t − s

(∫
Bt

(κ(x + h) + κ(x))
p+2

p−q+1 dx

) p−q+1
p+2

·
(∫

Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bt

|τh (u − ψ) (x)| p+2
2 dx

) 2
p+2

≤ c|h|2
t − s

(∫
Bλr

κ(x)p+2dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bλr

|D (u − ψ) (x)| p+2
2 dx

) 2
p+2

+
c|h|2
t − s

(∫
Bλr

κ(x)
p+2

p−q+1 dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bλr

|D (u − ψ) (x)| p+2
2 dx

) 2
p+2

. (3.22)

Inserting (3.8), (3.12), (3.16), (3.20), (3.21) and (3.22) into (3.7) we infer

ν

∫
Ω

η2(x)|τhDu(x)|2 (
μ2 + |Du(x + h)|2 + |Du(x)|2) p−2

2 dx

≤ 6ε

∫
Ω

η2(x)|τhDu(x)|2(μ2 + |Du(x)|2 + |Du(x + h)|2) p−2
2 dx

+cε|h|2
(∫

Bλr

|D2ψ(x)| p+2
2 dx

) 4
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

+cε|h|2
(∫

Bλr

|D2ψ(x)|
p+2

p+2−q dx

) 2(p+2−q)
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) 2q−p−2
p+2

+
cε|h|2
(t − s)2

(∫
Bλr

|D(u − ψ)(x)| p+2
2 dx

) 4
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

+
cε|h|2
(t − s)2

(∫
Bλr

|D(u − ψ)|
p+2

p+2−q dx

) 2(p+2)−2q

p+2

·
(∫

Bλr

(
μp+2 + |Du(x)|p+2)

dx

) 2q−p−2
p+2

+cε|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) 2p−2q+2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) 2q−p

p+2

+cε|h|2
(∫

Bλr

κp+2(x)dx

) 2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p

p+2

+c|h|2
(∫

Bλr

κp+2(x)dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2
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·
(∫

Bλr

∣∣D2ψ(x)
∣∣ p+2

2 dx

) 2
p+2

+c|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bλr

∣∣D2ψ(x)
∣∣ p+2

2 dx

) 2
p+2

+
c|h|2
t − s

(∫
Bλr

κ(x)p+2dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bλr

|D (u − ψ) (x)| p+2
2 dx

) 2
p+2

+
c|h|2
t − s

(∫
Bλr

κ(x)
p+2

p−q+1 dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bλr

|D (u − ψ) (x)| p+2
2 dx

) 2
p+2

Choosing ε = ν
12 , we can reabsorb the first term from the right-hand

side to the left-hand one, thus getting

ν

∫
Ω

η2(x)|τhDu(x)|2 (
μ2 + |Du(x + h)|2 + |Du(x)|2) p−2

2 dx

≤ c|h|2
(∫

Bλr

|D2ψ(x)| p+2
2 dx

) 4
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

+c|h|2
(∫

Bλr

|D2ψ(x)|
p+2

p+2−q dx

) 2(p+2−q)
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) 2q−p−2
p+2

+
c|h|2

(t − s)2

(∫
Bλr

|D(u − ψ)(x)| p+2
2 dx

) 4
p+2 ·

(∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

) p−2
p+2

+
c|h|2

(t − s)2

(∫
Bλr

|D(u − ψ)|
p+2

p+2−q dx

) 2(p+2)−2q

p+2

·
(∫

Bλr

(
μp+2 + |Du(x)|p+2)

dx

) 2q−p−2
p+2

+c|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) 2p−2q+2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) 2q−p

p+2

+c|h|2
(∫

Bλr

κp+2(x)dx

) 2
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p

p+2

+c|h|2
(∫

Bλr

κp+2(x)dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bλr

∣∣D2ψ(x)
∣∣ p+2

2 dx

) 2
p+2

+c|h|2
(∫

Bλr

κ
p+2

p−q+1 (x)dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bλr

∣∣D2ψ(x)
∣∣ p+2

2 dx

) 2
p+2
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+
c|h|2
t − s

(∫
Bλr

κ(x)p+2dx

) 1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) p−1
p+2

·
(∫

Bλr

|D (u − ψ) (x)| p+2
2 dx

) 2
p+2

+
c|h|2
t − s

(∫
Bλr

κ(x)
p+2

p−q+1 dx

) p−q+1
p+2 ·

(∫
Bt

(
μp+2 + |Du(x)|p+2)

dx

) q−1
p+2

·
(∫

Bλr

|D (u − ψ) (x)| p+2
2 dx

) 2
p+2

.

Now we apply Young’s inequalities and since u ∈ Kψ(Ω), we have

ν

∫
Ω

η2(x)|τhDu(x)|2
(
μ2 + |Du(x + h)|2 + |Du(x)|2

) p−2
2

dx

≤ 10ε|h|2
∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+cε|h|2
∫

Bλr

|D2ψ(x)| p+2
2 dx + cε|h|2

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

+
cε|h|2

(t − s)
p+2
2

∫
Bλr

|D(u − ψ)(x)| p+2
2 dx

+
cε|h|2

(t − s)
p+2

p+2−q

∫
Bλr

|D(u − ψ)| p+2
p+2−q dx

+cε|h|2
∫

Bλr

κ
p+2

p−q+1 (x)dx + cε|h|2
∫

Bλr

κp+2(x)dx. (3.23)

By Young’s inequalities of exponents
(
p + 2 − q, p+2−q

p+1−q

)
we can esti-

mate the thirdlast integral appearing in the right hand side of the previous
inequality as

cε|h|2
(t − s)

p+2
p−q+2

∫
Bλr

|D(u − ψ)| p+2
p+2−q dx

≤ cε|h|2
(t − s)

p+2
p−q+2

∫
Bλr

|Du(x)| p+2
p+2−q dx +

cε|h|2
(t − s)

p+2
p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx

≤ cε|h|2
∫

Bλr

|Du(x)|p+2 dx +
cε|h|2

(t − s)
p+2

p−q+1

|BR|

+
cε|h|2

(t − s)
p+2

p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx,

≤ cε|h|2
(t − s)

p+2
p−q+1

|BR| + ε|h|2
∫

Bλr

(μp+2 + |Du(x)|p+2) dx +
cε|h|2

(t − s)
p+2

p−q+2∫
Bλr

|Dψ(x)| p+2
p+2−q dx,
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and similarly, using Young’s inequality with exponents (2, 2), we get

cε|h|2
(t − s)

p+2
2

∫
Bλr

|D(u − ψ)| p+2
2 dx

≤ cε|h|2
(t − s)p+2

|BR| + ε|h|2
∫

Bλr

(μp+2 + |Du(x)|p+2) dx +
cε|h|2

(t − s)
p+2
2∫

Bλr

|Dψ(x)| p+2
2 dx.

So, from (3.23), we get

ν

∫
Ω

η2(x)|τhDu(x)|2
(
μ2 + |Du(x + h)|2 + |Du(x)|2

) p−2
2

dx

≤ 12ε|h|2
∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+
cε|h|2

(t − s)
p+2

p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx +

cε|h|2
(t − s)

p+2
2

∫
Bλr

|Dψ(x)| p+2
2 dx

+cε|h|2
∫

Bλr

|D2ψ(x)| p+2
2 dx + cε|h|2

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

+cε|h|2
∫

Bλr

κ
p+2

p−q+1 (x)dx + cε|h|2
∫

Bλr

κp+2(x)dx

+
cε|h|2

(t − s)
p+2

p−q+1

|BR| +
cε|h|2

(t − s)p+2
|BR|. (3.24)

Using, in the left hand side of the previous estimate, the right-hand side
of the inequality (2.6) in Lemma 2.5 , we get

ν

∫
Ω

η2(x) |τhVp (Du(x))|2 dx

≤ 12ε|h|2
∫

Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+
cε|h|2

(t − s)
p+2

p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx +

cε|h|2
(t − s)

p+2
2

∫
Bλr

|Dψ(x)| p+2
2 dx

+cε|h|2
∫

Bλr

|D2ψ(x)| p+2
2 dx + cε|h|2

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

+cε|h|2
∫

Bλr

κ
p+2

p−q+1 (x)dx + cε|h|2
∫

Bλr

κp+2(x)dx

+
cε|h|2

(t − s)
p+2

p−q+1

|BR| +
cε|h|2

(t − s)p+2
|BR|.

Dividing both sides by |h|2 and using Lemma 2.10 and the properties
of η, we have

ν

∫
Bs

|DVp (Du(x))|2 dx
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≤ 12ε

∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+
cε

(t − s)
p+2

p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx +

cε

(t − s)
p+2
2

∫
Bλr

|Dψ(x)| p+2
2 dx

+cε

∫
Bλr

|D2ψ(x)| p+2
2 dx + cε

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

+cε

∫
Bλr

κ
p+2

p−q+1 (x)dx + cε

∫
Bλr

κp+2(x)dx

+
cε

(t − s)
p+2

p−q+1

|BR| +
cε

(t − s)p+2
|BR|. (3.25)

Now, by virtue of left-hand side of inequality (2.7) of Lemma 2.5
∫

Bs

(
μ2 + |Du(x)|2

) p−2
2 ∣∣D2u(x)

∣∣2 dx ≤
∫

Bs

|DVp(Du(x))|2 dx

≤ 12ε

∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+
cε

(t − s)
p+2

p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx +

cε

(t − s)
p+2
2

∫
Bλr

|Dψ(x)| p+2
2 dx

+cε

∫
Bλr

|D2ψ(x)| p+2
2 dx + cε

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

+cε

∫
Bλr

κ
p+2

p−q+1 (x)dx + cε

∫
Bλr

κp+2(x)dx

+
cε

(t − s)
p+2

p−q+1

|BR| +
cε

(t − s)p+2
|BR|. (3.26)

By virtue of the local boundedness of u, the second interpolation in-
equality of Lemma 2.1 yields∫

Ω

η2(x)
(
μ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ c‖u‖2
L∞(supp(η))

∫
Ω

η2(x)
(
μ2 + |Du(x)|2

) p−2
2 ∣∣D2u(x)

∣∣2 dx

+ c‖u‖2
L∞(supp(η))

∫
Ω

(
|η(x)|2 + |Dη(x)|2

)(
μ2 + |Du(x)|2

) p
2

dx.

and so, combining this last estimate with (3.26), and using the properties of
η, we get

∫
Br

(
μ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ 12εcε‖u‖2
L∞(Bλr)

∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+
cε‖u‖2

L∞(Bλr)

(t − s)
p+2

p−q+2

∫
Bλr

|Dψ(x)| p+2
p+2−q dx +

cε‖u‖2
L∞(Bλr)

(t − s)
p+2
2

∫
Bλr

|Dψ(x)| p+2
2 dx
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+cε‖u‖2
L∞(Bλr)

∫
Bλr

|D2ψ(x)| p+2
2 dx + cε‖u‖2

L∞(Bλr)

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

+cε‖u‖2
L∞(Bλr)

∫
Bλr

κ
p+2

p−q+1 (x)dx + cε‖u‖2
L∞(Bλr)

∫
Bλr

κp+2(x)dx

+
cε‖u‖2

L∞(Bλr)

(t − s)
p+2

p−q+1

|BR| +
cε‖u‖2

L∞(Bλr)

(t − s)p+2
|BR|

+
cε‖u‖2

L∞(Bλr)

(t − s)2

∫
Bλr

(
μ2 + |Du(x)|2

) p
2

dx. (3.27)

Now let us notice that, since 2 ≤ p < q < p + 1, we have p+2
2 < p+2

p+2−q

and p + 2 < p+2
p−q+1 .

So using Young’s inequality with exponents
(

2
q−p , 2

p+2−q

)
, we get

∫
Bλr

|Dψ(x)| p+2
2 dx ≤ c|BR| q−p

2

(∫
Bλr

|Dψ(x)| p+2
p+2−q dx

) p+2−q
2

≤ c|BR| + c

∫
Bλr

|Dψ(x)| p+2
p+2−q dx,

and similarly∫
Bλr

|D2ψ(x)| p+2
2 dx ≤ c|BR| + c

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx.

Moreover, since p + 2 < p+2
p−q+1 , by Young’s inequality with exponents(

1
q−p , 1

p−q+1

)
, we have

∫
Bλr

κp+2(x)dx ≤ c|BR|q−p

(∫
Bλr

κ
p+2

p−q+1 (x)dx

)p−q+1

≤ c|BR| + c

∫
Bλr

κ
p+2

p−q+1 (x)dx.

So, since t − s < 1, (3.27)becomes∫
Br

(
μ2 + |Du(x)|2

) p
2 |Du(x)|2 dx ≤ 12εcε‖u‖2

L∞(Bλr)

∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+cε‖u‖2
L∞(Bλr)

[∫
Bλr

κ
p+2

p−q+1 (x)dx +

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

]

+
cε‖u‖2

L∞(Bλr)

(t − s)
p+2

p−q+1

[∫
Bλr

(
μ2 + |Du(x)|2

) p
2

dx +

∫
Bλr

|Dψ(x)| p+2
p+2−q dx + |BR|

]
,

and since 0 ≤ μ ≤ 1, we get∫
Br

|Du(x)|p+2 dx ≤
∫

Br

(
μ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ 12εcε‖u‖2
L∞(Bλr)

∫
Bλr

(μ2 + |Du(x)|2) p+2
2 dx

+cε‖u‖2
L∞(Bλr)

[∫
Bλr

κ
p+2

p−q+1 (x)dx +

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

]



MJOM Regularity Results for Bounded Solutions Page 23 of 29 270

+
cε‖u‖2

L∞(Bλr)

(t − s)
p+2

p−q+1

[∫
Bλr

(
μ2 + |Du(x)|2

) p
2

dx +

∫
Bλr

|Dψ(x)| p+2
p+2−q dx + |BR|

]

≤ 12εcε‖u‖2
L∞(Bλr)

∫
Bλr

|Du(x)|p+2dx

+cε‖u‖2
L∞(Bλr)

[∫
Bλr

κ
p+2

p−q+1 (x)dx +

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

]

+
cε‖u‖2

L∞(Bλr)

(t − s)
p+2

p−q+1

[∫
Bλr

(
μ2 + |Du(x)|2

) p
2

dx +

∫
Bλr

|Dψ(x)| p+2
p+2−q dx + |BR|

]
,

Choosing ε such that 12ε ‖u‖2
L∞(BR) ≤ 1

2 , previous estimate becomes∫
Br

|Du(x)|p+2 dx ≤ 1

2

∫
Bλr

|Du(x)|p+2dx

+c‖u‖2
L∞(Bλr)

[∫
Bλr

κ
p+2

p−q+1 (x)dx +

∫
Bλr

|D2ψ(x)| p+2
p+2−q dx

]

+
c‖u‖2

L∞(Bλr)

(t − s)
p+2

p−q+1

[∫
Bλr

(
μ2 + |Du(x)|2) p

2 dx +

∫
Bλr

|Dψ(x)| p+2
p+2−q dx + |BR|

]
,

(3.28)

where c = c(p, q, L, ν, μ) is independent of t and s.
Since (3.28) is valid for any R

2 < r < s < t < λr < R < 1, taking the
limit as s → r and t → λr, we get∫

Br

|Du(x)|p+2 dx ≤ 1

2

∫
Bλr

|Du(x)|p+2 dx

+c‖u‖2
L∞(BR)

[∫
BR

|D2ψ(x)|
p+2

p+2−q dx +

∫
BR

κ
p+2

p−q+1 (x)dx

]

+
c‖u‖2

L∞(BR)

r
p+2

p−q+1 (λ − 1)
p+2

p−q+1

[
|BR| +

∫
BR

|Dψ(x)|
p+2

p+2−q dx +

∫
BR

(
μ2 + |Du(x)|2) p

2 dx

]

(3.29)

Now, setting

h(r) =

∫
Br

|Du(x)|p+2 dx,

A = c‖u‖2
L∞(BR)

[
|BR| +

∫
BR

|Dψ(x)| p+2
p+2−q dx +

∫
BR

(
μ2 + |Du(x)|2

) p
2

dx

]
,

and

B = c‖u‖2
L∞(BR)

[∫
BR

|D2ψ(x)| p+2
p+2−q dx +

∫
BR

κ
p+2

p−q+1 (x)dx

]
,

we obtain

h(r) ≤ 1
2
h(λr) +

A

r
p+2

p−q+1 (λ − 1)
p+2

p−q+1

+ B

Thus, we can apply Lemma 2.6, with

θ =
1
2

and γ =
p + 2

p − q + 1
,
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obtaining∫
Br

|Du(x)|p+2 dx

≤ c‖u‖2
L∞(BR)

[∫
BR

|D2ψ(x)| p+2
p+2−q dx +

∫
BR

κ
p+2

p−q+1 (x)dx+

]

+
c‖u‖2

L∞(BR)

R
p+2

p−q+1

[
|BR| +

∫
BR

|Dψ(x)| p+2
p+2−q dx +

∫
BR

(
μ2 + |Du(x)|2

) p
2

dx

]

Since R < 1, the previous estimate can be written as follows
∫

B R
2

|Du(x)|p+2 dx ≤
c‖u‖2

L∞(BR)

R
p+2

p+2−q

∫
BR[

1 +
∣∣D2ψ(x)

∣∣ p+2
p+2−q + |Dψ(x)| p+2

p+2−q + κ
p+2

p−q+1 (x) + |Du(x)|p
]

dx.

(3.30)

Plugging the last inequality in (3.25) and choosing η ∈ C∞
0 (BR

2
) such

that η ≡ 1 on BR
4

we get

∫
B R

4

|DVp(Du(x))|2 dx ≤
c‖u‖2

L∞(BR)

R
p+2

p+2−q

∫
BR[

1 +
∣∣D2ψ(x)

∣∣ p+2
p+2−q + |Dψ(x)| p+2

p+2−q + κ
p+2

p−q+1 (x) + |Du(x)|p
]

dx.

that by virtue of estimate (2.4), gives us the a priori estimate with
∫

B R
4

|DVp(Du(x))|2 dx ≤
c(‖ψ‖2

L∞ + ‖u‖2
Lp∗ (BR)

)

R
p+2

p+2−q

·
∫

BR

[
1 +

∣∣D2ψ(x)
∣∣ p+2

p+2−q + |Dψ(x)| p+2
p+2−q + κ

p+2
p−q+1 (x) + |Du(x)|p

]
dx.

(3.31)

with c = c(p, q, L, ν, μ).
Step 2: The Approximation. Now we conclude the proof by passing to

the limit in the approximating problem. The limit procedure is standard see,
e.g., [12].

Let u ∈ Kψ(Ω) be a solution to (1.1) and let fε be the sequence obtained
applying Lemma 2.11 to the integrand f . Let us fix a ball BR � Ω and let
uε ∈ u + W 1,p

0 (BR) be the solution to the minimization problem

min
{∫

BR

fε(x,Dv(x))dx : v ∈ Kψ(BR)
}

.

By Theorem 2.3, the minimizers uε satisfy the a priori assumptions at (3.1),

i.e.
(
μ2 + |Duε|2

) p−2
4

Duε ∈ W 1,2
loc (Ω), and therefore we are legitimated to

use estimate (3.31) thus obtaining
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∫
B R

4

|DVp(Duε(x))|2 dx ≤
c(‖ψ‖2

L∞ + ‖uε‖2
Lp∗ (BR)

)

R
p+2

p+2−q

·
∫

BR

[
1 +

∣∣D2ψ(x)
∣∣ p+2

p+2−q + |Dψ(x)| p+2
p+2−q + κ

p+2
p−q+1 + |Duε(x)|p

]
dx.

(3.32)

By the first inequality of growth conditions at (iii) of Lemma 2.11 and
the minimality of uε we get∫

BR

|Duε(x)|p dx ≤ C(K0)
∫

BR

fε(x,Duε(x)) dx

≤ C(K0)
∫

BR

fε(x,Du(x)) dx

≤ C(K0)
∫

BR

f(x,Du(x)) dx ,

where in the last estimate we used the second inequality at (i) of Lemma 2.11.
Since f(x,Du) ∈ L1

loc(Ω) by assumption, we deduce, up to subsequences,
that there exists ū ∈ W 1,p

0 (BR) + u such that

uε ⇀ ū weakly in W 1,p
0 (BR) + u .

Note that, since uε ∈ Kψ for every ε and Kψ is a closed set, we have
ū ∈ Kψ. Our next aim is to show that ū is a solution to our obstacle problem
over the ball BR.

To this aim, fix ε0 > 0 and observe that the lower semicontinuity of the
functional w �→ ∫

BR
fε0(x,Dw) dx, the minimality of uε and the monotonicity

of the sequence of fε yield∫
BR

fε0(x,Dū(x)) dx ≤ lim
ε→0

∫
BR

fε0(x,Duε(x)) dx

≤
∫

BR

fε0(x,Du(x)) dx ≤
∫

BR

f(x,Du(x)) dx

We now use monotone convergence Theorem in the left hand side of previous
estimate to deduce that∫

BR

f(x,Dū(x)) dx = lim
ε0→0

∫
BR

fε0(x,Dū(x)) dx ≤
∫

BR

f(x,Du(x)) dx

Therefore, we have proved that the limit function ū ∈ W 1,p(BR) + u is a
solution to the minimization problem

min
{∫

Ω

f(x,Dw(x))dx : w ∈ W 1,p
0 (BR) + u, w ∈ Kψ

}
.

Since by the strict convexity of the functional the solution is unique, we
conclude that u = ū. It is quite routine to show that the convergence of uε

to u is strong in W 1,p
loc (BR).

The strong convergence of uε to u in W 1,p(BR) implies also that uε

converges strongly to u in Lp∗
(BR) and hence the conclusion follows passing

to the limit as ε → 0 in estimate (3.32). �
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