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ABSTRACT. We deal with a boundary value problem associated to a
second order singular equation in the open interval (0,1]. We first
study the eigenvalue problem in the linear case and discuss the nodal
properties of the eigenfunctions. We then give a global bifurcation result
for nonlinear problems.
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1. Introduction

We are concerned with a second order ODE of the form

—u" 4+ g(x)u = Au+ g(x,u)u, A€ R, z € (0,1], (1)
where g € C((0,1]) satisfies
- g(z)
| =1 2
A 1z =1 )

for some I > 0 and « € (0,5/4), and g € C([0, 1] x R) is such that
lin}) g(xz,u) =0, uniformly in z € (0,1]. (3)
The constant 5/4 arises in a rather straightforward manner in the study of the

differential operator in the left-hand side of (1) (cf. [17, p. 287-288]); details
are given in Remark 2.3 below.

1Under the auspices of GNAMPA-I.N.d.A.M., Ttaly. The work has been performed in
the frame of the M.I.U.R. Projects ‘Topological and Variational Methods in the Study of
Nonlinear Phenomena’ and ‘Nonlinear Control: Geometrical Methods and Applications’.
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We will look for solutions u of (1) such that u € HZ(0,1).

When the z-variable belongs to a compact interval, problems of the form (1)
have been very widely studied. A more limited number of contributions is
available in the literature when the z-variable belongs to a (semi)-open interval,
as it is the case in the present paper, or to an unbounded interval [7, §].

We treat (1) in the framework of bifurcation theory. For this reason, we
first discuss in Section 2 the eigenvalue problem

—u" +q(z)u =M, z€(0,1], A €R. (4)

For such singular problems, the well-known embedding of (4) (by an elemen-
tary application of the integration by parts rule, together with the boundary
condition u(0) = 0 = u(1)) in the setting of eigenvalue problems for compact
self-adjoint operators cannot be performed. Thus, the questions of the existence
of eigenvalues and of the nodal properties of the associated eigenfunctions have
various delicate features. For a comprehensive account on the spectral proper-
ties of the Schrédinger operator we refer to the books [12] and [10]; for more
specific results on singular problems in (0,1) we refer, among many others,
to [5, 14].

However, the linear spectral theory for singular problems is well-established
and can be found, among others, in the classical book by Coddington and
Levinson [4] and in the (relatively) more recent text by Weidmann [17]. The
former monograph focuses on a generalization of the so-called “expansion the-
orem” valid for functions in L2([0, 1]) and, by doing this, a sort of “generalized
shooting method” is performed. On the other hand, in [17] the singular prob-
lem is tackled from an abstract point of view; more precisely, it is considered
the general question of the existence of a self-adjoint realization of the formal
differential expression 7u = —u” + g(x)u and the important Weyl alternative
theorem [17, Theorem 5.6] is used. It is interesting to observe that the approach
in [4] (based on more elementary ODE techniques) and the abstract one in [17]
lead in different ways to the important concepts of “limit point case” and “limit
circle case”. The knowledge of one (or the other) case is ensured by suitable
assumptions on ¢ and leads to information on the boundary conditions to be
added to (4) in order to have a self-adjoint realization of 7.

In the setting of the present paper, the operator 7 is regular at x = 1
this implies that it is in the limit circle case. Moreover, under assumption (2)
from [17, Theorem 6.4] it follows that 7 is in the limit circle case also in x =0
Thus, the differential operator A : u — 7Tu with

i
3

D(A) = {u € L*(0,1): u,u’ € AC(0,1), Tu € L*(0,1),
i (o0 (2) — (@) = 0 = u(1)}
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is a self-adjoint realization of 7 ([17, p. 287-288]). We prove in Proposition 2.2
that in fact D(A) = HZ(0,1); to do this, we need some knowledge of the
behaviour of the solutions of (4) near zero. These estimates are developed in
Proposition 2.1 by means of the classical Levinson theorem [6, Theorem 1.8.1].
Finally, at the end of Section 2 we focus on the nodal properties of a solution
to (4); more precisely, in Proposition 2.4 we prove that (4) is non-oscillatory
and conclude in Proposition 2.5 that the spectrum of A is purely discrete and
that, for every n € N, the eigenfunction associated to the eigenvalue A, has
(n — 1) simple zeros in (0, 1).

Section 3 contains a global bifurcation result (Theorem 3.2) which follows in
a rather straightforward manner as an application of the celebrated Rabinowitz
theorem in [11].

In order to exclude alternative (2) in Theorem 3.2, we use a technique that
we already applied for Hamiltonian systems in R?Y in [2] and for planar Dirac-
type systems in [3]. More precisely, we introduce a continuous integer-valued
functional defined on the set of solutions to (1). Due to the singularity at « = 0,
some care is necessary in order to prove its continuity; this is the content of
Proposition 3.4. We can then state and prove our main result (Theorem 3.5).

In what follows, for a given function p we write p(z) ~ m, x — 07, when
xa
im 28 4 (5)

z—0t+ m/x®

for some m,a € RT.
Finally, we write

H2(0,1) = {u € H*(0,1) : u(0) =0=u(1)},
equipped with the norm defined by

lall® = [ullZeo.) + 114”122 0,1y ¥ u € HF(0,1).

2. The linear equation
In this section we study a linear second order equation of the form
—u" +q(z)u=Xu, x€(0,1], AeR. (6)

We will assume that ¢ € C((0,1]) and that

! +
Q("E)inaﬂ z— 07, (7)
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for some [ > 0 and « € (0,5/4). Without loss of generality we may suppose
that

q(z) >0, Vaze(0,1]. (8)
For every u : (0,1] — R we denote by 7u the formal expression
Tu=—u" + q(x)u;

First of all, we study the asymptotic behaviour of solutions of (6) when
z — 07F: to this aim, let us introduce the change of variables t = —logx and
let

w(t) =ule™), Vit>0.
From the relations
w'(t) = —e M/ (e7h)
(9)
w”(t) _ e—tu/(e—t) + e—2tu//(e—t)7
we deduce that u is a solution of (6) on (0,1) if and only if w is a solution of

—w” —w + e *qleHw = Ae *w (10)

on (0,400). Equation (10) can be written in the form

Y/ = (C+ R()Y., (11)
where Y = (w, 2)T and
0 1 0 0
C= , R()= , Vit>0. (12)
0 -1 e 2gle™) —Xe72t 0
Now, let us observe that C' has eigenvalues A\; = 0, Ay = —1 and corresponding

eigenvectors u; = (1,0), uz = (1,—1) and that R € L'(0, +00); therefore, an
application of [6, Theorem 1.8.1] implies that (11) has two linearly independent
solutions Y7, Y5 such that

Yi(t) =ui +o(1), t— 4o0,

(13)
Y2(t) = (ug +o(1))e™t, ¢ — +oo.

As a consequence, we obtain the following result:
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PROPOSITION 2.1. For every A € R the equation (6) has two linearly indepen-
dent solutions uy x, uz x such that

1
wae) = 1401, a0 =0 (1) 20,

(14)
ug \(r) =z +o(x), up \(r) =1+0(1), z—0%,
and ug ) € H%(0,1).
For every f € L*(0,1) the solutions of Tu = f are given by
uw(x) = cruro(x) + couso(x) +up(x), Vae(0,1), ¢1,c0 €R, (15)
where
uf(x):foxG(x,t)f(t)dt, vz e (0,1), 6
16

G(.T,t) e ul,o(t)’(tg,o(x) — u270(t)u170(x), Ve (0, 1), te (O, 1)
fulfill G € L=((0,1)%), up(0) = 0 = u}(0) and uy € H*(0,1).

Proof. The estimates in (14) follow from (9) and (13), while (16) is the usual
variation of constants formula. Moreover, from (14) we obtain that uz x, us 5 €
L?(0,1). On the other hand we have

q(x)ug () ~ 7 -0t (17)

which implies that qus y € L?(0,1), since o < 5/4 (cf. Remark 2.3 for com-
ments on this restriction); using the fact that Tug x = Aug x, we deduce that

ug,k = Aug \ — quz,» € L*(0,1).

From now on, we will indicate u; = u;0, ¢ = 1,2. The fact that the function
G defined in (16) belongs to the space L°°((0,1)?) is a consequence of the
asymptotic estimates (14). Moreover, from (16) we also deduce that us(0) =0
and that

= [ (B () — w2 F(t)dt, ¥z (0.1),  (18)

which implies u’;(0) = 0.
Finally, the condition uz(0) = 0 = u;(0) guarantees that uy,u’; € L?(0,1);
as far as the second derivative of uy is concerned, let us observe that we have

Tus = f
and so
us = f—quy. (19)
Using the fact that u;(0) = 0 = u’(0) and (7), it follows that qu; € L2(0,1);
hence uy € H?(0,1). O
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In what follows, we study the spectral properties of suitable self-adjoint
realizations of 7; to this aim, let us first observe that the differential operator
T is regular at x = 1. As a consequence, it is in the limit circle case at x = 1;
moreover, from (7), according to [17, Theorem 6.4], 7 is in the limit circle case
also in x = 0.

The differential operator A defined by

D(A) = {u € L*(0,1) :u,u’ € AC(0,1), Tu € L*(0,1),
Tim (' (@) — u(2)) = 0 = u(1)}
Au=r71u, YueD(A),

is then a self-adjoint realization of 7 ([17, p. 287-288]). We can show the
validity of the following Proposition:

PROPOSITION 2.2. The relation
D(A) = H§(0,1)
holds true. Moreover, A has a bounded inverse A=* : L?(0,1) — HZ(0,1).

Proof. 1. Let us start proving that H2(0,1) C D(A). Tt is well known that
HZ(0,1) € C*(0,1); hence, for every u € HZ(0,1) we have u,u’ € AC(0,1).
Moreover, using the fact that «(0) = 0 we deduce that

u(z) =4/ (0)z +o(x), x—0"
and
A()ul@) = W (01 + oz ™), @ — 0%,

the condition o < 5/4 guarantees again that qu € L?(0,1) and therefore Tu =
—u" 4 qu € L?(0,1). Finally, the regularity of u and u’ imply that

. 12 _
i (o () — u(@)) =0
and so also the boundary condition in the definition of D(A) is satisfied.
Now, let us prove that D(A) C HZ(0,1); for every u € D(A) let f = Tu €
L?(0,1). From (15) we deduce that u can be written as

U = c1uy + coug + Uy, (20)

for some c1,co € R; it is easy to see that the function u; does not satisfy the
boundary condition given in z = 0 in the definition of D(A), while uy and uy
do. Hence u € D(A) if and only if ¢; = 0; the last statement of Proposition 2.1
implies then that u € H%(0,1). As in the first part of the proof, the regularity
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of u allows to conclude that the boundary condition in z = 0 given in D(A)
reduces to u(0) = 0.

2. Let us study the invertibility of A; the existence of a bounded inverse of
A is equivalent to the fact that 0 € pa, being pa the resolvent of A. Since
A is self-adjoint on HZ(0,1), this follows from the surjectivity of A (cf. [16,
Theorem 5.24]); hence, it is sufficient to prove that A is surjective.

To this aim, let us first observe that condition (8) guarantees that 0 cannot
be an eigenvalue of A. Now, let us fix f € L?(0,1) and let us prove that there
exists u € HZ(0,1) such that Au = f, i.e. Tu = f; by applying Proposition 2.1
we deduce again that (20) holds true and the same argument of the first part
of the proof implies that ¢; = 0.

Hence we obtain u = cous + uy; from Proposition 2.1 we deduce that this
function belongs to H2(0,1) and satisfies the boundary condition u(0) = 0. In
order to prove that the missing condition u(1) = 0 is fulfilled for every f €
L?(0,1), let us observe that us(1) # 0, otherwise uz would be an eigenfunction
of A associated to the zero eigenvalue. Therefore, u(1) = 0 is satisfied if

for every f € L?(0,1). O

REMARK 2.3. As for the restriction a < 5/4, we observe that for the proofs
of Proposition 2.1 and Proposition 2.2 it is sufficient to require the milder
condition o < 3/2. The fact that o < 5/4 is used (cf. [17, p. 287-288]) in
order to obtain that D(A) is the one described above. Finally, we observe that in
the particular case when a <1 the problem is regular (cf., among others, [9]).

The spectral properties of A are related to the oscillatory behaviour of
solutions of (6). We first recall the following definition:

DEFINITION 2.4. The differential equation (6) is oscillatory if every solution u
has infinitely many zeros in (0,1). It is non-oscillatory when it is not oscilla-
tory.

We observe that the regularity assumptions on ¢ imply that solutions of (6)
have a finite number of zeros in any interval of the form [a, 1), for every 0 < a <
1. Moreover, from (7) we infer that for every A € R there exists ¢(\) € (0, 1]
such that

A—q(z) <0, Yaxe(0,c(N).

An application of the Sturm comparison theorem proves that every solution
of (6) has at most one zero in (0, ¢(\)); as a consequence, we obtain the following
result:
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PROPOSITION 2.5. For every A € R the differential equation (6) is non-oscilla-
tory.

Once Proposition 2.5 is obtained, we can provide in a straightforward way
some useful information on the spectral properties of A; more precisely, denot-
ing by o.ss the essential spectrum of a given operator, we have:

PROPOSITION 2.6. ([17, Theorem 14.3, Theorem 14.6 and Theorem 14.9], [12,
Theorem XIII.1]) The differential operator A is bounded-below and satisfies

Oess(A) = .
Moreover, there exists a sequence {\, }nen of simple eigenvalues of A such that

lim A\, =4
n—-4-o0o

and for every n € N the eigenfunction u,, of A associated to the eigenvalue Ay,
has (n — 1) simple zeros in (0,1).

REMARK 2.7. According to [17], operators of the form T (defined on functions
whose domain is (0,400)) arise when the time independent Schrédinger equa-
tion with spherically symmetric potential

—Au(z) + V(|z))u(zx) = Mu(z), ue L*(R™) (21)

is reduced to an infinite system of eigenvalue problems associated to the ordinary
differential operators in L?(0,+00)

d2
_W

(i € N). In Appendiz 17.F of [17] it is treated the case of a potential V' satisfying
assumptions (which enable to consider Coulomb potentials) that lead to (7).
More precisely, it is shown that for m = 3,i = 0 the operator is in the limit
circle case at zero and self-adjoint extensions of 79 are described.

+%[i(i+m—2)+i(m—1)(m—3) +V(r)

T; =

3. The main result

In this section we are interested in proving a global bifurcation result for a
nonlinear eigenvalue problem of the form

—u" +q(x)u =M+ gz, uv)u, A eR, € (0,1], (22)
where g € C((0,1]) satisfies (7) and g € C([0,1] x R) is such that

lim g(z,u) =0, uniformly in z € [0, 1]. (23)

u—0
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We will look for solutions u of (22) such that u € HZ(0,1). To this aim,
let ¥ denote the set of nontrivial solutions of (22) in HZ(0,1) x R and let
Y =X U{(0,)\) € H3(0,1) x R : X is an eigenvalue of A}, where A is as in
Section 2.

Let M denote the Nemitskii operator associated to g, given by

M(u)(z) = g(z, u(z))u(z), Vazel0,1],
for every u € HZ(0,1). We can show the validity of the following:

PROPOSITION 3.1. Assume g € C([0,1] x R) and (23). Then M : H3(0,1) —
L?(0,1) is a continuous map and satisfies

M(u) = o([[ull), u—0. (24)

Proof. 1. We first show that Mu € L%(0,1) when v € HZ(0,1). When this
condition holds, u € L>(0, 1) and the continuity of g implies that there exists
C, > 0 such that

lg(z, u(z))u(z)| < Cy, Yz e€l0,1].

As a consequence we obtain Mu € L*>(0,1) C L?(0,1).

2. Let us prove that M is continuous. Let us fix ug € X and let u,, € X such
that u, — uwg when n — 4o00; the continuous embedding

HZ(0,1) C L>=(0,1)
and the uniform continuity of g on compact subsets of [0,1] x R ensure that
9(, un(x)) — g(z,uo(x)) in L*(0,1). (25)

This is sufficient to conclude that Mwu,, — Mug in L*>°(0, 1) and hence Mu,, —
Mug in L?(0,1).

3. Finally, let us prove (24): using again the fact that HZ(0,1) C L>(0,1), we
have

[1Mul| 20,1y < [lg(e, w(@)l| e, [[ullz20.0) < Mg, w(@)] o o, [lull;

for all u € H2(0,1); hence, we deduce that
PO < lg(a,u(@)) o), ¥ u e HE(0,1), u 0.

Therefore the result follows from (23) and (25). O
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Now, let us observe that the search of solutions u € HZ(0,1) of (22) is
equivalent to the search of solutions of the abstract equation

Au = u+ M(u), (u,\) € HZ(0,1) x R; (26)
on the other hand, (26) can be written in the form
w = ARw + M(Rw), (w,\) € L*(0,1) x R, (27)

where R : L?(0,1) — HZ(0,1) is the inverse of A (cf. Proposition 2.2).

Now, from [17, Theorem 7.10] we deduce that R is compact; this fact and
the continuity of M guarantee that the operator MR : L?(0,1) — HZ(0,1) is
compact. Moreover, the condition

M(Rw) = o([[w[[z20,1)),  w—0, (28)

is a consequence of (24). From an application of the global bifurcation result
of Rabinowitz (cfr. [11]) to (27) we then obtain the following result:

THEOREM 3.2. Assume (7) and (23). Then, for every eigenvalue A, of A there
exists a continuum C,, of nontrivial solutions of (22) in HZ(0,1) xR bifurcating
from (0,\,) and such that one of the following conditions holds true:

(1) C,, is unbounded in H3(0,1) x R;
(2) C,, contains (0,\,/) € ¥/, with n' # n.

Now, let us observe that a more precise description of the bifurcating
branch, eventually leading to exclude condition (2), can be obtained when
there exists a continuous functional j : ¥ — N (cf. [2, Pr. 2.1]). In order to
define such a functional, we will use the fact that nontrivial solutions of (22)
have a finite number of zeros in (0, 1); this will be a consequence of our next
result.

For every A € R and for every nontrivial solution v € HZ(0,1) of (22) let us
define gy x : (0,1] — R by gy () = q¢(z) — A — g(z,u(x)), for every x € (0,1].
The following Lemma holds true:

LEMMA 3.3. For every A € R and for every nontrivial solution uw € HZ(0,1)
of (22) there exists a neighborhood U C HZ(0,1) xR of (u,\) and x5 € (0,1)
such that

Qo pu(x) >0, V (v,p) €U, x € (0,24] (29)

Proof. Let (u,\) € H3(0,1) xR, u # 0, be fixed and let U be the neighborhood
of radius 1 of (u, \) in H3(0,1) x R; from the continuous embedding L>(0,1) C
HZ(0,1) we deduce that if (w, ) € XN U; then

lwllzoe 01y < T+ [Jullzeay, [l < T+
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and

q(x) —p—g(z,w(z)) = q(z) = [A[=1— max  [g(z,s)|, Vaze(01)

xe€[0,1],
Is|<1+{luflLoe (0,1)

From (7) we then deduce that there exists 2(, ) € (0,1), depending only on
(u, ), such that

q(x) —p—g(z,w(x)) >0, Ve (0,0
O

Now, let us observe that for every A € R and for every nontrivial solution
u € HZ(0,1) of (22) the function u is a nontrivial solution of the linear equation

—w" +(q(z) — gz, u(x)) — M)w = 0. (30)

From Lemma 3.3, with an argument similar to the one which led to Proposi-
tion 2.5, we deduce that all the nontrivial solutions of (30) (in particular w)
have a finite number of zeros in (0,1). We denote by n(u) this number.

We are then allowed to define the functional j by setting

n(u) ifuz®0
J(u, A) = (31)
n—1 ifu=0and A= \,,

for every (u,\) € ¥’. Let us observe that the definition j(0,A,) = n — 1 is
suggested by Proposition 2.6.

PROPOSITION 3.4. The function j : ¥’ — N is continuous.

Proof. 1. As for the continuity of j in every point of the form (0, \,), n € N,
we refer to [15, Lemma 2.5].

2. Let us now fix (ug, Ag) € ¥ and let (u,\) € U, with U as in Lemma 3.3; this
Lemma guarantees that both u and ug have no zeros in (0, zy, »,)-

On the other hand, in the interval [z, ),, 1] a standard continuous depen-
dence argument (cf. also [11]) ensures that u and uo have the same numbers
of zeros if (u, \) is in a sufficiently small neighborhood of (ug, Ag). As a conse-
quence, we obtain that there exists a neighborhood Uy of (ug, Ag) such that

](’U,7>\) = j(uO,A(]), A (u,)\) e Uy.
O

As a consequence, from Theorem 3.2 and Proposition 3.4 we deduce the
final result:
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THEOREM 3.5. Assume (7) and (23). Then, for every eigenvalue X,, of A there
exists a continuum C,, of nontrivial solutions of (22) in HZ(0,1) xR bifurcating
from (0, \,) and such that condition (1) of Theorem 3.2 holds true and

jlu, AN )=n—-1, V (u,A) € C,. (32)

REMARK 3.6. Theorem 3.2 can be proved as an application of Stuart’s result
[15, Theorem 1.2] as well. However, since in the situation considered in this
paper the singularity at zero does not affect the compactness of the operator
R defined after (27), we chose to apply Rabinowitz theorem [11]. We finally
mention the interesting paper [1], where global branches of solutions, with pre-
scribed nodal properties, are obtained for a second order degenerate problem in

(0,1).
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