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Abstract: Objective: Neurofilament light chain proteins (NfLs) are considered a promising biomarker
of neuroaxonal damage in several neurological diseases. Their measurement in the serum and
cerebrospinal fluid (CSF) of patients with dementia may be especially useful. Our aim was to compare
the NfL measurement performance of two advanced technologies, specifically the Ella™ microfluidic
platform and the Lumipulse™ fully automated system, in patients with cognitive disorders. Methods:
Thirty subjects with neurodegenerative cognitive disorders (10 with Alzheimer’s Disease, 10 with
Frontotemporal Dementia, and 10 with non-progressive Mild Cognitive Impairment) seen at the
Cognitive Neurology Clinic of Modena University Hospital (Italy) underwent CSF and serum NfL
measurement with both the Ella™ microfluidic platform (Bio-Techne, Minneapolis, MN, USA)) and
the Lumipulse™ fully automated system for the CLEIA (Fujirebio Inc., Ghent, Belgium). Correlation
and regression analyses were applied to assess the association between NfL concentrations obtained
with the two assays in CSF and serum. The Passing–Bablok regression method was employed to
evaluate the agreement between the assays. Results: There were high correlations between the two
assays (r = 0.976, 95% CI. 0.950–0.989 for CSF vs. r = 0.923, 95% CI 0.842–0.964 for serum). A Passing–
Bablok regression model was estimated to explain the relationship between the two assays, allowing
us to switch from one to the other when only one assay was available. Conclusions: We found a good
degree of correlation between the two methods in patients with neurocognitive disorders. We also
established a method that will allow comparisons between results obtained with either technique,
allowing for meta-analyses and larger sample sizes.

Keywords: assays; cerebrospinal fluid; dementia; neurofilament light chain protein; serum

1. Introduction

Neurofilament light chain proteins (NfLs) are class IV intermediate filament proteins of
68 kDa and represent the most abundant intermediate filament protein expressed in mature
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neurons, providing structural stability and resistance to mechanical stress [1]. After neu-
ronal and axonal damage, increased quantities of NfLs are released into the cerebrospinal
fluid (CSF) and drained into the blood [2,3]. Among other classes of neurofilaments (heavy
and medium chain), NfLs are considered one of the most promising biomarkers, reflecting
neuroaxonal damage in a wide variety of neurological diseases [4,5]. Recent studies have
also suggested that an altered permeability of the blood–brain barrier and blood–CSF
barrier can influence blood NfL concentrations, although the exact influence of such barrier
permeability remains to be elucidated [6,7].

In the past three decades, ultrasensitive immunoassay technologies have been de-
veloped with the purpose of making these biomarkers more clinically useful. With these
improvements, NfLs have begun to be measured in blood, with studies reporting high
correlations between serum and CSF levels [2,8,9]. The gold standard for NfL measurement
in terms of sensitivity is the single-molecule array (SIMOA™) digital immunoassay technol-
ogy from Quanterix. However, the assay cost often represents a limitation to its availability
in clinical laboratories. A recently introduced and cheaper ultrasensitive assay based on
a microfluidic enzyme-linked immunosorbent assay (ELISA) system is Ella™ from Bio-
Techne [10–12]. Ella™ performs immunoassays in a microfluidic cartridge, measuring up
to 72 samples in triplicate inside glass nanoreactors using a fluorescent substrate. Another
very recent introduction is the assay based on the Lumipulse™ platform from Fujirebio
Inc. It is a fully automated chemiluminescent enzyme immunoassay (CLEIA), allowing
for fully automated processing of samples. The capturing antibody is combined with a
detection antibody directly labelled with alkaline phosphatase [13].

As of today, only one study conducted in patients with multiple sclerosis directly
compared the performance of the Ella™ and Lumipulse™ assays [11]. No studies have
compared these assays in patients with cognitive impairment due to neurodegenerative
dementias such as Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD). We
performed a comparative analysis of NfL measurement in both CSF and serum samples
from patients with cognitive disorders using two advanced technologies, specifically the
Ella™ microfluidic platform and the Lumipulse™ fully automated system.

2. Materials and Methods
2.1. Study Population and Sample Collection

Thirty consecutive eligible subjects seen at the Cognitive Neurology Clinic of Mod-
ena University Hospital, Northern Italy, who had undergone blood testing and lumbar
puncture as part of their diagnostic workup and had been clinically followed-up for two
years, were recruited. They were included in the present study if they had one of the
following clinical diagnoses: probable AD supported by abnormal CSF tau and amyloid
biomarkers [14], FTD including its behavioural and aphasic variants [15,16], and non-
progressive cognitive impairment. The latter diagnostic group included subjects that had
initially received a clinical diagnosis of Mild Cognitive Impairment (MCI) [17] or Mild
Neurocognitive Disorder [18] but were found to have normal CSF AD biomarkers and
normal structural magnetic resonance imaging of the brain and remained clinically stable
for at least 2 years. All individuals had provided written informed consent for the use
of CSF and serum samples and personal data for both diagnostic and research purposes
before sample collection (Ethics Committee approvals no 26/2017, 372/2021).

Clinical diagnoses were given by a team that included neurologists with expertise
in cognitive disorders (AC, MT, GV, GZ) through neurological, neuroimaging, and neu-
ropsychological assessments. For each patient, data on sex, age, and mini-mental state
examination (MMSE) at the time of sampling were collected. Venepunctures and lumbar
punctures were performed in the morning in fasting patients. Standard International
Procedures for CSF and serum biobanking were followed [19], as previously described in
detail [20–22]. Samples were immediately anonymized using an alphanumeric code upon
their arrival at the neuro-immunology laboratory, located at the same University Hospital,
and processed within 30 min. After centrifugation at 2500× g for 10 min at controlled room
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temperature, the sample supernatant was aliquoted into polypropylene sterile vials and
kept frozen at −80 ◦C until analysis. Before testing, samples were thawed and centrifuged
at 2500× g for 5 min in strict accordance with the manufacturer’s protocols.

2.2. NfL Assays

CSF and serum NfL concentrations were assessed using two platforms: the commer-
cial Ella™ microfluidic platform (Bio-Techne, Minneapolis, USA) and the Lumipulse™
fully automated system for the CLEIA (Fujirebio Inc., Ghent, Belgium). The Ella™ device
utilized the Human NF-L Simple Plex cartridge-based assay (ProteinSimple, San Jose, CA,
USA), following the manufacturer’s instructions. The Lumipulse™ G600II fully automated
instrument employed Lumipulse G NfL CSF and Lumipulse G NfL Blood Chemilumi-
nescent Enzyme ImmunoAssays. Ella™ was considered the reference method, given its
previous utilization, validation, and standardization in our neurology clinic [23,24]. The
main characteristics of the two assays are reported in Table S1. Serum and CSF dilutions
were manually performed for Ella™ according to the strictly recommended procedures of
the manufacturer.

2.3. Statistical Analysis

Statistical analyses were performed using Stata statistical software (Stata 18.0-SE,
StataCorp LLC, College Station, TX, USA, 2023) and MATLAB version R2022b [25]. The
Shapiro–Wilk test was used to check the normality of the distribution of NfL concentrations
in CSF and serum for both assays. As none of the variables were found to be normally
distributed, Spearman correlations were used to test the association between serum and
CSF NfL concentrations in the same sample series.

Crude and adjusted models were used to perform linear and spline regression analyses
to assess the association between NfL concentrations in CSF and serum with the two
assays. In the adjusted model, age was used as a continuous adjustment variable. Beta
linear regression coefficients (β), with their 95% confidence intervals (CIs), were computed
for each regression analysis to compare the effect strength of each independent variable
(NfL levels measured with Ella™) on the dependent variable (NfL levels measured with
Lumipulse™). To assess the potential non-linearity of our associations, we used regression
analyses fitted on a restricted cubic spline model using three knots at fixed percentiles
(10th, 50th, and 90th) previously implemented [26,27]. Linear and spline fits were then
compared using ANOVA. The Passing–Bablok regression method was also employed to
evaluate agreement between assays.

3. Results

The characteristics of the subjects included in the study are reported in Table 1. The
median concentrations of CSF and serum NfL were, respectively, 879 pg/mL (interquar-
tile range (IQR) 510–3641 pg/mL) and 21.00 pg/mL (13.30–58.40 pg/mL) with Ella™
and 735.50 pg/mL (IQR 365–2897 pg/mL) and 21.26 pg/mL (15.54–43.69 pg/mL) with
Lumipulse™ (Table 1 and Figure 1).

The median NfL levels were found to be higher in males compared to females, with
the NfL serum levels measured with Ella™ showing the weakest difference between sexes
(Table S2). As for the diagnostic group, NfL concentrations measured through the two
assays in both blood and CSF were higher in FTD compared to AD and non-progressive
MCI, as well in AD compared to non-progressive MCI.

The results of the Spearman correlations are reported in Table 2, showing a high level
of correlation between the two assays. The CSF NfL concentration demonstrated a slightly
stronger correlation compared to that in serum.
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Table 1. Median and interquartile range (IQR) concentrations of age, mini-mental state examination
(MMSE) score, and neurofilament light chain (NfL) according to platform used and divided by
diagnostic subgroup.

All (n = 30) N-P Cognitive
Impairment (n = 10) AD (n = 10) FTD (n= 10)

Median IQR Median IQR Median IQR Median IQR

Age (years) 61 54–66 51 43–56 60 56–66 67 63–68

MMSE (score) 27 23–28 29 27–30 25 24–27 23 19–27

Disease
duration (months) 24 13–45 29 12–57 14 11–38 24 18–43

NfL CSF (pg/mL)

EllaTM 879.0 510.0–3641.0 411.0 286.0–510.0 879.0 690.0–1166.0 6235.5 3641.0–7309.0

LumipulseTM 735.5 365.0–2897.0 293.5 209.0–365.0 735.5 648.0–859.0 4785.0 2897.0–6443.0

NfL serum (pg/mL)

EllaTM 21.00 13.30–58.40 11.15 7.69–17.40 21.60 15.80–27.70 109.00 62.60–137.00

LumipulseTM 21.26 15.54–43.69 14.64 13.78–16.53 20.53 16.73–25.55 63.82 43.69–91.65

Notes: AD, Alzheimer’s Dementia; CSF, cerebrospinal fluid; FTD, Frontotemporal Dementia; N-P,
non-progressive.
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Table 2. Spearman’s correlation between neurofilament light chain (NfL) in cerebrospinal fluid (CSF)
and serum measured with Ella™ and Lumipulse™.

Ella™ Versus Lumipulse™

r 95% CI

NfL CSF 0.976 0.950, 0.989

NfL serum 0.923 0.842, 0.964

The variance explained by the linear regression models was high for both serum and
CSF (adjusted R2 = 0.908 for CSF vs. adjusted R2 = 0.885 for serum). According to the
results of the models, both the serum and CSF levels measured with the two assays were
linearly dependent (β: 0.77, 95% CI 0.68–0.86 for CSF vs. β: 0.64, 95% CI 0.55–0.73 for
serum). Table S3 reports the crude and adjusted-by-age linear regression models explaining
the relationship between the two assays.

The spline regression analysis using Ella™ as a reference method (independent vari-
able) also explained the high variance (adjusted R2 = 0.920 for CSF vs. adjusted R2 = 0.881
for serum). However, the ANOVA showed no statistically significant difference between
the linear and spline models (p = 0.096 for CSF vs. p = 0.567 for serum), indicating that the
two assays were almost linearly dependent (Figure 2).
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The relationship among variables was also examined using a scatterplot matrix and
showed a good correlation between NfL CSF and serum levels in both assays (Figure S1).

Given the non-normal distribution of data, we used the non-parametric Passing–
Bablok regression model to estimate a formula that explains the relationship between the
two assays, allowing for the estimation of the values with one method when only the other
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is available and vice versa. When only Lumipulse™ is available, the formulae used to
obtain the corresponding value in ELLA™ (y) in relation to Lumipulse™ (x) are

y(ELLA™) = 0.8261 ∗ x(Lumipulse™) − 45.38 for CSF

y(ELLA™) = 0.5775 ∗ x(Lumipulse™) + 7.543 for serum

On the other hand, when only ELLA™ (y) is available, the formulae used to obtain
the corresponding Lumipulse™ (x) value are

x(Lumipulse™) = 1.211 ∗ y(ELLA™) + 45.38 for CSF

x(Lumipulse™) = 1.732 ∗ y(ELLA™) − 7.543 for serum

As for the equations, the slope of the Passing–Bablok regression line is reported
in Table 3. The 95% CI of the slope does not include 1, which indicates a significant
proportional difference between the two methods. Consequently, the application of a
correction coefficient is necessary (Table 3 and Figure 3).

Table 3. Passing–Bablok regression between Ella™ and Lumipulse™ neurofilament light chain (NfL)
concentrations in cerebrospinal fluid (CSF) and serum. Values are intercept and slope with 95%
confidence intervals (CI).

Parameter Estimate 95% CI

NfL CSF

Intercept −45.38 −118.58, 29.42

Slope 0.8261 0.7038, 0.9289

NfL serum

Intercept 7.543 5.828, 8.935

Slope 0.5775 0.5372, 0.6254Diagnostics 2024, 14, x FOR PEER REVIEW 8 of 12 
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red line: identity line; dashed grey lines: 95% confidence intervals. These graphics may be interpreted
as follows: if the red identity line is outside of the credible intervals of the Passing–Bablok regression
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4. Discussion

The quantification of NfL concentrations in CSF and serum is gaining increasing
importance in the diagnosis of several neurological conditions and is especially promising in
neurodegenerative disorders associated with dementia [28–32]. In this study, we compared
CSF and serum NfL levels in patients with cognitive disorders due to different diseases (AD,
FTD, and non-progressive MCI), measuring them with two different assays: Lumipulse™
and Ella™. We demonstrated that, albeit highly correlated, the two methods show a
significant proportional difference. We therefore estimated for the first time a formula
allowing for the conversion from one to the other assay.

To the best of our knowledge, no previous similar comparisons have been made in
patients with cognitive impairment or neurodegenerative diseases, as only one study to
date has reported comparisons of NfL levels with Ella™ and Lumipulse™ in patients
with multiple sclerosis [11]. Several studies, instead, have compared Ella™ with SIMOA™
technology. In these studies, the differences between the two assays were ascribed to the use
of different calibrators, namely naturally derived bovine NfLs for Ella™ and recombinant
human NfLs for SIMOA™ [33]. In our study, this should not be an issue as Lumipulse™,
like Ella™, uses a naturally derived bovine NfL calibrator.

Globally, the results obtained showed a very high level of correlation with the cal-
culated correlation coefficients of 0.976 and 0.923 for CSF and serum, respectively. These
findings confirm a good degree of correlation between different assays, similarly to what
was reported in studies comparing Ella™ to SIMOA™ assays in patients with multiple
sclerosis and dementia [12,33]. To date, no studies in patients with dementia or cognitive
impairment have used the Lumipulse™ instrument to measure NfL concentrations, as they
have only used Ella™, SIMOA™, or manual ELISA techniques [34–38]. The good degree of
correlation between the two methods and the estimation of conversion formulae will allow
for comparisons of results obtained with either method. Importantly, it will also allow for
the merging of datasets in which NfLs were measured with either technique with the goal
of obtaining larger population samples and performing comparisons and meta-analyses.

We observed that the CSF concentrations exceeded those in the serum with both the
assays, being 42- and 35-fold higher using Lumipulse™ and ELLA™, respectively. This is
in line with previous studies, which have consistently shown that serum NfLs are a reliable
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proxy for CSF NfL concentrations in different neurological diseases, albeit measurable in
smaller concentrations [24,39–41].

We found that the measurements of NfL levels obtained with the two assays were
more strongly correlated in the CSF compared to the serum in our cohort of patients with
cognitive impairment. This is in line with the findings of a recent study comparing the two
assays in patients with multiple sclerosis [11] and may be explained by the fact that several
factors that affect NfL levels in the serum, such as creatinine and cholesterol levels, do not
pass the blood–CSF barrier and thus do not influence NfL levels in the CSF [42,43].

Besides pathological conditions, it is well known that the levels of NfLs in both
CSF and serum increase with age [44,45]. We found that the adjustment for age did not
substantially change the linear relationship between the measurements obtained with the
two different assays; thus, the conversion formula from one to the other assay that we
estimated can be used independently of age for people in the investigated age spectrum.

Our study has limitations. First, the size of our dataset is limited to 30 subjects.
However, the univariate analysis previously described is also applicable in the context of a
limitless sample size, and the narrow width of the confidence intervals suggests the stability
of the regression models across subjects. Moreover, our results will inherently allow us to
move towards larger datasets obtained from combining smaller datasets. Moreover, we
cannot ignore that patients with stable MCI for at least 2 years could possibly develop
dementia after the end of the follow-up; nevertheless, even considering this possibility, the
good correlation between the two methods and the estimation of the conversion formula
remains valid.

Our study also has strengths: we purposefully included a sample of patients with
the two most common neurodegenerative dementias (AD and FTD) as well as a sample of
subjects with cognitive concerns without any biomarker abnormality or clinical evidence of
progression, allowing us to verify the correspondence between the two different method-
ologies for NfL measurement across a spectrum of patients representative of those usually
presenting in cognitive neurology clinics, for whom the measurement of NfLs will likely
become part of the routine diagnostic pathway in the near future.

5. Conclusions

In conclusion, the quantification of NfLs is gaining an increasingly important role
in neurodegenerative diseases associated with dementia; thus, it is essential to know all
the possible sources of variation in their measurement, including the type of assay. NfL
dosing in dementia research undoubtedly offers a promising avenue for advancing early
detection and differential diagnosis between different types of dementia and for monitoring
therapeutic interventions. By establishing a reliable conversion factor, the results of different
studies can be fully compared, even when values are obtained with different methods in
different biological fluids. In this context, it is important to enhance our understanding of
the clinical significance of NfLs, which will, in turn, promote the wider adoption of this
promising biomarker.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics14212408/s1, Figure S1: Scatterplot matrix for neuro-
filament light chain (NfL) in serum and cerebrospinal fluid (CSF) concentrations using EllaTM and
LumipulseTM; Table S1: Main characteristics of Lumipulse™ G NfL CSF and Blood and Ella Simple
PlexTM Human NF-L Cartridge; Table S2: Median and interquartile range (IQR) concentrations of
age, mini-mental state examination (MMSE) score, and neurofilament light chain (NfL) according to
platform used and divided by sex; Table S3: Linear regression analyses of neurofilament light chain
(NfL) in cerebrospinal fluid (CSF) and serum measured with Ella™ and Lumipulse™. We reported
two statistical models: crude and adjusted-by-age models. Values are beta coefficients (β) with 95%
confidence intervals (CIs).
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