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Abstract—A multi-access wireless network with N transmitting
nodes, each equipped with an energy harvesting (EH) device and
a rechargeable battery of finite capacity, is studied. At each time
slot (TS) a node is operative with a certain probability, which
may depend on the availability of data, or the state of its chan-
nel. The energy arrival process at each node is modelled as an
independent two-state Markov process, such that, at each TS, a
node either harvests one unit of energy, or none. At each TS a
subset of the nodes is scheduled by the access point (AP). The
scheduling policy that maximises the total throughput is studied
assuming that the AP does not know the states of either the EH
processes or the batteries. The problem is identified as a restless
multi-armed bandit (RMAB) problem, and an upper bound on
the optimal scheduling policy is found. Under certain assumptions
regarding the EH processes and the battery sizes, the optimality
of the myopic policy (MP) is proven. For the general case, the
performance of MP is compared numerically to the upper bound.

Index Terms—Energy harvesting, myopic policy, multi-access,
online scheduling, partially observable Markov decision process,
restless multi-armed bandit problem.

I. INTRODUCTION

LOW-POWER wireless networks, such as machine-to-
machine and wireless sensor networks, can be comple-

mented with energy harvesting (EH) technology to extend the
network lifetime. A low-power wireless node has a limited life-
time constrained by the battery size; but when complemented
with an EH device and a rechargeable battery, its lifetime can
be prolonged significantly. However, energy availability at the
EH nodes is scarce, and, due to the random nature of the
energy sources, energy arrives at random times and in arbitrary
amounts. Hence, to take the most out of the scarce energy, it
is important to optimise the scheduling policy of the wireless
network.

Previous research on EH wireless networks can be grouped
into three, based on the information available regarding the
random processes governing the system [1]. In the offline
optimization framework, availability of non-causal information
on the exact realizations of the random processes governing
the system is assumed at the transmitter [2], [3]. In the online
optimization framework [4]–[11], the statistics governing the
random processes are assumed to be available at the transmitter,
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and their realizations are known only causally. The EH com-
munication system is modeled as a Markov decision process
(MDP) [4], or as a partially observable MDP (POMDP) [5],
and dynamic programming (DP) [12] can be used to optimise
the EH communication system numerically. In many practical
applications, the state space of the corresponding MDPs and
POMDPs is large, and DP becomes computationally prohibitive
[13], and the numerical results of DP do not provide much
intuition about the structure of the optimal scheduling policy.
To avoid complex numerical optimisations it is important to
characterize the behaviour of the optimal scheduling policy and
identify properties about its structure; however, this is possible
only in some special cases [6], [8], [9]. In the learning optimiza-
tion framework, the knowledge about the system behaviour is
further relaxed, and even the statistical knowledge about the
random processes governing the system is not assumed, and the
optimal policy scheduling is learnt over time [11].

We study online scheduling of low-power wireless nodes
by an access point (AP). The nodes are equipped with EH
devices, and powered by rechargeable batteries. At each time
slot (TS) a node is operative with a certain probability, which
may depend on the channel conditions or the availability of
data at the node. The EH process at each node is modelled as
an independent Markov process, and at each TS, a node either
harvests one unit of energy or does not harvest any. The AP
is in charge of scheduling, at each TS, the EH nodes to the
available orthogonal channels. A node transmits only when it
is scheduled and is operative at the same time. Hence, at each
TS the AP learns the EH process states and battery levels of
the operative nodes that are scheduled, but does not receive
any information about the other nodes. The AP is interested in
maximising the expected sum throughput within a given time
horizon. This problem can be model as a POMDP and solved
numerically using DP at the expense of a high-computational
cost. Instead, we model it as a restless multi-armed bandit
(RMAB) problem [14], and prove the optimality of a low-
complexity policy in two special cases. Moreover, by relaxing
the constraint on the number of nodes that the AP can schedule
at each TS, we obtain an upper bound on the performance of
the optimal scheduling policy. Finally, the performance of the
low complexity policy is compared to that of the upper bound
numerically. The main technical contributions of the paper are
summarised as follows:

• We show the optimality of a MP if the nodes do not harvest
energy and transmit data at the same time, and the EH
process is affected by the scheduling policy.
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• We show the optimality of MP if the nodes do not have
batteries and can transmit only if they have harvested
energy in the previous TS.

• We provide an upper bound on the performance for the
general case by relaxing the constraint on the number of
nodes that can be scheduled at each TS.

• We show numerically that MP performs close to the upper
bound for the general case.

The rest of this paper is organized as follows. Section II is
dedicated to a summary of the related literature. In Section III,
we present the EH wireless multi-access network model. In
Sections IV and V we characterize explicitly the structure of
the optimal policy that maximises the sum throughput for two
special cases. In Section VI, we provide an upper bound on the
performance. Finally, in Section VII we compare the perfor-
mance of MP with that of the upperbound through numerical
analysis. Section VIII concludes the paper.

II. RELATED WORK

There is a growing research interest in EH wireless commu-
nication systems, and in particular, in developing scheduling
policies that exploit the scarce harvested energy in the most ef-
ficient manner. In large EH wireless networks, since numerical
optimization is computationally prohibitive, it is important to
characterise the optimal scheduling policy explicitly, or certain
properties of it.

In [6], the authors assume that the data packets arrive at the
EH transmitter as a Poisson process, and each packet has an
intrinsic value assigned to it, which also is a random variable.
The optimal transmission policy that maximizes the average
value of the received packets at the destination is proven to be a
threshold policy. However, the values of the thresholds have to
be computed using numerical techniques, such as DP or linear
programming (LP). Reference [7] extends the problem in [6] to
the multi-access scenario.

Multi-access in EH wireless networks with a central sched-
uler, static channels and backlogged nodes has been studied
in [8]–[10]. The central scheduler in [8] does not know the
battery levels or the states of the EH processes at the nodes.
Assuming that the nodes have unit size batteries, the system is
modeled as an RMAB, and MP, which has a round robin (RR)
structure, is shown to maximise the sum throughput. Reference
[9] considers nodes with batteries of arbitrary capacity, and
MP is found to be optimal in two special cases. In contrast to
the present paper, [9] considers static channels and backlogged
nodes, and the optimality proof exploits the RR structure of
MP. In [10], considering infinite-capacity batteries, an asymp-
totically optimal policy is proposed.

The problem studied in this paper is modeled as an RMAB
problem. In the classic RMAB problem there are several arms,
each of which is modelled as a Markov chain [14]. The states
of the arms are unknown, and at each TS an arm is played.
The played arm reveals its state and yields a reward, which
is a function of the state. The objective is to find a policy
that maximises the total reward over time. RMAB problems
have been shown to be, in general, PSPACE hard [15], and our

Fig. 1. System model with N EH nodes with finite size batteries and K
orthogonal channels.

knowledge on the structure of the optimal policy for general
RMAB problem is limited.

Recently, the RMAB model has been used to study channel
access and cognitive radio problems, and new results on the
optimality of MP have been obtained [16]–[20]. The structure
and the optimality of MP is proven in [16] and [17] for single
and multiple plays, respectively, under certain conditions on
the Markov transition probabilities. In [18] the optimality of
MP is shown for a general class of monotone affine reward
functions, which include arms with arbitrary number of states.
The optimality of MP is proven in [19] when the arms’ states
follow non-identical Markov chains. The case of imperfect
channel detection is studied in [20], and MP is found to be
optimal when the false alarm probability of the channel state
detector is below a certain value.

III. SYSTEM MODEL

We consider an EH wireless network with N EH nodes and
one AP, as depicted in Fig. 1. Time is divided into TSs of
constant duration, and the AP is in charge of scheduling K of
the N nodes to the K available orthogonal channels at each
TS. A node is operative at each TS with a fixed probability
p independent over TSs and nodes, and inoperative otherwise.
We consider that a node is in the operative state if it has a
data packet to transmit in its buffer and its channel to the AP
is in a good state, while it is inoperative otherwise even if it
is scheduled to a channel. The EH process is modelled as a
Markov chain, which can be either in the harvesting or in the
non-harvesting state, denoted by states 1 and 0, respectively.
We denote by pi j the transition probability from state i to j,
and assume that p11 ≥ p01, that is, the EH process is positively
correlated in time, and hence, if the EH process is in state
i, it is more likely to remain in state i than switching to the
other state. We denote by Es

i (n) and Eh
i (n) the state of the

EH process and the amount of energy harvested by node i,
respectively, in TS n. The energy harvested in TS n is available
for transmission in TS n+ 1. We assume that one fundamental
unit of energy is harvested when the Markov process makes a
transition to the harvesting state, that is, Eh

i (n) = Es
i (n+ 1).1

1Our results can be generalised to a broader class of two-state Markovian
EH processes in which the amount of energy harvested in each state is an
independent and identically distributed random variable, and the expected
amount of harvested energy in the harvesting state is larger than that in the non-
harvesting state. However, the studied EH model captures the random nature of
the energy arrivals, and is also considered in [4], [8], [9], and [11].
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Each node is equipped with a battery of capacity B, and we
denote by Bi(n) ∈ {0, . . . ,B} the amount of energy stored in the
battery of node i at the beginning of TS n. The state of node
i in TS n, Si(n), is given by its battery and EH process states,
Si(n) = (Es

i (n),Bi(n))∈ {0,1}×{0, . . . ,B}. The system state is
characterized by the joint states of all the nodes.

The system functions as follows: At the beginning of each
TS, the AP schedules K out of N nodes, such that a single
node is allocated to each orthogonal channel. When a node is
scheduled, if it is operative in that TS, i.e., it has data to transmit
and its channel is in a good state, it transmits a data packet as
well as the current state of its EH process to the AP. If it is not
operative it transmits a status beacon to the AP, and backs off.
We say that a node is active in a TS if it is scheduled by the
AP and is operative; and hence, it transmits a data packet to
the AP, otherwise we say that the node is idle in this TS, that
is, the node is not scheduled or it is scheduled, but it is not
operative. We denote by K (n) and K a(n) the set of nodes
scheduled by the AP, and the set of active nodes in TS n,
respectively, where K a(n)⊆ K (n).

We assume that the transmission rate is a linear function of
the transmit power, which is an accurate approximation in the
low power regime. When the power-rate function is linear, the
total number of bits transmitted to the AP is maximised when
an active node transmits at a constant power throughout the TS,
using all its energy. To simplify the notation we normalise the
power-rate function such that the number of bits transmitted
within a TS is equal to the energy used for transmission. Then
the expected throughput in TS n is

R(K (n)) = E

[
∑

i∈K a(n)

Bi(n)

]
= p ∑

i∈K (n)

Bi(n). (1)

The objective of the AP is to schedule the best set of nodes,
K (n), at each TS to maximize (1), without knowing which
nodes are operative, the battery levels, or the EH states. The
only information the AP receives is the EH state of the active
nodes at each TS. Note that the AP also knows the battery state
of the active nodes after transmission since they use all their
energy.

A scheduling policy is an algorithm that schedules nodes
at each TS n, based on the previous observations of the EH
states and battery levels. The objective of the AP is to find the
scheduling policy K (n), ∀n ∈ [1,T ], that maximizes the total
discounted throughput, given by

max
{K (n)}T

n=1

T

∑
n=1

βn−1R(K (n)) ,

s.t. Bi(n+1) = min{Bi(n)

+ Eh
i (n),B

}
·1li �∈K a(n) +Eh

i (n) ·1li∈K a(n),

(2)

where 0 < β ≤ 1 is the discount factor, and 1la is the indicator
function, defined as 1la = 1 if a is true, and 1la = 0, otherwise.

If the AP is informed on the current state of all the nodes
at each TS, the problem would be formulated as an MDP, and

solved using LP or DP [12]. However, in practice transmitting
all the nodes’ states to the AP introduces further overhead and
energy consumption; and hence, is not considered here. Ac-
cordingly, the appropriate model for our problem is a POMDP.
It can be shown that a sufficient statistic for optimal decision
making in a POMDP is given by the conditional probability
of the system states given all the past actions and observations,
which, in our problem, depends only on the number of TSs each
node has been idle for, and on the realisation of each node’s
EH state last time it was active. Hence, we can reformulate
the POMDP into an equivalent MDP with an extended state
space. The belief states, that is, the states in the equivalent MDP,
are characterized by all the past actions and observations. We
denote by li and hi the number of TSs that node i has been
idle for, and the state of the EH process the last time it was
active, respectively. The belief state of node i, si(n), is given by
si(n) = (li,hi), and the belief state of the whole system is the
joint belief states of all the nodes. In TS n, the belief state of
node i is updated as si(n+1) = (0,Es

i (n)), if i ∈ K a(n), and as
si(n+1)= (li+1,hi), otherwise. That is, at each TS, li is set to 0
if node i is active, and increased by one if it is idle. In principle,
since the number of TSs a node can be idle is unbounded, the
state space of the equivalent MDP is infinite, and hence, the
POMDP in (2) is hard to solve numerically. In Sections IV and
V, we focus on two particular settings, and show the existence
of optimal low-complexity scheduling policies under certain
assumptions.

IV. NON SIMULTANEOUS ENERGY HARVESTING

AND DATA TRANSMISSION

In this section we assume that the nodes are not able to
harvest energy and transmit data simultaneously, and that if
node i is active in TS n− 1, then its EH state in TS n, Es

i (n),
is either 0 or 1 with probabilities e0 and e1, respectively,
independent of the EH state in TS n− 1, where e0 ≤ p10

p01+p10
.

These assumptions may account for nodes equipped with elec-
tromagnetic energy harvesters in which the same antenna is
used for harvesting as well as transmission; and hence, it is
not possible to transmit data and harvest energy simultaneously,
and the RF hardware has to be reset into the harvesting mode
after each transmission.

Since the EH process is reset when a node transmits, the
EH process states of active nodes are not relevant. As a con-
sequence, the belief state of a node, si(n), is characterized only
by the number of TSs the node has been idle for, li. There is a
one-to-one correspondence between li and the expected battery
level of node i; therefore, we redefine the belief state, si(n),
as the expected battery level of node i in TS n, normalised
by the battery capacity. The expected throughput in (1) can be
rewritten as

R(K (n)) = pB ∑
i∈K (n)

si(n). (3)

Notice that si(n) in (3) is normalised, i.e., si(n) ∈ [0,1].
Due to the Markovity of the EH processes, the future belief

state is only a function of the current belief state and the
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scheduling policy. If a node is active in TS n, since it uses all its
energy and does not harvest any, the belief state is set to 0 in TS
n+1. If a node is not active in TS n, then the belief state evolves
according to the belief state transition function τ(·). The belief
state of node i in TS n+1 is

si(n+1) =

{
τ(si(n)) if i �∈ K a(n),
0 if i ∈ K a(n).

(4)

Property 1: The belief state transition function, τ(·), is a
monotonically increasing contracting map, that is, τ(si(n)) >
τ(s j(n)) if si(n) > s j(n), and ‖τ(si(n))− τ(s j(n))‖ ≤ ‖si(n)−
s j(n)‖.

Proof: The proof is given in Appendix A. �
Note that the assumption p11 ≥ p01 is a necessary condition

for Property 1. We denote by s(n)= (s1(n), . . . ,sN(n)) the belief
vector in TS n, which contains the belief states of all the nodes,
and by sE (n) the belief vector of the nodes in set E . For the
sake of clarity we drop the n from s(n) and sE (n) when the
time index is clear from the context. We denote the expected
throughput by R(sE ) if the belief vector is s and nodes in E are
scheduled.

The probability that a particular set of nodes, K a(n)⊆K (n),
is active while the rest of the scheduled nodes remain idle in TS
n is a function of the cardinality of K a(n) and the probability

that a node is operative, p. For a
Δ
= |K a(n)| we denote this

probability by

q(a,K)
Δ
= (1− p)K−a pa. (5)

The AP is interested in finding the scheduling policy π, which
schedules the nodes according to s(n), that is K (n) = π(s(n)),
such that the expected throughput over the time horizon T is
maximised. The associated optimization problem is expressed
through the Bellman value functions,

V π
n (s) =R

(
sπ(s)

)
+β ∑

E⊆π(s)
q(|E |,K)

×V π
n+1 ((s1(n+1), . . . ,s j(n+1) = 0,

. . . ,si(n+1) = τ(si(n)) , . . .)) , (6)

where the sum is over all possible sets of active nodes, E ,
among the scheduled nodes, K (n) = π(s(n)), and nodes j and
i are active and idle, respectively. The optimal policy, π∗, is the
one that maximises (6).

A. Definitions

Definitions 1: At TS n the myopic policy (MP) schedules
the K nodes that maximise the expected instantaneous reward
function, R(·). For the reward function in (3) the MP schedules
the K nodes with the highest belief states.

MP schedules the nodes similarly to a round robin (RR)
policy that orders the nodes according to the time they have
been idle for, and at each TS schedules the nodes with the
highest idle time values. If a node is active in this TS, it is sent to
the bottom of this ordered list in the next TS. If a node is idle it

moves forward in the order. Notice that due to the monotonicity
of τ(·) the order of the idle nodes is preserved.

We denote by sΠ = (sΠ(1), . . . ,sΠ(N)), the permutation of
the vector s, where Π(·) is a permutation function, by sK

Π =
(sΠ(1), . . . ,sΠ(K)) the vector containing the first K elements of
sΠ, and by S K

Π = {Π(1), · · · ,Π(K)} the set of indices of the
nodes in positions from 1 to K in vector sΠ. We say that a vector
is ordered if its elements are in decreasing order. We denote by
◦
Π the permutation that orders a vector, that is, the vector s ◦

Π
is

ordered, i.e., s ◦
Π(1)

≥ s ◦
Π(2)

≥ . . . ≥ s ◦
Π(N)

. We denote the vector

operator that first orders the vector sE of |E | components, and
then applies τ(·) to each of the components of the resulting

vector by T(sE )
Δ
= (τ(s ◦

Π(1)
), · · · ,τ(s ◦

Π(|E |)
)), with

◦
Π(i)∈ E ,1 ≤

i ≤ |E |. Note that due to the monotonicity of τ(·) the vector
T(sE ) is always ordered. Finally, we denote the zero vector of
length k by 0(k).

Definitions 2: Pseudo value function, Wn(sΠ), is defined as

Wn(sΠ)
Δ
=R

(
sK

Π
)
+β ∑

E⊆SK
Π

q(|E |,K)Wn+1
([

T(sE ),0(|E |)
])
,

WT (sΠ)
Δ
=R

(
sK

Π
)
, (7)

where [·, ·] is the vector concatenation operator.
Wn(·) is characterized solely by the belief vector s and its

initial permutation Π. In TS n, the first K nodes according
to permutation Π are scheduled, and the nodes are scheduled
according to MP thereafter. The belief vector in TS n + 1
is s ◦

Π
(n + 1) = [T(sE ),0(|E |)], where E is the set of active

nodes in TS n, and, since T(·) implicitly orders the output
vector, s ◦

Π
(n+ 1) is ordered. Hence, the nodes that are active

in TS n have belief state 0 in TS n+ 1, and are moved to the
rightmost position in the belief vector. If vector sΠ is ordered,
(7) corresponds to the value function of MP, that is, corresponds
to (6) where π is MP.

Definitions 3: A permutation Π is an i, j-swap of permuta-
tion Π̂ if Π(k) = Π̂(k), for ∀k �= {i, j}, and Π( j) = Π̂(i) and
Π(i) = Π̂( j). That is, all the nodes but those in positions i
and j are in the same positions in sΠ and sΠ̂, and the nodes
in positions i and j are swapped.

A permutation Π is an i, j-swap if Π(k) = k, for ∀k �= {i, j},
and Π(i) = j and Π( j) = i. That is, all the nodes but those in
positions i and j are in the same position in s and sΠ, and the
nodes in positions i and j are swapped.

Definitions 4: A function f (x), f : IRk → IR and x =
(x1, . . . ,xk), is said to be regular if it is symmetric, monoton-
ically increasing, and decomposable [19].

• f (x) is symmetric if f (. . . ,xi, . . . ,x j, . . .) = f (. . . ,x j,
. . . ,xi, . . .).

• f (x) is monotonically increasing in each of its com-
ponents, that is, if x j ≤ x̃ j then f (. . . ,x j, . . .) ≤ f (. . . ,
x̃ j, . . .).

• f (x) is decomposable if f (. . . ,x j, . . .) = x j f (. . . ,1,
. . .)+(1− x j) f (. . . ,0, . . .).
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Definitions 5: (Boundedness) A function f (x), f : IRk → IR
and x= (x1, . . . ,xk), is said to be bounded if Δl ≤ f (. . . ,1, . . .)−
f (. . . ,0, . . .)≤ Δu.

We note that the expected throughput R(·) is a linear function
of the belief vector, which has bounded elements, and all the
nodes that are scheduled have the same coefficient; hence,
R(·) is a bounded regular function. The pseudo value function,
Wn(·), is symmetric, that is,

Wn(sΠ) =Wn(sΠ̂), (8)

where Π is a i, j-swap permutation of Π̂, and j, i≤K or j, i>K.
To see this we can use the symmetry of R(·), and the fact that
T(·) orders the belief vector in decreasing order.

B. Proof of the Optimality of MP

We prove the optimality of MP under the assumptions that
τ(·) is a monotonically increasing contracting map,2 and R(·)
is a bounded regular function. Hence, the results in this section
can be applied to a boarder class of EH processes and reward
functions than those studied in this paper.

The proof is structured as follows: Lemma 1 gives sufficient
conditions for the optimality of MP in TS n, given that MP is
optimal from TS n+1 onwards. In Lemma 2 we show that the
difference between the pseudo value functions of two different
vectors is bounded. In particular, we bound the difference
between the value functions of two belief vectors s ◦

Π
and s̃ ◦

Π
,

which are both ordered, and differ only for the belief state of
node i. In Lemma 3 we show that, under certain conditions,
the sufficient conditions for the optimality of MP given in
Lemma 1 hold.

Lemma 1: Assume that MP is optimal from TS n+ 1 until
TS T . A sufficient condition for the optimality of MP in
TS n is

Wn(s)≥Wn(sΠ), (9)

for any Π that is an i, j-swap, with s j ≥ si and j ≤ i.
Proof: To prove that a policy is optimal, we need to show

that it maximizes (6). By assumption MP is optimal from TS
n + 1 onwards; and hence, it is only necessary to prove that
scheduling any set of nodes and following MP thereafter is no
better than following MP directly in TS n. The value function
corresponding to the latter policy is Wn([sO ,sO ]), where sO
contains the K nodes with the highest belief states in s, and sO
contains the rest of the nodes not necessarily ordered. The value
function corresponding to the former policy is Wn([sU ,sU ]),
where sU contains the K nodes scheduled in TS n, and sU
is the set of the remaining nodes. There exist at least a pair
of nodes si and s j such that, j ∈ U and j �∈ O, i ∈ U and
i �∈ O, and s j ≥ si. By swapping each pair of such nodes,
that is, swapping j ∈ U for i ∈ U, we can obtain Wn([sO ,sO ])
from Wn([sU ,sU ]) through a cascade of inequalities using (9).

2Our results can also be applied to the case in which the state transition
function is a monotonically increasing contracting map with parameter α, that
is, τ(si(n)) > τ(s j(n)) if si(n) > s j(n), and ‖τ(si(n))− τ(s j(n))‖ ≤ α‖si(n)−
s j(n)‖, if 0 ≤ α ·β ≤ 1.

Accordingly, Wn([sO ,sO ]) is an upper bound for any
Wn([sU ,sU ]), and, hence, MP is optimal. �

Lemma 1 shows that, under certain conditions, the optimality
of MP can be established through the pseudo value function. In
particular, under the conditions of Lemma 1, if swapping a node
in the belief vector with another node with a lower position and
a lower belief state does not decrease the pseudo value function,
then MP is optimal.

Lemma 2: Consider a pair of belief vectors s and s̃, which
differ only in one element, that is, si = s̃i for ∀ i �= j and s j ≥
s̃ j. If R(·) is a bounded regular function, τ(·) a monotonically
increasing contracting map, and β ≤ 1, then we have

Wn(s ◦
Π
)−Wn(s̃ ◦

Π
)≤ Δu(s j − s̃ j)u(n), (10)

where u(n)
Δ
=

T−n
∑

i=0
(β(1− p))i.

Proof: See Appendix B. �
The result of Lemma 2 establishes that increasing the belief

state of a node j from s̃ j to s j may increase the value of the
pseudo value function, which is bounded by a linear function of
the increase in the belief, s j − s̃ j, and the function u(n), which
decreases with n and corresponds to the maximum accumulated
loss from TS n to TS T .

Lemma 3: Consider two belief vectors s and sΠ, such that
permutation Π is an i, j-swap, and s j ≥ si for some j ≤ i. If R(·)
is a bounded regular function, τ(·) a monotonically increasing
contracting map, and β ≤ 1, then

Wn(s)−Wn(sΠ)≥ 0 i f Δl ≥ Δuβp
1− (β(1− p))T+1

1−β(1− p)
. (11)

Proof: See Appendix C. �
Theorem 1: If R(·) is a bounded regular function, τ(·) a

monotonically increasing contracting map, β ≤ 1, and Δl ≥
Δuβp 1−(β(1−p))T+1

1−β(1−p) , then MP is the optimal policy.
Proof: The proof is done by backward induction. We have

already shown that MP is optimal at TS T . Then we assume that
MP is optimal from TS n+1 until TS T , and we need to show
that MP is optimal at TS n. To show that MP is optimal at TS
n, using Lemma 1, we only need to show that (9) holds. This is
proven in Lemma 3, which completes the proof. �

The result of Theorem 1 holds for any R(·) that is a bounded
regular function. The reward function studied here, i.e., the sum
expected throughput in (3), is a bounded regular function, and
we have Δu = Δl = pB. Finally, we state the optimality of MP
for the EH problem studied in this section.

Theorem 2: For the reward function R(·) defined in (3), if
the transition probabilities satisfy p11 ≥ p01 and e0 ≤ p10

p01+p10
,

then MP is the optimal policy.

V. SIMULTANEOUS ENERGY HARVESTING AND DATA

TRANSMISSION WITH BATTERYLESS NODES

Now we consider another special case of the system model
introduced in Section III. We assume that the nodes cannot
store energy, and the harvested energy is lost if not used
immediately. This might apply to low-cost batteryless nodes.
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Energy available for transmission in TS n is equal to the energy
harvested in TS n−1, that is, Bi(n) = Eh

i (n−1). We denote by
si(n) the belief state of node i at TS n, which is the expected
energy available for transmission, that is, the probability that
the node is in the harvesting state. The belief state transition
probabilities are

si(n+1) =

⎧⎨⎩τ(si(n)) if i �∈ K a(n),
p11 if i ∈ K a(n) w.p. si(n),
p01 if i ∈ K a(n) w.p. 1− si(n),

(12)

where τ(s) = (p11 − p01)s+ p01, and since p11 ≤ p01, it is a
monotonically increasing affine function. This implies that if
si ≥ s j then τ(si) ≥ τ(s j), that is, the order of the idle nodes
is preserved. We note that i ∈ K a(n) with probability p, if i ∈
K (n). The problem is to find a scheduling policy, K (n), such
that the expected discounted sum throughput is maximised over
a time horizon T .

We define the pseudo value function as follows

Wn(sΠ)
Δ
=R

(
sK

Π
)
+β ∑

E⊆SK
Π

∑
lE∈{0,1}|E |

h(lE ,K)

×Wn+1
(
P11 (ΣlE ) ,τ(sE ),P01

(
ΣlE

))
,

WT (sΠ)
Δ
=R

(
sK

Π
)
, (13)

where we denote the set of active nodes by E and the ith
active node by E(i). We define lE = (lE(1), . . . , lE(|E |)), such
that lE(i) = 1 if the EH process of the corresponding node
is in the harvesting state, and lE(i) = 0 otherwise. We define

the function h(lE ,K)
Δ
= q(|E |,K) ∏

j∈E
s

l j
j (1 − s j)

(1−l j), where

q(|E |,K) is defined in (5). We denote by P01(a) and P11(a)
the vectors (p01, . . . , p01) and (p11, . . . , p11), respectively, of

length a, and we define ΣlE
Δ
= ∑

i∈E
li, and ΣlE

Δ
= |E |− ∑

i∈E
li. The

operator τ(·) applies the mapping τ(·) to all its components.
The pseudo value function schedules the nodes according to
permutation Π, and if sΠ is ordered, then (13) is the value
function of MP.

Swapping the order of two scheduled nodes does not change
the value of the pseudo value function, that is, the pseudo value
function is symmetric. This property is similar to that in (8), but
only for i, j ≤ K. Similarly to [16] and [17], the mapping τ(·) is
linear, and hence, the pseudo value function is affine in each of
its elements. This implies that, if Π is an i, j-swap of Π̂, then

Wn(sΠ)−Wn(sΠ̂)

=
(
sΠ( j)− sΠ(i)

)(
Wn

(
. . . ,sΠ( j) = 1, . . . ,sΠ(i) = 0, . . .

)
− Wn

(
. . . ,sΠ( j) = 0, . . . ,sΠ(i) = 1, . . .

))
. (14)

MP schedules the nodes whose EH processes are more
likely to be in the harvesting state. Initially, nodes are ordered
according to an initial belief. If a node is active, it is sent to
the first position of the queue if it is in the harvesting state, and
to the last position if it is in the non-harvesting state. The idle
nodes are moved forward in the queue. Due to the monotonicity
of τ(·), MP continues scheduling a node until it is active and its
EH process is in the non-harvesting state.

A. Proof of the Optimality of MP

We note that the result of Lemma 1 is applicable in this case.
If Lemma 4 holds, the same arguments as in Theorem 1 can be
used to prove the optimality of MP.

Lemma 4: Let Π be an i, j-swap, and consider a permutation
Π̂, such that Π̂(k) = k−1, for ∀k �= 1 and Π̂(1) = N. If s j ≥ si

for some j ≤ i, then we have the inequalities

1+Wn(sΠ̂)≥Wn(s), (15a)

Wn(s)≥Wn(sΠ). (15b)

Proof: The proof follows from the similar arguments as
in [17]. In particular, we use backward induction in (15a) and
(15b), and a sample-path argument. A sketch of the proof is
provided in Appendix D. �

Note that (15a) and (15b) are similar to (10) and (11),
respectively.

Theorem 3: If the reward function is R(K (n)) =
p ∑

i∈K (n)
si(n), and p11 ≥ p01, MP is the optimal policy.

Proof: Theorem 3 can be proven by using the same argu-
ments as in Theorem 1 and Lemmas 1 and 4. �

Remark 1: This problem is similar to the opportunistic
multi-channel access problem studied in [16]–[19], with im-
perfect channel sensing, such that, at each attempt, a channel
can not be sensed with probability 1 − p, independent of its
channel state. While the MP has been proven to be optimal in
the case of perfect channel sensing, i.e., p = 1, [17], the case
with sensing errors, i.e., p �= 1, has not been considered in the
literature. We also note that this model of imperfect channel
detection is different from that in [20].

Remark 2: Using similar techniques as in [16] the MP opti-
mality results of Sections IV and V can be extended from the
finite horizon discounted reward criteria to the infinite horizon
with discounted reward, and to the infinite horizon with average
reward criteria.

VI. UPPER BOUND ON THE PERFORMANCE OF

THE OPTIMAL SCHEDULING POLICY

Next we derive an upper bound on the performance of the
optimal policy for the general model in Section III under the
average reward criteria and infinite time horizon. The RMAB
problem with an infinite horizon discounted reward criteria is
studied in [21], and it is shown that an upper bound can be
computed in polynomial time using LP.

The decision of scheduling a node in a TS affects the schedul-
ing of the other nodes in the same TS, since exactly K nodes
have to be scheduled at each TS. Whittle [14] proposed to relax
the original problem constraint, and impose instead that the
number of nodes that are scheduled at each TS is K on average.
In the relaxed problem, since the nodes are symmetric, one can
decouple the original RMAB problem into N RMAB problems,
one for each node. As before, we denote by s = (l,h) ∈ W the
belief state of a node, where l is the number of TSs the node
has been idle for, and h the EH state last time the node was
scheduled, and W the belief state space. We denote by π(s)
the probability that a node is scheduled if it is in state s, by
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p(s) the steady state probability of state s, and by ps̃,s(a) the
state transition probability function from state s̃ to s if action
a ∈ {0,1} is taken, where a = 1 if the node is scheduled in this
TS, and a = 0, otherwise. The optimization problem is

max
π(s),p(s)

∑
s∈W

R(s)π(s)p(s)

s.t. p(s) = ∑
s̃∈W

p(s̃) [(1−π(s)) ps̃,s(0)+π(s)ps̃,s(1)] ,

∑
s∈W

π(s)p(s) =
K
N
, and ∑

s∈W
p(s) = 1, (16)

where 0 ≤ π(s), p(s) ≤ 1, and R(s) is the expected throughput
of a node if it is in state s. Note that the node is scheduled every
N
K TSs on average. This implies that, for p = 1, the maximum
time a node can be idle is finite, and hence, the state space W
is finite. If p �= 1, one can truncate the state space by bounding
the maximum time a node can be idle, i.e., imposing that l is
bounded. The problem (16) has a linear objective function and
linear constrains, and the state space is finite, therefore it can be
solved in polynomial time with LP.

VII. NUMERICAL RESULTS

In this section we numerically study the performances of
different scheduling policies for the general case described in
Section III. In particular, we consider MP which is optimal
for the cases studied in Sections IV and Section V, the RR
policy, which schedules the nodes in a cyclic fashion according
to an initial random order, and a random policy, which at
each TS schedules K random nodes regardless of the history.
We measure the performance of the scheduling policies as the
average throughput per TS over a time horizon of T = 1000,
that is, we consider β = 1 and normalise (2) by T . We perform
100 repetitions for each experiment and average the results. We
assume, unless otherwise stated, a total of N = 30 EH nodes,
K = 5 available channels, and a probability p = 0.5 for a node
to be operative in each TS. We assume that all the nodes and
EH processes are symmetric, the batteries have a capacity of
B = 5 energy units, and the transition probabilities of the EH
processes are p11 = p00 = 0.9. Notice that, on average, each
node is scheduled every N

K TSs. Hence, if N
K is large the nodes

remain idle for larger periods. This implies that when N
K is

large, since the nodes harvest over many TSs without being
scheduled, there are more energy overflows in the system. In the
numerical results we have included the infinite horizon upper
bound of Section VI, which for large T is a tight upper bound
on the finite horizon case.

In Fig. 2(a) we investigate the impact of the number of nodes
on the throughput, when the number of available channels, K,
is fixed. The throughput increases with the number of nodes,
and due to the battery overflows, saturates when the number
of nodes is large. By increasing the battery capacity, hence
reducing the battery overflows, the throughput saturates with
a higher number of nodes and at a higher value. We observe
that MP has a performance close to that of the upper bound,
the random policy has a lower performance than the others;
and the gap between different curves increases with the battery
capacity.

Fig. 2. (a) Average throughput vs. number of nodes, N, with K = 5 channels,
and battery capacity B = 3,5,10, and (b) average throughput vs. battery
capacity, N = 30, and K = 1,5,10.

In Fig. 2(b) we investigate the effect of the battery capacity,
B, on the system throughput when the number of nodes is
fixed. Clearly, the larger the battery capacity the fewer battery
overflows will occur. The throughput increases with the battery
capacity, and due to the limited amount of energy that the nodes
can harvest, it saturates at a certain value. By increasing the
number of available channels, K, which also reduces the battery
overflow, the throughput saturates more quickly as a function
of the battery capacity, but at higher values. The performances
of the scheduling policies are similar to those observed in
Fig. 2(a).

Fig. 3 shows the average throughput for different EH process
transition probabilities. We note that the amount of energy
arriving to the system increases with p11 and decreases with
p00. As expected, we observe in Fig. 3 that the throughput
increases with p11, and the values in Fig. 3(a) are notably higher
than those in Fig. 3(b). MP is a policy which maximises the im-
mediate throughput at each TS, and does not take into account
the future TSs. We observe in Fig. 3(b) for B = {5,10} and in
Fig. 3(a) for B = 10 that, if the EH state has low correlation
across TSs, that is, p11 = {0.5,0.6}, the throughput obtained
by MP is similar to that of the upper bound. On the contrary,
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Fig. 3. Average throughput for different EH process transition probabilities,
N = 30, K = 5, and B = 3,5,10.

if it has high correlation across TSs, that is p11 = {0.8,0.9},
the throughput falls below the upper bound. This is due to the
fact that when the state transitions have low correlation it is
difficult to reliably predict the impact of the actions on the
future rewards, and no transmission strategy can improve upon
MP. Our numerical results indicate, that even in scenarios in
which the MP cannot be shown to be theoretically optimal, it
performs very close to the upper bound, obtained for an infinite
horizon problem.

VIII. CONCLUSION

We have studied a scheduling problem in a multi-access
communication system with EH nodes, in which the harvested
energy at each node is modeled as a Markov process. We
have modeled the system as an RMAB problem, and shown
the optimality of MP in two settings: i) when the nodes can-
not harvest energy and transmit simultaneously and the EH
process state is independent of the past states after a node is
active; ii) when the nodes have no battery. The results of this
paper suggest that although the optimal scheduling in large
EH networks requires high computational complexity, in some
cases there exist simple and practical scheduling policies that
have almost optimal performance. This can have an impact on
the design of scheduling policies for large low-power wireless

sensor networks equipped with energy harvesting devices and
limited storage.

APPENDIX A

We denote the probability that the battery of a node is not full
if the node has been idle for the last n TSs by pn f (n). It is easy
to note that pn f (n) is a decreasing function of n. If the node has
been idle for n TSs, we denote the probability of the EH process

being in state 0 and 1, by p0(n)
Δ
= p10 + p0(n− 1)(p11 − p01)

and p1(n)
Δ
= 1− p0(n), respectively. We set p0(0) = e0. Since

p11 ≥ p01 and e0 ≤ p10
p01+p10

, p0(n) monotonically increases to
the steady state distribution ([22, Appendix B]).

We denote the belief state of a node that has been idle for
n TSs by zn. If the node has been idle for n + 1 TSs, the

expected battery level is zn+1 = τ(zn) = zn +
pn f (n)

B (p01 p0(n)+
p11 p1(n)), which is a monotonically increasing function. If n ≥
m, then zn ≥ zm and τ(zn) ≥ τ(zm). By applying the definition

of p1(n), we get zn+1 = zn +
pn f (n)

B (p11 − p0(n)(p11 − p00)). If
we assume that n ≥ m, we have

‖τ(zn)−τ(zm)‖=zn−zm+
pn f (n)

B
(p11−p0(n)(p11−p01))

− pn f (m)

B
(p11−p0(m)(p11−p01))

≤zn−zm−
pn f (n)

B
(p11−p01)(p0(n)−p0(m))

≤zn − zm,

where the first inequality follows since pn f (n) ≤ pn f (m), and
the second inequality follows since p0(n) is monotonically
increasing and p11 ≥ p01.

APPENDIX B

The proof uses backward induction. We denote by S K
◦
Π

and S̃ K
◦
Π

the nodes scheduled from s ◦
Π

and s̃ ◦
Π

, respectively. We first ob-

serve that (10) holds for n = T . This follows from the bounded
regularity of R(·), noting that u(T ) = 1, and distinguishing four
possible cases.

• Case 1: j ∈ S K
◦
Π

and j ∈ S̃ K
◦
Π

, i.e., node j is scheduled in both
cases.

WT (s ◦
Π
)−WT (s̃ ◦

Π
)

=R

(
s◦
Π(1)

, . . . ,s j, . . . ,s◦
Π(K)

)
−R

(̃
s◦
Π(1)

, . . . , s̃ j, . . . , s̃◦
Π(K)

)
=s jR

(
s ◦

Π(1)
, . . . ,1, . . . ,s ◦

Π(K)

)
+(1−s j)R

(
s ◦

Π(1)
, . . . ,0,

. . . ,s ◦
Π(K)

)
− s̃ jR

(
s̃ ◦

Π(1)
, . . . ,1, . . . , s̃ ◦

Π(K)

)
− (1− s̃ j)R

(
s̃ ◦

Π(1)
, . . . ,0, . . . , s̃ ◦

Π(K)

)
= (s j − s̃ j)

(
R

(
s ◦

Π(1)
, . . . ,1, . . . ,s ◦

Π(K)

)
− R

(
s ◦

Π(1)
, . . . ,0, . . . ,s ◦

Π(K)

))
≤ (s j − s̃ j)Δuu(T ),
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where the second equality follows from the decompos-
ability of R(·). Since R(·) is symmetric and the belief
vectors are equal but for node j, we have R(s ◦

Π(1)
, . . . , s̃ j =

k, . . . ,s ◦
Π(K)

) = R(s̃ ◦
Π(1)

, . . . , s̃ j = k, . . . , s̃ ◦
Π(N)

), which we

use in the third equality. Finally, the inequality follows
from the boundedness of R(·).

• Case 2: j �∈ S K
◦
Π

and j �∈ S̃ K
◦
Π

, i.e., node j is not scheduled

in either case. The same nodes with the same beliefs are
scheduled in both cases, hence, sK

◦
Π
= s̃K

◦
Π

, and WT (s ◦
Π
)−

WT (s̃ ◦
Π
) = 0.

• Case 3: j ∈ S K
◦
Π

and j �∈ S̃ K
◦
Π

. In this case there exists a node

m ∈ S̃ K
◦
Π

such that s j ≥ sm ≥ s̃ j, and m �∈ S K
◦
Π

WT (s ◦
Π
)−WT (s̃ ◦

Π
)

= (s j − sm)

(
R

(
s ◦

Π(1)
, . . . ,1, . . . ,s ◦

Π(K)

)
− R

(
s ◦

Π(1)
, . . . ,0, . . . ,s ◦

Π(K)

))
≤ (s j − s̃ j)

(
R

(
s ◦

Π(1)
, . . . ,1, . . . ,s ◦

Π(K)

)
− R

(
s ◦

Π(1)
, . . . ,0, . . . ,s ◦

Π(K)

))
≤ (s j − s̃ j)Δuu(T ),

where the first equality follows similar to Case 1, the
second equality from the fact that sm ≥ s̃ j, and the last
inequality from the boundedness of R(·). Note that node
m is the node with the highest belief state that is not

scheduled in WT (s ◦
Π
), and the node with the lowest belief

state scheduled in WT (s̃ ◦
Π
).

• Case 4: j �∈ S K
◦
Π

and j ∈ S̃ K
◦
Π

. This case is not possible since

the vectors s ◦
Π

and s̃ ◦
Π

are ordered and s j ≥ s̃ j, hence, if s̃ j

is scheduled then s j must be scheduled too.

Now, we assume that (10) holds from TS n+1 up to T , and
show that it holds for TS n as well. We distinguish three cases:

• Case 1: j ∈ S K
◦
Π

and j ∈ S̃ K
◦
Π

in (17), i.e., node j is scheduled

in both cases. The first and second summations in the first
line of (17a) correspond to the cases in which node j ∈ S K

◦
Π

is idle and active, respectively, in TS n. Similarly, first and
second summations in the second line of (17a) correspond
to the cases in which node j ∈ S̃ K

◦
Π

is idle and active,

respectively, in TS n. Note that the belief state vector s̃E∪ j
includes the belief states of all the nodes in s̃ ◦

Π
, but those

in E and s̃ j, hence, it is equivalent to the belief state vector
sE∪ j. We use this fact to get (17b). Note that the belief
state vectors in (17b) differ only in the belief states of
node j, namely, τ(s j) and τ(s̃ j) are the beliefs of node j in
vectors [T(sE ),0(|E |)] and [T(s̃E ),0(|E |)], respectively;
and hence, we use the induction hypothesis in the sum-
mation of (17b) to obtain (17c). The summation in (17c) is
over all possible operative/inoperative combinations of the
nodes in S K

◦
Π
\{ j}, and it is equal to one. This fact together

with the boundedness and the decomposability of R(·) are
used in (17c) to get (17d). The contracting property of
τ(·), and the definition of u(n) are used in (17e) and (17f),
respectively. (See equation at bottom of page)

Wn(s ◦
Π
)−Wn(s̃ ◦

Π
)

=R
(
sK
◦
Π

)
+(1−p)β ∑

E⊆SK
◦
Π
\{ j}

q(|E |,K−1)Wn+1
([

T (sE ),0(|E |)
])
+pβ ∑

E⊆SK
◦
Π
\{ j}

q(|E |,K−1)Wn+1

([
T (sE∪ j),0(|E |+1)

])

−R
(
s̃K
◦
Π

)
−(1−p)β ∑

E⊆S̃K
◦
Π
\{ j}

q(|E |,K−1)Wn+1
([

T (s̃E ),0(|E |)
])
−pβ ∑

E⊆S̃K
◦
Π
\{ j}

q(|E |,K−1)Wn+1

([
T (s̃E∪ j),0(|E |+1)

])
(17a)

= R
(

sK
◦
Π

)
−R

(
s̃K
◦
Π

)
+(1− p)β ∑

E⊆SK
◦
Π
\{ j}

q(|E |,K −1)
(
Wn+1

([
T(sE ),0(|E |)

])
−Wn+1

([
T(s̃E ),0(|E |)

]))
(17b)

≤ R
(

sK
◦
Π

)
−R

(
s̃K
◦
Π

)
+(1− p)β ∑

E⊆SK
◦
Π
\{ j}

q(|E |,K −1)(Δu (τ(s j)− τ(s̃ j))u(n+1)) (17c)

≤ Δu(s j − s̃ j)+(1− p)βΔu (τ(s j)− τ(s̃ j))u(n+1) (17d)

≤ Δu(s j − s̃ j)+(1− p)βΔu(s j − s̃ j)u(n+1) (17e)

≤ Δu(s j − s̃ j)

(
1+β(1− p)

T−n−1

∑
i=0

(β(1− p))i

)
(17f)

= Δu(s j − s̃ j)u(n), (17g)
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• Case 2: j �∈ S K
◦
Π

and j �∈ S̃ K
◦
Π

, i.e., the same nodes are

scheduled from s ◦
Π

and s̃ ◦
Π

, and node j is not scheduled

in either case. Then

Wn(s ◦
Π
)−Wn(s̃ ◦

Π
)

= β ∑
E⊆SK

◦
Π

q(|E |,K)
(
Wn+1

([
T(sE ),0(|E |)

])

− Wn+1
([

T(s̃E )0(|E |)
]))

(18a)

≤ Δu(s j − s̃ j)βu(n+1) (18b)

≤ Δu(s j − s̃ j)β
T−n−1

∑
i=0

(β(1− p))i (18c)

≤ Δu(s j − s̃ j)u(n), (18d)

where (18a) follows since the value of the expected imme-
diate rewards in TS n are the same. The belief state vectors
at TS n+1 are equal but for the belief state of node j, that
is, τ(s j) and τ(s̃ j) are the beliefs of node j in T(sE ) and
T(s̃E ), respectively. In (18a), similarly to (18c), (18d), and
(18e), we apply the induction hypothesis, the contracting
map property, and the fact that the summation is equal to
one, to obtain (18b). We use β ≤ 1 and the definition of
u(n) to obtain (18c) and (18d), respectively.

• Case 3: j ∈ S K
◦
Π

and j �∈ S̃ K
◦
Π

in (19), i.e., there exists

m ∈ S̃ K
◦
Π

such that s j ≥ sm = s̃m ≥ s̃ j and that m �∈ S K
◦
Π

.

Hence, S K
◦
Π

and S̃ K
◦
Π

differ only in one element. To obtain

(19a) we use the symmetry property of the pseudo value
function and the fact that the belief vectors are equal but
for node j; in (19b) we add and subtract a pseudo value
function, which has two nodes with the same belief state
sm, and one is scheduled while the other is not. We can
group the pseudo value functions, and apply the results of
Case 1 and Case 2 above. In particular, for the pseudo

value functions in the first line of (19b), the belief vectors
are equal but for s j and sm, moreover j ∈ S K

◦
Π

and m ∈
S̃ K

◦
Π

, and s j ≥ sm, so we can apply the results of Case 1.

Similarly, for the two pseudo value functions in the second
line of (19b) we can use the results of Case 2. (See
equation at bottom of page)

APPENDIX C

We note that set S = {1, . . . ,K} is the set of K nodes sched-
uled from s, and that the set S K

Π is the set of nodes scheduled
from sΠ, that is, the first K nodes as ordered according to
permutation Π. We only need to study the cases in which S and
S K

Π are different, since the claim holds for the others due to the
symmetric property of the pseudo value function, (8). We study
the case j ∈ S , i∈ S K

Π , i �∈ S , and j �∈ S K
Π in (20). The summation

in (20a) is over all operative/inoperative combinations of the
nodes in S\{ j}. We denote the belief state of all nodes but those
in E and s j by sE∪ j. The belief state of node i in TS n+ 1,
τ(si), is in vector T(sE∪ j). Similarly, the belief state of node
j in TS n+ 1, τ(s j), is in vector T(sE∪i). The second pseudo
value functions in the first and second lines in (20a) cancel out,
and (20b) is obtained. We have applied the decomposability and
boundedness of R(·) to obtain (20c). Belief vectors T(sE∪ j) and
T(sE∪i) in (20c) are ordered and only differ in one element,
τ(si) and τ(s j), respectively, where τ(si) ≤ τ(s j), and hence,
we use Lemma 2 to get (20d); (20e) follows since τ(·) is a
monotonically increasing contracting map, (20f) since u(n) is
decreasing in n; finally (20g) follows since u(0) is the sum of a
geometric series. (See equation at the bottom of the next page).

APPENDIX D

We again use backward induction. Lemma 4 holds trivially
for n = T . Note that in (15a) the set of nodes scheduled in the
pseudo value functions Wn(sΠ̂) and Wn(s) are {1, . . . ,K −1,N}
and {1, . . . ,K}, respectively. That is, node K is scheduled in
Wn(s), but not in Wn(sΠ̂); and node N is scheduled in Wn(sΠ̂),

Wn

(
s ◦

Π(1)
, . . . ,s j, . . . ,s ◦

Π(K)
,sm, . . . ,s ◦

Π(N)

)
−Wn

(
s̃ ◦

Π(1)
, . . . , s̃m, s̃ ◦

Π(K+1)
, . . . , s̃ j, . . . , s̃ ◦

Π(N)

)

=Wn

(
s ◦

Π(1)
, . . . ,s j, . . . ,s ◦

Π(K)
, . . . ,sm, . . . ,s ◦

Π(N)

)
−Wn

(
s ◦

Π(1)
, . . . ,sm, . . . ,s ◦

Π(K)
, . . . , s̃ j, . . . ,s ◦

Π(N)

)
(19a)

=Wn

(
s ◦

Π(1)
, . . . ,s j, . . . ,s ◦

Π(K)
, . . . ,sm, . . . ,s ◦

Π(N)

)
−Wn

(
s ◦

Π(1)
, . . . ,sm, . . . ,s ◦

Π(K)
, . . . ,sm, . . . ,s ◦

Π(N)

)

+Wn

(
s ◦

Π(1)
, . . . ,sm, . . . ,s ◦

Π(K)
, . . . ,sm, . . . ,s ◦

Π(N)

)
−Wn

(
s ◦

Π(1)
, . . . ,sm, . . . ,s ◦

Π(K)
, . . . , s̃ j, . . . ,s ◦

Π(N)

)
(19b)

≤ Δu(s j − sm)u(n)+Δu(sm − s̃ j)u(n) (19c)

= Δu(s j − s̃ j)u(n). (19d)
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but not in Wn(s). To prove that (15a) holds at TS n we use a
sample path argument similarly to [17], and assume that the
realizations of the EH processes of nodes K and N are either 0
or 1. There are four different cases, but here we only consider
one, since the others follow similarly.

We consider the case in which the EH processes have realiza-
tions Es

K(n) = 1 and Es
N(n) = 0. We denote by K = {1, . . . ,K−

1} the set of nodes scheduled in both sides of (15a). If E is the
set of active nodes, we denote the set of nodes in K that remain
idle by K i = K \E . We denote the nodes that are not scheduled
in either side of (15a) by K s = K ∪{K,N}. We denote the set
{0,1}|E | by B |E |. From the left hand side of (15a) we obtain
(21), shown at the bottom of the page, where in (21c) we have
applied the induction hypothesis of (15a), the symmetry of

Wn(s)−Wn(sΠ)

= R(sK)−R
(
sK

Π
)
+β ∑

E⊆S\{ j}
q(|E |,K −1)

(
pWn+1

([
T(sE∪ j),0(|E |+1)

])
+(1− p)Wn+1

([
T(sE ),0(|E |)

])
− pWn+1

([
T(sE∪i),0(|E |+1)

])
− (1− p)Wn+1

([
T(sE ),0(|E |)

]))
(20a)

= R(sK)−R
(
sK

Π
)
− pβ ∑

E⊆S\{ j}
q(|E |,K −1)

(
Wn+1

([
T(sE∪i),0(|E |+1)

])
−Wn+1

([
T(sE∪ j),0(|E |+1)

]))
(20b)

≥ Δl(s j − si)− pβ ∑
E⊆S\{ j}

q(|E |,K −1)
(

Wn+1
([

T(sE∪i),0(|E |+1)
])

−Wn+1

([
T(sE∪ j),0(|E |+1)

]))
(20c)

≥ Δl(s j − si)− pβ ∑
E⊆S\{ j}

(q(|E |,K −1)Δu (τ(s j)− τ(si))u(n+1)) (20d)

≥ Δl(s j − si)− pβΔu(s j − si)u(n+1) (20e)

≥ Δl(s j − si)− pβΔu(s j − si)u(0) (20f)

= (s j − si)

(
Δl − pβ

1−β(1− p)T+1

1−β(1− p)
Δu

)
≥ 0 (20g)

1+Wn(sN ,s1, . . . ,sN−1)

= 1+R
(

sK
Π̂

)
+β ∑

E⊆K
∑

lE∈B |E |
h(lE ,K −1)

[
pWn+1

(
P11(ΣlE ),τ(sK i),sK = p11,τ(sK s),sN = p01,P01(ΣlE )

)
+ (1− p)Wn+1

(
P11(ΣlE ),sN = p01,τ(sK i),sK = p11,τ(sK s),P01(ΣlE )

)]
(21a)

≥ p+R
(

sK
Π̂

)
+β ∑

E⊆K
∑

lE∈B |E |
h(lE ,K −1)

[
pWn+1

(
P11(ΣlE ),τ(sK i),sK = p11,τ(sK s),sN = p01,P01(ΣlE )

)
+ (1− p)

(
1+Wn+1

(
P11(ΣlE ),sN = p01,τ(sK i),sK = p11,τ(sK s),P01(ΣlE )

))]
(21b)

≥ p+R
(

sK
Π̂

)
+β ∑

E⊆K
∑

lE∈B |E |
h(lE ,K −1)

[
pWn+1

(
P11(ΣlE ),τ(sK i),sK = p11,τ(sK s),sN = p01,P01(ΣlE )

)
+ (1− p)Wn+1

(
P11(ΣlE ),τ(sK i),sK = p11,τ(sK s),P01(ΣlE ),sN = p01

)]
(21c)

= R(sK)+β ∑
E⊆K

∑
lE∈B |E |

h(lE ,K −1)
[
pWn+1

(
P11(ΣlE ),sK = p11,τ(sK i),τ(sK s),sN = p01,P01(ΣlE )

)
+ (1− p)Wn+1

(
P11(ΣlE ),τ(sK i),sK = p11,τ(sK s),sN = p01,P01(ΣlE )

)]
(22d)

=Wn(s) (21e)
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Wn(s̃) =R(s̃K)+β ∑
E⊆K

∑
lE∈B |E |

h(lE ,K −1)
[
pWn+1

(
P11(ΣlE ),s j = p11,τ(sK i),τ(sK s∪i),P01(ΣlE )

)
+ (1− p)Wn+1

(
P11(ΣlE ),τ(sK i∪ j),τ(sK s∪i),P01(ΣlE )

)]
(22a)

≥R(s̃K)− p+β ∑
E⊆K

∑
lE∈B |E |

h(lE ,K −1)
[
p
(
1+Wn+1

(
P11(ΣlE ),si = p01,τ(sK i),τ(sK s∪ j),P01(ΣlE )

))
+ (1− p)Wn+1

(
P11(ΣlE ),τ(sK i∪i),τ(sK s∪ j),P01(ΣlE )

)]
(22b)

≥R(s̃K)− p+β ∑
E⊆K

∑
lE∈B |E |

h(lE ,K −1)
[
pWn+1

(
P11(ΣlE ),τ(sK i),τ(sK s∪ j),P01(ΣlE ),si = p01

)
+ (1− p)Wn+1

(
P11(ΣlE ),τ(sK i∪i),τ(sK s∪ j),P01(ΣlE )

)]
(22c)

=Wn(s̃Π) (23d)

the pseudo value function, the inequality p11 ≥ p00, and the
definition of R(·). This concludes the proof of (15a).

Now we prove the second part of Lemma 4, (15b). There are
three cases:

• Case 1: j, i ≤ K, i.e., nodes j and i are scheduled on both
sides of (15b). The inequality holds since the pseudo value
function is symmetric.

• Case 2: j ≤ K and i > K in (22), shown at the top
of the page, i.e., nodes i and j are scheduled on the
left and right hand sides of (15b), respectively. To prove
the inequality we use the linearity of the pseudo value
function (14). Since s j ≥ si, using (14), we only need
to prove that Wn(s1, . . . ,1, . . . ,0, . . . ,sN)−Wn(s1, . . . ,0, . . . ,
1, . . . ,sN) ≥ 0. We denote the scheduled nodes in both
sides of (15b) by K = {1, . . . ,K}\{ j}, the set of nodes
in K that remain idle by K i = K \E , and the nodes
that are not scheduled in either side of (15b) by K s =
K ∪{ j, i}. We denote the belief vector (s1, . . . ,s j =
1, . . . ,si = 0, . . . ,sN) by s̃, its i, j-swap by s̃Π, and define

s̃K Δ
= (s̃1, . . . , s̃K). In (22) have used the induction hypothe-

sis of (15b) and (15a) in (22b) and (22c), respectively, and
the fact that β ≤ 1.

• Case 3: nodes s j and si are not scheduled. Inequality holds
in this case, by applying the definition of (13) and the
induction hypothesis of (15b).
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