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Abstract. In this paper we propose a special gradient projection method for the image
deblurring problem, in the framework of the maximum likelihood approach. We present the
method in a very general form and we give convergence results under standard assumptions.
Then we consider the deblurring problem and the generality of the proposed algorithm allows us
to add a energy conservation constraint to the maximum likelihood problem. In order to improve
the convergence rate, we devise appropriate scaling strategies and steplength updating rules,
especially designed for this application. The effectiveness of the method is evaluated by means
of a computational study on astronomical images corrupted by Poisson noise. Comparisons with
standard methods for image restoration, such as the expectation maximization algorithm, are
also reported.

1. Introduction

Nonlinear image deblurring procedures based on the maximum likelihood criterion have been
widely investigated in literature. This approach leads to model the deblurring problem as a
constrained large scale optimization problem, with a nonlinear, convex objective function. In
particular, in the case of Poisson noise, an approximation of the original image can be obtained
by computing a vector x ∈ R

n that solves the minimization problem

min J(x)

sub. to x ≥ 0,
(1)

in which the functional J(x) is the Kullback–Leibler divergence of (Ax + bg) from the observed
noisy image b, where A ∈ R

n×n is the blurring operator, satisfying the conditions Aij ≥ 0,
∑n

j=1 Aij > 0 ∀ i,
∑n

i=1 Aij = 1 ∀ j, and bg denotes a constant background term. In details,
the functional J is defined as

J(x) =
n
∑

i=1





n
∑

j=1

Aijxj + bg − bi − bi ln

∑n
j=1 Aijxj + bg

bi



 . (2)
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One of the most popular algorithms for astronomical and medical image restoration problems is
the Expectation–Maximization (EM) [15] or Richardson–Lucy method [12],[14], which applies
to the problem (1) and consists in the iteration rule

x(k+1) = XkA
T Y −1

k b, (3)

where Xk = diag(x(k)) and Yk = diag(Ax(k) + bg). The EM method is attractive because
of its convergence properties and its low computational cost per iteration, but it exhibits a
very slow convergence rate, that, in many cases, leads to thousands of iterations to obtain a
satisfactory approximation of the solution. For this reason, some modified EM versions have
been proposed in order to improve the convergence rate of the method (3), as for example
the accelerated version introduced in [4], that is also implemented in the MATLAB deconvlucy

function (EM MATLAB) of the Image Processing toolbox. However, as far as we know, no
convergence proof of this accelerated algorithm is available.
In this study we propose a different approach that allows us to design efficient acceleration
strategies provided by a rigorous theoretical foundation. We introduce our algorithm by
observing that, since

∇J(x(k)) = AT e − AT Y −1
k b = e − AT Y −1

k b,

where e ∈ R
n has all the entries equal to one, then the method (3) can be considered a special

case of a more general scaled steepest descent method

x(k+1) = x(k) − αkDk∇J(x(k)), (4)

with Dk = Xk and αk = 1 for any k. Adopting this point of view, we can try to improve the
convergence rate of the scheme (4) by applying suitable choices of the parameter αk, derived by
the recent studies on the steplength selections in gradient methods [8, 9, 10, 16]. This idea is
implemented within a scaled gradient projection (SGP) algorithm, combining the iteration (4)
with a projection on the constraints and with a nonmonotone line–search strategy [5, 7]. The
algorithm is especially designed for the deconvolution problem, but it applies to any minimization
problem of the form

min f(x)

sub. to x ∈ Ω,
(5)

where Ω ⊂ R
n is a closed convex set and f is a continuously differentiable function. We

report a convergence result for the proposed algorithm and give crucial details for its practical
implementation. The generality of the SGP makes the method very well suited to face, as a
special case of (5), the deconvolution problem

min J(x)

sub. to x ≥ 0,
∑n

i=1 xi = c,
(6)

where the equality constraint represents the energy conservation principle. Thus, the SGP can
be regarded as a solver for deblurring problems and evaluated in comparison with the standard
EM method and the EM MATLAB algorithm. To this end, a computational study on a set of
astronomical images corrupted by Poisson noise is carried out in the Matlab environment. The
numerical results we have obtained show that SGP provides a remarkable computational gain
with respect to the EM method and it is competitive with the accelerated algorithm used by
Matlab.

The paper is organized as follows. In section 2 the scaled gradient projection approach is
presented and global convergence results are reported, while in section 3 the implementation
of the method is discussed; the numerical results are described and evaluated in section 4 and,
finally, some conclusions are drawn in section 5.
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Algorithm 1 Scaled Gradient Projection (SGP) Method

Choose the starting point x(0) ∈ Ω, set the parameters β, θ ∈ (0, 1), 0 < αmin < αmax and fix a
positive integer M .
For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling matrix Dk ∈ D;
Step 2. Projection: y(k) = PΩ,D

−1

k

(x(k) − αkDk∇f(x(k)));

Step 3. Descent direction: ∆x(k) = y(k) − x(k);
Step 4. Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x(k−j));
Step 5. Backtracking loop:

If f(x(k) + λk∆x(k)) ≤ fmax + βλk∇f(x(k))T ∆x(k) then

go to Step 6;
Else

Set λk = θλk and go to Step 5.
Endif

Step 6. Set x(k+1) = x(k) + λk∆x(k).

End

2. A scaled gradient projection method

In this section we describe the SGP scheme for the solution of the problem (5) and we report
the main convergence results. To this end we recall some basic definitions and notations.
Here and in the following, ‖ · ‖ denotes the 2-norm of vectors and matrices, while ‖ · ‖D

indicates the vector norm induced by the symmetric positive definite matrix D ∈ R
n×n defined

as ‖x‖D =
√

xT Dx. Accordingly, given a closed convex set Ω ⊂ R
n, we can define the projection

operator associated to D as

PΩ,D(x) = argminy∈Ω‖y − x‖D. (7)

The main SGP steps are given in Algorithm 1.
The only assumptions requested by SGP are that, at each iteration, the parameter αk is bounded
above and below by positive constants and that the scaling matrix Dk belongs to the set D of
the n × n symmetric positive definite matrices D such that ‖D‖ ≤ L and ‖D−1‖ ≤ L, for a
given threshold L > 1. At each SGP iteration the vector

y(k) = PΩ,D
−1

k

(x(k) − αkDk∇f(x(k)))

is defined by combining a scaled steepest descent direction of the same form used in (4) with a
projection on Ω. Since the projection is performed by using the projection operator associated
to the inverse of the scaling matrix, it is possible to prove that the resulting search direction

∆x(k) = y(k) − x(k) is a descent direction for the problem (5), that is ∆x(k)T∇f(x(k)) < 0
[6, 7]. Thus, we can ensure the global convergence of the whole algorithm computing the
new point x(k+1) along ∆x(k) by means of a nonmonotone line–search procedure, derived by a
generalization of the Armijo rule.
A convergence result for SGP can be stated as follows.

Theorem 2.1 Let {x(k)} be the sequence generated by applying the SGP algorithm to the

problem (5) and assume that the level set Ω0 = {x ∈ Ω : f(x) ≤ f(x(0))} is bounded. Then,

every accumulation point x∗ ∈ Ω of the sequence {x(k)} is a constrained stationary point, that

is

∇f(x∗)T (x − x∗) ≥ 0, ∀x ∈ Ω.
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The Theorem 2.1 can be proved by employing standard techniques (see, for example, [6, 7]),
and it applies to every constrained problem of the form (5). It is worth to stress that any
choice of the steplength αk in a bounded interval and of the scaling matrix Dk in the set D
are allowed; then, this freedom of choice can be fruitfully exploited for introducing performance
improvements.
The special case (6) is a convex problem and, consequently, every stationary point is a minimum
point [3, p.194]; furthermore, its feasible region is bounded. Thus, from Theorem 2.1 a stronger
convergence result can be formulated.

Corollary 2.1 Let x(k) be the sequence generated by applying the SGP algorithm to the

problem (6). Then every accumulation point of the sequence {x(k)} is a solution of (6).

Several reasons make the SGP approach appealing for solving problem (6). First of all it is a
very simple and general method. Secondly, due to the special features of the constraints, an
appropriate choice of Dk can make the projection operation in step 2. computationally non–
expensive. Finally, the iterative scheme can achieve good convergence rate by exploiting effective
steplength selection rules for updating αk. These issues are better explained in the next section.

3. Applying the method for image deblurring

We describe an SGP implementation for solving the image deblurring problem (6). To this end
we must show how the projection on the feasible region of (6) is performed and how the scaling
matrix Dk and the steplength parameter αk are updated.

Let Ω̄ be the feasible region of the problem (6): Ω̄ = {x ∈ R
n | x ≥ 0,

∑n
i=1 xi = c} .

When algorithm SGP is applied for solving (6), at each iteration we need to compute
PΩ̄,D−1

k

(x(k) − αkDk∇f(x(k))), that is, we must solve the constrained strictly convex quadratic
program

min 1
2xT D−1

k x − xT z

sub. to
∑N

i=1 xi − c = 0, xi ≥ 0, i = 1, . . . , N,
(8)

where z = D−1
k

(

x(k) − αkDk∇f(x(k))
)

.

From now on we will assume that the scaling matrix Dk is diagonal, Dk = diag
(

d
(k)
1 , . . . , d

(k)
n

)

,
as usually done in scaled gradient projection methods. Under this assumption and due to the
special structure of the constraints, the problem (8) can be reformulated as a one-dimensional
root-finding problem. In fact, if x̄ denotes the solution of (8), then from the KKT first order
optimality conditions we know that there exist Lagrange multipliers λ̄ ∈ R and ᾱ ∈ R

n such
that

D−1
k x̄ − z − λ̄e − ᾱ = 0, x̄ ≥ 0, ᾱ ≥ 0, ᾱT x̄ = 0,

n
∑

i=1

x̄i − c = 0.

From the first four KKT conditions it is easy to obtain x̄ and ᾱ as functions of λ̄:

x̄i(λ̄) = max
{

0, d
(k)
i (zi + λ̄)

}

, ᾱi(λ̄) = max
{

0,−(zi + λ̄)
}

, i = 1, . . . , n.

Thus, in order to solve the KKT system, we must find λ̄ such that

n
∑

i=1

x̄i(λ̄) − c = 0, where x̄i(λ̄) = max
{

0, d
(k)
i (zi + λ̄)

}

. (9)

This means that the computation of the projection PΩ̄,D−1

k

(x(k) − αkDk∇f(x(k))) essentially

reduces to solve a root-finding problem for a piecewise linear monotonically non-decreasing
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function. Efficient linear time algorithms for this problem are available [8, 11, 13]; the SGP
implementation we propose exploits the secant-based method suggested in [8].

The choice of the scaling matrix Dk in gradient projection methods must usually aim at two
main goals: avoiding to introduce significant computational costs and improving the convergence
rate. As previously motivated, a diagonal scaling allows to make the projection in step 2. of
SGP a non-excessively expensive task; thus, we will concentrate on updating rules for scaling

matrices of the form Dk = diag
(

d
(k)
1 , . . . , d

(k)
n

)

. A classical choice is to use a diagonal scaling
matrix that approximates the inverse of the Hessian matrix ∇2J(x); for example by requiring

d
(k)
i ≈

(

∂2J(x(k))

(∂xi)2

)−1

, i = 1, . . . , n.

In this case an updating rule for the entries of Dk could be

d
(k)
i

= min

{

L,max

{

1

L
,

(

∂2J(x(k))

(∂xi)2

)−1
}}

, i = 1, . . . , n, (10)

where L is an appropriate threshold. With a view to apply SGP to the deblurring problem
(6), another appealing choice is suggested by the diagonal scaling used in (4) to rewrite the
EM method as a special scaled gradient method; by following this idea we may introduce the
updating rule

d
(k)
i = min

{

L, max

{

1

L
, x

(k)
i

}}

, i = 1, . . . , n. (11)

This means that, when SGP is equipped with the diagonal scaling (11), it could be viewed as a
generalization of the EM method, able to exploit non-unitary steplengths and to approach the
minimization problem (6) in which the energy conservation is forced. From a computational
viewpoint, the updating rule (10) is more expensive than (11), due to the computation of the
diagonal entries of the Hessian. With regard to the convergence rate, when SGP applies to the
problem (6), the scaling (10) provides improvements not so relevant to balance its additional
costs and generally the scaling (11) is preferable. For this reason we report in the experiment
section the results obtained by equipping SGP with the updating rule (11), while we refer to [7]
for a deeper analysis of the two scaling strategies.

Another important issue for the convergence rate of a gradient method is the choice of
the steplength, that has been widely investigated in the last years. Following the original
ideas of Barzilai-Borwein (BB) [2], several steplength updating strategies have been devised to
accelerate the slow convergence exhibited in most cases by standard gradient methods (see for
example [8, 9, 10, 16] and references therein) and many numerical experiments have confirmed
the promising improvements involved by these BB-like steplength selections. Thus, with the aim
of designing a gradient projection method able to achieve a better convergence rate than the
scheme (3), it seems natural to use within SGP a steplength selection that takes into account
these recent advances. First of all we must rewrite, in case of a scaled gradient method, the
two BB rules usually exploited by the main steplength updating strategies. To this end, we can
regard the matrix B(αk) = (αkDk)

−1 as an approximation of the Hessian ∇2J(x(k)) and derive
two updating rules for αk by forcing quasi-Newton properties on B(αk):

α
(1)
k = argmin

αk∈R

‖B(αk)s
(k−1) − z(k−1)‖ and α

(2)
k = argmin

αk∈R

‖s(k−1) − B(αk)
−1z(k−1)‖,

where s(k−1) =
(

x(k) − x(k−1)
)

and z(k−1) =
(

∇J(x(k)) −∇J(x(k−1))
)

.
In this way, the steplengths

α
(1)
k =

s(k−1)T D−1
k D−1

k s(k−1)

s(k−1)T D−1
k z(k−1)

and α
(2)
k =

s(k−1)T Dkz
(k−1)

z(k−1)T DkDkz
(k−1)

, (12)
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are obtained, that reduce to the standard BB rules in case of non-scaled gradient methods, that
is when Dk is equal to the identity matrix for all k. At this point, inspired by the steplength
alternations successfully implemented in the framework of non-scaled gradient methods [10, 16],
we propose a steplength updating rule for SGP which adaptively alternates the values

ᾱk = max{αmin, min{αmax, α
(1)
k }} and α̂k = max{αmin, min{αmax, α

(2)
k }}. (13)

The alternation rule we use in the subsequent experiments is described in [7] and consists in a
slight modification of the ABBmin1 strategy proposed in [10].

4. Numerical results

In this section we apply the methods SGP, EM and EM MATLAB to some deblurring problems
arising from a set of astronomical images corrupted by Poisson noise. The behaviour of the
three approaches will be compared in terms of number of iterations, reconstruction accuracy
and computational time. All the methods are implemented in Matlab 7.0.4 and the experiments
are performed on a computer equipped with an 1.8GHz AMD Sempron 3100+. The parameters
of SGP are set as follows: β = 10−4, θ = 0.4, M = 10, αmin = 10−3, αmax = 105; the threshold
in (11) is L = 1010.

Our test problems are generated by proceeding as in [1]: original 256 × 256 images are
convolved with a simulated point spread function (PSF), a background term is added and the
results are perturbed with Poisson noise. Several test problems have been considered, with
different PSFs and noise levels; however, in all cases the relative behaviours of the methods are
very similar and, consequently, we only discuss the results about the two test images reported
in Figure 1. The performance of the three methods are described in Table 1 where we report
the flux constant c controlling the different noise levels (we recall that, in the case of Poisson
noise, the noise level is increasing when the total flux is decreasing), the numbers of iterations
required by the three methods (it opt), the corresponding computational times in seconds (sec)
and the relative reconstruction error (err opt), defined as ‖x(k) − x‖/‖x‖, x being the image
to be reconstructed. For each method, the results refer to the iteration where the minimum
of the reconstruction error has been obtained, except for the cases marked with an asterisk in
which the maximum number of iterations has been reached. The test images are denoted by
Image A and Image B, corresponding to the objects in the upper and lower panels of Figure 1,
respectively. For each image, three noise levels are considered; the reconstructions in Figure 1
refer to the noise level corresponding to c = 4.43 × 109. Furthermore, in Figure 2 we show the
behaviour of the relative reconstruction error as a function of the number of iterations for the
three methods.

We remark that the computational time per iteration in SGP and EM MATLAB is
approximately 40% and 30% greater than in EM, respectively. However, SGP and EM MATLAB
exhibit a better convergence rate in comparison with EM, and the time required to obtain a
given reconstruction error in these accelerated methods is significantly lower than in EM. In
these experiments SGP generally converges faster than EM MATLAB, even if this feature does
not always imply a lower computational time, due to the higher costs per iteration. Concerning
the reconstruction accuracy, no significant differences are observed in the three approaches. It
is also interesting to remark that, in the case of SGP, the reconstruction error drops to a value
close to the minimum in very few iterations and that it remains close to this value for a large
number of iterations, so that the choice of the optimal number of iterations does not seem to be
critical in the case of real images.

5. Conclusions and future works

We have proposed a scaled gradient projection method, called SGP, for solving the optimization
problems arising in the maximum likelihood approach to image deblurring. The main features of
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Figure 1. Test images: the objects (left panels), the blurred noisy images (middle panels), the
SGP reconstructions (right panels).

Table 1. Behaviour of SGP, EM MATLAB and EM.

SGP EM MATLAB EM

c it opt err opt sec it opt err opt sec it opt err opt sec

Image A

4.43×109 339 0.185 63.7 388 0.185 64.9 3500∗ 0.186 458.9

7.02×108 108 0.187 20.3 141 0.187 23.0 3500∗ 0.187 447.4

4.43×107 20 0.195 4.0 46 0.195 7.7 414 0.194 54.5

Image B

4.43×109 270 0.052 53.2 259 0.052 43.6 1500∗ 0.053 196.1

7.02×108 134 0.055 26.2 139 0.056 23.2 1500∗ 0.055 191.8

4.43×107 37 0.070 7.0 44 0.070 7.3 500 0.069 63.2

this approach are its global convergent properties and its ability to satisfy an energy conservation
constraint. A computational study on a set of astronomical images corrupted by Poisson noise
shows that the method is much faster than the standard EM method and very well-comparable
with the EM MATLAB algorithm, for which no convergence proof is available.

Future works will regard the evaluation of the proposed algorithm on other optimization
problems arising in image deblurring and the comparison with second order schemes such as
quasi-Newton and interior point methods. If SGP can compete with these methods, then it
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Image A (c = 4.43 × 109) Image B (c = 4.43 × 107)
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Figure 2. Relative reconstruction error

could provide a very useful and simple approach to iterative image reconstruction.
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