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A novel spatiotemporal prediction
approach to fill air pollution data gaps
using mobile sensors, machine learning
and citizen science techniques
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Particulate Matter (PM) air pollution poses significant threats to public health. We introduce a novel
machine learningmethodology to predict PM2.5 levels at 30m long segments along the roads and at a
temporal scale of 10 seconds. A hybrid dataset was curated from an intensive PM campaign in Selly
Oak, Birmingham,UK, utilizing citizen scientists and low-cost instruments strategically placed in static
and mobile settings. Spatially resolved proxy variables, meteorological parameters, and PM
properties were integrated, enabling a fine-grained analysis of PM2.5. Calibration involved three
approaches: Standard Random Forest Regression, Sensor Transferability and Road Transferability
Evaluations. This methodology significantly increased spatial resolution beyond what is possible with
regulatory monitoring, thereby improving exposure assessments. The findings underscore the
importance of machine learning approaches and citizen science in advancing our understanding of
PM pollution, with a small number of participants significantly enhancing local air quality assessment
for thousands of residents.

Particulate Matter (PM) air pollution has a considerable negative influence
on the human health, especially with respect to the cardiovascular and
pulmonary systems. According to the European Environmental Agency
(EEA, 2023)1, 97% of the urban population in Europe is exposed to fine
particulate matter (PM2.5, i.e. PM with a diameter of 2.5 μm or smaller)
concentrations above the World Health Organization’s (WHO) 2021
recommendations of 5 μgm−³ for annual average. Within the EU, air pol-
lution is estimated to lead to 238,000 premature deaths in 2021 and is the
largest environmental health risk in Europe1. PM2.5 is a critical air pollutant
with primary PM2.5 originating mainly from combustion processes and
secondary PM2.5 from the reaction of organic or inorganic gas compounds,
finally contributing eventually up to more than 50% of PM2.5 mass
depending on the season and the location2. Also PM10 (PMwith a diameter
of 10 μm or smaller) is a critical air pollutant, with coarse particles, i.e.
between 2.5 μm and 10 μm, resulting mainly from mechanical processes3.

PM2.5 has become the leading environmental contributor to the global
burden of disease, representing a substantial departure from its position as
the fifth major contributor among environmental risk factors in 19904.

Studies have shown that spending a substantial amount of time in areas even
with low ambient PM2.5 levels can have adverse effects on human health5,6.
Thehealth impactof air pollution is critical inurbanareas,wheremost of the
world's population resides, therefore rapid reduction strategies are required.
For these strategies to be successful, they need to be targeted and hence an
accurate description of the spatial-temporal variability of PM is required7.
Urban areas exhibit high heterogeneity in PM concentrations due to the
diversity of the emission sources, the variability in land use patterns, and of
the interaction between the meteorological factors and the urban canopy,
which influence air pollutants’ dispersion8. This spatial and temporal
variability poses challenges for exposure assessment and air quality
management9.

Regulatory monitoring networks, such as the UK’s Automatic Urban
and Rural Network (AURN), serve as the main UK infrastructure for
ensuring compliancewith ambient air pollution standards.Nevertheless, the
acquisition andmaintenancecosts of regulatory-grade instruments arehigh,
and the sparsely distributed station network fails to capture the small-scale
spatial variations observed in pollutant concentrations in urban areas, as

1Dept. of Engineering ‘Enzo Ferrari’, University of Modena and Reggio Emilia, Modena, Italy. 2University School for Advanced Studies IUSS Pavia, Palazzo Del
Broletto, Pavia, Italy. 3School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK. 4Department of Environmental
Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia. e-mail: f.pope@bham.ac.uk

npj Climate and Atmospheric Science |           (2024) 7:310 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00859-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00859-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-024-00859-z&domain=pdf
http://orcid.org/0000-0003-1613-7864
http://orcid.org/0000-0003-1613-7864
http://orcid.org/0000-0003-1613-7864
http://orcid.org/0000-0003-1613-7864
http://orcid.org/0000-0003-1613-7864
http://orcid.org/0000-0002-5853-0624
http://orcid.org/0000-0002-5853-0624
http://orcid.org/0000-0002-5853-0624
http://orcid.org/0000-0002-5853-0624
http://orcid.org/0000-0002-5853-0624
http://orcid.org/0000-0002-1310-5296
http://orcid.org/0000-0002-1310-5296
http://orcid.org/0000-0002-1310-5296
http://orcid.org/0000-0002-1310-5296
http://orcid.org/0000-0002-1310-5296
http://orcid.org/0000-0002-2684-5226
http://orcid.org/0000-0002-2684-5226
http://orcid.org/0000-0002-2684-5226
http://orcid.org/0000-0002-2684-5226
http://orcid.org/0000-0002-2684-5226
http://orcid.org/0000-0001-6583-8347
http://orcid.org/0000-0001-6583-8347
http://orcid.org/0000-0001-6583-8347
http://orcid.org/0000-0001-6583-8347
http://orcid.org/0000-0001-6583-8347
mailto:f.pope@bham.ac.uk
www.nature.com/npjclimatsci


indicated by numerous studies10,11. These localized variations contribute to
differences in human pollutant exposures, ultimately influencing associated
health impacts12.

To detect and quantify the fine-scale spatial fluctuations in pollutant
concentrations, there is a growing interest for utilizing low-cost sensor
(LCS) networks. This interest is attributed to the improved capabilities of
sensor technologies and the development of innovative methods for sensor
calibration13–15.However, challenges remain inoptimizing sensor placement
strategies16,17, in data quality assurance due to e.g. LCS drift or sensitivity to
meteorological variables18,19 and in interpreting LCS data in the context of
regulatory air quality standards20,21. To accurately estimate population
exposure, monitoring at a high spatial and temporal resolution should be
pursued. Mobile low-cost sensors provide a cost-effective solution for
monitoring air quality in areas with limited existing infrastructure, owing to
their compact size and portability. Examples include PM2.5 measurements
performed by citizen-operated mobile sensors mounted on bikes22,
deployed on routine fleets of vehicles such as trash trucks23, tram-based
mobile sensor network in Zurich24, taxi motorcycles in Kampala25, etc.
However, sampling every location continuously throughout a given geo-
graphic area is an unattainable goal.

A diverse array of models are utilized in the prediction of PM levels.
Some are based on atmospheric processes and emissions, e.g. Chemical
TransportModels (CTMs) or Lagrangian particle dispersionmodels. These
models play a crucial role in simulating and understanding the complex
dynamics of air pollutants, incorporating factors like atmospheric chem-
istry, emission sources, and dispersion patterns. For instance, Sokhi et al. 26

evaluated four regional chemistry transport models, with a horizontal
resolution of ~20 kmwhich systematically underestimated PM10 and PM2.5

concentrations in Europe by 10–60%, varying with models and seasons,
when comparedwith theEuropeanMonitoring andEvaluationProgramme
(EMEP) measurements. Zhang et al. 27 employed a simplified Lagrangian
particle dispersionmodel (LPDM)with Bayesian-RAT (multiplicative ratio
correction optimization) to enhance regional PM concentration predic-
tions, demonstrating superior accuracy compared to other models (WRF-
Chem and CAMX), showcasing the LPDM’s advantage in forecasting PM
and potentially other pollutants. However, both CTMs and LPDMs may
encounter challenges in accurately predicting PM2.5 concentrations due
small size of the dataset, low predictive performance for small areas, high
computational cost and achieving sufficient spatial and temporal
resolution28. Other prediction approaches include the use of statistical
approaches based on meteorological variables and emission proxies29.

Data-driven models, in contrast to physically-driven models, have
garnered significant attention due to their ease of implementation30.
Machine learning (ML) models have been shown to be highly effective for
PM prediction, showcasing robust performance with non-linear variables
and flexible modelling31. Supervised learning involves the integration of
tree-based algorithms (random forest, extreme gradient boosting, light
gradient boosting, etc.) and vector-based algorithms (k-nearest neighbour,
support vector regression, etc.), capable of learning label data through
classifiers or regressors32. Nevertheless, classifier methods proved to be less
suitable for PMprediction compared to regressor methods, and, in general,
vector-based algorithms exhibited lower predictive power than their tree-
based counterparts33. Hence, tree-based machine learning algorithms,
known for their low computational costs and high prediction accuracy, are
extensively employed in PM prediction research34,35.

The existing literature reveals a notable research gap concerning the
limitations of current air pollution prediction models, particularly in the
context of fine-scale spatial and temporal variations. To address these gaps
that demand innovative and cost-effective solutions for enhanced spatial
resolution, especially in densely populated urban settings, our study pro-
poses a novel methodology that leverages on ML tools, particularly tree-
based models, to predict PM2.5 levels with unprecedented precision at both
spatial and temporal scales.

While our research maintains a broad scope, we conducted a com-
prehensive testing phase within a measurement campaign from Selly Oak,

Birmingham, United Kingdom where we deployed a combination of static
and mobile Optical Particle Counters. Our primary objective is to craft
predictive models using tree-based ML algorithms that excel in estimating
PM levels. To achieve this, we are harnessing the potential of a hybrid
dataset, curated to integrate information from both static, mobile low-cost
sensors and diverse ancillary datasets. Our focus extends beyond scenarios
with active mobile sensor deployment, aiming to create models that can
reliably forecast PMconcentrations evenwhen themobile sensors are not in
operation.

Results
The following section presents the outcomes of our study, which focused on
predicting PM2.5 levels using the three distinct ML calibration approaches.
We evaluated the ML approaches beginning with the baseline model per-
formance and then examining transferability across sensors and locations.
The agreement between predicted and observed data points was assessed in
terms of frequency distribution density plots for each calibration approach,
to highlight areas of convergence or divergence between predicted and
actual PM2.5 levels. The values of the performance metrics are given in
Table 1.

Calibration approach 1: standard random forest regression
The Standard Random Forest Regression, utilizing an 80-20 train-test split,
demonstrated strong predictive performance at 10 s temporal resolution.
TheR2 scorewas 0.85 andMAEof 1.60 μgm⁻³. The corresponding RMSEof
2.40 μgm⁻³ further complements these results. As seen in Fig. 1a, it show-
cases a peak in density around the central values, indicating a strong
alignment between predicted and actual PM2.5 levels. Upon removing
outliers (PM2.5 > 40 μg/m³), the slopemoves slightly closer to 1, suggesting a
marginally stronger correlation at lower concentration levels. Notably, the
intercept is close to the stated sensitivity threshold of the OPC-N3 sensors
(<1 μg/m³), indicating that the model’s predictions align with the lower
detection limit of the instruments. This calibration approach serves as the
reference point, representing the best achievable performance within the
entire setup. It serves as our benchmark and provides a valuable standard
against which wemeasure the effectiveness of other calibration approaches.

Calibration approach 2: sensor transferability evaluation
In the Sensor Transferability Evaluation, our focus shifted to the model’s
ability to generalize across different sensors. Specifically, the RandomForest
model was initially calibrated on a specific mobile OPC-N3 unit and sub-
sequently evaluated on an independent mobile OPC-N3 unit. The results
present detailed insights into the model’s performance across a range of
sensor configurations. When employing a single-sensor test-and-train
configuration, the model demonstrated good generalization capabilities.
The R2 score of 0.65 signifies a moderate yet substantial level of explained
variance, while the MAE of 2.76 μgm⁻³ and an overestimated mean bias
error of just 0.43 μgm⁻³ reflects the model’s accuracy in predicting PM2.5

levels across different sensors. Additionally, the KDP (Fig. 2a) indicates a
notable pattern,with predictedPM2.5 levels exhibiting a density peak at 0.14,
while the actual PM2.5 levels have a density peak at 0.7 suggesting systematic
tendency of themodel to slightly underestimate PM2.5 levels in this scenario.
However, it is crucial to note that not all sensor calibration/validation pairs

Table 1 | Performance metrics under various calibration
configurations

Calibration approach R2 MAE
(µg m−3)

MBE
(µg m−3)

RMSE
(µg m−3)

ρ

Standard random forest 0.85 1.60 −0.01 2.40 0.92

Sensor transferability
evaluation

0.65 2.76 0.43 4.11 0.83

Road transferability
evaluation

0.71 2.46 −1.14 3.22 0.81
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perform equally under this approach. The variability in sensor pair per-
formance becomes apparent, revealing the challenge for model’s adapt-
ability to specific OPC units. If the performance reported above is the best
one among all pairs, swapping this same calibration/validation pair results
in a significant decrease in model performance (MBE =−2.64 μgm⁻³,
MAE = 4.45 μgm⁻³ and R2 = 0.25). When combining data from multiple
sensors, a different perspective emerges (MBE 2.47 μgm⁻³,
MAE = 4.05 μgm⁻³, and R2 = 0.21). The combined sensor configuration
yields suboptimal results compared to the single-sensor approach. These
findings underscore the importance of considering sensor-specific beha-
viours and configurations. Themodel’s adaptability across different sensors
is evident, but the complexities of individual sensorperformance, necessitate
careful consideration in the interpretation of results. Factors such as dif-
fering time-of-mapping among sensors, variations in traffic patterns or
PM2.5 concentrations at specific locations, contribute to the observed
variability in model performance. It should be noted that the results pre-
sented throughout the paper are based on a 10 s temporal resolution.
However, it is interesting that after averaging the dataset into 5–15min data
intervals, the R2 score showed improvement up to 0.4–0.5. This suggests a
potential temporal sensitivity, emphasizing the consideration of the trade-
off between temporal resolution and model performance, given the corre-
sponding reduction in data points.

Calibration approach 3: road transferability evaluation
For the Road Transferability Evaluation, the model was calibrated on one
road and evaluated on a different one. The results indicated a satisfactory
ability to generalize across different road stretches, with an R2 value of 0.71
and an MAE of 2.46 μgm⁻3 (Fig. 3 trained on Bristol Road and tested on
Raddlebarn Road). Notably, the model’s consistent performance across
different roads within the area suggests a capacity to adapt to varying
environmental conditions and road characteristics. This observed

generalization may be attributed to the similarity in atmospheric and pol-
lution background conditions across the roads, showcasing the model’s
adaptability to diverse but locally consistent factors. For instance, for sce-
narios with the road ranking explained in the "Hybrid Dataset Preparation"
part of the later Methodology section, we calibrated the model on a sec-
ondary road (Raddlebarn Road) and tested it on a tertiary (Bournbrook
Road), the results yielded comparable success with R2 = 0.66,
MBE = 0.21 μgm⁻3 and MAE = 2.20 μgm⁻3 or training and testing on ter-
tiary and primary, etc. This versatility is particularly valuable in urban
environments where road types can change rapidly, and atmospheric
conditions may exhibit subtle variations.

Variable importance (VIMP) of the input features
Figure 4 shows the relativeVIMP fromthe standardRF regressionmodel for
PM2.5 predictions. It highlights the high importance assigned to the ‘Mobile
Sensors’ variable, which is a categorical variable representing sensor ID. The
model attributes considerable weight to the sensor ID, indicating that spe-
cific sensors consistently capture important patterns or localized pollution
sources. However, it is important to acknowledge the potential introduction
of sampling biases due to the choice of routes taken by individuals carrying
the sensors. Routes through busy intersections or areas with construction
activities could result in higher variability in the measured PM2.5 con-
centrations, thus influencing the perceived importance of certain sensors.
Figure 4 also underscores the significance of static sensors such as ‘Static
Sensor 2’, ‘Static Sensor 1’, and so forth.Unlikemobile sensors, static sensors
offer continuous and consistent measurements at specific locations. The
importance of these static sensors may be attributed to their strategic pla-
cement in areas that serve as key indicators of the overall air quality. ‘Static
Sensor 2’, for instance,was in a placewith high vehicular traffic,while ‘Static
Sensor 1’ was positioned near an urban background location. Despite its
proximity to the primary road, the Static sensor 4 exhibited lower

Fig. 1 | Results from the calibration approach 1:
Standard Random Forest Regression. a Kernel
density plot (KDP) with x-axis representing PM2.5

levels and the y-axis representing the density of data
points at each level and b linear regression between
actual and predicted PM2.5 concentrations for the
Standard Random Forest Regression.

Fig. 2 | Results from the calibration approach 2:
Sensor Transferability Evaluation. a Kernel den-
sity plot (KDP) with x-axis representing PM2.5 levels
and the y-axis represents the density of data points at
each level and b linear regression between actual and
predicted PM2.5 concentrations for the best Sensor
Transferability Evaluation.
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importance in the model, potentially due to its position in a densely
populated areawith local emission sources like nearby vehicular traffic and a
pub, creating micro-environmental conditions that poorly correlate with
expected PM2.5 levels based on the regression model. The observed high
concentrations of PM2.5measurements fromStatic Sensor 4 suggest that the
local sources of emissions in that specific area introduce complexities that
are not fully captured by the model’s inputs. Consequently, the model may
have difficulty accurately associating the PM2.5 measurements from Static 4
with the predictor variables, leading to its lower importance in the overall
model. The model likely identifies these static sensors as indicators of the

average pollution conditions in the area, and the mobile units as effective
indicators of localized pollution sources and patterns. Moreover, the con-
sistent nature of data collection from static sensors provides a stable refer-
ence for understanding baseline pollution levels in specific regions. PM2.5

measurements from BAQS also emerged as a crucial predictor variable
across all calibration models. Situated within the university campus at an
urban background site less affected by emission peaks at roadside, BAQS is
anticipated to predominantly reflect the regional background.

The model (Standard RF regression) highlights the pivotal role of
traffic-related variables in predicting PM2.5 concentrations, with buses

Fig. 4 | Relative importance of different input parameters on theRandomForest regressionmodel.The points on the plot provide the relative importance (x-axis) of each
of the named input variables (y-axis) within the Standard Random Forest regression model.

Fig. 3 | Results from the calibration approach 3:
Road Transferability Evaluation. a Kernel density
plot (KDP)with x-axis representing PM2.5 levels and
the y-axis represents the density of data points at
each level and b linear regression between actual and
predicted PM2.5 concentrations for the best Road
Transferability Evaluation.
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emerging as the most influential factor. This underscores their substantial
contribution to urban air pollution, given their diesel-fuelled engine emis-
sions and consistent routes (see Fig. S6). Notably, the presence of seven bus
stops along the primary road further amplifies the impact of bus-related
traffic on the local air quality. ‘Vehicle Speed’ has significant importance,
emphasizing the influence of traffic flow dynamics on air quality. Higher
speeds contribute to increased pollutant levels. Additionally, the variable
‘Total Vehicles’ which is inclusive of all the vehicles in the area is an
important predictor, suggesting areas with a higher traffic volume, exhibit
larger PM2.5 concentrations. Meteorological variables also contributed to
the prediction of PM2.5 concentrations confirming the role of meteorology
on atmospheric dynamics and on the variability of particulatematter.While
relative humidity can influence the physical properties andmeasurement of
particulatematter through aerosol hygroscopicity, this effect was accounted
for during the calibration of the PM2.5 data used in themodel. Atmospheric
pressure shapes general atmospheric dispersion patterns, impacting the
vertical mixing of pollutants, and is reflected in the VIMP rankings. Tem-
perature and relative humidity, acting as proxies for time of day and
boundary layer height, influence chemical reactions, particle volatility, and
pollution dispersion dynamics. Meanwhile, wind direction and speed are
critical for directly determining pollutant transport pathways, revealing
potential sources of PM2.5. The population density exhibited a relatively
small contribution as a predictor variable, despite its typical associationwith
anthropogenic emission sources impacting particulate matter levels. This
low importance of population could potentially be due to the model cap-
turing the impacts of population-related emissions through other more
direct predictor variables, such as mobile/static sensor data, traffic
counts, etc.

Figure 5 displays thePartialDependence Plots (PDPs) for the Standard
RF regression of PM2.5 with important variables from the input dataset.
PDPs illustrate the relationship between a specific feature and the model’s
predictions for the target variable36,37. PDPs have been used in air quality
studies to explore relationships with meteorological variables38 and other

non-linear factors39–42. These plots depict how changes in each feature
influence the average predicted PM2.5 while holding other variables con-
stant, providing valuable insights into the impact of individual factors on the
model’s outcomes. Among the PDPs generated, particular attention is
drawn to the plot for the ‘Mobile Sensors’ variable which reveals significant
fluctuations in PM2.5 predictions, indicating varying impacts of different
sensor IDs on the model’s predictions. This suggests that certain sensors
consistently capture crucial patterns or localized pollution sources, as evi-
denced in the discernible fluctuations in the plot. However, it’s important to
note thatOPC4 consistently records high PM levels, whileOPC 1 andOPC
2 exhibit similar patterns, and OPC 3 falls somewhere in between. This
observation raises questions about the transferability of sensor data between
OPC 1 or OPC 2 to OPC 4, suggesting potential limitations in predictive
capabilities across different sampling conditions and the model’s adapt-
ability to specific OPC units. Nonetheless, the unexpectedly high impor-
tance attributed to sensor ID underscores the significance of the location of
individual sensors in predicting PM2.5 levels. A consistent pattern was seen
among the static sensors, where changes in the static sensor data led to
uniform shifts in the model’s predicted PM2.5 levels. This suggests that the
static sensors exhibit similar behaviour in capturing PM2.5 levels, despite
potential differences in their exact locations or environmental conditions.
Static Sensor 4 shows a limited local effect at higher concentrations, sug-
gesting it may not be capturing site-specific variations effectively in the
model. Similarly, Static Sensor 1 locatedatTivertonAcademyassociateswell
with the model-predicted PM2.5 at lower concentrations but not at higher
levels, indicating that the model may not fully capture the broader area’s
PM2.5 levels effectively. This can also suggest a limited spatial representa-
tiveness, which could be due to the sensor’s specific location or local
environmental factors that differ significantly fromthe general conditions of
the study area. In contrast, the BAQS data is consistently captured by the
model and is associated till the highest PM2.5 concentrations. This suggests
that the BAQS location is highly representative of the area’s overall air
quality, effectively capturing the spatial distribution of PM2.5.The strong

Fig. 5 | Partial dependence of PM2.5 with the studied input features. The seperate panels provide the Partial Dependence Plots (PDPs) of PM2.5 with the different studied
input features.
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correlation between BAQS data andmodel predictions validates its value as
a referencepoint for area-wide PM2.5 levels. From the PDPof Total vehicles,
we observe the largest contribution to PM2.5 at highest traffic volumes,
lowest PM2.5 correlated to low-moderate traffic volumes (300–400 vehicles
hour−1) and an increase in PM2.5 with minimum traffic rates. This is con-
sistent with the relation between vehicular emissions and vehicular speed:
during traffic peaks, PM2.5 is highest because of traffic queues and jams;
lower PM2.5 is associated to amoderate traffic flow, with vehiclesmoving at
optimal cruise speed in terms of consumptions and emissions. Finally, the
increase in PM2.5 associated with low traffic volume is probably due to the
higher speedof vehicles in this traffic condition,which is also associatedwith
higher emission rates. This is consistent with the PDP for vehicular speed,
where highest predicted PM2.5 is associated with vehicle speed >40 km h−1

and lowest PM2.5 occurs for a speed in the range 25–30 km h−1. The pattern
seen in the PDP of wind speed with the model-predicted PM2.5 is typical,
consistent with a study conducted in London43, the detected high con-
centrations during both low and high wind speeds are indicative of stag-
nation and resuspension phenomena respectively. Conversely, the noted
decrease in concentrations amidst moderate wind speeds suggests effective
dilution processes. In examining the various meteorological variables, the
differences in predicted concentrations appear relatively small. Despite
numerical discrepancies as modest as ±0.4 μgm⁻³ in certain variables, these
variations becomemeaningful within the broader context of our analysis. It
is important to recognize the sensitivity of our model to scale, where see-
mingly small numerical changes may hold practical implications based on
the specific range of our data. These fine-scale variations can significantly
impact air quality compliance assessments and exposure calculations for
public health monitoring.

Discussion
This research addresses a critical gap in air pollution monitoring by intro-
ducing a novel spatiotemporal prediction approach to fill missing data in
low-cost particulate matter sensors, specifically focusing on PM2.5 con-
centrations. Our primary objective was to predict PM2.5 concentrations at
fine spatial and temporal scales, even in areas lacking direct observations.
One key aspect of our contribution lies in the ability of our methodology to
predict missing PM2.5 measurements even when mobile sensors were not
actively collecting data or, in otherwords, no onewaswalking aroundwith a
sensor in the area. This feature is crucial for extending the applicability of the
model to scenarios where continuous data collection may not be feasible or
practical. The robust performance of the RF model, demonstrated through
calibration and evaluation processes, emphasizes its reliability in estimating
PM2.5 concentrations beyond active sensor deployment.

The study has several limitations, including the relatively short dura-
tion of the campaign (onemonth) and the relatively small study area in Selly
Oak, Birmingham. The short duration and limited geographical scope may
limit the capture of the full range of seasonal variations and diverse atmo-
spheric conditions that can impact PM2.5 levels. To enhance the general-
izability of the model, future studies should incorporate data collected over
more extended periods and from diverse locations, spanning different
seasons and weather conditions. Additionally, the citizen science approach
employed in data collection, while fostering community engagement,
introduces certain challenges. The variability in data collection frequency
and routes taken by individuals carrying mobile sensors may introduce
biases. Moreover, participant behaviours such as smoking can also intro-
duce biases that affect the measurements. Future research should explore
strategies to standardize data collection procedures and address potential
biases associated with the citizen science aspect.

The hybrid dataset integration encompassed meteorological para-
meters, aerosol properties, and spatially resolved proxy variables, con-
tributing to themodel’s accuracy. Our approach demonstrated the ability to
predict PM2.5 levels but also showcased the adaptability of themodel across
different sensors and road types. The importance of the study lies in its
potential to significantly enhance spatial resolution beyond regulatory
monitoring infrastructure, providing refined air quality predictions and

improving exposure assessments. Thefindings underscore the performance
of machine learning-based approaches, particularly tree-based algorithms,
allowing to advance our understanding of PM2.5 dynamics and of their
implications for public health.

Our methodology also distinguishes itself through its remarkable
computational efficiency and speed. The utilization of low-cost Optical
Particle Counters in both static and mobile configurations offers a cost-
effective solution for air quality monitoring and significantly reduces the
computational burden. In contrast to more complex models, our approach
excels in delivering high prediction accuracy while maintaining relatively
lower computational costs.Notably, the secondand the thirdMLcalibration
approaches showcase that relatively few mobile monitors can effectively
characterize air pollution levels across an entire area at different times of day
when measurements are made. This finding has profound implications for
citizen science initiatives, as it suggests that the contributions of a small
number of participants can significantly enhance our understanding of local
air quality patterns. The efficiency of the RF algorithm ensures swift model
training and prediction, making it an ideal choice for real-time air quality
assessments. This computational efficiency enhances the speed of our
predictions and makes the methodology more accessible for widespread
implementation. The developed approach achieves a favourable balance
betweenpredictionaccuracyandcomputational performance, rendering it a
practical and readily deployable solution for air quality monitoring across
diverse urban landscapes. The demonstrated success of the machine
learning approach encourages further exploration and application in urban
air quality assessments, ultimately contributing to improved public health
outcomes.

Methodology
Study area
The area of study is an approximately 1 × 1 km² block in Selly Oak, situated
approximately 3 km south-west of city centre of Birmingham, UK, which is
a major city with population of 1.14 million. Selly Oak is highly influenced
by its close proximity to the University of Birmingham, which is just to the
north. The community is deeply influenced by the academic institution,
hosting themain Edgbaston campus, and serving as a prominent residential
area for students (hosting around 38,000 students and 8000 staff). The
northern and southern boundaries of the block are delineated by two busy
roads, namely Bristol Road and Raddlebarn Road, respectively (Fig. 6). The
area has a railway station to the west of the block that connects it to the city
centre and other parts of the West Midlands.

Low-cost optical particle counters
During the measurement campaign from April 15th to June 20th, 2023,
Alphasense optical particle counters (OPC-N3,Alphasense Ltd), which cost
approximately 350 GBP per unit, were employed in both stationary and
mobile configurations. The OPC-N3 employs a Class 1 laser (wavelength
~658 nm) todetect, size, and count particleswithin the rangeof 0.35–40 μm,
distributed across 24 size bins. An embedded algorithm translates this size
distribution into estimatedmass concentrations within the PM1, PM2.5, and
PM10 size fractions. Employing an internal fan, the OPC-N3 draws the air
sample through the detection region, with a total flow rate of 5.5 Lmin−1.
For this instrument, the manufacturer declares a sensitivity of <1 μgm−³
and a measurement range spanning from 0 to 2000 μg m−³.

The OPC-N3 was configured with the default settings for particle
refractive index and particle density, with values set at 1.5 and 1.65 g cm−³,
respectively.Measurementswere stored at 10-second intervals and included
the following parameters: date, number size distribution, flow rate, relative
humidity (RH), temperature and estimated concentrations for PM1, PM2.5,
andPM10. In static configurations, the sensor drewpower froma car battery
housed within a robust all-weather box (Fig. 7a), providing reliable opera-
tion for a span of 18–20 days. All the four static sensors were strategically
positioned to capture comprehensive data across the study area. The need
for battery replacement, conducted as part of routine maintenance was
needed to sustain the continuous functionality of the sensors in
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Fig. 6 | Maps of the study area in Selly Oak, Birmingham. Left hand map plot
provides the location of the city of Birmingham within the UK. The upper plot
provides the location of the Selly Oak area within the city of Birmingham. The
bottom (zoomed in) plot provides the locations of 4 static LCS (blue pinpoints), the

area where the mobile measurements were conducted (outlined in red), and the
location of the Birmingham Air Quality Supersite (BAQS) inside the University of
Birmingham campus. Maps ©Google Maps.
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environments where access to the mains was not feasible. Additionally, 4
mobile sensors were deployed at street level, using a user-friendly backpack
setup that was both lightweight (<1 kg) and easy to handle (Fig. 7b). These
sensors ran on amobile power bank (5000mAh), requiring a recharge every
twodays to keep themworking smoothlywithout any interruptions.Using a
citizen science approach, local businesses and schools actively contributed to
data collection from static sensors throughout the 2-month period, while
university students similarly engaged in the collection of data from mobile
sensors over a 1-month period (15th May–20th June 2023). Within the
enclosed box, a Bosch BME-280 sensor was present for measuring the
relative humidity and temperature. Additionally, a GSM module was
included in the microcontroller connected to the OPC-N3 and served as
real-time clock and allowed the transmissions of the measurements to a
dedicated cloud server.

Birmingham Air Quality Supersite (BAQS)
Birmingham Air Quality Supersite (BAQS) is one of three highly instru-
mented air quality stations in the United Kingdom. The regulatory station,
characterised as an urban background is located at the grounds of the
University of Birmingham (52.45∘N, 1.93∘W), about 3 km southwest from
the city centre44. The reference instrument at BAQS was the PALAS Fidas
200 providing continuous and simultaneous measurements of PM1, PM2.5,
PM4, PM10, TSP (PMtot) and the particle number concentrationwith a time
resolution of 1minute.

Calibration
The sensors underwent calibration through comparison with research-
grade instruments at BAQS during two collocation periods, conducted
before and after the campaign, totalling 4 days of simultaneous mea-
surements. During this process, outliers (~5% of measurements) were
removed, primarily those occurring under extreme humidity conditions,
and an exponential model was developed to calibrate each OPC-N3 by
comparing the ratio of its PM2.5 measurements to those of the Fidas
instrument under varying humidity conditions. While low-cost optical
particle counters typically overestimatePM2.5 andPM10 concentrations in
high humidity due to particle hygroscopicity effects13,45,46, the relatively
low humidity during this campaign minimized discrepancies between
sensor and reference instrument readings. Nevertheless, the calibration
significantly improved the precision of the low-cost OPC estimates,
achieving Pearson correlation coefficient (r) for PM1 = 0.81 to 0.84,
PM2.5 = 0.63 to 0.75, PM10 = 0.32 to 0.57. The meteorological sensor
measurements, though affected by their container placement which led to
humidity underestimation and temperature overestimation, showed
strong correlation with the Elms Road meteorological station readings at
the University of Birmingham (r > 0.95), allowing for effective calibration
through simple linear regression47. BAQS proved to be representative of
the broader study area, as demonstrated by strong correlations between

BAQS and the study sites for both relative humidity (r > 0.95) and par-
ticulate matter measurements (r up to 0.68).

Hybrid dataset and ML model
Building upon the comprehensive understanding of the study area and the
deployment of a set of low-cost OPC-N3 detailed in Sections 'Study Area'
and 'Low-cost Optical Particle Counters', our methodology proceeds to the
construction of a hybrid dataset and the implementation of machine
learning (ML) models.

Hybrid dataset preparation. To address the challenge of predicting
PM2.5 levels at fine spatial and temporal scales, we compiled a hybrid
dataset incorporating additional information along with that gathered by
both static and mobile low-cost sensors. The road network of the whole
study area was ranked into primary, secondary, and tertiary segments
based traffic volume characteristics using telematics data collected for the
area48,49. Furthermore, continuous traffic data was captured through a
traffic monitoring camera next to a supermarket from Bristol Road, a key
thoroughfare in the study area. These data were provided by the Bir-
mingham City Council and included vehicle count and vehicle speed
differentiated by vehicle type (motorbike, passenger car, Trailer, Rigid,
Heavy Good Vehicle (HGV), bus). This hybrid dataset also integrated
demographic (census) data and meteorological variables from BAQS,
including wind speed, wind direction, atmospheric pressure, RH, and
atmospheric temperature. PM2.5 from the Fidas at BAQS was also
incorporated into the dataset, finally resulting in a comprehensive and
multi-faceted analytical framework to investigate the area. All mea-
surements from the static sensor network and BAQS were aggregated
into the hybrid dataset, temporally aligned with the mobile sampling
intervals. VSP (vehicle specific power)48, representing the instantaneous
total power demand per vehicle mass, was initially included in the hybrid
dataset from the telematics data but later excluded due to its reduced
importance as determined by the machine learning model (see Fig. S5).

For spatial analysis and integration, the mobile sensor dataset was
converted into a spatial object and reprojected to the British National Grid.
To allow for a detailed analysis of the spatial distribution of PM2.5 along the
road network, the reprojection was divided into 30m-long segments, and
for each segment, the position of the corresponding centroid was computed
(Fig. 8). The centroids served as focal points for the assignment of all spa-
tially resolvedproxy variables (e.g. demographic data, average traffic counts)
and PM2.5 by pedestrian mapping. The spatial analysis in this study was
conducted using the open-source software QGIS. Details of the input data
used can be found in Table 2.

MLmodel development and calibration approaches. Random Forest
(RF) is a powerful ensemble supervised learning algorithm, introduced by
Breiman (2001)50, leveraging on the classification and regression trees

Fig. 7 | Photographs of the PM2.5 monitoring
equipment. a Static sensor setup including car
battery for power, bMobile sensor setup placed
within backpack.
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algorithm (CART) for prediction. Employing a bagging approach with
replacement, RF draws samples from various subsets of variables. Each
decision tree within the RF is generated using the bootstrapmethod, with
node splitting occurring through random subsets of variables (set by the
mtry hyperparameter). The forest is expanded using a specified number
of trees (hyperparameter ntree) to mitigate bias error50. The final pre-
dicted result is derived by aggregating and averaging predictions from
individual trees, selected at random (Fig. 9). Random Forest simulations
were conducted to select and optimize the hyperparameters. The model
configuration involved the utilization of 1000 trees, limiting each split to a
maximum of 5 randomly selected features (mtry = 5), and establishing a
minimumnode size of 5. In this study, RFmodellingwas performed using
the 'RandomForestSRC' package in R. The modelling process took place
on a dedicated High-Performance Computing (HPC) ARIES platform of
the University of Modena and Reggio Emilia.

The calibration of predictive models for PM2.5 concentrations
involved the implementation of three specific approaches: 1) Standard
Random Forest Regression (RF): This method employed the standard RF
regression technique, utilizing an 80-20 train-test split. The model was
trained on 80% of the hybrid dataset (95,072 data points) and tested on a
20% (23,769 data points) of the total (118,841 observations) to evaluate its
predictive performance based on the provided input features. The total
number of observations (118,841) includes only the relevant static

Fig. 8 | Maps of the Selly Oak area. The left hand panel provides the locations and names of the different studied roads. The middle panel provides the the locations of the
calculated centroids which are placed at 30 m intervals. The right hand panel provides a zoomed in portion of the middel panel. Maps ©Google Maps.

Table 2 | Input parameters used in the ML-model

Context feature Parameter Data source

Meteorology Temperature
Relative humidity
Wind speed
Wind direction
Atmospheric pressure

Birmingham Air Quality
Supersite (BAQS)

Road network Road type OpenStreetMap

Traffic data Traffic count by vehicle type
(Motorbikes, Cars, Trailers,
Rigids, HGVs, Buses).
Frequency distribution of
vehicle speed

Birmingham City Council

Population Population Office for National
Statistics

Air Quality PM2.5 BAQS, Static Sensors

Categorical Mobile sensor ID Mobile sensors

Fig. 9 | Schematic diagram of the random forest model employed in the study.
The figure provides a simple flow diagram of the steps involved in the modelling
process.
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measurements tied to the mobile data i.e. only the static measurements
matching themobile timestamps were included in the dataset, rather than
a continuous count of all possible static measurements. 2) Sensor
Transferability Evaluation: This approach involved calibrating the RF
model using the hybrid dataset but using only one of the four OPC-N3
involved in the pedestrian mapping. The performance of this approach
was then assessed based on an independent OPC-N3 sensor. This eva-
luation aims to gauge the model’s ability to generalize across different
OPC-N3 sensors. 3) Road Transferability Evaluation: In this calibration
approach, themodelwas calibrated using thehybrid dataset, but including
only one road and its performance was evaluated on a different road. This
evaluation explores the capability of themodel to generalize across distinct
roads in the area. The results of sensor calibration/validation pairs and
selected road calibration/validation pairs evaluation are shown in the SI
for clarity. The observed variability can be attributed to the diverse nature
of citizen-collected data, with participants following different walking
patterns, sampling times, and route choices. These variations in data
collection inherently affect model predictions, emphasizing the impor-
tance of standardized protocols for future campaigns.

For each approach, the individual contribution of the variables to the
model prediction was analysed and assessed using the variable importance
(VIMP). This is achieved by quantifying the change in model error when a
single variable is permuted, i.e., randomly shuffled.

This technique is widely adopted and has been extensively utilized
across the machine-learning literature50–54

Tovalidate thesemodels, variousperformancemetricswere computed.
The coefficient of determination (R²) was computed for the linear least-
squares regression of predicted concentrations versus observed concentra-
tions. Also, the Spearman Rank Coefficient (ρ) was computed, to assess the
non-parametric linear correlation between model estimates and observa-
tions. Additionally, Mean Bias Error (MBE), the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE) were calculated to assess the
average deviation between predicted and observed concentrations, to
indicate the overall model bias. Detailed equations for each metric are
provided in SI for clarity.

Data availability
The datasets generated and/or analysed during the current study are
available in the the University of Birmingham Institutional Research
Archive (UBIRA), https://doi.org/10.25500/edata.bham.00001144.

Code availability
All the relevant code can be obtained upon reasonable request from the
corresponding author.
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