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Turbulence is investigated in the lee of an open-cell metal foam layer. In contrast to
canonical grids, metal foams are locally irregular but statistically isotropic. The solid
matrix is characterised by two lengths, the ligament thickness df and the pore diameter
dp. A direct numerical simulation is conducted on a realistic metal foam geometry for
which df /dp = 0.14 and the porous layer thickness is five times the pore diameter. The
Reynolds number based on the pore size is Redp = 4000, corresponding to a Taylor-scale
Reynolds number Reλ ≈ 80. Closer to the foam than two pore diameters, the pressure and
turbulent transports of turbulent kinetic energy are non-negligible. In the same region,
Reλ undergoes a steep decrease whereas the dissipation coefficient Cε increases like
Re−1
λ . At larger distances from the porous layer, the classical grid turbulence situation is

recovered, where the mean advection of turbulent kinetic energy equals dissipation. This
entails a power-law decay of turbulent quantities and characteristic lengths. The decaying
exponents of integral, Taylor and Kolmogorov scales are close to one-half, indicating that
the turbulence simulated here differs from Saffman turbulence. Analysis of the scaling
exponents of structure functions and the decorrelation length of dissipation reveals that
small-scale fluctuations are weakly intermittent.

Key words: isotropic turbulence, homogeneous turbulence

1. Introduction

Grid turbulence has been investigated for a long time owing to its good approximation to
homogeneous and isotropic turbulence. In the classic flow configuration, a planar grid or
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screen with uniform mesh size and definite rod thickness is held in a uniform fluid stream.
Downstream of the grid, homogeneity is achieved on cross-flow planes and a degree of
isotropy is exhibited. This canonical flow has assumed an essential role in understanding
turbulence and has allowed the formulation and testing of theories and models since the
early wind tunnel experiments (Simmons & Salter 1934; Taylor 1935).

The search for self-preserving or self-similar forms of correlation or spectral functions
has led to the theories of homogeneous isotropic turbulence proposed over the past decades
and the common prediction that turbulence decays according to a power law (de Karman &
Howarth 1938; Kolmogorov 1941; Batchelor 1948; Saffman 1967; George 1992). Despite
the fact that these theories agree on the form, the value of the decay exponent n is still
debated. The theoretical analyses by de Karman & Howarth (1938), Batchelor (1948)
and Saffman (1967) resulted in values for n of 1, 10/7 and 6/5, respectively. A large
collection of experimental measurements involving classical grids of various geometries
and at different flow regimes has grown up over the years. While the earliest works
supported the prediction that n = 1 (Batchelor & Townsend 1948), later experiments
by Comte-Bellot & Corrsin (1966) and Mohamed & Larue (1990) corrected the decay
exponent, with values falling between 1.1 and 1.4 (Lavoie, Djenidi & Antonia 2007;
Kurian & Fransson 2009; Kitamura et al. 2014, and references therein). George (1992)
argued that the apparent discrepancies in the measurements are related to an undefined
dependence of the flow on the initial conditions. This precludes the existence of a single
universal state, at least at finite Reynolds number. Lavoie et al. (2007) investigated the
effects of the initial conditions on the characteristics of decaying turbulence, and showed
that this impact is more marked as the anisotropy and the strength of large-scale periodic
motions increase. On the other hand, the improvement of isotropy and of large-scale
periodic character reduces the influence of initial conditions. This suggested that the
dependence on initial conditions is associated with departures from ideal homogeneity and
isotropy conditions.

Recent research has attempted to reconcile many of the experimental data with
Saffman turbulence. According to these analyses, the value n = 6/5 represents a minimum
decay rate valid for (strictly) homogeneous turbulence and which could also have
deviations because of an inhomogeneous decay. The large-scale turbulent structures are
proven to be regulated by the invariance of the Saffman integral. This is physically
interpreted as the conservation of linear momentum and is opposed to the invariance
of the Loitsyansky integral, on which Batchelor turbulence is based. It is concluded
in the work by Krogstad & Davidson (2010) that ‘it seems very likely’ that the
turbulence observed is Saffman turbulence, and that it is also possible that different grid
geometries, or other ranges of Re, could produce different results. Also Kitamura et al.
(2014) report that grid turbulence is of Saffman type for the Reynolds-number range
examined in their work, when grid turbulence is generated by a square or a cylindrical
grid.

Aside from the existence of a self-preserving solution, Mohamed & Larue (1990)
attributed the difficulty in finding a single decay exponent also to inconsistencies in
the data analysis method. In particular, the inaccuracy is related to the uncertainty
in the virtual origin and the inclusion of data pertaining to the inhomogeneous and
anisotropic region in the developed range. For grid turbulence, the turbulence decay is to
be evaluated starting from x/M > 40–60, where x is the distance from the grid and M is the
mesh width.

A class of turbulence-generating grid consisting of fractal geometries has been
introduced starting from the work by Hurst & Vassilicos (2007). Since then, fractal
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grids have attracted a lot of interest because of the specific type of turbulence
generated. A remarkable increase in the Reynolds number based on the Taylor scale
with respect to usual passive grids was noticed by Seoud & Vassilicos (2007). Further
studies investigating the decaying turbulence downstream of a set of multiscale grids
(Krogstad & Davidson 2012) and a square-element fractal grid (Hearst & Lavoie
2014) have revealed that, while the region close to the grids can be characterised by
residual inhomogeneity and is grid-dependent, in the far field – where development
is accomplished – flow characteristics are in accordance with classical grid turbulence
measurements.

The in-depth study of turbulence generated by fractal grids has revealed a peculiar
behaviour of the dissipation coefficient Cε = 〈ε〉L/u3 (here 〈ε〉 is the rate of dissipation.)
in a region close to the turbulence-generating grid but in conjunction with energy spectra,
which follow the −5/3 slope for a wide range of wavenumbers. This behaviour has
been described as a breakdown of the classical dissipation scaling and is observed in
wind tunnel experiments of grid-generated turbulence of different geometries (Mazellier
& Vassilicos 2010; Isaza, Salazar & Warhaft 2014; Valente & Vassilicos 2014; Mora
et al. 2019) and also in direct numerical simulation (DNS) data of decaying turbulence
in a periodic box (Goto & Vassilicos 2016). The breakdown consists in a behaviour
of Cε at the initial stages of the decay that depends upon the inlet Reynolds
number ReM and the local Reynolds number Reλ as follows: Cε ∼ Re1/2

M /Reλ. This
implies that L/λ ∼ Re1/2

M along the direction of Reλ decay (Valente & Vassilicos
2012).

The turbulent flow behind an open-cell metal foam has never been investigated before.
Similar to regular grids, the open-cell metal foam geometry is characterised by two main
length scales, i.e. the mean pore diameter dp and the mean ligament thickness df . In
contrast to regular grids, open cells are arranged randomly in space and their morphology,
based on a polyhedral frame, is never exactly repeated. This generates a structure that
is highly irregular and anisotropic at the pore scale but statistically isotropic at the
macroscale. In addition, the metal foam layer investigated here has a thickness larger
than a single ligament or a pore. Moreover, the solidity of metal foams, measured as
1 − ε, where ε represents grid porosity, is very different from the solidities typical of
grids employed for grid turbulence, which generally range between 0.30 and 0.45. In
high-porosity metal foams, this value is typically lower than 0.10 (Calmidi & Mahajan
2000).

In this paper, a description is reported of turbulence downstream of a high-porosity
open-cell metal foam. After a qualitative introduction to the flow investigated in § 3.1, the
degree of homogeneity and isotropy of turbulence is investigated in § 3.2. The power-law
behaviour of turbulent kinetic energy 〈k〉 and its dissipation rate are assessed in § 3.3 and
§ 3.4, respectively. The streamwise variations of turbulent length scales are considered in
§ 3.5. In § 3.6 the behaviour of the dissipation rate coefficient is investigated in detail, also
in the context of recent research on the topic. In § 3.7 the discussion is about whether or not
Saffman turbulence is achieved for the present flow configuration. The multiscale nature of
the flow is examined by means of one-dimensional spectra in § 3.8. Then § 3.9 investigates
high-order statistics, the role of intermittency and the decorrelation length of dissipation.
Budget terms of turbulent kinetic energy and of velocity variances are reported in § 3.10,
where the main mechanisms for the transport of energy and fluctuations are described
in the vicinity of the solid structure and in the fully developed region. Final remarks are
drawn in § 4.
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2. Numerical methodology

2.1. Mathematical formulation and flow configuration
The system of equations solved numerically comprises the mass conservation and the
Navier–Stokes equations for incompressible flows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂Ui

∂xi
= 0,

∂Ui

∂t
+ ∂UiUj

∂xj
= − ∂P

∂xi
+ 1

Redp

∂2Ui

∂xj∂xj
,

(2.1)

complemented with appropriate boundary conditions. The subscripts i and j take the values
1, 2 and 3 to denote the streamwise direction, x, and the two cross-flow directions, y and
z, respectively. All the variables are made non-dimensional by the velocity at the inlet U∞
and the mean pore diameter of the metal foam dp. The Reynolds number based on the
unperturbed velocity and the mean pore diameter is Redp = 4000.

The governing equations (2.1) are solved using the high-order finite-difference method
implemented in Incompact3d (Laizet & Lamballais 2009). Sixth-order compact schemes
are used for spatial discretisation (Lele 1992), and time integration is done by the
third-order Adams–Bashforth scheme. The velocity field is evaluated on a Cartesian grid
with uniform spacing along the three directions, and pressure is defined on a staggered
grid. Pressure–velocity decoupling is accomplished by a fractional-step method, which
determines the divergence-free velocity field by solving a Poisson equation. The Poisson
problem is tackled in the spectral space by using a modified wavenumber formalism,
which allows for any kind of boundary conditions for the velocity field in the physical
space. Inflow/outflow boundary conditions are enforced along the streamwise direction
and periodic boundary conditions are set along the cross-flow directions to represent
statistical homogeneity. A uniform velocity field is prescribed at the inlet (U∞, 0, 0), while
at the outlet the velocity is determined by a convection equation:

∂Ui

∂t
+ c

∂Ui

∂x
= 0. (2.2)

The convection velocity c is calculated at each time step as the mean between the
maximum and minimum values of the streamwise velocity component at the outlet.

The representation of the intricate metal foam geometry is achieved via an immersed
boundary method (IBM) based on direct forcing (Gautier, Laizet & Lamballais 2014). The
IBM enforces the no-slip condition at the solid walls while preserving the simplicity of
the finite-difference schemes applied to the Cartesian grid (Laizet & Lamballais 2009).
Further details on the numerical methodology employed here are provided in Corsini &
Stalio (2020).

A sketch of the computational domain is displayed in figure 1. The extents of the domain
along the streamwise and the two cross-flow directions are Lx = 45dp and Ly = Lz =
11.25dp, respectively. The origin of the coordinate system is located at the centre of the
downstream face of the porous matrix; thus x = 0 describes the most upstream cross-flow
plane where the fluid is not in contact with the solid phase. The thickness of the metal foam
layer in the streamwise direction is 5dp and it spans the whole domain in the cross-flow
directions. It is placed at a 5dp distance from the inlet section; this avoids interference
between the upstream boundary and the solid matrix.

920 A9-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.420


Turbulent flow past a metal foam

y

x

z

11.25dp

11.25dp

5dp
5dp

35dp

Figure 1. Schematic representation of the computational domain.

The computational domain is discretised by nx = 3073 grid nodes in the streamwise
direction and ny = nz = 768 in the cross-flow directions. The spatial resolution is
sufficiently fine to ensure that �x = �y = �z � 2η for x � 5. Close to the porous layer
(0 < x < 5), where dissipation is larger, �x = �y = �z � 5η. In the above comparisons,
the Kolmogorov microscale η is calculated a posteriori from its definition. The time step is
kept at �t = 0.001dp/U∞ during the simulation, which in terms of the Kolmogorov time
scale τη yields �t � 0.033τη. This corresponds to a Courant–Friedrichs–Lewy number
CFL < 0.3.

Statistical quantities are computed by averaging in time and along the homogeneous y
and z directions. Gathering of statistics begins after one flow-through time from the start of
the simulation. In order to obtain well-converged statistics, the time interval of collection
is T = 225dp/U∞, and the three-dimensional snapshots of the velocity and pressure field
are sampled at equal time intervals of �T = 4.5dp/U∞.

2.2. Metal foam geometry
The problem of the computer modelling of an intricate metal foam porous structure
has been tackled in different ways. Pore-scale morphology can be reconstructed through
X-ray tomography (Piller et al. 2013) or generated mathematically assuming an ideal
cell geometry based on a virtual sample of regular polyhedra (Boomsma, Poulikakos &
Ventikos 2003). In this study, where geometric periodicity is a key feature of the numerical
representation and irregularity of the foam is a requirement, a third approach is adopted:
the open-pore cellular structure is generated synthetically through a numerical algorithm,
developed by August et al. (2015). Besides the excellent realism and periodicity, one
further favourable feature of synthetic metal foams is the possibility to tune their porosity
and permeability. Thanks to a diffuse interface representation of the phase-field approach
(August et al. 2015), the thickness of ligaments can be easily adjusted. Figure 2 shows the
details of a couple of cells of the synthetic structure.

The synthetic metal foam structure used in the simulation is characterised by the
geometrical features listed in table 1. Both dp and df are calculated by spatial averages
and thus represent the mean pore diameter and the mean ligament thickness of the metal
foam sample. The value of grid porosity set, ε = 0.92, is representative of high-porosity
metal foams (Calmidi & Mahajan 2000). Based on typical sizes of open-cell aluminium
foams, an inflow velocity of U∞ = 15 m s−1 is obtained at Redp = 4000, assuming air
at standard conditions as the working fluid. Table 1 reports experimental conditions from
previous wind tunnel studies on regular planar grids.

920 A9-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.420


R. Corsini, A. Fregni, M. Spinolo and E. Stalio

Figure 2. Cells of the aluminium foam generated algorithmically (August et al. 2015).

A sample of the metal foam geometry with superimposed computational points is
displayed in figure 2 of Corsini & Stalio (2020). Staircase patterns of the immersed
boundaries approximate the rounded borders of the solid region. This referenced picture
and the computed ratio between average ligament diameter and grid spacing df /�x ≈ 10
suggest that the ligaments are discretised by an adequate number of grid points.

3. Results and discussion

3.1. Instantaneous and mean flows
Figure 3(a) shows the streamwise component of the instantaneous velocity field in one
of the snapshots collected. The uniform free stream of the inflow is disrupted by the
irregularly arranged ligaments of the solid structure and velocity fluctuations arise within
the porous matrix. Vortices of different orientations are shed from the ligaments and a
wake is formed. The largest perturbations are observed close to the downstream edge of
the porous matrix. The wakes originated by the ligaments develop in a non-uniform fashion
and interact at variable lengths. The smaller wakes are seen to disappear after a couple of
pore diameters, whereas larger wakes stemming from ligament clumps meet at a further
distance from the foam. The larger wakes also last in time, as revealed by the streaks in the
time-averaged velocity field 〈U〉t shown in figure 3(b).

3.2. Homogeneity and isotropy
The approximation to statistical homogeneity in the cross-flow directions in grid
turbulence is known to depend on the grid geometry and the Reynolds number. While,
for regular grids, experiments suggest that the flow becomes nearly homogeneous for
x/M > 40 (Comte-Bellot & Corrsin 1966; Mohamed & Larue 1990), for fractal grids,
homogeneity is usually retrieved further downstream (Hearst & Lavoie 2014) and, for
example, Valente & Vassilicos (2011) report x/Meff > 80, where Meff is the effective mesh
size.

The distribution of 〈U〉t in cross-flow planes is shown in figure 4 for six streamwise
positions at increasing distance from the metal foam. Solid lines mark regions where the
percentage of variation of 〈U〉t relative to U∞ has magnitude greater than 10 %, while
dashed lines encompass regions of magnitude greater than 5 %. These are seen to gradually
shrink along x. While inhomogeneity is in part to be ascribed to the limited size of the
sample composed only by the collection of snapshots in time, for x > 20 their extent is
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pasta

m
etalfoam

Present work d∗
p d∗

f 1 − ε U∗∞ Redp Reλ n η λ Lg

(mm) (mm) (m s−1)

Metal foam 4.00 0.56 0.08 15.0 4000 79–88 1.12 0.009–0.019 0.17–0.34 0.27–0.54

Reference M∗ d∗ σ U∗∞ ReM Reλ n η∗/M∗ λ∗/M∗ L∗
g/M∗

(mm) (mm) (m s−1)
Comte-Bellot & Corrsin (1971)
1 inch grid 25.4 4.8 0.34 10.0 17 000 37–49 1.29 0.010–0.036 0.14–0.43 —
2 inch grid 50.8 9.5 0.34 10.0 34 000 61–72 1.25 0.006–0.013 0.10–0.20 0.47–0.96
Kurian & Fransson (2009)
LT1 0.96 0.24 0.44 12.0 760 (10–20) 1.59 0.067–0.385 0.58–2.28 0.95–2.34
LT2 1.65 0.40 0.43 12.0 1310 (10–30) 1.52 0.034–0.260 0.47–1.85 0.78–2.03
LT3 1.80 0.45 0.44 12.0 1420 (10–35) 1.50 0.031–0.244 0.41–1.88 0.56–1.96
LT4 2.56 0.56 0.39 12.0 2030 (10–35) 1.50 0.029–0.197 0.41–1.54 0.61–1.61
LT5 4.20 0.90 0.38 12.0 3320 (20–60) 1.45 0.022–0.123 0.43–1.33 0.75–1.47
A 36.0 6.0 0.31 8.0 19 000 (85–180) 1.27 0.006–0.020 0.40 0.36–0.71
E 50.0 10.0 0.36 8.0 26 400 (165–170) 1.53 0.004–0.009 0.25–0.34 0.52–0.79
Krogstad & Davidson (2010)
40 mm grid 40 10 0.44 13.5 36 000 71–82 1.13 (0.006–0.014) (0.11–0.29) 0.60–1.13
Kitamura et al. (2014)
Cy10a 10 2 0.36 10.6 6700 27–29 1.18 0.021–0.045 0.24–0.52 0.98–2.03
Sq15a 15 3 0.36 10.4 9600 47–50 1.15 0.012–0.021 0.22–0.37 0.72–1.25
Sq15b 15 3 0.36 17.2 16 000 61–67 1.12 0.009–0.018 0.17–0.28 0.78–1.39
Cy25a 25 5 0.36 10.4 16 000 59–65 1.12 0.006–0.014 0.15–0.23 0.40–0.67
Cy25b 25 5 0.36 20.0 33 000 67–72 1.10 0.004–0.010 0.11–0.16 0.44–0.75
Sq25a 25 5 0.36 10.4 16 000 58–64 1.16 0.005–0.010 0.15–0.22 0.46–0.80
Sq25b 25 5 0.36 20.0 33 000 88–91 1.12 0.003–0.008 0.10–0.16 0.51–1.01
Sq50a 50 10 0.36 10.5 33 000 99–112 — 0.002–0.005 — 0.29–0.48

Table 1. Outline of flow parameters, decay exponent n and length scales of turbulence generated by the open-cell metal foam. The experimental results of Comte-Bellot
& Corrsin (1971), Kurian & Fransson (2009), Krogstad & Davidson (2010) and Kitamura et al. (2014) on the turbulence generated by regular grids are also included. Here
M, d and σ denote the mesh width, the rod thickness and the solidity of the grid, respectively. Asterisk ∗ denotes quantities expressed in dimensional form. Quantities in
parentheses indicate values that have been deduced from other quantities provided in the same work.
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Figure 3. Instantaneous velocity field of the streamwise velocity component (a) and its temporal mean (b) in
an x–y plane.

still appreciable. In the x = 30 station, the time-averaged velocity 〈U〉t varies between
0.86 and 1.12.

The isotropy level of the large scales of motion can be investigated through the ratio of
root-mean-square (r.m.s.) velocity fluctuations along orthogonal directions. In the present
case, the fluctuations of the x-component of velocity are the largest: in the developed
region, indicators urms/wrms and urms/vrms oscillate within the interval (1.5, 1.6) about
a mean of 1.55 for urms/vrms and 1.56 for urms/wrms, where the difference is finally
due to the size of the sample employed in the simulations. In previous grid turbulence
measurements (Kurian & Fransson 2009; Krogstad & Davidson 2010; Kitamura et al.
2014), the observed isotropy indicators are in general smaller than those measured here.
Kitamura et al. (2014), who also collected experimental results by other authors, report
urms/wrms < 1.2 in all cases; similar values are also reported in the lee of fractal grids
(Hurst & Vassilicos 2007; Gomes-Fernandes, Ganapathisubramani & Vassilicos 2012).
More details about large-scale isotropy measures downstream of the present metal foam
are reported in Corsini & Stalio (2020).

3.3. Decay of velocity fluctuations
Figure 5 displays the streamwise evolution of the variance of the three components of
velocity 〈uiui〉 as well as the turbulent kinetic energy 〈k〉. Very close to the foam and for
x < 1, velocity fluctuations are observed to remain constant. The negative slope increases
gradually in x until fluctuations exhibit a power-law decay that persists until the end of the
computational domain. As demonstrated, for example, in Tennekes & Lumley (1972), this
is expected in the region where advection and dissipation of the turbulent kinetic energy
become the only non-negligible terms in the transport equation of 〈k〉; see § 3.10.

Power-law parameters are sought in the form

u2
rms

U2∞
= A

(
x − x0

dp

)−n

(3.1)
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Figure 4. Streamwise mean flow field 〈U〉t in y–z planes extracted at x = 5, 10, 15, 20, 25 and 30 (left to right

then top to bottom): solid line, isolines 〈U〉t − U∞ = ±0.1; and dashed line, isolines 〈U〉t − U∞ = ±0.05.

100
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i〉, 

〈k〉

Figure 5. Decay of velocity fluctuations: solid line, 〈uu〉; dot-dashed line, 〈vv〉; dotted line, 〈ww〉; and dashed
line, 〈k〉.

through a numerical procedure. In (3.1), A is the multiplicative coefficient, x0 is the virtual
origin and n is the decay exponent. As n is positive, the power law has a vertical asymptote
(and a singularity) at the virtual origin x = x0. As the parameters in (3.1) depend greatly
upon the interval of sampling data considered, also the interval limits are determined
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Variable xmin xmax x0 A n

u2
rms 7.98 30.0 0.648 0.155 1.12

〈k〉 6.83 30.0 0.310 0.155 1.14

Table 2. Left boundary of the fitting interval Id , virtual origin, multiplicative coefficient and decay exponent
of the power laws in the form of equation (3.1) fitting u2

rms and 〈k〉.

inside the fitting procedure. A similar approach has been applied in Hearst & Lavoie
(2014).

In the present work, a developed region Id = [xmin, xmax] is employed, where the right
border of the interval is kept fixed to xmax = 30.0, clear of possible – yet not evident –
outflow condition effects, while xmin is discretely varied in the interval [0.015, 24.7] to
seek an xmin coordinate that ensures the best fit. The coordinate xmin will be taken as the
start of the developed region. For each selection of a value for xmin, the virtual origin x0
is discretely varied within I0 = [0.015, xmin], as the singularity is not supposed to belong
to Id. The intervals of variation of both xmin and x0 are discretised by the same subdivision
as the computational mesh. Parameters A and n are determined through a least-squares fit.
Deviations between computed data and fitting laws are then calculated as the Euclidean
norm of the error divided by the number of data points:

e(x0, xmin) =

(∑Nd

j=1
δ2

j

)1/2

Nd
. (3.2)

In (3.2), δj represents the difference between computed statistics and the least-squares
fitted power-law approximation of u2

rms at the jth point of Id; and Nd is the number of
uniformly spaced points in the data fit region Id. The (x0, xmin) couple which ensures
the smallest deviation from computed data provides the final A and n coefficients. This
procedure leads to the results given in table 2 with error distribution as in figure 6. In the
region of parameters investigated, only one minimum is found, which is located far from
the boundaries of the region investigated. The dependence on porosity of the power-law
exponents obtained is shown to be only weak in the Appendix.

In order to check the dependence of the results from the fitting method employed,
a procedure from the literature is also applied to the same set of data; this alternative
technique is that utilised by Hearst & Lavoie (2014). In the application of the method to the
present case, the virtual origin x0 and lower bound xmin are varied within I0 = [0, 4] and
[4, 14.7], respectively. For both u2

rms and 〈k〉, the process converges after three iterations.
Applied to u2

rms, this fitting procedure provides x0 = 0.610 and xmin = 6.78, which yield
the estimate for ñu = 1.12. In the case of 〈k〉, the values obtained are x0 = 0.360, xmin =
5.02 and ñk = 1.14. The results obtained by the method proposed by Hearst & Lavoie
(2014) are only marginally different from those obtained as described above and reported
in table 2.

Comte-Bellot & Corrsin (1966) found 1.15 � n � 1.29 for regular grids, while
according to Mohamed & Larue (1990) n ≈ 1.3. More recently, Krogstad & Davidson
(2010) found n = 1.13 ± 0.02.
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Figure 6. Contour lines of log10(e), where e is the normalised Euclidean norm of the error in (3.2): dashed
line, log10(e) = −4.8; dot-dashed line, log10(e) = −6.03; solid line, log10(e) = −6.05; and dotted line,
log10(e) ∈ [−6.00 − 5.00], with lines separated by δ = 0.2. A single minimum is found in the field, as
indicated by the ∗ symbol, which corresponds to x0 = 0.648 and xmin = 7.98. The singularity is not included
in the domain, and thus xmin > x0.

Besides the parameters x0, A and n in (3.1), the procedure provides the coordinate xmin of
the start of the developed region as the left boundary of the interval Id. All the subsequent
fittings in this work will be carried out on Id = [7.98, 30.0].

3.4. Turbulence decay rate
As opposed to experimental studies, where rate of dissipation 〈ε〉 needs to be evaluated
using the frozen turbulence assumption or isotropy (3.5), in DNS studies 〈ε〉 can be
computed directly from its definition,

〈ε〉 ≡ 2
Redp

〈sijsij〉, (3.3)

where sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the fluctuating rate of strain. Figure 7 displays the
spatial evolution of 〈ε〉, together with the least-squares fitted power law in the form
〈ε〉 ∼ aεxh. The coefficients that fit the data over Id = [7.98, 30.0] are aε = 0.217 and
h = −2.20.

The scaling of dissipation 〈ε〉 can also be set in relation to the scaling of 〈k〉 in § 3.3.
As also shown quantitatively in § 3.10, in the developed region of a statistically steady,
high-Reynolds-number flow, one has

〈U〉dk
dx

= −〈ε〉. (3.4)

Equation (3.4) suggests that the decay exponent in this case should equal h = −(nk + 1).
In the present study, h = −2.20 and nk = 1.14 are calculated. The percentage difference
between −(nk + 1) and h is below 3 %.
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Figure 7. Dissipation of the turbulent kinetic energy: dashed line, 〈ε〉 as defined in (3.3); dotted line, 〈ε〉iso

from (3.5); and solid line, aεxh, with aε = 0.217 and h = −2.20.

Dissipation is compared in figure 7 to the same quantity computed under the hypothesis
of isotropic turbulence:

〈ε〉iso = 15ν

〈(
∂u
∂x

)2
〉

. (3.5)

The close similarity between 〈ε〉 and 〈ε〉iso is only in apparent contradiction with isotropy
ratios larger than 1.5 reported in § 3.2. From the demonstration by Taylor (1935), it appears
that hypotheses less strict than isotropy are required for equation (3.5) to hold. The weaker
set of hypotheses hold true in the present case; see Corsini & Stalio (2020).

3.5. Length scales
The length scales examined for the characterisation of the turbulence generated by a metal
foam are the Kolmogorov scale η, the Taylor microscale λ and the integral scales. All the
length scales are computed directly from their definitions. Their distribution within the
developed region is approximated by a power law of the distance x. The range of variation
of each length scale along Id is reported in table 1 together with data from the literature on
classical grid turbulence.

3.5.1. Kolmogorov scale
The Kolmogorov scale is defined through dissipation 〈ε〉. It is predicted from the
power-law expression for 〈ε〉 (derived from the expression for 〈k〉) that η can be represented
by a function of the form η ∼ aηxs, where s equals −h/4 and finally s = (nk + 1)/4.
The decay exponent for 〈k〉 computed here, nk = 1.14, gives s = 0.54. The power-law
approximation is displayed in figure 8 together with the Kolmogorov scale, as computed
from its definition: the fitting coefficients are aη = 0.00291 and s = 0.55. Very similar
power-law parameters are obtained in this same flow configuration for a porosity ε =
0.97; see the Appendix. Comte-Bellot & Corrsin (1971) provide Kolmogorov-scale
measurements in their table 4, which grow like a power law of exponent ŝ = 0.58.
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Figure 8. Streamwise distribution of the Kolmogorov scale: dashed line, η as calculated from its definition;
and solid line, aηxs, where aη = 0.00291, s = 0.55. The uniform grid spacing adopted in all directions is
�xi = 0.0146, which suggests that spatial resolution is high enough to represent the smallest scales of the
turbulence.
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Figure 9. Streamwise distribution of the Taylor microscale: dashed line, λ as calculated from its definition;
and solid line, aλxc, where aλ = 0.0577 and c = 0.52.

3.5.2. Taylor microscale
Figure 9 displays the streamwise distribution of the Taylor microscale, defined by

u2
rms = λ2

〈(
∂u
∂x

)2
〉

. (3.6)

Comte-Bellot & Corrsin (1971) report Taylor-scale values in a few measurement points
(see their table 4); their data fit a power law of exponent c = 0.53. It is predicted in
the study by George (1992) that the Taylor scale of homogeneous isotropic turbulence
increases in time with t1/2 and, for grid turbulence, λ grows as x1/2 in the laboratory
frame. More recently, Kurian & Fransson (2009) reported that λ increases approximately
like the square-root of the streamwise coordinate. In the present study, fitting a power-law
approximation of the form λ ∼ aλxc over Id gives aλ = 0.0577 and c = 0.52.
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Figure 10. Streamwise distribution of Reλ. The horizontal dashed line specifies the value Reλ = 80.

Figure 10 shows the behaviour of the turbulent Reynolds number. After a steep decrease
in the vicinity of the metal foam, Reλ reaches a plateau where Reλ ≈ 80. An expression
relating the Taylor and the Kolmogorov scales can be obtained for isotropic turbulence
through (3.5):

λ

η
= 151/4Re1/2

λ . (3.7)

Results from the present investigation, and not reported for brevity, show that the
difference between (λ/η)2/

√
15 and Reλ is less than 3 % over the whole computational

domain.

3.5.3. Integral scales
The autocorrelation coefficient is defined as the ratio between the autocorrelation function
of separation r = rej and the autocorrelation function for r = 0:

ρii(x, r) = Rii(x, r)
Rii(x, 0)

. (3.8)

The autocorrelation coefficients along y of the streamwise ρ11(x, re2) and the cross-flow
ρ22(x, re2) velocity components are reported in figure 8 of Corsini & Stalio (2020).
A distinction is made between the transverse and longitudinal correlations depending
on the relative direction of velocity components and separation vector. Transverse
correlations built with streamwise velocity fluctuations have longer tails with respect to
longitudinal correlations built with spanwise fluctuations.

Integral scales are defined as integrals over r of autocorrelation coefficients:

Lii(x, ej) = 1
Rii(x, 0)

∫ ∞

0
Rii(x, rej) dr. (3.9)

These depend upon the coordinates along non-homogeneous directions as well as on
the direction of separation ej. In practice, since the computational domain has finite
boundaries, the integral scales are calculated here as the distance over which the
autocorrelation function decreases from 1 to 1/e, where e is Euler’s number. For the
calculation of integral scales, correlations are assumed to decay exponentially.
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Figure 11. Streamwise distribution of the integral scales: dot-dashed line, streamwise integral scale L;
dashed line, longitudinal integral scale Lg; dotted line, transverse integral scale Lt; and solid line, power-law
approximations of the different scales.

Variable Power law Multiplicative coefficient Exponent

〈ε〉(x) aεxh 0.217 −2.20
η(x) aηxs 0.00291 0.55
λ(x) aλxc 0.0577 0.52
L(x) aLxq 0.143 0.52
Lg(x) — 0.0946 0.51
Lt(x) — 0.0555 0.51

Table 3. Parameters of the power-law functions of the form f (x) ∼ axb fitting the turbulent quantities
analysed.

Integral scales for the present case are based on the streamwise or the cross-flow velocity
components. Given the inhomogeneity of the streamwise direction, separation is set in the
cross-flow directions e2 and e3. Thus, the integral scale based on the streamwise velocity
is always transverse and will be denoted by L. The integral scales based on cross-flow
velocity components can be either longitudinal or transverse and are denoted by Lg and
Lt, respectively. As statistically L11(x, e2) = L11(x, e3) = L(x), L22(x, e2) = L33(x, e3) =
Lg(x) and L33(x, e2) = L22(x, e3) = Lt(x), these equalities have been exploited in the
calculation of integral scales.

Figure 11 displays the integral scales. The power-law approximations L ∼ aLxq have
the coefficients reported in table 3; the exponents computed are very close to the L ∼
x1/2 behaviour predicted by Wang & George (2002). Also, in the case of higher porosity
presented in the Appendix, the power-law exponent is close to 1/2.

Notice that L is one order of magnitude smaller than the domain size, the transverse
length of which is 11.25dp; this suggests that the imposed lateral periodic boundary
conditions can satisfactorily represent cross-flow homogeneity in the present case. The
evolution of the Reynolds number based on the integral scale, defined as ReL ≡ Lurms/ν,
along the x-axis is displayed in figure 9 of Corsini & Stalio (2020).
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Figure 12. Streamwise distribution of Cε = 〈ε〉L/u3
rms: solid line, based on the streamwise integral scale L;

dashed line, based on the longitudinal integral scale Lg; and dotted line, based on the transverse integral
scale Lt.

3.6. Dissipation rate coefficient
In high-Reynolds-number turbulent flows away from solid walls, the dissipation rate can be
scaled on the integral length scale and velocity fluctuations through an order-one constant:

Cε = 〈ε〉L
u3

rms
. (3.10)

Figure 12 shows that, in the present case, after an initial steep increase for x < 2, the
dissipation rate coefficient Cε based on L fluctuates over Id between 0.45 and 0.50, where
its spatial average is C̄ε = 0.483. This value is very close to values reported in Pearson,
Krogstad & van de Water (2002) for shear turbulence at different Reλ numbers.

With regard to the initial steep increase, in recent years Vassilicos and coworkers have
observed that, close to the turbulence-generating grid, there is a region characterised by
spectra that closely match the −5/3 power law, in conjunction with an increase in Cε . In
the hypothesis of 〈ε〉 = 〈ε〉iso, combining the definition (3.10) with equation (3.5) leads to

Cε = 15
L
λ

1
Reλ

. (3.11)

As only small variations of the ratio between length scales L/λ are observed for given
Reynolds number of the mesh size, Cε is seen to increase like Re−1

λ . This behaviour is
reported for both fractal and regular grids (Valente & Vassilicos 2012).

Equation (3.11) is studied for the present case in figure 13, where the logarithmic
plot emphasises the Cε(Reλ) behaviour close to the metal foam. Corresponding to the
initial steep decrease in Reλ shown in figure 10, Cε is seen to increase like Re−1

λ . In the
same region, a well-defined −5/3 energy spectra behaviour is observed over a broader
wavenumber range than the fully developed region; see the inset of figure 15 in § 3.8. The
situation described in Valente & Vassilicos (2012) is thus observed in the present case.

The streamwise evolution of Cε experiences a transition between the Re−1
λ behaviour

and a region where the variations in Cε are much smaller; see figures 12 and 13. This
transition is about x = 2. The turbulent kinetic energy budgets reported in § 3.10 indicate
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Figure 13. Plot of Cε as a function of Reλ. The dashed line follows Re−1

λ .

that, downstream of this location, the turbulent transport terms become negligible and the
mean advection of 〈k〉 equals dissipation. On the contrary, for x < 2, this equality does
not hold, and the variations of Cε suggest a non-equilibrium condition between energy
at the large scales and dissipation. It should be noted that the present results confirm the
predictions reported by Tennekes & Lumley (1972) in their (3.2.29) and (3.2.30), where
transition is expected at streamwise distances from the grid that are much larger than the
integral scale. In the present configuration, x = 2 corresponds to x ≈ 6L.

In the theory by Richardson and Kolmogorov, the constancy of Cε requires that
turbulence is at a high Reynolds number and far from solid walls. While the small
variations of Cε in the fully developed region can be attributed to the Reynolds number,
which is not very high, the steep increase in Cε in the vicinity of the porous matrix (x < 2)
is to be ascribed to the vicinity of the solid filaments and ultimately to non-negligible
turbulent transport terms in the budget equation of 〈k〉.

3.7. Is grid turbulence Saffman turbulence?
In recent articles (Krogstad & Davidson 2010; Kitamura et al. 2014) it was discussed
whether grid turbulence can be considered to be of the Saffman type. Both Krogstad
& Davidson (2010) and Kitamura et al. (2014) conclude that grid turbulence is Saffman
turbulence.

The theory by Saffman (1967) describes the decay of homogeneous turbulence as

u2
rms = KC2/5t−6/5, L = K′C1/5t2/5, (3.12a,b)

where K and K′ are constants and C is expressed by an invariant integral. Both equations
(3.12a,b) have to hold for turbulence to be of the Saffman type. This is sometimes
expressed by the requirement that u2

rmsL
3 = const. during decay, but the latter is a

necessary, not sufficient, condition for Saffman turbulence.
The exponents reported in tables 2 and 3 suggest that turbulence investigated in the

present study is not of the Saffman type. Figure 14 provides graphical confirmation for
this conclusion.
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Figure 14. Streamwise evolution of the product of powers of the integral scale times powers of velocity
fluctuations: solid line, u2

rmsL
2; dashed line, u2

rmsL
3; and dot-dashed line, u2

rmsL
5. Saffman turbulence requires

the constancy of u2
rmsL

3 = const., not observed here.

In the fully developed region of grid turbulence, as well as in the case investigated here,
the advection of turbulent kinetic energy is almost perfectly balanced by dissipation:

〈ε〉 ∼ x−(nk+1) (3.13)

(see § 3.4). Setting nk = nu = n, (3.13) combined with the definition of Cε in (3.10) and
the hypotheses L ∼ xq and Cε ∼ x f leads to the following relation:

q = 1 − n
2

+ f . (3.14)

As is apparent from (3.12a,b) and (3.14), grid turbulence generated at n = 6/5 is not of the
Saffman type unless Cε stays constant during kinetic energy decay (f = 0).

3.8. Spectral scaling and energy transfer
One-dimensional spectra Eii(κj) are obtained from the discrete Fourier transform of the
two-point velocity correlation functions along ej, where κj is the jth component of the
wavenumber vector. Only j = 2 and j = 3 are used here because the streamwise direction
is not homogeneous. Depending upon the pairing between velocity and wavenumber
components, three distinct spectra can be calculated: streamwise spectrum Es = E11(κj),
longitudinal spectrum Eg = Ejj(κj) and transverse spectrum Et = Eii(κj), where i = 2,
j = 3 or i = 3, j = 2.

While, in general, spectra at different stages of the decay could be expected to scale
with different reference quantities, it is observed here that, as factors ηu2

η, λu2
rms and Lu2

rms
evolve at very similar rates in the streamwise direction (see table 3), any of those can be
used equivalently. Spectra scaled by λu2

rms and evaluated at increasing distance along the
x-axis are displayed in figure 15.

Figure 16 compares the three types of spectra (Es, Eg and Et) at a coordinate x = 20. For
κ2η > 0.2, the streamwise and transverse spectra almost coincide, which is confirmation
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Figure 15. Streamwise one-dimensional spectra normalised in Taylor variables at increasing distance from the
metal foam, x = 10, 15, 20, 25 and 30. The inset displays the power-law scaling exhibited by the spectrum at
x = 2, as indicated by the dashed line with slope −5/3.
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Figure 16. Comparison of streamwise, longitudinal and transverse spectra with Kolmogorov scaling at x =
20 (Reλ = 81): solid line, Es; dot-dashed line, Eg; dotted line, Et; and dashed line, (κ2η)−5/3. Symbols are
longitudinal spectra of grid turbulence experiments from Comte-Bellot & Corrsin (1971): ×, M∗ = 50.8 mm
(x∗/M∗ = 98, Reλ = 65); and +, M∗ = 25.4 mm (x∗/M∗ = 120, Reλ = 41). Asterisk ∗ denotes quantities
expressed in dimensional form.

that anisotropy is at large scales only; see Mohamed & Larue (1990) and Corsini & Stalio
(2020). Only a narrow range in the wavenumber space (0.025 < κ2η < 0.1) is noticed
where Es exhibits a −5/3 behaviour. Figure 16 includes the longitudinal spectra E11(κ1)
of Comte-Bellot & Corrsin (1971) for two regular grids of different mesh size and Reλ
values in the same range as the present case (Reλ = 65 and 41, compared to the present
Reλ = 81). Close agreement is observed between measurements in turbulence generated
by classical grids and turbulence simulated in the high-porosity metal foam for κ2η > 0.1.

The present results match canonical grid turbulence spectra for κ2η > 0.1, the −5/3
law is not observed for wavenumbers κ2η > 0.1, and local isotropy is observed for κ2η >

0.2. That is the range of scales where dissipation becomes non-negligible. The distinction
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Figure 17. Normalised complement of the cumulative kinetic energy and normalised cumulative dissipation
against wavenumber κη and wavelength /η at x = 20: solid line, k(κ,∞)/k; and dashed line, 〈ε〉(0,κ)/〈ε〉.

between scales containing the bulk of the energy from those responsible for dissipation
is done by considering the energy spectrum E(κ) and the dissipative spectrum D(κ) =
2νκ2E(κ).

The turbulence spectrum E(κ) is obtained by

E(κ) = −κ
d

dκ

1
2

Eii(κ), (3.15)

where the summation convention is applied. The spectrum in (3.15) removes the
directional information from both the velocities and the Fourier modes, as E(κ) is given
as a function of the wavenumber magnitude κ = |κ |.

The kinetic energy cumulated at wavenumbers lower than κ is

k(0,κ) =
∫ κ

0
E(κ ′) dκ ′; (3.16)

the complement to k(0,κ) is indicated by k(κ,∞). The corresponding quantities for the
dissipation are obtained in the same fashion using D(κ) and are indicated by 〈ε〉(0,κ) and
〈ε〉(κ,∞). In figure 17 the fraction of cumulative turbulent kinetic energy at wavenumbers
higher than κ and the fraction of cumulative dissipation at wavenumbers lower than
κ at a distance from the foam x = 20 are depicted as functions of κη and of the
corresponding wavelength /η = 2π/κη. The peak of the energy spectrum occurs at
κη ≈ 0.02 (see figure 16) but it may be observed that the main fraction of the kinetic
energy (k(κ,∞) = 0.1k) is contained in the range of wavenumbers up to κη ≈ 0.25, one
decade further. The peak of dissipation is roughly at κη ≈ 0.25 (which corresponds to the
maximum derivative in 〈ε〉(0,κ)/〈ε〉). The contribution to dissipation reaches 〈ε〉(0,κ) =
0.9〈ε〉 at κη ≈ 0.7. The bulk of turbulent kinetic energy is contained in motions of length
scales  > 25η ≈ 1

2 L; this range could be viewed as the energy-containing range. On the
other hand, the dissipation is effective at the length scales 10η <  < 50η. The overlap
between k(κ,∞) and 〈ε〉(0,κ) reveals that energy starts to be dissipated at a length scale
where the energy content is non-negligible.
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Figure 18. Log–log plot of second-, sixth- and tenth-order longitudinal structure functions versus 〈|δug|3〉 at
the position x = 25: �, p = 2; �, p = 6; and �, p = 10. The straight lines superimposed onto the curves are the
power laws resulting from the fitting procedure in the extended inertial range indicated by the dashed vertical
lines. This range starts at 3η and ends at 30η.

3.9. Structure functions
In this section, the local structure of turbulence is investigated at x = 25 by analysing the
scaling properties of the structure functions with separation r. The general definition is
given by

〈[δui,j(x, r)]p〉 = 〈[ui(x + ejr, t) − ui(x, t)]p〉. (3.17)

Because of turbulence decay along x, two different structure functions are identified in
this work: longitudinal structure functions 〈(δug)

p〉 = 〈(δuj,j)
p〉 and transverse structure

functions 〈(δut)
p〉 = 〈(δui,j)

p〉, where i = 2, j = 3 or i = 3, j = 2.
According to the first, original theory by Kolmogorov (1941), for high Reynolds numbers

when the separation lies in the inertial subrange η  r  L, the moments of velocity
difference 〈(δug)

p〉 take a universal form that depends only on 〈ε〉 through the following
scaling property:

〈(δug)
p〉 ∼ (〈ε〉r)ζ p

g with ζ p
g = p/3. (3.18)

In the refined similarity theory (Kolmogorov 1962), the intermittency effects are taken
into account by rewriting expression (3.18) in terms of εr, the dissipation averaged over a
volume of linear dimension r, and assuming that εr has a log-normal distribution,

〈(δug)
p〉 ∼ 〈εp/3

r 〉rp/3 ∼ rζ
p
g with ζ p

g = 1
3 p − 1

18μp( p − 3), (3.19)

where μ is the exponent of the dissipation autocorrelation function,

〈ε(x + r)ε(x)〉 ∼
(

L
r

)μ

, (3.20)

again for inertial range separations (Monin & Yaglom 1975).
Given the Reynolds number Reλ ≈ 80 of the present case, the study is conducted using

the extended self-similarity (ESS) observation by Benzi et al. (1993). The pth moments
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Present work Camussi Zhou Boratav Iyer
Reλ ≈ 80 Reλ ≈ 37 Reλ = 75 Reλ ∼ 100 Reλ = 1300

Direct ESS ESS ESS ESS Direct

p = 2 0.722 ± 0.027 0.684 ± 0.005 0.68 ± 0.006 0.70 0.6931 0.72 ± 0.002
p = 4 1.343 ± 0.052 1.296 ± 0.008 1.29 ± 0.008 1.32 1.2818 1.30 ± 0.005
p = 6 1.852 ± 0.076 1.829 ± 0.032 1.81 ± 0.029 1.86 1.7804 1.78 ± 0.010
p = 8 2.241 ± 0.128 2.303 ± 0.068 — 2.34 2.2123 2.18 ± 0.021
p = 10 2.507 ± 0.272 2.748 ± 0.126 — — 2.6000 —
p = 12 2.679 ± 0.509 3.187 ± 0.208 — — 2.9614 —

Table 4. Scaling exponents for the longitudinal structure functions of even orders up to p = 12 calculated
using the direct and the ESS methods. Comparison of the present work with the results from Camussi et al.
(1996), Zhou & Antonia (2000), Boratav & Pelz (1997) and Iyer et al. (2017).

of velocity differences 〈(δug)
p〉 calculated at moderate Reynolds number are characterised

by the same scaling exponents as in the high-Reynolds-number case when 〈(δug)
p〉 are

treated as functions of 〈|δug|3〉. The resulting exponents are indicated by ξ
p
g = ζ

p
g /ζ 3

g to
discriminate them from those evaluated directly, ζ

p
g . The quality of the ESS scaling is

displayed in figure 18 and in table 4. Errors are calculated by summing the uncertainty
obtained from the estimate of scaling in the two spatial directions y and z and by modifying
the scaling range over which ξ

p
g is evaluated in the interval [3, 30]η. Data from the

literature reported for comparison in table 4 are at Reλ comparable to the present, i.e.
of order ∼102, except for those by Iyer, Sreenivasan & Yeung (2017), which are obtained
at Reλ ≈ 1300 and a high degree of isotropy.

Figure 19(a) shows scaling exponents ξ
p
g and ξ

p
t computed using the ESS method,

compared to the original predictions by Kolmogorov (1941, KM41) extended to p > 3, the
refined similarity hypotheses of Kolmogorov (1962, KM62), the intermittency β model by
Frisch, Sulem & Nelkin (1978) and the model by She & Leveque (1994). The transverse
scaling exponents ξ

p
t in figure 19 are obtained by making 〈(δut)

p〉 depend on the magnitude
of transverse velocity differences for p = 3 rather than the longitudinal, thus following
the ESS method (Camussi et al. 1996; Grossmann, Lohse & Reeh 1997). The refined
similarity hypotheses are found to hold, but there is a visible tendency of ξ

p
t to deviate

from the longitudinal scaling for p � 4. This is to be ascribed to the Reynolds number and
the residual anisotropy of the flow, as argued by Iyer et al. (2017).

Figure 19(b) displays the evolution of the intermittency exponent μ along the streamwise
direction; the quantity defined in (3.20) is also employed in the β-model by Frisch et al.
(1978). The μ exponent is calculated directly from the slope of the correlation coefficient
obtained by dividing the autocorrelation of dissipation by 〈ε〉2 for separations in the
inertial range; see figure 20. A second possible way to obtain μ is by using the expression
relating the longitudinal sixth-order moment to the autocorrelation of dissipation (Frisch
et al. 1978):

〈(δug)
6〉

r2 ∼ 〈ε(x + r)ε(x)〉. (3.21)

The two quantities are reported in figure 19(b). As the reference value reported in
many studies for the intermittency exponent is μ = 0.25 ± 0.05, which is deemed to be
valid for high-Reynolds-number flows (Pope 2000), the values calculated here suggest
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Figure 19. (a) Scaling exponents ξ
p
g and ξ

p
t computed with the ESS method versus p for orders up to 20

(x = 25). In the same plot there are the results from different intermittency models assuming μ = 0.08: ◦,
ξ

p
g ; ∗, ξ

p
t ; solid line, KM41 model; dashed line, KM62 model; dot-dashed line, β model; and dotted line,

She–Leveque model. (b) Behaviours of the intermittency exponent along x computed according to two different
methods: solid line, based on 〈ε(x + r)ε(x)〉/〈ε〉2 ∼ (L/r)μ; and dotted line, μ = 2 − ξ6

g .

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

100 101

r/η
r̃/η

〈ε(
x+

r)
ε(

x)
〉/〈

ε〉2

Figure 20. Dissipation correlation coefficient at x = 25: solid line, 〈ε(x + r)ε(x)〉/〈ε〉2 as calculated from
its definition; and dot-dashed line, ad(r/η)d , where ad = 1.07 and d = −0.082. The dashed lines delimit
the interval used for the power-law fitting procedure, 25η < r < 75η, and the dotted lines demarcate the
decorrelation scale r̃.

that the effect generated by intermittent structures on small-scale turbulence in the
moderate-Reynolds-number range is less intense than at high Reynolds numbers. It is
noticed that the method based on sixth-order structure functions, (3.21), displays a decay
in the x-direction that is not expected nor recovered in the calculation of μ directly from
the definition (3.20).

The decorrelation scale r̃ is defined as the length of decorrelation of the instantaneous
dissipation ε, i.e. the separation scale r where 〈ε(x + r)ε(x)〉/〈ε〉2 becomes unitary with
a 1 % error. In figure 21 the development of r̃ along x is compared to that of the integral
scale L. The decorrelation scale can be considered as a very large length scale, which
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Figure 21. Streamwise evolution of the decorrelation scale in comparison with the integral scale: solid line, r̃;
and dashed line, L. For x = 25, r̃/η = 135 and L/η = 45.

in homogeneous isotropic turbulence depends on the Reynolds number and also the
intermittency characteristics of the flow.

3.10. Turbulent energy budgets
The equation governing the transport of 〈k〉 in a statistically steady case can be written in
symbols as

− A = Tp + Tt + Dv + P − 〈ε̃〉, (3.22)

where A is the contribution by mean advection and Tp, Tt and Dv represent
pressure, turbulent and diffusive transports; P and 〈ε̃〉 stand for the production and
pseudo-dissipation rate of turbulent kinetic energy, defined as

〈ε̃〉 = 1
Redp

〈
∂ui

∂xj

∂ui

∂xj

〉
. (3.23)

As the difference 〈ε〉 − 〈ε̃〉 is seldom important (Pope 2000), in this section 〈ε〉 is used.
In grid turbulence cases, where mean velocity gradients are zero and cross-flow

directions y and z are homogeneous, the production term vanishes:

P = −〈uiuj〉∂〈Ui〉
∂xj

= 0. (3.24)

In addition, for the Reynolds number computed here, the molecular contribution to
transport is negligible. The resulting expression for the budget equation (3.22) thus
becomes

〈U〉d〈k〉
dx︸ ︷︷ ︸

−A

= −d〈up〉
dx︸ ︷︷ ︸
Tp

− d〈uk〉
dx︸ ︷︷ ︸
Tt

−〈ε̃〉, (3.25)

where the single terms are distributed along the x-axis as depicted in figure 22.
Two regions can be identified in figure 22: a near-field region where the three

conservative terms redistribute the kinetic energy along x, and a far-field region where
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Figure 22. Turbulent kinetic energy along the streamwise direction in logarithmic plots. In panel (a) budget
terms are reported: solid line, A; dot-dashed line, Tp; dotted line, Tt; and dashed line, −〈ε̃〉. Panel (b) presents
turbulent kinetic energy fluxes: solid line, 〈U〉〈k〉; dot-dashed line, 〈up〉; and dotted line, 〈uk〉. The inset in (a)
displays an enlargement of the budget terms in the range Id in linear scale.

pressure and turbulent transports become negligible. Thus dissipation is solely balanced
by turbulent kinetic energy advection; see figure 22(a) and its inset. A possible downstream
boundary for the near-field region can be set at x = 2, where the turbulent and pressure
transports become 100 times smaller than advection and dissipation.

The near-field region can be subdivided into two subregions. By considering the
ligament diameter df as the length scale, a region very close to the metal foam is identified
for x∗/df < 0.5, where turbulent transport is larger than the advective one. This region
is characterised by the sustainment of turbulence by means of streamwise fluctuations,
which is counter-balanced by dissipation, as pressure and advective transports account for
negligible shares. The second subregion extends for 0.5 < x∗/df < 14, where turbulent
kinetic energy is provided through pressure and advective mechanisms while dissipation
and turbulent transport drain 〈k〉; see figure 22(a).

Data gathered by Norberg (1998) indicate that the vortex formation length f for the
present Reynolds number based on the mean diameter of the filaments, Redf = 560, lies
in the range 1.5df < f < 2df ; see Bloor, Gerrard & Lighthill (1966) for other possible
definitions of the vortex formation length. Figure 22(a) displays that this range matches
the streamwise location where all the transport terms in (3.25) peak. Therefore, the present
data suggest that kinetic energy is originated in the second part of the near-field region,
where transport mechanisms show local peaks. Turbulent kinetic energy 〈k〉 is drained
from here by the turbulent transport, which transfers turbulent fluctuations upstream, as
indicated by the negative sign of the turbulent flux (see figure 22b), feeding the region very
close to the metal foam. On the other hand, pressure and advective mechanisms are found
to provide turbulent kinetic energy in the entire region 0.5 < x∗/df < 14, and the signs
of the relative fluxes indicate that velocity fluctuations are transferred downstream. At the
coordinate x∗/df = 14 (x = 2), fluxes 〈up〉 and 〈uk〉 become constant in the streamwise
direction, leading to the budget reported in (3.4) for x > 2, which is typical in developed
decaying flows; see figure 22(a) and its inset, which reports the budget terms in the Id
region.

In order to separately assess the behaviour of streamwise and cross-flow velocity
fluctuations, the transport equations for velocity variances are analysed. The budget of
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streamwise velocity variance reads

〈U〉d〈u2〉
dx︸ ︷︷ ︸

−Au

= −d〈u3〉
dx︸ ︷︷ ︸
T u

t

− 2
d〈up〉

dx︸ ︷︷ ︸
T u

p

+ 2
〈
p

∂u
∂x

〉
︸ ︷︷ ︸

Su

−〈ε̃u〉, (3.26)

where, from left to right, the first three terms, respectively, represent the advective,
turbulent and pressure transports of 〈u2〉, 〈p∂u/∂x〉 is the pressure strain term and ε̃u stands
for the u-variance pseudo-dissipation rate, ε̃u = 2((∂u/∂xj) (∂u/∂xj))/Redp . The diffusive
transport is again neglected with respect to the other terms. Equations similar to (3.26) can
be derived for the transverse velocity components, v and w. As the flow is isotropic on y–z
planes, statistics for the transverse velocity component are obtained by averaging results
along y and z. For conciseness, the transverse velocity component is indicated by v and its
direction by y,

〈U〉d〈v2〉
dx︸ ︷︷ ︸

−Av

= −d〈uv2〉
dx︸ ︷︷ ︸
T v

t

+ 2
〈
p

∂v

∂y

〉
︸ ︷︷ ︸

Sv

−〈ε̃v〉, (3.27)

where the terms have the same interpretation as in (3.26), and the pseudo-dissipation rate
of the v-variance is computed as ε̃v = 2((∂v/∂xj) (∂v/∂xj))/Redp . Note that, with respect
to equation (3.25), budgets of velocity component variances include the pressure strain
terms. As will be shown in the following, the role of these terms is to redistribute kinetic
energy among the velocity components and thus it is responsible for the ‘return to isotropy’
in homogeneous turbulence. Such a phenomenon has been studied for several decades as it
is involved in second-order turbulence models; see, for example, the works by Rotta (1951)
and Lumley & Newman (1977). Pressure strain terms are not included in (3.25) as their
sum Su + 2Sv vanishes because of incompressibility.

Figures 23 and 24 show the velocity variance budgets and fluxes along the streamwise
coordinate. It appears that transport mechanisms are more intense in the 〈u2〉 budget
with respect to 〈v2〉, while dissipations 〈ε̃u〉 and 〈ε̃v〉 are almost equal. The behaviour
of the pressure strain terms reveals that turbulent energy is drained from the streamwise
velocity fluctuations, as Su represents a sink term in the 〈u2〉 budget, and provided to
cross-flow velocity fluctuations, where Sv acts as a source; see figures 23(a) and 24(a).
The role of Su and Sv does not change along the whole streamwise extension of the
domain, as shown by the insets in figures 23(a) and 24(a). This occurs because, as reported
in § 3.2, flow anisotropy is conserved in the flow domain considered. In the decaying
region Id, the pressure strain terms maintain an intensity comparable to the advective and
dissipation terms, suggesting that the isotropic condition would have been reached in a
longer computational domain.

The profiles in figures 23 and 24 show that the u-variance terms behave very similarly to
the budgets and fluxes of turbulent kinetic energy reported in figure 22. In particular, the
peaks of turbulent, advective and pressure transports are located at the same distance from
the metal foam, comparable to the vortex formation length. This suggests that velocity
fluctuations are more intensely triggered along the streamwise direction with respect to the
transverse ones. On the other hand, the v-variance terms peak slightly downstream with
respect to terms in the 〈u2〉 and 〈k〉 budgets, and the negative peak of turbulent transport
is not very intense (see figure 24a), but it drains enough energy to sustain cross-flow
fluctuations in the region just downstream of the metal foam. Another difference with
respect to the 〈u2〉 terms is the positive – yet not that intense – turbulent flux very close
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Figure 23. Variance of streamwise velocity component along the streamwise direction in logarithmic plots. In
panel (a) budget terms are reported: solid line, Au; dotted line, T u

t ; dot-dashed line, T u
p ; solid line with circles,

Su; and dashed line, −〈ε̃u〉. Panel (b) presents 〈u2〉 fluxes: solid line, 〈U〉〈u2〉; dot-dashed line, 〈up〉; and dotted
line, 〈u3〉. The inset in (a) displays an enlargement of the budget terms in the range Id in linear scale.
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Figure 24. Variance of cross-flow velocity component along the streamwise direction in logarithmic plots. In
panel (a) budget terms are reported: solid line, Av ; dotted line, T v

t ; solid line with circles, Sv ; and dashed line,
−〈ε̃v〉. Panel (b) presents 〈v2〉 fluxes: solid line, 〈U〉〈v2〉; and dotted line, 〈uv2〉. The inset in (a) displays an
enlargement of the budget terms in the range Id in linear scale.

to the metal foam, indicating that cross-flow fluctuations are more correlated with positive
u-fluctuations in this region (see figure 24b).

4. Conclusions

An analysis is presented of the turbulent flow behind a synthetic metal foam layer of
thickness equal to five times the mean pore diameter. Unlike classical grid turbulence
geometries, the metal foam ligaments are variably oriented, unevenly spaced and in general
less ordered. Similar to classical grids, metal foams are mainly characterised by two length
scales i.e. the pore diameter and the ligament thickness. The analysis encompasses one
single Reynolds number Redp = 4000 and ε = 0.92 but the effect of a different porosity
(ε = 0.97) on selected quantities is addressed in the Appendix.

The analysis of the turbulent kinetic energy budget suggests that turbulence is triggered
in the region close to the metal foam, approximately at a distance equal to the vortex
formation length indicated by Norberg (1998), x∗/df ≈ 2. In the near-field region, x < 2,
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turbulent kinetic energy is distributed by transport mechanisms; the turbulent transport
moves 〈k〉 upstream, sustaining fluctuations in close proximity to the metal foam, while
pressure and advective transports provide velocity fluctuations to larger x-coordinates. At
x = 2, pressure and turbulent transports are found to be negligible with respect to the
other terms, entailing for x > 2 the expected behaviour of grid turbulence, where viscous
dissipation is balanced by the mean advection of 〈k〉. Budgets of streamwise and cross-flow
velocity variances indicate that fluctuations along x are the most intensely triggered and
pressure strain terms act to redistribute turbulent energy towards the isotropic condition,
which however is not observed due to the limited domain extension.

In that same near-field region, Reλ decreases steeply and the dissipation rate coefficient
Cε approximates Cε ∝ Re−1

λ while L/λ remains almost constant. These observations, in
conjunction with the typical −5/3 slope in the turbulent power spectra, represent a typical
behaviour already observed in the literature (Valente & Vassilicos 2012). Given that this
occurs very close to the porous matrix, where the hypotheses for the Richardson cascade
are not verified, a considerable variation in Cε is not interpreted here as an anomalous
behaviour.

The developed region is defined here as the region where urms decays following a power
law and starts at xmin = 7.98. Besides 〈k〉, a number of relevant quantities, like the integral
length scale, the Taylor microscale and the Kolmogorov scale of the flow, are observed to
follow a power-law behaviour. The exponents obtained from a least-squares fit are in many
cases very close to values predicted and measured in classical grid turbulence experiments.
Given nk = 1.14 and q = 0.52 (where nk and q are the exponents of the power laws for 〈k〉
and L), the constancy of u2

rmsL
3 does not hold in the developed region simulated here, and

thus the turbulence does not follow the theory by Saffman.
Structure functions of different orders are calculated at a fixed position x = 25 in

the fully developed region. The extended self-similarity is used to calculate the scaling
exponents. The results are interpreted in the light of the refined similarity hypothesis. The
intermittency exponent μ computed directly from its definition is seen to behave uniformly
within the computational domain. It reveals that intermittency is not very intense at the
moderate Reynolds number of this study. The decorrelation length of dissipation r̃ is larger
than the integral scale. It depends on the Reynolds number as well as the intermittency
characteristics of the flow.
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Appendix. A glance at the effect of porosity

The aim of this appendix is to verify the extent to which turbulent flow statistics in the lee
of an open-cell metal foam layer are affected by porosity. The results obtained for a foam of
porosity ε = 0.97 are compared here against the ε = 0.92 case, as investigated in the main
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Figure 25. Streamwise evolution of velocity fluctuations and turbulent kinetic energy for the ε = 0.97 and
ε = 0.92 cases on the coarse computational grid: solid line, 〈uu〉; dot-dashed line, 〈vv〉; dotted line, 〈ww〉; and
dashed line, 〈k〉. The lines with circles mark the case with higher porosity ε = 0.97.

body of the paper. The two foams have equal pore size but different ligament thickness,
i.e. the foam with larger porosity is characterised by a thinner ligament, d′

f < df . The
comparison is conducted by means of DNS performed with the same numerical parameters
as outlined in § 2 except for the computational grid, which consists of nx = 2049 and
ny = nz = 512 grid nodes.

The porous matrix of higher porosity generates a turbulent field where fluctuations are
less intense in all the spatial directions. Application of the fitting procedure outlined in
§ 3.3 on the high-porosity foam provides decay exponents for u2

rms and 〈k〉 of n′
u = 1.05

and n′
k = 1.08, respectively. The results obtained on the coarse grid for the ε = 0.92 case

yield nu = 1.12 and nk = 1.13; see table 2 for comparisons against results on the fine
mesh. The power-law decay of the turbulent kinetic energy begins more upstream than in
the ε = 0.92 case; see figure 25.

Inside the developed region, the Kolmogorov and the longitudinal integral length scales
evaluated for ε = 0.97 behave according to power laws with growing rates estimated
by the exponents s′ = 0.54 and q′ = 0.47, respectively (see table 3 for notation). The
lower-porosity case exhibits decay exponents along the x-direction of s = 0.56 and q =
0.51 (see table 3 for comparisons against results on the fine mesh) but the Kolmogorov
and the integral scales are different in magnitude, as displayed by figure 26(a) and (b).
Associated with the smaller kinetic energy content of the flow and a smaller dissipation
rate observed at ε = 0.97, the turbulence induced by the higher-porosity foam is
characterised by a larger Kolmogorov scale and a smaller integral scale.

Figure 27 displays the effects of porosity on the terms of the turbulent kinetic energy
budget. The transport mechanisms of 〈k〉 for ε = 0.97 are the same as described in § 3.10
for ε = 0.92 but are characterised by an upstream shift of the transport peaks with respect
to that case. This shift is consistent with the reduction of the vortex formation length
associated with a smaller ligament thickness, as indicated by Norberg (1998) and reported
in § 3.10.

In summary, while the results obtained for ε = 0.92 show small quantitative differences
with respect to ε = 0.97, no significant discrepancies are observed between the two cases.
An upstream shift in the peaks of 〈k〉 transports characterises the higher-porosity case,
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Figure 26. Comparison between the streamwise distributions of the Kolmogorov scale (a) and the longitudinal
integral scale (b) for the ε = 0.97 and ε = 0.92 cases on the coarse computational grid: solid line, length scales
for ε = 0.92; and solid line with circles, length scales for ε = 0.97.
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Figure 27. Comparison between the turbulent kinetic energy budget terms for the ε = 0.97 and ε = 0.92 cases
on the coarse computational grid: solid line, A; dot-dashed line, Tp; dotted line, Tt; and dashed line, −〈ε̃〉. The
lines with circles mark the case with higher porosity ε = 0.97.

which in turn implies a reduced vortex formation length and the achievement of power-law
decays at shorter distances from the porous matrix. The size of such displacement is
apparently very small.
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