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Smart Meter Privacy for Multiple Users in the
Presence of an Alternative Energy Source

Jesús Gómez-Vilardebó and Deniz Gündüz

Abstract— Smart meters (SMs) measure and report users’
energy consumption to the utility provider (UP) in almost real-
time, providing a much more detailed depiction of the consumer’s
energy consumption compared to their analog counterparts. This
increased rate of information flow to the UP, together with its
many potential benefits, raise important concerns regarding user
privacy. This paper investigates, from an information theoretic
perspective, the privacy that can be achieved in a multiuser SM
system in the presence of an alternative energy source (AES).
To measure privacy, we use the mutual information rate between
the users’ real energy consumption profile and SM readings
that are available to the UP. The objective is to characterize
the privacy-power function, defined as the minimal information
leakage rate that can be obtained with an average power-limited
AES. We characterize the privacy-power function in a single
letter form when the users’ energy demands are assumed to be
independent and identically distributed over time. Moreover, for
binary and exponentially distributed energy demands, we provide
an explicit characterization of the privacy-power function. For
any discrete energy demands, we demonstrate that the privacy-
power function can always be efficiently evaluated numerically.
Finally, for continuous energy demands, we derive an explicit
lower bound on the privacy-power function, which is tight for
exponentially distributed loads.

Index Terms— Smart meter, privacy, rate-distortion, informa-
tion leakage.

I. INTRODUCTION

W ITH the adoption of smart meters (SMs) in energy
distribution networks the utility providers (UPs) are

able to monitor the grid more closely, and predict the changes
in the demand more accurately. This, in turn, allows the UPs to
increase the efficiency and the reliability of the grid by dynam-
ically adjusting the energy generation and distribution, as well
as the prices, thereby, also influencing the user demand. SMs
also benefit the users by allowing them to monitor their own
energy consumption profile in almost real time. Consumers
can use this information to cut unnecessary consumption, or
to reduce the cost by dynamically shifting consumption based
on the prices dynamically set by the UPs.

SM deployment is spreading rapidly worldwide [1].
In Europe, the adoption of SMs has been mandated by
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a directive of the European Parliament [2], which requires 80%
SM adoption in all European households by 2020 and 100%
by 2022. However, the massive deployment of SMs at homes
have also raised serious concerns regarding user privacy [3].
High resolution SM readings can allow anyone who has access
to this data to infer valuable private information regarding
user behaviour, including the type of electrical equipments
used, the time, frequency and duration of usage [4], and
even the TV channel that is being watched, as reported
in [5]. The privacy of smart meter data is more critical for
businesses, such as data centers, factories, etc., whose energy
consumption behaviour can reveal important information about
their business to competitors. As pointed out in [6], depending
on the monitoring granularity different consumption patterns
can be identified. With a granularity of hours or minutes, one
can identify the user’s presence, with a granularity of minutes
or seconds one can infer the activities of appliances such as
TV or refrigerator, and with a granularity of seconds one could
detect bursts of power and identify the activity of appliances
such as microwaves, coffee machines or toasters.

Several methods have been proposed in the literature to
provide privacy to SM users while keeping the benefits
of SMs for control and monitoring of the grid. In [7] user
anonymization is proposed by the participation of a trusted
third party. Bohli et al. [8] propose sending the aggregated
energy consumption of a group of users and in [9] users protect
their privacy by adding random noise to their SM readings
before being forwarded to the UP. Similarly, [10] proposes
quantization of SM readings.

In all of the above work, privacy is obtained by distorting/
transforming the SM readings before being forwarded to
the UP. However, energy is provided to the user by the UP, and
in principle, the UP can easily track user’s energy consumption
by installing its own smart measurement devices at points
where the user connects to the grid. It seems that no level
of privacy can be achieved under such a strong assumption;
however, users can conceal the patterns corresponding to indi-
vidual devices and usage patterns by manipulating their energy
consumption. This can be achieved either by filtering the
energy consumption over time by means of a storage device
such as an electric car battery [11]–[14], or by considering the
availability of an alternative energy source (AES) [14], [15].
An AES can model a connection to a second energy grid, such
as a microgrid, or a renewable energy source, such as a solar
panel.

In our model, we assume that the users can satisfy part of
their energy demand from the AES. While the UP can track the
energy it provides to the users perfectly, it does not have access
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Fig. 1. Studied in this paper. The EMU receives the energy demand from multiple users, U1, . . . , UN , and decides how much of the energy demand of
each user should be provided from the AES. The remainder of the energy demands are satisfied from the grid, which are measured and reported by the
SMs to the UP. The privacy is measured through the information leakage rate, which measures how much information the UP receives about the input load
[X(1), . . . , X(n)] by observing the SM readings [Y(1), . . . ,Y(n)].

to the instantaneous values of the amount of energy the user
receives from the AES. Hence, a certain level of privacy will
be achieved depending on the amount of power available from
the AES. For instance, if the power that the AES can provide is
sufficient enough to satisfy, at any time, all the energy demand
of the appliances, the privacy problem can be resolved in a
straightforward manner, as no power is requested from the
power grid. However, in general, the AES will be limited in
terms of the average power it can support, and as we show in
this paper, how the user utilizes the energy provided by the
AES is critical from the privacy perspective. We measure the
privacy through the mutual information rate between the user’s
real energy consumption and the energy provided by the UP
(the SM readings). Mutual information has previously been
proposed as a measure of privacy in several works [16]–[18],
and in particular, for SM systems in [10], [12], and [14].

In our previous work [15], [19] we have characterized the
minimum information leakage rate in the case of a single user
with an average and peak power constrained AES. We have
shown that there is a very close connection with this problem
and the rate-distortion problem in lossy source compression
[20] albeit with significant differences. Here we generalize our
results to multiple users. In this scenario (see Fig. 1), multiple
users, each with its own independent energy demand, share
a single AES. The reason for users to share an AES can be
economical. AESs, such as solar panels, and efficient energy
storage units are expensive facilities, and may be shared by
multiple parties to reduce cost. There could be also energy
efficiency reasons: consider a scenario in which multiple
smart meters belong to the same user; for example, different
buildings of the same company. In such a case, the most energy
efficient solution requires the centralized management of the
AES for all the components of the system.

We assume that there is one separate SM for each user,
and the privacy is measured by the total information leaked
to the UP about the users’ energy consumption. A single
energy management unit (EMU) receives users’ instanta-
neous energy demands and decides how much energy to
provide to each user from the AES, while satisfying the
average power constraint. We first introduce the privacy-power

function which characterizes the minimal information leakage
rate to the UP for a given AES average power constraint.
We then provide a single-letter information theoretic char-
acterization of the privacy-power function for the multi-user
scenario when the input loads are independent and identically
distributed (i.i.d.) random variables. While the EMU can
employ energy management policies with memory, our result
shows that a memoryless energy management policy that
randomly requests energy from the AES is optimal, signifi-
cantly simplifying the implementation.

We consider both discrete and continuous input loads. For
discrete input load distributions, we first show that the optimal
output alphabet can be limited to the input alphabet without
loss of optimality, which allows us to write the privacy-
power function as the solution of a convex optimization
problem with linear constraints. As a result, the privacy-
power function with discrete input loads can be evaluated
numerically in polynomial time. We also provide a closed-
form expression for the privacy-power function when the input
loads are independent and binary distributed. Using numerical
optimization, we compare the optimal privacy-power function
with two heuristic power allocation schemes. We consider a
time-division heuristic scheme which, at each time instant,
obtains the requested energy either from the grid or from the
AES, but not from both simultaneously. We also consider an
output load limiting heuristic scheme which limits the output
load to a fixed maximum value in order to cover up any
variation in the energy demand beyond this value. We numer-
ically show that our optimal scheme provides significant
privacy gains compared to these heuristic energy management
policies.

While the numerical evaluation of the privacy-power func-
tion for general continuous input load distributions is elusive,
we derive the Shannon lower bound (SLB) on the privacy-
power function, and show that this lower bound is tight when
users have independent exponentially distributed input loads.
For the latter case, we also show that the optimal allocation
of the energy generated by the AES among the users can be
obtained by the reverse waterfilling algorithm [20]. The users
with low average input load satisfy all their demand from
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the AES, while the users with higher average load receive
the same amount of energy from the grid.

The rest of the paper is organized as follows. In Section II,
we introduce the system model, and provide a single-letter
information theoretic characterization of the privacy-power
function when users have i.i.d. energy demands over time.
Then we show that the privacy-power function for independent
users can be solved by simply minimizing the sum of the
individual privacy-power functions with a sum average power
constraint. The derivation of the privacy-power function for
discrete input loads and its particularization to binary input
loads is addressed in Section III. Then in Section IV the
privacy-power function for continuous input loads is studied
and particularized to the exponential distribution. Numerical
results are provided in Section V. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

We consider the discrete time SM model depicted in Fig. 1.
We have N users connected to the energy grid. The energy
requested by user i at time instant t is denoted by Xi(t) ∈ Xi,
where Xi is the support set of the energy demand of user i.
We consider the availability of an AES in the system. The
AES can provide energy to the users at a maximum average
power of P . The AES reduces the energy requested from the
grid; but the primary use of the AES here is to create privacy
against the UP and other third parties.

The energy flow in the system is managed by the EMU.
The EMU receives, at time t, the energy demands of all the
users, i.e., the vector X(t) = [X1(t), . . . , XN (t)]. Part of the
energy demand of the users can be supported by the AES,
while the remainder is provided directly from the energy grid.
We denote by Yi(t) ∈ Yi, the amount of energy user i gets
from the grid at time t, or equivalently, the reading of SM i at
time t. We define Y(t) = [Y1(1), . . . , YN (t)] as the aggregated
SM readings available to the UP at time t. The energy demand
of each user has to be satisfied fully at any time, that is, we
do not allow outages or delaying/shifting the user demand.
Moreover, we do not allow increasing privacy at the expense
of wasting energy, i.e., we have 0 ≤ Yi(t) ≤ Xi(t) for all t.

At the EMU, we consider energy management policies
which, at each time instant t, decide on the amount of power
that will be provided from the AES to each of the users based
on the input loads up to time t, Xt = [X(1), . . . ,X(t)], and
the output loads up to the previous time instant, Yt−1 =
[Y(1), . . . ,Y(t−1)]. We allow stochastic energy management
policies, that is, the output load at time t, Y(t), can be a
random function of Xt and Yt−1. We assume that, while the
UP knows P , the average power generated by the AES, it does
not have access to the instantaneous values of the energy users
receive from the AES.

Definition 1: Denote the vector of input and output load
alphabets for all the users as XN = [X1, . . . ,XN ] and YN =
[Y1, . . . ,YN ], respectively. A length-n energy management
policy is composed of, possibly stochastic, power allocation
functions

ft : XN × t × YN × (t−1) → YN , (1)

for t = 1, . . . , n, such that

Y(t) = ft(X(1), . . . ,X(t),Y(1), . . . ,Y(t − 1)), (2)

with Xi(t) ≥ Yi(t) ≥ 0 for all 1 ≤ i ≤ N and 1 ≤ t ≤ n.
We measure the privacy achieved by an n−length energy

management policy with the information leakage rate. Assum-
ing that the statistical behavior of the energy demand is
known by the UP, its initial uncertainty about the real energy
consumption can be measured by the entropy rate 1

nH(Xn).
This uncertainty is reduced to 1

nH(Xn|Yn) once the UP
observes the output load. Hence, the information leaked to
the UP can be measured by the reduction in the uncertainty,
or equivalently, by the mutual information rate between the
input and the output loads In � 1

nI (Xn;Yn). Notice that if
we could provide all the energy required by the users from the
AES, we could achieve perfect privacy, i.e., we would have
In = 0 for all n, by letting Yi(t) = 0 for all i and t. However,
in general the AES will be limited in terms of the average
power it can provide.

We are thus interested in characterizing the achievable level
of privacy as a function of the average power P that is
provided by the AES, given by

Pn = E

[
N∑

i=1

1
n

n∑
t=1

(Xi(t) − Yi(t))

]
, (3)

where the expectation is take over the joint probability distri-
bution of the input and output loads.

Definition 2: An information leakage rate - average power
pair (I, P ) is said to be achievable if there exists a sequence
of energy management policies of duration n with limn→∞
In ≤ I , and limn→∞ Pn ≤ P .

Definition 3: The privacy-power function, I(P ), is the infi-
mum of the information leakage rates I such that (I, P ) is
achievable.

The privacy-power function characterizes the level of
privacy that can be achieved by an average power limited AES.
The goal of the EMU is to achieve the minimum information
leakage rate by optimally allocating the limited energy from
the AES over the users and time.

This model of an AES is appropriate for energy sources
with their own large energy storage unit, which can provide
energy reliably at a certain rate for a sufficiently long duration
of time. A peak power constraint on the AES, in addition
to the average power constraint, is also considered in [19].
On the other hand, in [14] we have explicitly considered the
energy generation process at the AES, in which case the EMU
is limited not only by the average power it can pull from the
AES, but also the generated energy plus the energy available in
the battery at each time instant. Such instantaneous constraints
that vary over time depending on the energy management
policy and the energy arrival process at the AES, render the
analysis significantly harder as they prevent us from invoking
information theoretic arguments that will be instrumental in
obtaining the single-letter results in this work.

Our goal here is to give a mathematically tractable expres-
sion for the privacy-power function, and identify the optimal
energy management policy that achieves it. In the rest of
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the paper, we consider i.i.d. input loads for simplicity, as
this will allow us to obtain a single-letter expression for the
privacy-power function. Note that in most real-life applications
there is a significant correlation among energy demands over
time. The i.i.d. assumption allows us to characterize the opti-
mal privacy-preserving solutions, which will be instrumental
in identifying solutions for more realistic energy consumption
models. Moreover, the i.i.d input load model might be valid in
scenarios where the energy consumption either does not have
memory at any time scale, or can be modelled as i.i.d. over
the time scale of interest. This could be the case, for example,
when there is a huge number of applications in use at any time,
e.g., in a data center, where the input load can be modelled
as i.i.d. over time for different traffic/load states.

In the next theorem, we show that if the input load vectors
X(t) are i.i.d. over time with fX(x), we can characterize
the function I(P ) in a single-letter format. Note that the
instantaneous energy demands of the users can be correlated
with each other.

Theorem 1: The privacy-power function I(P ) for an i.i.d.
input load vector X = [X1, . . . , XN ] with distribution fX(x)
is given by

I(P ) = inf
fY|X(y|x):E[�N

i=1(Xi−Yi)]≤P,

0≤Yi≤Xi, i=1,..N

I(X;Y), (4)

where Y = [Y1, . . . , YN ] is the corresponding vector of SM
readings.

Some basic properties of the privacy-power function
I(P ) are characterized in the following lemma. The proof
follows from standard techniques based on time-sharing
arguments [20].

Lemma 1: The privacy-power function I(P ), given above,
is a non-increasing convex function of P .

Next we prove Theorem 1.
Proof: We first prove the achievability. Given a condi-

tional probability distribution fY|X(y|x) that satisfies (4), we
generate each Y(t) independently using fY|X(y(t)|x(t)). The
mutual information leakage rate is then given by I(X;Y)
whereas the average power constraint in (4) is trivially sat-
isfied. For the converse, assume that there is an n−length
energy management policy that satisfies the instantaneous and
average constraints in (4). Let H(X) denote the entropy of
the random variable X. The information leakage rate of the
resulting output load vector will satisfy the following chain of
inequalities:
1
n

I(Xn;Yn) =
1
n

[H(Xn) − H(Xn|Yn)], (5a)

=
1
n

n∑
t=1

[
H(X(t))−H(X(t)|Xt−1Yn)

]
, (5b)

≥ 1
n

n∑
t=1

[H(X(t)) − H(X(t)|Y(t))], (5c)

=
1
n

n∑
t=1

I(X(t);Y(t)), (5d)

≥ 1
n

n∑
t=1

I
(
E

[
N∑

i=1

Xi(t) − Yi(t)

])
, (5e)

≥ I
(

1
n

n∑
t=1

E

[
N∑

i=1

Xi(t) − Yi(t)

])
, (5f)

≥ I(P ), (5g)

where (5b) follows from the assumption that the input loads
are i.i.d. over time, (5c) follows as conditioning reduces
entropy; (5e) follows from the definition of the privacy-power
function I(·); (5f) follows from the convexity of function I(·)
stated in Lemma 1 and Jensen’s inequality; and finally (5g)
follows since the energy management policy has to satisfy the
average power constraint and I(·) is a non-increasing function
of its argument.

Remark 1.1: The achievability part of the proof reveals that
the optimal energy management policy is memoryless; that
is, it can be achieved by simply looking at the instantaneous
input load, and generating the output load randomly using the
optimal conditional probability, which simplifies the operation
of the EMU significantly. This results in a stochastic energy
management policy rather than a deterministic one.

We note here that the same performance in Theorem 1
can also be achieved by a deterministic block-based energy
management policy if the user knew all the future energy
demands over a block of n time instants.

We also note the similarity between the privacy-power
function in (4) and the classical rate-distortion function [20].
The characterization of the privacy-power function for a multi-
user SM system is equivalent to the rate-distortion function for
a vector source with a difference distortion measure

d(x,y) =

{∑N
i=1 xi − yi, if yi ≤ xi, ∀i

∞, otherwise.
(6)

However, despite the similarity between the expressions of the
rate-distortion and the privacy-power functions, their opera-
tional definitions are quite different. In the case of lossy source
compression, there is an encoder and a decoder and the rate-
distortion function characterizes the minimum number of bits
per sample that the encoder should send to the decoder, such
that the decoder can reconstruct the source sequence within the
specified average distortion level. In lossy source compression,
the encoder observes the whole block of n source samples, and
maps them to an index from the compression codebook, which
is agreed upon in advance.

There are major differences between the two problems.
In the SM privacy problem, there is neither an agreed code-
book nor a digital interface. Here Yn is the direct output of
the “encoder”, rather than the reconstruction of the decoder
based on the transmitted index. The EMU does not operate
over blocks of input load realizations; instead, the output load
is decided instantaneously based on the previous input and
output loads. Similarly, in the SM privacy problem, there
is no encoder or decoder either, although the EMU can be
considered as an encoder and Yn as the reconstruction of the
input load Xn. However, the “distortion” constraint between
the input and output loads in the SM privacy problem stems
from the constraint on the available power that the AES can
generate, rather than the limited rate of encoding as in the
rate - distortion problem.
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Having clarified the distinctions between the privacy-power
and rate-distortion functions, we also remark the differences
between our formulation of the SM privacy problem and the
privacy-utility framework studied in [10]. In our privacy model
the SM readings are not tempered, and thus, the SMs report the
exact amount of energy received from the grid. On the other
hand, in [10], the SM readings are considered as the samples
of an information source, which are compressed before being
forwarded to the UP in order to hide their real values; and
hence, privacy is achieved at the expense of distorting the SM
measurements. The distortion constraint in [10] is explicit and
measures the utility of the compressed SM samples.

If the users’ input loads are independent from each other, but
not necessarily identically distributed, the multi-user privacy-
power function in (4) simplifies further. The following chain
of inequalities lower bound the privacy-power function under
this assumption:

I(X;Y) =
N∑

i=1

H(Xi) − H
(
Xi|X i−1, Y N

)
, (7a)

≥
N∑

i=1

H (Xi) −
N∑

i=1

H (Xi|Yi), (7b)

=
N∑

i=1

I (Xi; Yi), (7c)

≥
N∑

i=1

IXi (Pi), (7d)

where we have defined Pi = E[Xi − Yi], and IXi(·) denotes
the privacy power function for a system with an input load
distribution fXi(xi). We can achieve equality in (7b) with
independent EMU policies for individual users, fY|X(y|x) =∏N

i fYi|Xi
(yi|xi). Consequently, we can achieve equality

in (7d) by using the single user optimal energy management
policy for each of the input loads separately, while satisfying
the total average power constraint,

∑N
i=1 Pi ≤ P .

Following the above arguments, the problem of char-
acterizing the optimal privacy-power function for a multi-
user SM system is reduced to the following optimization
problem

I(P ) = inf�N
i=1 Pi≤P

N∑
i=1

IXi (Pi). (8)

In the following sections, we use the information theoretic
single-letter characterization of the privacy-power function in
order to obtain either closed-form solutions or numerical algo-
rithms that give us the optimal energy management policies
in multi-user SM systems with certain input load distributions
and an average power constraint on the AES.

III. DISCRETE INPUT LOADS

In the previous section we have characterized the privacy-
power function for i.i.d. input loads as an optimization problem
in a single-letter format in (4). Now we will show that this
problem can always be efficiently solved for any discrete input
load distribution. In addition, for the particular case where

all the users have binary input loads, we give a closed-form
expression for the privacy-power function.

For discrete input and output alphabets, the characterization
of the privacy-power function I(P) in (4) is a convex opti-
mization problem since the mutual information is a convex
function of the conditional probabilities, fY|X(y|x), for
y ∈ YN, x ∈ XN, and the constraints are linear.
Then, (4) can be solved numerically, e.g., by the efficient
Blahut-Arimoto (BA) algorithm [20]. However, while the input
load alphabet, defined by the system based on the energy
demand profiles of the users, can be discrete, the output load
alphabet is not necessarily discrete, and the output load, in
general ,can take any real value. The next theorem shows that
for discrete input load alphabets, the output load alphabet can
be constrained to the input alphabet without loss of optimally,
i.e., Y = X , and consequently, for any given discrete input
alphabet the privacy-power function can always be computed
efficiently. This result is only valid for i.i.d. input loads, but
does not require users’ input loads to be independent from each
other.

Theorem 2: Without loss of optimality, for discrete input
load alphabets, the output load alphabet YN can be constrained
to the input load alphabet, i.e., YN= XN.

Proof: Let the discrete input load alphabets for each user
be defined as a possibly infinite set

Xi = {xi,1, . . . , xi,mi : xi,j < xi,j+1},
where mi = +∞ if the input alphabet is countably infinite.

Define XC
i as the set of non-negative real numbers that are

not in the input load alphabet for each user i.
For any vector x = [x1, . . . ., xN ] ∈ XN define the set

Ω(x) � (x−
1 , x1] × · · · × (x−

N , xN ]

where × denotes the Cartesian product and x−
i = max{x ∈

{0,Xi} : x < xi}. Now assume that the optimal privacy-
power function in (4) is achieved by the conditional probability
distribution fY|X(y|x), which might take positive values for
some yi ∈ XC

i . We define the following new conditional
probability distribution:

fŶ|X(ŷ|x) =

{
0, if ∃i : ŷi ∈ XC

i ,∫
Ω(ŷ) fY|X(y|x)dy, if ŷi ∈ Xi, ∀i.

The new conditional probability function does not allow
any output value in XC

i for any i, i.e., the output alphabet
is limited to the input alphabet. Instead, any output vector
y = [y1, . . . , yN ], which has a non-zero probability according
to fY|X(y|x), is assigned to a new output vector [ŷ1, . . . , ŷN ]
such that

ŷi = min{x ∈ Xi : x ≥ yi}. (9)

Notice that the energy management policy, fŶ|X(ŷ|x), is still
feasible since the output load, at any time instant, is still less
than what is requested by the appliances, i.e., ŷi ≤ xi, ∀i.
Moreover, with this new conditional distribution the power
load demanded from the AES can only have a smaller average
value compared to the original energy management policy,
since the output load is not reduced for any input load value.
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Thus, it only remains to show that the new conditional distrib-
ution leaks at most the same amount of information to the UP.
Notice that the new output load Ŷ is a deterministic function
of Y define in (9). Hence, from the information processing
inequality, we have that X − Y − Ŷ form a Markov chain,
and consequently, I(X,Y) ≥ I(X, Ŷ), which completes the
proof.

A. Binary Input Loads

The simplest discrete input load model we can consider
is a binary input alphabet with independent Bernoulli input
load distributions for all the users, i.e., Xi ∼ Ber(pi), where
pi = pXi(Li) and Xi = {Li, Hi} for i = 1, . . . , N . Observe
that the average power required by the i−th user is given
by PXi = Li + Δi(1 − pi), where Δi = Hi − Li. This
power consumption model corresponds to a scenario in which
the users, at each time instant, require either a constant high
power load level Hi, or a constant low power load level
Li, i.e., the standby power consumption level. When there
is a power demand, the EMU fulfills this demand either
obtaining the energy from the UP, or from the AES according
to pY|X.

From Theorem 2, the optimal output distribution Yi is also
binary for all i. Hence, the power allocated from the AES to
each user is a binary random variable over the set {0, Δi}.
Note that, since we require Yi ≤ Xi, we can only provide
energy from the AES to user i if Xi(t) = Hi and Yi(t) = Li,
and consequently, pXiYi(Li, Hi) = 0 and pXiYi(Li, Li) =
pXi(Li) = pi. The energy obtained from the AES is then
directly related to pXiYi(Hi, Li) by Pi = ΔipXiYi(Hi, Li),
and we can express the mutual information I(Xi; Yi) for the
bivariate binary distribution

pXiYi =

⎡
⎣ pi 0

Pi

Δi
1 − pi − Pi

Δi

⎤
⎦,

as a function of Pi as follows:

IBi (Pi) =
Pi

Δi
log2

(
Pi

Δi

)
−
(

pi +
Pi

Δi

)
log2

(
pi +

Pi

Δi

)
− (1 − pi) log2 (1 − pi).

Observe that IBi (Pi) is a monotonically decreasing function
of Pi, and IBi(Δi (1 − pi)) = 0. Consequently, the privacy-
power function for the binary model for a single user is
given by

IBi(Pi) = (IBi (Pi))
+

, (10)

where (x)+ = max(x, 0).
By particularizing (8) with IXi(Pi) = IBi(Pi) for all i,

and solving the resultant problem, we find the optimal power
allocation P ∗

i as

P ∗
i =

⎧⎨
⎩Δipi

1 − pΔi

pΔi

if pi < pΔi,

Δi(1 − pi) otherwise,
(11)

where pΔi(λ) = 1 − e−λΔi , and λ is chosen such that∑N
i=1 P ∗

i = P . Note that pΔi satisfies 0 ≤ pΔi ≤ 1. Then, the

privacy-power function for the multiple users with independent
binary input load distributions is given by

IB(P ) =
N∑

i=1

IBi(P
∗
i ), (12)

=
N∑

i=1

(
HB(pi) − pi

pΔi

HB(pΔi)
)+

, (13)

where HB(p) denotes the entropy of a Ber(p) distribution.
Each user can achieve full privacy IBi(P ∗

i ) = 0 by
obtaining an average power of PXi − Li = Δi(1 − pi) from
the AES, the remaining power Li is obtained from the grid
without incurring any lost of privacy. However, if the average
power obtained from the AES is below PXi − Li then the
energy obtained from the grid comes at the expense of a
loss in privacy. Note that P ∗

i and IB(P ) depend on the input
load parameters PXi , Li, Δi, and pi in a non-straightforward
manner. We postpone the detailed analysis of this privacy-
power function to Section V.

IV. CONTINUOUS INPUT LOADS

For continuous input loads, the optimal output alphabet is
also continuous. Consequently, efficient algorithms, such as
the BA algorithm, do not yield the optimal solution to (4).
In this case, we provide a lower bound on the privacy-power
function by using the Shannon lower bound. We then show
that this lower bound is achievable when the users have
independent exponentially distributed input loads.

Using the SLB [20], for any input load distribution, we have

IXi(Pi) ≥ (h(Xi) − ln (Pi))
+ nats, (14)

where h(X) denotes the differential entropy of the continuous
random variable X . Observe that,

I(Xi, Yi) = h(Xi) − h(Xi|Yi), (15a)

= h(Xi) − h(Xi − Yi|Yi), (15b)

≥ h(Xi) − h(Xi − Yi), (15c)

≥ h(Xi) − h(Exp(E[Xi − Yi])), (15d)

= h(Xi) − ln(Pi), (15e)

where we have used Exp(λ) to denote an exponential random
variable with mean λ. In the above chain of inequalities, (15c)
follows as conditioning reduces entropy, and (15d) follows
since exponential distribution maximizes the entropy among
all nonnegative distributions with a given mean value [20].

Next, we present the necessary and sufficient conditions
for any piecewise continuous input load distribution fX(x)
to achieve the SLB, together with the conditional probability
distribution fY |X(y|x) achieving it. We denote by u(x), the
unit step function which assigns 0 for x < 0, and 1 for x ≥ 0.
The Dirac delta function is denoted by δ(x). We use f ′(x) to
denote the first order derivative of f(x) and f(x+

i ) = lim
x→x+

i

f(x) and f(x−
i ) = lim

x→x−
i

f(x) and x → x+
i and x → x−

i

mean that x → xi from the left and right, respectively. Finally,
we define Δf (xi) = f(x+

i ) − f(x−
i ).
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Theorem 3: Suppose that the input load distribution fX(x)
is continuous on R+ except for a countable number of
jump discontinuities or non-differentiable points XD =
{x1, . . . , xD}. Then, the SLB (14) is achieved for all P
satisfying gY (y) ≥ 0, ∀y ∈ R+, where

gY (y) = gYC (y) + gYD(y) (16)

is a mixture of a continuous and a discrete function specified
as follows:

gYC (y) = fX(y) + E[V ]f ′
X(y), y ∈ R+/XD,

gYD(y) = E[V ]
D∑

i=0

ΔX(xi)δ(y − xi), y ∈ XD.

For all P , at which the SLB is achieved, the output distribution
is given by fY (y) = gY (y) and the optimal conditional output
load distribution reads fY |X(y|x) = fV (x − y) fY (y)

fX (x) where

fV (v) = 1
E[V ]e

− v
E[V ] u(v).

Proof: To show this results, we need to find the con-
ditional distribution fY |X(y|x) that satisfies the SLB with
equality [20]. We require the random variables V = X − Y
and Y to be independent, and V to be distributed according
to an exponential distribution V ∼ Exp(P ) with mean P .
We first obtain the output distribution fY (y) from its Laplace
transform LfY (s) = L(fY (y))(s) as

LfY (s) =
LfX(s)
LfV (s)

,

= LfX(s) (1 + E[V ]s).

Then, it follows that fY (y) is given by (16). The condi-
tional distribution fY |X(y|x) is obtained using the fact that
fX|Y (x|y) = fV (x − y). Finally, it can be shown that∫∞
0 fY (y)dy = 1; and thus, the achievability is guaranteed

by requiring fY (y) ≥ 0, ∀y ∈ R+.
Remark 3.1: If the achievability condition in Theorem 3 is

satisfied for a given Pmax, it is satisfied at any P ≤ Pmax.
Then it follows that, there is a unique critical average power
level, P0, such that IX(P ) = h(X) − ln (P ) for all P ≤ P0

and IX(P ) > h(X) − ln (P ) for all P > P0.
To find a lowerbound on the privacy-power function in the

case of multiple users with continuous input load distributions,
we replace IXi(Pi) with (h(Xi) − ln (Pi))

+ in (8), and find
the corresponding optimal power allocation P ∗

i as

P ∗
i =

{
λ, if eh(Xi) > λ,

e h(Xi), otherwise,
(17)

where λ is chosen such that
∑N

i=1 P ∗
i = P . Then the privacy-

power function for multiple users can be lower-bounded by

IX(P ) ≥
N∑

i=1

(h(Xi) − ln(λ))+ nats. (18)

A. Exponential Input Loads

For an exponential input load distribution with mean λi,
i.e., Xi ∼ Exp (λi), the SLB in (14) is achievable by using

Fig. 2. The reverse waterfilling solution for the optimal power provided to
each user from the AES.

the conditional distribution [19]

fYi|Xi
(y|x) =

λi

Pi
e
− (x−y)

P
i e

x
λi fYi(y),

where fYi is a mixture of a continuous and a discrete distrib-
ution specified by

fYi(y) =
(

1 − P
i

λi

)
1
λi

e
− y

λi +
P

i

λi
δ(y).

Then the privacy-power function for a single user with an
exponential input load with mean λi can be explicitly charac-
terized as follows:

IEi(Pi
) =

{
ln
(

λi

Pi

)
, if Pi ≤ λi,

0, otherwise.
(19)

By particularizing (8) with IXi(Pi) = IEi(Pi
) for all i,

and solving the resultant problem, we find the optimal AES
power allocation among users, P ∗

i , as the well-known reverse
waterfilling solution P ∗

i = λ, if λ < λi, and P ∗
i = λi, if

λ ≥ λi, where λ is chosen such that
∑N

i=1 P ∗
i

= P .
The reverse waterfilling power allocation is illustrated

in Fig. 2 for three users with independent exponentially distrib-
uted energy demands with means λ1, λ2, and λ3, respectively.
The optimal reverse water level is given by λ, where the
heights of the shaded areas in the figure correspond to the aver-
age AES powers allocated to the different users. We observe
that the optimal energy management policy satisfies all the
energy demands of the users whose average input load is
below λ, directly from the AES. Hence, no information is
leaked to the UP about the energy consumption of these users;
user 1 and user 3 in the figure. The rest of the users receive
exactly the same amount of power λ from the AES, and the
remainder of their energy demand is satisfied from the grid.
Finally, the privacy-power function for multiple users with
exponential input loads can be expressed as

IE(P ) =
N∑

i=1

(
ln
(

λi

λ

))+
. (20)

V. NUMERICAL RESULTS

In this section we numerically analyze the privacy-power
function in a SM system with various input load distributions
and number of users, by explicitly evaluating the information
theoretic optimal leakage rate expressions.
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Fig. 3. Privacy-power function for a binary input-output system with
different p values.

Fig. 4. Privacy-power function for a uniform input load, and different EMU
policies.

A. Single User Scenario

In order to illustrate the behaviour of the privacy-power
function for a simple binary input load system, we first
consider a single user with an input load alphabet X = Y =
{0, 1}, and pX(0) = p. We plot the I(P ) function for the
binary input load in Fig. 3 for different p values. As expected,
the required average power from the AES is maximum when
the user wants perfect privacy, and it is zero when no privacy
is required. We also observe that the privacy-power function is
decreasing in P and convex. Another interesting observation
from the figure is the fact that the I(P ) curves for two
different input load distributions, i.e., different p values, might
intersect. This means that, to achieve the same level of privacy
a lighter input load might require lower or higher average
power than a heavier input load. Also note that the two
different input load distributions, say p = 0.1 and p = 0.9,
have the same level of privacy when there is no AES in the
system; however, the input load with lower average energy
demand, i.e., the one with p = 0.9, achieves perfect privacy
with a much lower P value.

Next, we use the discrete uniform distribution to compare
the privacy protection achieved by the information theoretical
optimal policy derived here, with different heuristic policies.
In this case, the input load has a uniform distribution U(x)
with input load alphabet X = {0, c, 2c, . . . , (N − 1)c}, where

Fig. 5. Individual privacy achieved by three users IXi
(P ), i = {1, 2, 3},

all with the same input load alphabet δi = 1 i = {1, 2, 3}, but with different
input load distributions as a function of the average AES power P .

c = 2
N−1 is a constant used to impose a mean value of

E[X ]=1. Based on Theorem 2, the output load alphabet can
be limited to X without loss of optimality. We set N = 21
and in Fig. 4 we plot the privacy-power function for the
optimal strategy obtained by the BA algorithm together with
the privacy-power functions of the following two heuristic
strategies:

1) Time Division: In this policy, at each time instant, the
EMU gets all the energy needed by the user, either from
the AES or from the grid, but not from both simultaneously.
Then, to satisfy the average power constraint at the AES, the
EMU obtains energy from the AES with probability P

E[X] . The
information leaked to the UP, is thus given by

I(X ; Y ) = H(X) − H(X |Y = 0)
P

E[X ]

−H(X |Y = x)
(

1 − P

E[X ]

)
,

=
(

1 − P

E[X ]

)
log2 N.

2) Limit Maximum Output Load: In this policy, we use the
AES to limit the maximum energy received from the grid.
At each time instant, we get all the energy from the grid
X(t) = Y (t) if X(t) < kc, whereas if X(t) ≥ kc we get
Y (t) = kc from the grid and the remaining energy is taken
from the AES. In this case, for each k = 0, . . . , N − 1, the
average power requested from the AES is given by P =
(N − 1 − k) (N − k) c

2N , and the information leaked to the
UP is

I(X ; Y ) = H(X) − Pr(Y = kc)H(X |Y = kc),

= log2 N − N − k

2N
log2(N − k).

In Fig. 4, we can observe that given an average power limited
AES, the privacy achieved by both of these heuristics is
significantly lower than that of the optimal EMU policy.

B. Multi-User Scenario

Next we consider a multi-user scenario with N = 3 users.
We assume equal binary load levels Hi = 1 and Li = 0, but
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Fig. 6. Individual privacy achieved by three users IXi
(P ), i = {1, 2, 3},

each with a different input load alphabet and input load distribution, as a
function of the average AES power P .

different average energy demands with p1 = 0.9, p2 = 0.5,
and p3 = 0.1; thus we have PX1 = 0.1, PX2 = 0.5,
PX3 = 0.9. Fig. 5 illustrates the privacy for each user IBi(P ∗

i )
as a function of the average power P available at the AES.
Notice that, although users 1 and 3, in the absence of an
AES, leak the same amount of information to the UP, since
HB(0.1) = HB(0.9), user 1 achieves perfect privacy much
more rapidly since it has a lower average energy demand. Also
note that, user 3 achieves perfect privacy for a much higher
value of P , even compared to user 2, which leaks the highest
amount of information when there is no AES, as it has the
highest entropy.

Remember that, as opposed to the exponential input load
scenario, in the binary case, the privacy-power function
IBi(P

∗
i ) for each user does not depend solely on the average

power demand of the user, but on both of the parameters
Δi and pi. To illustrate this dependence, we consider a
scenario again with N = 3 users, but with equal average
power demands PXi = Δi (1 − pi), while Li = 0 for all i.
We choose different parameters Δi and pi for each user.
Fig. 6 again shows the privacy of each user as a function
of the average power P . Observe that the optimal power
allocation quickly reduces the information leaked by user 2,
and achieves perfect privacy for this user much before the
other two, although this is the user leaking the most amount
of information in the absence of an AES. The input power
loads for users 1 and 3 have equal entropy, but with different
behaviours; user 1 demands large amounts of energy but
very rarely, while user 3 demands low amounts of energy
very frequently. The optimal EMU policy seen by these users
also differs significantly. While for user 1 the privacy-power
function is a concave monotonically decreasing function, for
user 3 the privacy-power function is monotonically decreasing
but piecewise convex.

Next, we study the effect of the number of users on the
privacy-power function. In Fig. 7, we depict the optimal
information leakage rate with respect to the available average
AES power for binary input loads with different number of
users N = {1, 2, 3}. We can observe that with more than one
user, we have different regimes of operation corresponding
to the number of users that receive energy from the grid.

Fig. 7. I(P ) with respect to the average AES power P for binary input
loads with different number of users.

Fig. 8. I(P ) with respect to the average AES power P for exponential
input loads with different number of users.

Similarly, in Fig. 8 we consider the scenario with exponential
input loads. In both models, regardless of the number of users
in the system the total average power consumed by the users
is fixed to PX . In the figures we set PX = 1. As expected,
if the average power provided by the AES is equal to the
total average power demanded by the users, perfect privacy
can be achieved. Instead, as the average power of the AES
goes to zero, all the information is revealed to the UP, and
thus, the information leakage rate is equal to the sum of the
entropies of all the input loads. In between these two extremes
the privacy-power function exhibits a monotone decreasing
convex behaviour, and the information leakage rate increases
with the number of users in the system.

VI. CONCLUSIONS

We have introduced and studied the privacy-power function,
I(P ), which characterizes the achievable information theoretic
privacy in a multi-user SM system in the presence of an
AES. We have provided a single-letter information theoretic
characterization for I(P ), and showed that it can be evaluated
numerically when the input loads are discrete. We have
also provided explicit characterization of the privacy-power
function for binary and exponential input load distributions.
We have shown that the optimal allocation of the energy
provided by the AES in the exponentially distributed input
load scenario can be derived using the reverse waterfilling
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algorithm, which resembles the rate-distortion function for
multiple Gaussian sources.

We believe that the proposed information theoretic frame-
work for privacy in SM systems provides valuable tools
to identify the fundamental challenges and limits for this
critical problem, whose importance will only increase as SM
adoption becomes more widespread. Many interesting research
problems implore further studies, including time correlated
input loads, systems with multiple EMUs, as well as cost and
pricing issues considering dynamic pricing over time.
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