
fnins-13-00175 March 7, 2019 Time: 16:58 # 1

REVIEW
published: 11 March 2019

doi: 10.3389/fnins.2019.00175

Edited by:
Foteini Christidi,

National and Kapodistrian University
of Athens Medical School, Greece

Reviewed by:
Giorgia Querin,

INSERM U1146 Laboratoire
d’Imagerie Biomédicale, France

Panagiotis Ferentinos,
National and Kapodistrian University

of Athens, Greece

*Correspondence:
Jessica Mandrioli

mandrioli.jessica@aou.mo.it

Specialty section:
This article was submitted to

Neurodegeneration,
a section of the journal

Frontiers in Neuroscience

Received: 14 December 2018
Accepted: 14 February 2019

Published: 11 March 2019

Citation:
Zucchi E, Ticozzi N and

Mandrioli J (2019) Psychiatric
Symptoms in Amyotrophic Lateral
Sclerosis: Beyond a Motor Neuron
Disorder. Front. Neurosci. 13:175.

doi: 10.3389/fnins.2019.00175

Psychiatric Symptoms in
Amyotrophic Lateral Sclerosis:
Beyond a Motor Neuron Disorder
Elisabetta Zucchi1, Nicola Ticozzi2,3 and Jessica Mandrioli4*

1 Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, University of Modena and Reggio Emilia,
Modena, Italy, 2 Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e
Cura a Carattere Scientifico, Milan, Italy, 3 Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center,
Università degli Studi di Milano, Milan, Italy, 4 Department of Neuroscience, Azienda Ospedaliera Universitaria Modena,
St. Agostino- Estense Hospital, Modena, Italy

The historical view that Amyotrophic Lateral Sclerosis (ALS) as a pure motor disorder
has been increasingly challenged by the discovery of cognitive and behavioral changes
in the spectrum of Frontotemporal Dementia (FTD). Less recognized and still significant
comorbidities that ALS patients may present are prior or concomitant psychiatric illness,
such as psychosis and schizophrenia, or mood disorders. These non-motor symptoms
disturbances have a close time relationship with disease onset, may constitute part of
a larger framework of network disruption in motor neuron disorders, and may impact
ALS patients and families, with regards to ethical choices and end-of-life decisions.
This review aims at identifying the most common psychiatric alterations related to ALS
and its prognosis, looking at a common genetic background and shared structural
brain pathology.

Keywords: amyotrophic lateral sclerosis, frontotemporal dementia, psychosis, depression, c9orf72, psychiatric
symptoms and disorders

INTRODUCTION: AMYOTROPHIC LATERAL SCLEROSIS AND
ITS PHENOTYPES

Amyotrophic Lateral Sclerosis (ALS) has traditionally been defined since the first reports as a
disorder characterized by progressive degeneration of upper and lower motor neurons (UMN and
LMN, respectively), leading invariably to paralysis of voluntary muscles, with a variable proportion
of spasticity and atrophy. Despite a uniformly fatal outcome, extreme variability exists within
ALS, with heterogeneity of initial presentation, spreading of disease, progression, and survival
(Brown and Al-Chalabi, 2017; Hardiman et al., 2017). The observation of distinct patterns within
ALS clinical variability has led to the recognition of homogeneous phenotypic subgroups. A first
classification system is based on the differential involvement of upper and lower motor neuron, with
primary lateral sclerosis (PLS) and progressing muscular atrophy (PMA) representing the extremes
of the spectrum. The type of involvement of different body regions at onset is another common
identifier, with bulbar patients constituting 25% of the total ALS population (Chiò et al., 2011).
This phenotype is more consistently associated with cognitive alterations and displays decreased
survival compared to the classic spinal-onset, “Charcot-type” phenotype (Chiò et al., 2011; Talman
et al., 2016). A prevalent LMN involvement define flail arm and flail leg variants (Wijesekera et al.,
2009), whereas a prevalence of UMN signs with spasticity, increased and pathological reflexes
and pseudobulbar affect, identify the UMN-predominant phenotype (UMN-p); these phenotypes
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display a relatively long survival (Sabatelli et al., 2008; Chiò
et al., 2011). Lastly, the respiratory phenotype, characterized by
an early and prominent involvement of the respiratory muscles,
is characterized by the worst prognosis (Shoesmith et al., 2007).
Moreover, while the majority of patients report a pattern of
spreading of the disease from one limb to the contralateral,
as by means of contiguity in cortical representations, there
is a substantial fraction of ALS population describing a close
sequential involvement of two distal sites (Walhout et al., 2017).

The clinical heterogeneity of ALS is reflected at molecular
level in many ways. First of all, up to 20% of ALS patients
show familiality for the disease, most typically transmitted by
an autosomal dominant pattern (Gibson et al., 2014; Ryan
et al., 2018). Among familial ALS (fALS), two thirds of
the cases can be explained by pathogenic mutations in the
C9orf72, SOD1, TARDBP, and FUS genes (Zou et al., 2017;
Chiò et al., 2014), which also occur in 10–15% of sporadic
ALS (sALS) (Renton et al., 2014). The relative contribution
of each gene mutation to the epidemiology of the disease
differs according to the population origin, with C9orf72 repeat
expansion representing the most frequent alteration in ALS
patients of European descent, while SOD1 mutations dominate
the genetic landscape of ALS in China, Korea, and Japan (Zou
et al., 2017). Overall, variable penetrance, genetic pleiotropy
and the finding of double pathogenic mutations in the same
patient point to an oligogenic mode of inheritance for many
cases (Van Blitterswijk et al., 2012). At the histopathological level,
diverse pathological signatures correspond to this fragmented
genetic scenario. In the majority of sALS, as well as nearly
half of frontotemporal dementia (FTD) cases, ubiquitinated
and phosphorylated cytosolic TDP-43 aggregates are found in
the frontal cortex (Neumann et al., 2006; Braak et al., 2010),
whereas motor neurons of ALS patients harboring mutations
in SOD1 or FUS display either neurofilamentous hyaline
conglomerate inclusions and aggregates of misfolded SOD1 or
cytoplasmic inclusions immunoreactive for FUS (Shibata et al.,
1996; Kwiatkowski et al., 2009). C9orf72 associated diseases are
characterized by TDP-43 pathology, but also by the presence
of repeat-containing RNA (Al-Sarraj et al., 2011; Ash et al.,
2013). These expanded C9orf72 RNAs form nuclear foci and
can sequester various RNA-binding proteins, indirectly impairing
their function on nucleic acid life cycle (Gendron et al.,
2013; Zu et al., 2013). In addition, C9orf72 repeat expansions
produce, via non-canonical Repeat-Associated Non-ATG (RAN)
translation, several dipeptide repeat proteins (DPRs) that are
highly aggregation-prone, thus compromising proteostasis (Mori
et al., 2013; Kumar et al., 2017). Moreover, the human C9orf72
protein has been recently shown to play a role in endosomal
degradation and lysosomal homeostasis and to target stress
granules (SGs) to autophagy for clearance, acting in concert with
SQSTM1 (Chitiprolu et al., 2018; Corrionero and Horvitz, 2018).

The majority of ALS-associated mutations displays an extreme
variability in clinical manifestations, which may present asALS-
plus phenotypes in the same individuals (e.g., ALS and
parkinsonism) and/or different clinical pictures in the carriers
belonging to the same family (e.g., ALS, FTD, or both in
C9orf72 families).

All these recent achievements in the understanding of the
disease pathogenesis led to the general consensus that ALS is
a multisystem disorder in which the clinical, pathological and
genetic features largely overcome the boundaries of a pure motor
neuron involvement.

ALS AS AN EXTRA-MOTOR DISORDER
WITH COGNITIVE INVOLVEMENT

The common notion of ALS as a disease affecting exclusively
motor neurons has been initially cast into doubt by the early
clinical observations of an association with FTD. In particular,
clinicians observed some degrees of motor neuron diseases
(MND) in FTD patients, and conversely, signs of cognitive
and behavioral changes in ALS patients (Talbot et al., 1995;
Neary et al., 2000).

FTD is the second most common form of early onset
dementia, characteristically presenting in the fifth–sixth decade.
The term FTD is used as an umbrella which encompasses a
variety of clinical subtypes defined by clinical and pathological
consensus criteria (Neary et al., 2000; Gorno-Tempini et al., 2011;
Rascovsky et al., 2011). FTD can present as two main types,
primarily affecting behavior (behavioral variant FTD, bvFTD)
or language (primary progressive aphasia, PPA), the latter of
which can be further divided in semantic variant (SD), non-
fluent agrammatic variant (PNFA), and logopenic variant (lvPPA)
(Chare et al., 2014; Finger, 2016). Although these subtypes can
have very distinct neuroanatomical substrates, with time patients
with bvFTD develop impairment in language functions and vice
versa. Notably, ALS is most typically associated with behavioral
FTD, whereas PPA variants with MND are rare (Saxon et al.,
2017). In general, nearly 15% ALS patients satisfy diagnostic
criteria for FTD (Raaphorst et al., 2012a,b; Phukan et al., 2012),
constituting the syndrome of ALS-FTD, while larger fractions
of ALS patients exhibit mild to moderate behavioral (ALSbi)
and/or cognitive deficits (ALS-eci if executive impairment is
present; ALS-neci if other intellectual functions are affected). An
impairment of executive functions and verbal fluency has been
found in 34–55% of ALS patients (Murphy et al., 2007a,b, 2016;
Lillo and Hodges, 2009; Phukan et al., 2012; van Es et al., 2017),
while behavioral disturbances have been observed in 14–40% of
cases (Witgert et al., 2010; Phukan et al., 2012; Abrahams et al.,
2014). Even more subtle cognitive and behavioral changes can
be detected by recently validated batteries especially designed for
screening ALS patients (Strong et al., 2017).

On the other side, almost 15% of bvFTD patients develop
ALS during the course of disease, while signs of motor neuron
impairment are observed in 40% of cases (Burrell et al., 2011;
Bang et al., 2015). In conclusion, ALS and FTD can be regarded
as the extremes of a disease continuum sharing some common
histopathological and genetic background, which reflects a much
extensive involvement of the sole motor neuron pathology.

The increased understanding of this diseases spectrum, has
led researchers to study a variety of symptoms not classically
considered part of the ALS clinical picture, the main ones
being sensory and coordination impairment, pain and autonomic
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involvement, sleep alteration and sphincter abnormalities. More
recently, psychiatric symptoms have gained attention from
several points of view: their increased presence preceding or
following ALS onset, their relationship with FTD, familiality,
prognosis, and treatment options.

In this review we aim to examine and elaborate on the reported
aspects of psychiatric features in relation to the ALS spectrum.

PSYCHIATRIC DISTURBANCES IN ALS
AND FTD

Early clinical observations reported several cases in which
psychiatric illnesses such as schizophrenia co-occurred in ALS
patients, raising the hypothesis of a common genetic background
(Howland, 1990). More recently, register-based nationwide
studies have proven an higher occurrence of psychiatric illnesses
both before and after ALS diagnosis. In particular, the presence
of depression, neurotic disorders and history of drug abuse or
dependence, was associated to an increased odds ratio (OR) for
ALS; in-depth analysis revealed that a diagnosis of schizophrenia
may also represent a risk factor for ALS (OR 5.0) (Turner et al.,
2016). Moreover, the risk of presenting depression, a neurotic
or stress-related disorder following the diagnosis appeared to be
increased as well (Longinetti et al., 2017).

Along with these findings, family members of ALS patients,
especially children, showed increased risk for manifesting
psychiatric disturbances both before and after their relative’s
diagnosis (Longinetti et al., 2017). Further strengthening this
link, aggregation studies suggest neuropsychiatric illnesses and
ALS cluster in families. In a population-based cohort study the
relative risk of developing a neuropsychiatric condition such
as schizophrenia or psychosis was significantly higher in first
or second degree relatives of ALS patients (Byrne et al., 2013;
O’Brien et al., 2017). Whether this can be explained by genetic
pleiotropy of few variants into several kindreds or by a shared
polygenic risk between psychiatric diseases and ALS spectrum
remains to be determined (O’Brien et al., 2017).

Moving to FTD, psychosis is a recognized symptom, affecting
32% of patients in the largest autoptically confirmed case
series, though psychiatric disturbances are not included in the
diagnostic criteria (Landqvist Waldö et al., 2015). Prevalence of
hallucinations in FTD cohorts varies considerably, with auditory
being the most common, and delusions affect one quarter of the
patients (Hall and Finger, 2015). When retrospectively evaluating
clinical features in a FTD cohort that later evolved to motor
neuron disorder, the presence of delusions was the best predictor
of such progression, with a hazard ratio of 4.4 (Lillo et al., 2010).

Psychosis and Schizophrenia
Even before the discovery of a genetic overlap between
schizophrenia and ALS, a relation between the two diseases
was already suggested by early historical studies (Meltzer
and Crayton, 1974; Howland, 1990; Larner, 2008). Moreover,
disturbances in motor neuron function both at central (Goode
and Manning, 1988) and peripheral level (Crayton et al., 1977;

Crayton and Meltzer, 1979) exist in schizophrenia. Population-
based studies have long corroborated the relation between
single psychotic events, as well as schizophrenia, and ALS. In
particular, an increased risk of hospitalization for schizophrenia
could be observed in the 5 years preceding ALS, with higher
statistical significance especially 1 year before onset of motor
symptoms (Turner et al., 2016; Longinetti et al., 2017). This close
relationship between psychotic features and motor symptoms in
ALS may underlie the prodromal nature of these extra-motor
symptoms in the framework of ALS pathogenesis (Turner et al.,
2016). The link between ALS and schizophrenia was further
supported by a large genome-wide association study which found
a substantial genetic correlation, only partially explained by
pleiotropic gene variants such as c9orf72 (McLaughlin et al.,
2017). As previously highlighted, increased risk for schizophrenia
and single psychotic episodes is observed among kindreds of
c9orf72 carriers (Devenney et al., 2018). Moreover, psychosis
was the presenting symptoms in 38% of c9orf72 carriers in
a FTD-motor neuron disorder cohort, with florid psychotic
symptoms such as delusional psychosis, somatoform psychosis
or paranoid schizophrenia, and frontotemporal atrophy or
hypoperfusion were noted on neuroimaging (Snowden et al.,
2012). Delusions and hallucinations in this cohort of patients
were reported to be mainly negative in nature, not related to their
personal life experience (Snowden et al., 2012). Single psychotic
episodes were also observed in elderly patients carrying c9orf72
expansion (Devenney et al., 2018). Overall, late-onset psychosis
should always raise concern for familiality with motor neuron
disease and thus warrant genetic testing for c9orf72 repeat
expansion (Sommerlad et al., 2014). Furthermore, Snowden and
colleagues noted that, though similar in appearance, in the case
of c9orf72 expansion carriers bizarre behaviors and complex
motor stereotypes had a distinct trait compared to those of
other FTD and FTD-MND patients. According to the authors,
it might therefore be hypothesized that this background activity
of delusional thinking guides and reinforces the behavioral
aberrancies typical of symptomatic FTD (Snowden et al., 2012).

Some of the cognitive changes associated to ALS, such as
sensory behavioral disturbances, which were found in more
than half of a large ALS cohort (Gibbons et al., 2008), have
also been implicated in schizophrenia network dysfunction,
with hyperactivation of secondary somatosensory cortex (Rains
et al., 2012) and failed integration of sensory signaling (Carter
et al., 2017). Regarding the pathophysiology of schizophrenia,
a plethora of putative mechanisms have been implicated so
far, mostly involving cerebral metabolic abnormalities in the
pre-frontal cortex, anterior cingulate, caudate nucleus, basal
ganglia, thalamus, and the cerebellum (Gross-Isseroff et al.,
2003). Moreover, disruption of cortical inhibitory circuits by a
reduction of overall GABAergic transmission has been advocated
in schizophrenia by neurophysiological studies, mainly using
transcranial magnetic stimulation (Fitzgerald et al., 2002),
which demonstrated a reduction of long-interval cortical
inhibition (LICI) especially in prefrontal cortex (Radhu et al.,
2015). This not only relates to, similarly, enhanced cortical
excitability in motor neuron disease (Geevasinga et al., 2016),
but also to likewise affected tracts, with prefrontal cortex
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involvement in ALS patients showing verbal fluency, attention
and executive function impairment (Lomen-Hoerth et al., 2003;
Meier et al., 2010).

Depression and Anxiety
Exogenous depression in ALS can be partly justified by the
dismal prognosis of such a diagnosis, with patients experiencing
everyday continuous motor decay. Nevertheless, literature show
contrasting results in terms of the prevalence of depressive
disorders in ALS, partly explained by the different testing
scales employed, partly by the cross-sectional or prospective
nature of these studies, and partly by the emotional adjustment
or concomitant cognitive symptoms affecting ALS patients.
The prevalence of depression in different studies thus ranges
from impressively high values as 48–75% (McElhiney et al.,
2009; Körner et al., 2015; Wei et al., 2016) to as low as
0.9–12% (Ferentinos et al., 2011; Lulé et al., 2012; Rabkin
et al., 2015). In a large observational study, 17% of ALS
patients were diagnosed with a major depressive disorder, and
more than half of them were on antidepressant medications
(Thakore and Pioro, 2016). There is evidence of an increased
risk of depression prior to motor symptoms in ALS patients,
particularly evident 1 year before disease onset, suggesting that
the mood disorder is part of the prodromal cascade (Roos
et al., 2016; Turner et al., 2016; Longinetti et al., 2017).
Importantly, patients receiving a diagnosis of depression have
a 3.6 OR of developing ALS compared to controls within 1
year (Roos et al., 2016). Likewise, a diagnosis of depression
is more probable after ALS onset, in particular within 1 year
from the appearance of motor symptoms (Roos et al., 2016;
Turner et al., 2016). The same increased prevalence before
and after ALS onset is true also for anxiety symptoms and
neuroticism (Longinetti et al., 2017). Familial history of suicide
was extremely overrepresented in ALS kindreds (Byrne et al.,
2013; O’Brien et al., 2017).

On the other hand, many of the behavioral alterations
demonstrated in ALS patients may be confused with depressive
symptoms, such as apathy, which is found in 31–88% of patients
(Witgert et al., 2010; Lillo et al., 2011), self-centredness, blunting
of primary emotions, and lack of concern for personal hygiene
(Gibbons et al., 2008). Interestingly, some studies failed to relate
these symptoms to measures of depression (Grossman et al.,
2007), arguing that this may reflect a behavioral disturbance
due to the intrinsic ALS-FTD pathological continuum, rather
than being secondary to the mood disorder. Another potential
confounder of depressive symptoms in ALS is pseudobulbar
affect (PBA), a neurobehavioral phenomenon manifesting with
pathological overwhelming laughter or crying which are either
incongruent with or excessive for the context. However, it has
been demonstrated that crying-predominant PBA is associated
with depression, while laughter-predominant is not (Thakore and
Pioro, 2016). This finding may be due to mutual contributions
from these conditions, with depression presenting as crying in
the setting of PBA, and crying from PBA reinforcing the feeling
of sadness and underlying depression. Further studies will be
needed to determine whether these emotional phenomena in ALS
are related to a shared pathological mechanism with depression.

Autism, Obsessiveness and Other
Psychiatric Disorders Associated With
ALS
Among other psychiatric disorders associated with ALS, Turner
et al. found increased rate of bipolar disorder, with a relative risk
of 3.2 to develop ALS within 1 year from hospitalization (Turner
et al., 2016). This was later confirmed by a large registry-based
study in which bipolar, neurotic and stress-related disorders, as
well as a history of drug abuse/dependence, represented risk
factors for subsequently developing ALS (Longinetti et al., 2017).
Clustering of autism spectrum disorders has been observed
within ALS and c9orf72 positive ALS-FTD kindreds (O’Brien
et al., 2017; Devenney et al., 2018). Lack of empathy is commonly
reported among the cognitive deficits of ALS patients (Cerami
et al., 2014). Other abnormalities typically associated to autism
such as stereotypical behaviors, social cognition impairment,
obsessive-compulsive traits and mental rigidity have been
reported in patients and corresponds to the clinical ALS-FTD
continuum (Gibbons et al., 2008; Lillo et al., 2010; Mioshi et al.,
2014). Theory of Mind (ToM) refers to the ability to infer mental
states of oneself and others such as beliefs, emotions, intentions,
and desires, thus allowing for an understanding of other
people’s behavior; these capacities are typically compromised in
autistic patients (Hoogenhout and Malcolm-Smith, 2017). ToM
processes have been further subdivided in cognitive and affective
components. In ALS, 36% of patients displayed impairment
in cognitive abilities, whereas 27% were dysfunctional in the
affective ToM (van der Hulst et al., 2015).

Medial and orbitolateral prefrontal cortices have been
involved in ToM capacity (Gallagher and Frith, 2003; Mitchell
et al., 2006; Völlm et al., 2006), and several studies have largely
demonstrated dysfunctional networks in these areas (Meier et al.,
2010; Trojsi et al., 2017). Overall, a selective neurochemical
or neuroanatomical network disruption may lie beneath ALS
and autism mediated by unknown pathological mechanisms that
warrant further research.

HISTOPATHOLOGICAL SIGNATURE OF
THE ALS-FTD SPECTRUM AND HINTS
FOR CORRELATIONS TO PSYCHIATRIC
SYMPTOMS

The most common histopathological feature in ALS is
represented by TDP-43 inclusions in motor neurons, either large
and round (Lewy bodies-like) or skein-like (Braak et al., 2010).
TDP-43 can be mislocalized within neuronal cytoplasmatic
inclusion (NCIs) or dystrophic neurites (DN), and is enriched
in post-translational modifications such as ubiquitination and
phosphorylation (Tan et al., 2013).

Larger works proved TDP-43 pathology to be present in about
half of all FTD cases (Davidson et al., 2007; Mann and Snowden,
2017), whereas the remnant 45% is represented by protein tau,
and less than 5% by FUS or other aggregate-prone proteins
(Mann and Snowden, 2017).
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Interestingly, based on morphology and distribution of
the inclusions, TDP-43 pathology in ALS and FTD can be
subclassified into four types (A, B, C, D), the first two of them
displaying round intracytoplasmatic aggregates (Tan et al., 2013).
Type B is the most typically observed inclusion pattern in MND,
while in FTD it is observed only in patients showing concomitant
motor neuron involvement (Burrell et al., 2016).

Propagation of TDP-43 pathology from its core anatomical
substrate, i.e., the motor cortex, was shown in ALS from a large
cross-sectional autopsy study in which four stages of progression
were identified. In stage 1, TDP-43 proteinopathy can be
observed in the granular motor neocortex, alpha-motoneurons
of the ventral horn, and bulbar motor neurons of cranial nerves.
Stage 2 is characterized by involvement of reticular formation
and precerebellar nuclei. In stage 3 TDP-43 inclusions are present
in the prefrontal neocortex (firstly, gyrus rectus and orbital gyri,
and, secondly, sensory areas and temporal neocortical area) and
basal ganglia (striatum and inferior colliculus). In the final stage
(4), anteromedial areas of the temporal lobe and the hippocampal
formation display signs of pathology (Brettschneider et al., 2013).

A similar mechanism of spreading has been observed for
bvFTD, where involvement of the orbital gyri, gyrus rectus, and
amygdala characterizes the cases at the very initial phase (stage
I). At an increasing burden of disease, the middle frontal and
anterior cingulate gyrus as well as anteromedial temporal lobe
areas, superior and medial temporal gyri, striatum, red nucleus,
thalamus, and precerebellar nuclei are involved (stage II). More
advanced phases of disease are characterized by motor cortex,
bulbar somatomotor neurons, and spinal cord anterior horn
propagation (stage III), and ultimately, visual cortex is affected
(stage IV) (Brettschneider et al., 2014).

With regard to psychosis and schizophrenia, though they
are considered more as diseases of connectivity and abnormal
neurochemical transmission, some histopathological studies have
found small but significant areas of atrophy in hippocampus,
prefrontal and superior temporal cortex, and thalamus. This
is accompanied by hemispheric asymmetry, decreased cortical
thickness and gyrification, and abnormalities in hippocampal
shape. Moreover, an early neurodevelopmental anomaly in
schizophrenia may be postulated since the discovery of abnormally
placed and clustered neurons in lamina II of entorhinal cortex
or in the neocortex (Harrison and Weinberger, 2005). The
finding of a decreased number of dendrites and arborization
at hippocampal and neocortical level further support the view of
reduced or aberrant wiring in schizophrenic patients, while the
major neurochemical findings at cortical levels are represented
by reduced number of serotoninergic (5-HT2A) and muscarinic
(M1) receptors in patients with schizophrenia (Dean et al., 2016).

A clear neuropathological hallmark similar to the ALS/FTD
spectrum does not exist for schizophrenia; nevertheless, in
an autopsy case series on schizophrenic patients, tau-positive
glial tangles were found in the dorsal aspect of temporal
horn, arcuate fibers in gyri of frontal cortex, and within
parahippocampal gyrus, while neurofibrillary tangles were
observed in transentorhinal cortex, entorhinal region, subiculum
and anterior hippocampus, in almost one third of cases, with
increasing prevalence in elderly patients (Casanova et al., 2002).

Altogether, these data may point to a restricted limbic tauopathy
in presenile or senile psychotic patients, with no evidence
of progression unlike Alzheimer disease. Though it may not
be excluded that aberrancies in tau metabolism are due to
neuroleptic drugs (Wisniewski et al., 1994), it is reasonable to
hypothesize neurodegenerative processes occur in schizophrenia
as well, given the accelerated aging and overall atrophy resulting
in severe cognitive decline and motor abnormalities from
duration of untreated psychosis (Anderson et al., 2014).

A further neuropathological link between psychosis and ALS
may be found in microglia activation.

In fact, ALS arises in part by non-cell-autonomous
mechanisms, from a combination of damage within MNs
and their glial partners (Boillée et al., 2006). During the disease
course, microglia switches from a neuroprotective M2 phenotype
to an activated M1 phenotype which secretes proinflammatory
interleukines, cytokines and neurotoxic factors, leading to the
progression of neuronal injury (Henkel et al., 2013). Similarly, in
schizophrenic patients’ autopsies, increased markers of microglia
activation were observed in the prefrontal cortex, anterior
cingulate and temporal cortex (Radewicz et al., 2000).

NEUROIMAGING ACROSS PSYCHIATRIC
AND BEHAVIORAL SYMPTOMS IN ALS

Neuroimaging studies have been crucial to better investigate
functional and structural alterations in ALS patients showing
psychiatric symptoms. By studying brain volume in a cohort of
bvFTD and FTD-MND patients, a precise network of cortical
and subcortical areas could be identified in patients with
psychotic symptoms, which display bilateral medial prefrontal
and occipital cortices, right thalamus and left cerebellum atrophy
(Devenney et al., 2016). Sub-analysis within c9orf72 expansion
carriers with psychosis prior to FTD or FTD-MND revealed
that, besides presenting higher psychotic index, more extensive
network disruption occurred, with volume reduction of bilateral
medial frontal cortex, anterior cingulate and orbitofrontal cortex,
bilateral insula, caudate, putamen and thalamic nuclei, middle,
inferior and superior temporal gyrus, temporal fusiform gyrus,
lateral occipital cortex and right cerebellum (Devenney et al.,
2016). These areas roughly corresponds to those with the highest
degree of atrophy in schizophrenic and schizoaffective patients
(Amann et al., 2016). Moreover, anterior cingulate cortex and
insula are strongly connected in the salience network, whose
main function is to detect, analyze and integrate emotionally
salient stimuli with respect to the internal environment, and
which is involved in symptom generation in both FTD and
schizophrenia (Seeley et al., 2007; Zhou and Seeley, 2014).
In addition to schizophrenia, late-onset obsessive compulsive
disorder in the setting of an upper motor neuron disease with
concomitant FTD presents with bilateral hippocampal atrophy
with sclerosis of right hippocampus on MRI and moderate right
temporal cortex thinning at PET imaging (Bersano et al., 2018).

As already mentioned, abnormal behaviors are found in
ALS patients along the FTD spectrum. Among these, apathy
is one of the most commonly reported, and is correlated with
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cortical thickness reduction in bilateral orbitofrontal lobe and
left precentral gyrus. On the other hand, a hostile, disinhibited
pattern of personality as identified by PCA analysis is more
associated to thinning of temporal and cingular regions of the
right hemisphere (Consonni et al., 2018).

A COMMON GENETIC BACKGROUND

Genome wide association studies (GWAS) allowed for exploring
the genetic relationship between schizophrenia and ALS through
SNPs-based heritability estimates, obtaining a genetic correlation
of 14% (McLaughlin et al., 2017) due to polygenic overlap.
Intriguingly, conditional false discovery rate was used to
investigate novel ALS-associated genomic loci, confirming some
of the known pleiotropic risk loci discussed below. A further
study found clustering of schizophrenia and psychosis, suicide,
autism, rigid personality disorders, and alcoholism in ALS
kindreds suggesting that shared pleiotropic oligogenic variants
may be responsible for co-segregation of psychiatric illnesses and
ALS (O’Brien et al., 2017).

c9orf72
In 2011 a worldwide effort identified a hexanucleotidic expansion
in the c9orf72 gene as the major genetic determinant of both
ALS and FTD (DeJesus-Hernandez et al., 2011; Renton et al.,
2011), thus revolutionizing our knowledge of genetic pleiotropy
of ALS. C9orf72 pathological expansion accounts for almost
40% of fALS, 8% of sALS, and almost 30% of familial FTD in
Caucasian population (Ng et al., 2015; Ng and Tan, 2017). This
prevalence is increased in ALS-FTD, where it is found in 50–
70% of familial and 15–20% of apparently sporadic cases (van der
Zee et al., 2013). Noteworthy, c9orf72 repeat expansion display a
high phenotypic variability, spanning from parkinsonism (Floris
et al., 2012), to corticobasal degeneration (Lindquist et al.,
2013), psychosis (Watson et al., 2016), and suicidal behavior
(Synofzik et al., 2012). Penetrance is incomplete and age-
dependent (Murphy et al., 2017), with anticipation phenomena
similar to other repeat expansions diseases (Van Mossevelde et al.,
2017). When analyzing the clinical feature best discriminating
c9orf72 carriers from non-carriers in a cohort of bvFTD patients,
psychosis and familiality for ALS appeared the most reliable
clues (Devenney et al., 2014). A recent study investigating
the risk of psychiatric disorders in c9orf72 positive kindreds,
extrapolated from FTD and ALS cohorts, revealed an association
with increased risk of autism spectrum disorders (HR: 2.7),
schizophrenia (HR for a family member: 4.9) or a single psychotic
episode (HR: 17.9), and mood disorder (HR: 1.9) (Devenney
et al., 2018). Overall, this study confirms previous reports from
an aggregation study in which stratification of ALS probands
in carriers and non-carriers of c9orf72 repeat expansion was
associated with major risk of presenting psychiatric disturbances
in family members (Byrne et al., 2013). Importantly, among the
referred psychiatric disorders associated to c9orf72 expansion,
obsessive-compulsive disorder seems to be excluded (Arthur
et al., 2017), though rigid stereotyped behavior with obsessiveness
is frequently observed in carriers (Snowden et al., 2012).

C9orf72 is an alternatively spliced gene encoding for three
protein transcripts, whose functions have not been fully
elucidated. Molecular studies showed that the protein localizes
in the nucleus and is structurally similar to DENN (differentially
expressed in normal and neoplasia) proteins, which contain a
guanine nucleotide exchange factor allowing them to interact
with RAB GTPase proteins and regulate membrane trafficking
from the nucleus (Levine et al., 2013; Aoki et al., 2017). A striking
characteristic of c9orf72 alterations is that differential repeat
length is observed across different tissues (Van Blitterswijk et al.,
2013), suggesting instability and possibly the occurrence of
epigenetic phenomena such as hypermethylation as a potential
source of this variability (Xi et al., 2014).

Healthy individuals carry up to 25 repeats of GGGGCC in
c9orf72, with the majority having a couple of repeats, while in
ALS and FTD cases the number of repeats ranges from 100s
to 1000s (DeJesus-Hernandez et al., 2011; Renton et al., 2011;
Beck et al., 2013). Uncertainty surrounds the role of intermediate
length (22–30) repeats, though they seem to be associated with
a higher frequency of psychiatric symptoms in FTD, FTD-ALS,
and atypical parkinsonism cohorts (Ng and Tan, 2017).

Recently some studies focused on biomarkers that may help
predict the so-called “phenoconversion,” since genetic therapy
may become an option for in C9orf72 carriers (Floeter and
Gendron, 2018). Biological markers might guide pharmacological
response to potential therapies, as in the case of Poly(GP) proteins
(Gendron et al., 2017a), or predict the prognosis (Gendron
et al., 2017b) and anticipate the onset of symptoms by a year
(Benatar et al., 2018), as in the case of neurofilament heavy and
light chain, respectively. Furthermore, imaging studies showed
that atrophy of several cortical and subcortical structures have
been observed in asymptomatic carriers, including the thalamus
(Papma et al., 2017; Bertrand et al., 2018; Floeter and Gendron,
2018), the left caudate and putamen, besides diffuse cortical
thinning in defined temporal, parietal, and occipital regions
(Walhout et al., 2015). Similarly, white matter tracts are not
spared either before symptoms onset: functional studies have
shown salience and medial pulvinar networks, who are known
connectivity networks prominently affected in bvFTD, to be
severely disrupted in carriers already in their 40s (Lee et al.,
2016). Increased radial diffusivity has been reported as well in
the right anterior thalamic radiation and the right forceps, even
in younger c9orf72 expansion carriers (Bertrand et al., 2018).
Notwithstanding, asymptomatic carriers did not show significant
atrophy before symptoms onset in a longitudinal voxel-based
morphometry study (Floeter et al., 2016). When testing the
hypothesis that psychiatric disturbances might be prodromal of
the structural and functional brain abnormalities observed in
c9orf72 presymptomatic carriers, Lee et al. (2016) found that
carriers and non-carrier family members had comparable lifetime
histories of psychiatric symptoms, non-carriers family members
doubled the amount of psychiatric medications compared
to carriers, and underwent similar rates of hospitalization
for psychiatric disturbances. Overall, we cannot exclude that
familiality for psychiatric diseases, which are known polygenic
conditions, runs independently of the expansion among c9orf72-
families, however, further studies are warranted to better explore
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prodromal disturbances of thought in expansion carriers because
of the high variability between personality and behavioral tests,
which might not be suited to detect subtle changes in non-
demented cohorts.

Other Genes Associated With Psychiatric
Disturbances
Notwithstanding the major role of c9orf72, a non-trivial residual
association between ALS and psychiatric disorders persists even
after excluding repeat expansion carriers from genetic analyses
(Byrne et al., 2013). Isolated cases of concomitant psychiatric
disorders such as schizophrenia have been found in kindreds with
specific mutations in FUS (Yan et al., 2010) and TARDBP (Quadri
et al., 2011). Variable rates of psychiatric illnesses, generally less
common than in c9orf72 repeat carriers, were also observed in
non-c9orf72 ALS-FTD cases, carrying PRGN (Hall and Finger,
2015), TBK1 (Van Mossevelde et al., 2016), and VCP (Weihl,
2011) mutation. ATXN2, has also been associated to both ALS
and schizophrenia risk (Zhang et al., 2014).

It is reasonable to speculate that the numerous genetic loci
known to be involved in the ALS-FTD disease spectrum, such
as TBK1, PGRN, CHCHD10, TUB4A, VCP, may predispose
to psychiatric illnesses by analogous mechanisms to c9orf72.
The rarity of these cases, together with the relatively small
populations studied, and the difficulty in discerning psychiatric
disturbances from other aspects of behavioral FTD, make proving
this assumption a daunting task.

PROGNOSTIC ROLE OF PSYCHIATRIC
DISTURBANCES IN ALS

Concomitant psychiatric diseases in ALS patients, whether prior
or after this fatal diagnosis, may add strain on caregivers
and pose important ethical challenges for support and end-
of-life decisions along the course of this disease. Until now,
only few register-based studies have taken into account the
prognostic significance of simultaneous psychiatric illness in
ALS, showing a mild negative influence of anxiety symptoms
and other psychiatric disturbances in univariate analysis, whose

effect was later unconfirmed in multivariate analysis (Körner
et al., 2013; Mandrioli et al., 2018). Other studies examining
the impact of neuropsychiatric symptoms in ALS, expressed
mainly as behavioral alterations, failed to demonstrate any
impact on survival (Mioshi et al., 2014; Burke et al., 2017).
However, in a prospective study evaluating depression in ALS
by validated outcome measures, a concurrent diagnosis of major
depressive disorder corresponded to decreased survival, and any
increasing score matched increased death hazard ratio (Thakore
and Pioro, 2016). This discordance in findings may be related
to an underestimation of depression in the ALS population.
In addition, the use of more subtle evaluating psychometric
measures may aid the clinician to formulate such a diagnosis
and address these disorders, which are increasingly reported as
a major burden for carers (Creemers et al., 2016).

CONCLUSION

In conclusion, psychiatric diseases often anticipate the onset
of motor symptoms in ALS, and their timely relation with
motor neuron pathology may be due to underlying common
pathogenic mechanisms affecting non-motor structures within
the central nervous system. Similar changes in structural
framework between ALS, ALS-FTD and schizophrenia exist, and
some degree of genetic overlap between these diseases has been
found, strengthening a common pathological signature. Overall,
psychiatric illness do not appear to influence significantly the
prognosis and survival of ALS patients, but may constitute an
increased burden for caregivers and challenge ethical choices
with regards to end-of-life decisions. Thus, clinicians should
be aware of the tight relationship between ALS and psychiatric
disorders and timely address specialist interventions to better
assist ALS families.
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