Measurement of the Charm-Mixing Parameter $y_{C P}$

R. Aaij et al.*
(LHCb Collaboration)

(Received 16 October 2018; published 8 January 2019)

Abstract

A measurement of the charm-mixing parameter $y_{C P}$ using $D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-}$, and $D^{0} \rightarrow K^{-} \pi^{+}$ decays is reported. The D^{0} mesons are required to originate from semimuonic decays of B^{-}and \bar{B}^{0} mesons. These decays are partially reconstructed in a data set of proton-proton collisions at center-of-mass energies of 7 and 8 TeV collected with the LHCb experiment and corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$. The $y_{C P}$ parameter is measured to be $(0.57 \pm 0.13$ (stat) ± 0.09 (syst) $) \%$, in agreement with, and as precise as, the current world-average value.

DOI: 10.1103/PhysRevLett.122.011802

Neutral charm mesons can change their flavor and turn into antimesons, and vice versa, before they decay. This phenomenon, known as flavor oscillation or $D^{0}-\bar{D}^{0}$ mixing, occurs because the eigenstates of the Hamiltonian governing the time evolution of the neutral D system are superpositions of the flavor eigenstates, $\left|D_{1,2}\right\rangle=$ $p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$, where p and q are complex parameters satisfying $|p|^{2}+|q|^{2}=1$. In the limit of charge-parity $(C P)$ symmetry, q equals p and the oscillations are characterized by only two dimensionless parameters, $x \equiv$ $\left(m_{1}-m_{2}\right) / \Gamma$ and $y \equiv\left(\Gamma_{1}-\Gamma_{2}\right) / 2 \Gamma$, where $m_{1(2)}$ and $\Gamma_{1(2)}$ are the mass and decay width of the $C P$-even (odd) eigenstate $D_{1(2)}$, respectively, and $\Gamma \equiv\left(\Gamma_{1}+\Gamma_{2}\right) / 2$ is the average decay width [1]. The values of x and y are of the order of 1% or smaller [2]. In the presence of $C P$ violation, the mixing rates for mesons produced as D^{0} and \bar{D}^{0} differ, further enriching the phenomenology.

Because of $D^{0}-\bar{D}^{0}$ mixing, the effective decay width $\Gamma_{C P+}$ of decays to $C P$-even final states, such as $h^{+} h^{-}$ ($h=K, \pi$), differs from the average width Γ. The latter can be measured in decays that involve an equal mixture of $C P$ even and $C P$-odd states, such as $D^{0} \rightarrow K^{-} \pi^{+}$. (Throughout this Letter, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated.) The quantity

$$
\begin{equation*}
y_{C P} \equiv \frac{\Gamma_{C P+}}{\Gamma}-1 \tag{1}
\end{equation*}
$$

is equal to the mixing parameter y if $C P$ symmetry is conserved. Otherwise, it is related to $x, y,|q / p|$, and

[^0]$\phi \equiv \arg (q \overline{\mathcal{A}} / p \mathcal{A}), \quad$ as $\quad 2 y_{C P} \approx(|q / p|+|p / q|) y \cos \phi-$ $(|q / p|-|p / q|) x \sin \phi$, where $\mathcal{A}(\overline{\mathcal{A}})$ is the $D^{0}\left(\bar{D}^{0}\right)$ decay amplitude $[3,4]$. The approximation holds for decays, such as $D^{0} \rightarrow h^{+} h^{-}$, that can be described by a single amplitude. Neglecting the $\mathcal{O}\left(10^{-3}\right)$ difference between the phases of the $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$decay amplitudes, ϕ is universal and $y_{C P}$ is independent of the $h^{+} h^{-}$final state.

The current world average value of $y_{C P},(0.84 \pm 0.16) \%$ [2], is dominated by measurements at the B factories [5,6] and is consistent with the value of $y,(0.62 \pm 0.07) \%$ [2]. The only measurement of $y_{C P}$ at a hadron collider, $[0.55 \pm 0.63$ (stat) ± 0.41 (syst) $] \%$, has been made by the LHCb Collaboration using a sample of proton-proton collisions corresponding to an integrated luminosity of $29 \mathrm{pb}^{-1}$ [7]. Improving the precision of both $y_{C P}$ and y might lead to evidence of $C P$ violation in $D^{0}-\bar{D}^{0}$ mixing if they differ significantly. This would offer sensitivity to a broad class of non-standard-model processes that could contribute to the mixing amplitude by increasing the oscillation rate and/or introducing $C P$-violation effects that are highly suppressed in the standard model [8-13]. Searches for $C P$ violation in the up-quark sector are also complementary to those performed with beauty and strange mesons, thus providing a unique opportunity to make progress in the understanding of the mechanisms responsible for the observed asymmetry between matter and antimatter in the Universe [14,15].

In this Letter, a measurement of $y_{C P}$ using $D^{0} \rightarrow K^{+} K^{-}$, $D^{0} \rightarrow \pi^{+} \pi^{-}$, and $D^{0} \rightarrow K^{-} \pi^{+}$decays is reported. The D^{0} mesons are required to originate from semimuonic decays of B^{-}or \bar{B}^{0} mesons, collectively referred to as $\bar{B} \rightarrow D^{0} \mu^{-} \bar{\nu}_{\mu} X$. The difference between the widths of D^{0} decays to $C P$-even and $C P$-mixed final states,

$$
\begin{equation*}
\Delta_{\Gamma} \equiv \Gamma_{C P+}-\Gamma, \tag{2}
\end{equation*}
$$

is measured from a fit to the ratio between $D^{0} \rightarrow K^{+} K^{-}$(or $D^{0} \rightarrow \pi^{+} \pi^{-}$) and $D^{0} \rightarrow K^{-} \pi^{+}$signal yields as a function of the D^{0} decay time. The parameter $y_{C P}$ is then calculated from the measured value of Δ_{Γ} and the precisely known value of Γ [1] as $y_{C P}=\Delta_{\Gamma} / \Gamma$. The D^{0} decay time is defined as $t=(m \vec{L} \cdot \vec{p}) /|\vec{p}|^{2}$, where m is the known value of the D^{0} mass [1], \vec{L} is the vector connecting the \bar{B} and the D^{0} decay vertices, and \vec{p} is the momentum of the D^{0} meson. The selection efficiency as a function of the D^{0} decay time (decay-time acceptance) is very similar for $D^{0} \rightarrow h^{+} h^{-}$and $D^{0} \rightarrow K^{-} \pi^{+}$decays. However, since the average opening angle of a two-body decay in the laboratory frame depends on the masses of its decay products, differences of the order of a few percent are present and are corrected for in the analysis. The correction is evaluated using simulation and validated using control samples of data, which also include $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$and $D^{+} \rightarrow$ $K^{+} K^{-} \pi^{+}$decays with D^{+}decays originating from semimuonic \bar{B} decays (referred to as $\bar{B} \rightarrow D^{+} \mu^{-} \bar{\nu}_{\mu} X$). To avoid potential experimenter's bias, the measured value of $y_{C P}$ remained unknown during the development of the analysis and was examined only after the analysis procedure and the evaluation of the systematic uncertainties were finalized.

Semileptonic decays of \bar{B} mesons are partially reconstructed in a data set collected with the LHCb experiment in $p p$ collisions at center-of-mass energies of 7 and 8 TeV and corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$. The LHCb detector is a single-arm forward spectrometer equipped with precise charged-particle vertexing and tracking detectors, hadron-identification detectors, calorimeters, and muon detectors, optimized for the study of bottom- and charm-hadron decays [16,17]. Simulation [18-20] is used to model all relevant sources of decays, correct the data for the decay-time acceptance, study the decay-time resolution, and evaluate systematic uncertainties on the measurement.

The online event selection is performed by a trigger that consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a two-level software stage, which applies a full event reconstruction [21]. To select semimuonic \bar{B} decays, the hardware trigger requires a muon candidate with transverse momentum exceeding 1.5 to $1.8 \mathrm{GeV} / c$, depending on the data-taking period. In the first level of the software trigger, the selected muon is required to be displaced from any $p p$ interaction point. These requirements do not bias the decay time of the D candidate. In the second level of the software trigger, the muon candidate is associated with one, two, or three charged particles, all displaced from the same $p p$ interaction point. This association can bias the decay time, favoring shorter D flight distances, as the muon and the D decay products satisfying the trigger criteria must be consistent with originating from a common displaced vertex.

In the offline reconstruction, the muon candidate is combined with charged particles, forming the D-meson candidate and identified to be either kaons or pions, according to the topology and kinematics of $\bar{B} \rightarrow$ $D^{0} \mu^{-} \bar{\nu}_{\mu} X$ and $\bar{B} \rightarrow D^{+} \mu^{-} \bar{\nu}_{\mu} X$ decays. The requirements to select $\bar{B} \rightarrow D^{0} \mu^{-} \bar{\nu}_{\mu} X$ decays are inherited from the analysis reported in Ref. [22]; those for $\bar{B} \rightarrow D^{+} \mu^{-} \bar{\nu}_{\mu} X$ decays are taken from Ref. [23]. In these selections, the D decay products are requested to be displaced from the $p p$ interaction point with respect to which they have the smallest χ_{IP}^{2}, by imposing $\chi_{\mathrm{IP}}^{2}>9$. The χ_{IP}^{2} is defined as the difference in the vertex-fit χ^{2} of a given interaction point reconstructed with and without the particle being considered. These requirements are particularly relevant for the measurement of $y_{C P}$ as they bias the D decay-time distribution, being more efficient for decays with a larger flight distance. The following additional requirements, not used in Refs. [22,23], are applied. The $D \mu$ invariant mass, $m(D \mu)$, must not exceed $5.2 \mathrm{GeV} / c^{2}$, to suppress genuine charm decays accidentally combined with unrelated muon candidates. The mass of the D candidate must be in the range $1.825-1.920 \mathrm{GeV} / c^{2}$. Its decay time must be larger than 0.15 ps to minimize a bias observed in simulation at $t \approx 0$ due to the reconstruction of the \bar{B} vertex. A requirement on the component of the D momentum transverse to the \bar{B} flight direction is applied as a function of the corrected \bar{B} mass to suppress decays of b hadrons into final states with a pair of charm hadrons, of which one decays semileptonically, and background from semitauonic decays $\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau} X$, with $\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}$. The corrected \bar{B} mass is determined from the $D \mu$ invariant mass as $\sqrt{m^{2}(D \mu)+p_{\perp}^{2}(D \mu)}+p_{\perp}(D \mu)$, using the momentum of the $D \mu$ system transverse to the \bar{B} flight direction, $p_{\perp}(D \mu)$, to partially compensate for the momentum of the unreconstructed decay products. After the selection, these background contributions total to at most 1.5% of the signal yield. A contamination of about 1% of D decays produced directly in the $p p$ collision (prompt D) is also estimated to be present in the selected sample. All these background decays are checked to have negligible impact on the measurement of $y_{C P}$.

Figure 1 shows the D^{0} mass distributions of the selected candidates. Prominent signal peaks at the known D^{0} mass values are visible on top of a smooth background made of random combinations of charged particles faking a D^{0} candidate. The small contamination of prompt D^{0} decays is included in the signal peak. Binned χ^{2} fits to the mass distributions determine the signal yields reported in Table I, together with the yields of the control samples of D^{+}decays. The fits use a probability density function (pdf) consisting of a Johnson S_{U} distribution [24] (or the sum of a Johnson S_{U} and a Gaussian distribution in the case of $D^{0} \rightarrow K^{-} \pi^{+}$and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$decays) to

FIG. 1. Distribution of D^{0} mass for candidates passing the selection with fit projections overlaid: (top) $D^{0} \rightarrow K^{+} K^{-}$decays, (center) $D^{0} \rightarrow \pi^{+} \pi^{-}$decays, and (bottom) $D^{0} \rightarrow K^{-} \pi^{+}$decays.
describe the asymmetric shape of the signal peak, and a linear distribution to describe the background.

The sample is split into 19 disjoint subsets (bins) of D decay time spanning the range $0.15-4 \mathrm{ps}$. The signal yields are determined in each decay-time bin with fits to the D mass distribution using the same pdf as described above. In these fits all signal-shape parameters are fixed to the values from the decay-time-integrated fits, with the exception of the mean and width of the Johnson function. The ratio between $D^{0} \rightarrow K^{+} K^{-}\left(\right.$or $\left.D^{0} \rightarrow \pi^{+} \pi^{-}\right)$and $D^{0} \rightarrow K^{-} \pi^{+}$ signal yields as a function of decay time is fitted to determine the value of Δ_{Γ}. The fit minimizes a χ^{2} function where the signal-yield ratio in a decay-time bin is described by the ratio of the integrals of two decreasing exponential functions, one for the numerator with exponent $\Gamma_{C P+}=$ $\Delta_{\Gamma}+\Gamma$, and the other for the denominator with exponent Γ. The value of Γ is fixed to its world average of $2.4384 \mathrm{ps}^{-1}$

TABLE I. Signal yields of the selected candidates.

Decay	Signal yield $\left[10^{3}\right]$
$D^{0} \rightarrow K^{+} K^{-}$	878.2 ± 1.2
$D^{0} \rightarrow \pi^{+} \pi^{-}$	311.6 ± 0.9
$D^{0} \rightarrow K^{-} \pi^{+}$	4579.5 ± 3.2
$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	2260.2 ± 1.9
$D^{+} \rightarrow K^{+} K^{-} \pi^{+}$	98.0 ± 0.3

[1], while Δ_{Γ} and a decay-time-independent normalization factor of the ratio are free to vary in the fit. It should be noted that Γ can be fixed to any arbitrary value, since the distribution of the ratio is only sensitive to Δ_{Γ}. In the fit, the signal-yield ratio is corrected in each decay-time bin by a factor calculated as the ratio of the decay-time acceptances of the decays in the numerator and the denominator. This correction is determined from simulation and shows up to 6% variations around unity as a function of D^{0} decay time (Fig. 2). The correction is similar in magnitude, but with an opposite trend as a function of t, for the determination of Δ_{Γ} with $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays.

Several null tests are performed on data to prove that the estimates of the signal yields are unbiased, and that the corrections from simulation are reliable. The tests use samples of (i) $D^{+} \rightarrow K^{+} K^{-} \pi^{+}$and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$ decays, (ii) $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$decays, (iii) $D^{0} \rightarrow K^{-} \pi^{+}$ decays, and (iv) $D^{0} \rightarrow K^{+} K^{-}$decays. In test (i), the width difference is measured by fitting the yield ratio of $D^{+} \rightarrow$ $K^{+} K^{-} \pi^{+}$to $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$decays. The corrections for the ratio of decay-time acceptances are similar to those in the $y_{C P}$ measurement. In tests (ii)-(iv), the selected data are split randomly into two independent sets: one is used as the denominator sample, and the other, featuring a tighter requirement of $\chi_{\mathrm{IP}}^{2}>60$ for the D decay products, is used as the numerator sample. The threshold on χ_{IP}^{2} is chosen such that the ratio of decay-time acceptances deviates from a constant by up to 40%, i.e., almost an order of magnitude larger variation than that present in the $y_{C P}$ measurement. In all tests, the measured decay-width difference is consistent with zero, with fit p values ranging from 8% to 84%. The two most precise tests, (ii) and (iii), correspond to a validation of the measurement of $y_{C P}$ with an uncertainty of 0.14%, which includes the limited knowledge of the decay-time acceptance correction. Another test (v) consists in measuring the decay-width difference of D^{+}and D^{0} mesons, using the largest-yield samples of $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

FIG. 2. Ratio of decay-time acceptances from simulation for (top) $D^{0} \rightarrow K^{+} K^{-}$over $D^{0} \rightarrow K^{-} \pi^{+}$decays and (bottom) $D^{0} \rightarrow \pi^{+} \pi^{-}$over $D^{0} \rightarrow K^{-} \pi^{+}$decays.

FIG. 3. Acceptance-corrected signal-yield ratio of (top) $D^{0} \rightarrow$ $K^{+} K^{-}$over $D^{0} \rightarrow K^{-} \pi^{+}$decays and (bottom) $D^{0} \rightarrow \pi^{+} \pi^{-}$over $D^{0} \rightarrow K^{-} \pi^{+}$decays as a function of D^{0} decay time, with fit projection overlaid.
and $D^{0} \rightarrow K^{-} \pi^{+}$decays. In this measurement, the ratio of the decay-time acceptances presents variations up to about 10%. However, the decays considered in the numerator and the denominator have sufficiently different topologies that potential biases on the measurement of the width difference are not suppressed in the ratio at the same level as in the $y_{C P}$ measurement. In addition, the very different lifetimes between D^{+}and D^{0} mesons lead to a signal-yield ratio spanning over a very broad interval, with a maximum approximately 25 times larger than its minimum. The ratio of D^{+}to D^{0} lifetimes is determined to be 2.5141 ± 0.0082, where the uncertainty is only statistical, in agreement with the known value of 2.536 ± 0.019 [1]. Biases that scale with Δ_{Γ} are excluded by this test within a relative precision of about 1%. In summary, the five tests yield results consistent with the expectations with a χ^{2} of 5.5 , which corresponds to a p value of 36%. The tests demonstrate that the acceptance effects needed for the measurement of $y_{C P}$ are understood within the precision provided by the limited size of the simulated samples. The tests also confirm that background originating from prompt D decays, from b hadron decays to double-charm final states, and from semitauonic \bar{B} decays can be neglected. They contaminate all samples considered in the tests with fractions similar to those estimated in the $y_{C P}$ measurement.

Figure 3 shows the acceptance-corrected signal-yield ratio measured for the $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$ decays with respect to $D^{0} \rightarrow K^{-} \pi^{+}$decays, with fit projections overlaid. The obtained values of Δ_{Γ} and $y_{C P}$ are reported in Table II. The use of a common reference sample ($D^{0} \rightarrow K^{-} \pi^{+}$) does not introduce any significant correlation between the statistical uncertainties of the $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$measurements.

Systematic uncertainties of $0.0027 \mathrm{ps}^{-1}\left(0.0038 \mathrm{ps}^{-1}\right)$ on Δ_{Γ}, and therefore $0.11 \%(0.15 \%)$ on $y_{C P}$, are assigned for the measurement done with $D^{0} \rightarrow K^{+} K^{-}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$

TABLE II. Measured values of Δ_{Γ} and $y_{C P}$. The first uncertainty is statistical, the second is systematic.

Decay	$\Delta_{\Gamma}\left[\mathrm{ps}^{-1}\right]$	$y_{C P}[\%]$
$D^{0} \rightarrow K^{+} K^{-}$	$0.0153 \pm 0.0036 \pm 0.0027$	$0.63 \pm 0.15 \pm 0.11$
$D^{0} \rightarrow \pi^{+} \pi^{-}$	$0.0093 \pm 0.0067 \pm 0.0038$	$0.38 \pm 0.28 \pm 0.15$

decays. The correlation between the systematic uncertainties is 5%. They are dominated by the knowledge of the correction for the ratio of decay-time acceptances, which is limited by the finite size of the simulated samples. This yields systematic uncertainties of $0.0026 \mathrm{ps}^{-1}\left(0.0037 \mathrm{ps}^{-1}\right)$ on Δ_{Γ} and $0.11 \%(0.15 \%)$ on $y_{C P}$, which are uncorrelated between the $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$measurements. Other systematic uncertainties, contributing less, are associated with the assumed decay model and composition of the simulated samples of semileptonic \bar{B} decays $\left(0.0006 \mathrm{ps}^{-1}\right.$ on $\Delta_{\Gamma}, 0.02 \%$ on $y_{C P}$), possible biases introduced by the fit method as determined in large ensembles of pseudoexperiments $\left(0.0004 \mathrm{ps}^{-1}\right.$ on $\Delta_{\Gamma}, 0.02 \%$ on $\left.y_{C P}\right)$, and the neglected 0.12 ps decay-time resolution $\left(0.0003 \mathrm{ps}^{-1}\right.$ on Δ_{Γ}, 0.01% on $\left.y_{C P}\right)$. These systematic uncertainties are fully correlated between the measurements with $D^{0} \rightarrow K^{+} K^{-}$and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays. Asymmetric production of D^{0} and \bar{D}^{0} mesons from semileptonic B^{-}and \bar{B}^{0} decays produce biases on $y_{C P}$ that are smaller than 10^{-5}. Uncertainties on the measured decay-length arising from relative misalignments of subdetectors and the uncertainty of the input value of Γ, $2.4384 \pm 0.0089 \mathrm{ps}^{-1}$ [1], which is used to determine $y_{C P}$ from Δ_{Γ}, have negligible contributions. Finally, consistency checks based on repeating the $y_{C P}$ measurement on independent subsamples chosen according to data-taking periods, trigger-selection criteria and interaction-point multiplicity all yield compatible results within statistical fluctuations.

In summary, the charm mixing-parameter $y_{C P}$ is measured using $D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-}$, and $D^{0} \rightarrow K^{-} \pi^{+}$ decays originating from semileptonic B^{-}and \bar{B}^{0} decays produced in $p p$ collision data collected with the LHCb experiment at center-of-mass energies of 7 and 8 TeV , and corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$. The results from $D^{0} \rightarrow K^{+} K^{-}, y_{C P}=[0.63 \pm 0.15($ stat $) \pm$ 0.11 (syst) $] \%$, and $D^{0} \rightarrow \pi^{+} \pi^{-}$decays, $y_{C P}=[0.38 \pm$ 0.28 (stat) ± 0.15 (syst) $] \%$, are consistent with each other and with determinations from other experiments [2]. The value of $y_{C P}$ measured in the $D^{0} \rightarrow K^{+} K^{-}$mode is the most precise to date from a single experiment. The two measurements are combined and yield $y_{C P}=[0.57 \pm$ 0.13 (stat) ± 0.09 (syst) $] \%$, which is consistent with and as precise as the current world average value, $(0.84 \pm$ $0.16) \%$ [2]. The result is also consistent with the known value of the mixing parameter $y,(0.62 \pm 0.07) \%$ [2], showing no evidence for $C P$ violation in $D^{0}-\bar{D}^{0}$ mixing.

As larger data samples are accumulated by LHCb , the dominant systematic uncertainty due to finite simulation samples will also be reduced, giving good prospects for further reduction in the uncertainty of $y_{C P}$.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/ IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).
[1] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
[2] Y. Amhis et al. (Heavy Flavor Averaging Group), Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77, 895 (2017), updated results and plots available at https://hflav.web.cern.ch.
[3] D. S. Du, Searching for possible large $C P$-violation effects in neutral-charm-meson decays, Phys. Rev. D 34, 3428 (1986).
[4] S. Bergmann, Y. Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov, Lessons from CLEO and FOCUS measurements of $D^{0}-\bar{D}^{0}$ mixing parameters, Phys. Lett. B 486, 418 (2000).
[5] J. P. Lees et al. (BABAR Collaboration), Measurement of $D^{0}-\bar{D}^{0}$ mixing and $C P$ violation in two-body D^{0} decays, Phys. Rev. D 87, 012004 (2013).
[6] M. Starič et al. (Belle Collaboration), Measurement of $D^{0}-\bar{D}^{0}$ mixing and search for $C P$ violation in $D^{0} \rightarrow K^{+} K^{-}, \pi^{+} \pi$ decays with the full Belle data set, Phys. Lett. B 753, 412 (2016).
[7] R. Aaij et al. (LHCb Collaboration), Measurement of mixing and $C P$ violation parameters in two-body charm decays, J. High Energy Phys. 04 (2012) 129.
[8] G. Blaylock, A. Seiden, and Y. Nir, The role of $C P$ violation in $D^{0}-\bar{D}^{0}$ mixing, Phys. Lett. B 355, 555 (1995).
[9] S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cimento 26, 1 (2003).
[10] Y. Grossman, A. L. Kagan, and Y. Nir, New physics and $C P$ violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75, 036008 (2007).
[11] A. A. Petrov, Charm mixing in the standard model and beyond, Int. J. Mod. Phys. A 21, 5686 (2006).
[12] E. Golowich, J. A. Hewett, S. Pakvasa, and A. A. Petrov, Implications of $D^{0}-\bar{D}^{0}$ mixing for new physics, Phys. Rev. D 76, 095009 (2007).
[13] M. Ciuchini, E. Franco, D. Guadagnoli, V. Lubicz, M. Pierini, V. Porretti, and L. Silvestrini, $D^{0}-\bar{D}^{0}$ mixing and new physics: General considerations and constraints on the MSSM, Phys. Lett. B 655, 162 (2007).
[14] A. D. Sakharov, Violation of $C P$ invariance, C asymmetry, and baryon asymmetry of the universe, Pis'ma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)]; Usp. Fiz. Nauk 161, 61 (1991) [Sov. Phys. Usp. 34, 392 (1991)].
[15] P. Huet and E. Sather, Electroweak baryogenesis and standard model $C P$ violation, Phys. Rev. D 51, 379 (1995).
[16] A. A. Alves, Jr. et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).
[17] R. Aaij et al. (LHCb Collaboration), LHCb detector performance, Int. J. Mod. Phys. A 30, 1530022 (2015).
[18] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331, 032047 (2011).
[19] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331, 032023 (2011).
[20] D. Müller, M. Clemencic, G. Corti, and M. Gersabeck, ReDecay: A novel approach to speed up the simulation at LHCb, Eur. Phys. J. C 78, 1009 (2018).
[21] R. Aaij et al., The LHCb trigger and its performance in 2011, J. Instrum. 8, P04022 (2013).
[22] R. Aaij et al. (LHCb Collaboration), Measurement of $C P$ asymmetry in $D^{0} \rightarrow K^{-} K^{+}$and $D^{0} \rightarrow \pi^{-} \pi^{+}$decays, J. High Energy Phys. 07 (2014) 041.
[23] R. Aaij et al. (LHCb Collaboration), Measurement of B_{s}^{0} and D_{s}^{-}Meson Lifetimes, Phys. Rev. Lett. 119, 101801 (2017).
[24] N. L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36, 149 (1949).
R. Aaij, ${ }^{28}$ C. Abellán Beteta, ${ }^{46}$ B. Adeva, ${ }^{43}$ M. Adinolfi, ${ }^{50}$ C. A. Aidala, ${ }^{77}$ Z. Ajaltouni, ${ }^{6}$ S. Akar, ${ }^{61}$ P. Albicocco, ${ }^{19}$ J. Albrecht, ${ }^{11}$ F. Alessio, ${ }^{44}$ M. Alexander, ${ }^{55}$ A. Alfonso Albero, ${ }^{42}$ G. Alkhazov, ${ }^{34}$ P. Alvarez Cartelle, ${ }^{57}$ A. A. Alves Jr, ${ }^{43}$ S. Amato, ${ }^{2}$ S. Amerio, ${ }^{24}$ Y. Amhis, ${ }^{8}$ L. An, ${ }^{3}$ L. Anderlini, ${ }^{18}$ G. Andreassi, ${ }^{45}$ M. Andreotti, ${ }^{17}$ J. E. Andrews, ${ }^{62}$ F. Archilli, ${ }^{28}$ P. d'Argent,,13 J. Arnau Romeu, ${ }^{7}$ A. Artamonov, ${ }^{41}$ M. Artuso, ${ }^{63}$ K. Arzymatov, ${ }^{38}$ E. Aslanides, ${ }^{7}$ M. Atzeni, ${ }^{46}$ B. Audurier,${ }^{23}$ S. Bachmann, ${ }^{13}$ J. J. Back, ${ }^{52}$ S. Baker, ${ }^{57}$ V. Balagura, ${ }^{8, a}$ W. Baldini, ${ }^{17}$ A. Baranov, ${ }^{38}$ R. J. Barlow, ${ }^{58}$ G. C. Barrand, ${ }^{8}$ S. Barsuk, ${ }^{8}$ W. Barter, ${ }^{58}$ M. Bartolini, ${ }^{20}$ F. Baryshnikov, ${ }^{74}$ V. Batozskaya, ${ }^{32}$ B. Batsukh, ${ }^{63}$ A. Battig, ${ }^{11}$ V. Battista, ${ }^{45}$ A. Bay, ${ }^{45}$
J. Beddow, ${ }^{55}$ F. Bedeschi, ${ }^{25}$ I. Bediaga, ${ }^{1}$ A. Beiter, ${ }^{63}$ L. J. Bel, ${ }^{28}$ S. Belin, ${ }^{23}$ N. Beliy, ${ }^{66}$ V. Bellee,,${ }^{45}$ N. Belloli, ${ }^{21, b}$ K. Belous, ${ }^{41}$ I. Belyaev, ${ }^{35}$ E. Ben-Haim, ${ }^{9}$ G. Bencivenni, ${ }^{19}$ S. Benson, ${ }^{28}$ S. Beranek, ${ }^{10}$ A. Berezhnoy, ${ }^{36}$ R. Bernet, ${ }^{46}$
D. Berninghoff, ${ }^{13}$ E. Bertholet, ${ }^{9}$ A. Bertolin,,${ }^{24}$ C. Betancourt, ${ }^{46}$ F. Betti, ${ }^{16,44}$ M. O. Bettler,,${ }^{51}$ M. van Beuzekom, ${ }^{28}$ Ia. Bezshyiko, ${ }^{46}$ S. Bhasin, ${ }^{50}$ J. Bhom, ${ }^{30}$ S. Bifani, ${ }^{49}$ P. Billoir, ${ }^{9}$ A. Birnkraut, ${ }^{11}$ A. Bizzeti, ${ }^{18, c}$ M. Bjørn, ${ }^{59}$ M. P. Blago, ${ }^{44}$ T. Blake, ${ }^{52}$ F. Blanc, ${ }^{45}$ S. Blusk, ${ }^{63}$ D. Bobulska, ${ }^{55}$ V. Bocci, ${ }^{27}$ O. Boente Garcia, ${ }^{43}$ T. Boettcher, ${ }^{60}$ A. Bondar, ${ }^{40, d}$ N. Bondar, ${ }^{34}$
S. Borghi, ${ }^{58,44}$ M. Borisyak,,${ }^{38}$ M. Borsato, ${ }^{43}$ F. Bossu, ${ }^{8}$ M. Boubdir, ${ }^{10}$ T. J. V. Bowcock, ${ }^{56}$ C. Bozzi, ${ }^{17,44}$ S. Braun, ${ }^{13}$ M. Brodski, ${ }^{44}$ J. Brodzicka, ${ }^{30}$ A. Brossa Gonzalo, ${ }^{52}$ D. Brundu, ${ }^{23,44}$ E. Buchanan, ${ }^{50}$ A. Buonaura, ${ }^{46}$ C. Burr, ${ }^{58}$ A. Bursche, ${ }^{23}$ J. Buytaert, ${ }^{44}$ W. Byczynski, ${ }^{44}$ S. Cadeddu, ${ }^{23}$ H. Cai, ${ }^{68}$ R. Calabrese, ${ }^{17, e}$ R. Calladine, ${ }^{49}$ M. Calvi, ${ }^{21, b}$ M. Calvo Gomez, ${ }^{42, f}$ A. Camboni, ${ }^{42, f}$ P. Campana, ${ }^{19}$ D. H. Campora Perez,,${ }^{44}$ L. Capriotti, ${ }^{16}$ A. Carbone,,${ }^{16, g}$ G. Carboni, ${ }^{26}$ R. Cardinale, ${ }^{20}$ A. Cardini, ${ }^{23}$ P. Carniti, ${ }^{21, b}$ L. Carson, ${ }^{54}$ K. Carvalho Akiba, ${ }^{2}$ G. Casse, ${ }^{56}$ L. Cassina, ${ }^{21}$ M. Cattaneo, ${ }^{44}$ G. Cavallero,,${ }^{20}$ R. Cenci, ${ }^{25, \mathrm{~h}}$ D. Chamont, ${ }^{8}$ M. G. Chapman, ${ }^{50}$ M. Charles, ${ }^{9}$ Ph. Charpentier, ${ }^{44}$ G. Chatzikonstantinidis, ${ }^{49}$ M. Chefdeville, ${ }^{5}$ V. Chekalina, ${ }^{38}$ C. Chen, ${ }^{3}$ S. Chen, ${ }^{23}$ S.-G. Chitic, ${ }^{44}$ V. Chobanova, ${ }^{43}$ M. Chrzaszcz, ${ }^{44}$ A. Chubykin, ${ }^{34}$ P. Ciambrone, ${ }^{19}$ X. Cid Vidal,,${ }^{43}$ G. Ciezarek, ${ }^{44}$ P.E. L. Clarke, ${ }^{54}$ M. Clemencic, ${ }^{44}$ H. V. Cliff, ${ }^{51}$ J. Closier, ${ }^{44}$ V. Coco, ${ }^{44}$ J. A. B. Coelho, ${ }^{8}$ J. Cogan, ${ }^{7}$ E. Cogneras, ${ }^{6}$ L. Cojocariu, ${ }^{33}$ P. Collins, ${ }^{44}$ T. Colombo, ${ }^{44}$ A. Comerma-Montells, ${ }^{13}$ A. Contu, ${ }^{23}$ G. Coombs, ${ }^{44}$
S. Coquereau, ${ }^{42}$ G. Corti, ${ }^{44}$ M. Corvo,,${ }^{17, e}$ C. M. Costa Sobral,,${ }^{52}$ B. Couturier, ${ }^{44}$ G. A. Cowan, ${ }^{54}$ D. C. Craik, ${ }^{60}$ A. Crocombe, ${ }^{52}$ M. Cruz Torres, ${ }^{1}$ R. Currie, ${ }^{54}$ C. D'Ambrosio, ${ }^{44}$ F. Da Cunha Marinho, ${ }^{2}$ C. L. Da Silva, ${ }^{78}$ E. Dall'Occo, ${ }^{28}$ J. Dalseno, ${ }^{43 v}$ A. Danilina, ${ }^{35}$ A. Davis, ${ }^{3}$ O. De Aguiar Francisco, ${ }^{44}$ K. De Bruyn, ${ }^{44}$ S. De Capua, ${ }^{58}$ M. De Cian, ${ }^{45}$ J. M. De Miranda, ${ }^{1}$ L. De Paula, ${ }^{2}$ M. De Serio, ${ }^{15, i}$ P. De Simone, ${ }^{19}$ C. T. Dean, ${ }^{55}$ D. Decamp, ${ }^{5}$ L. Del Buono, ${ }^{9}$ B. Delaney, ${ }^{51}$ H.-P. Dembinski, ${ }^{12}$ M. Demmer, ${ }^{11}$ A. Dendek, ${ }^{31}$ D. Derkach, ${ }^{39}$ O. Deschamps, ${ }^{6}$ F. Desse, ${ }^{8}$ F. Dettori, ${ }^{56}$ B. Dey, ${ }^{69}$ A. Di Canto, ${ }^{44}$ P. Di Nezza, ${ }^{19}$ S. Didenko, ${ }^{74}$ H. Dijkstra, ${ }^{44}$ F. Dordei, ${ }^{44}$ M. Dorigo, ${ }^{44, j}$ A. Dosil Suárez, ${ }^{43}$ L. Douglas, ${ }^{55}$ A. Dovbnya, ${ }^{47}$ K. Dreimanis, ${ }^{56}$ L. Dufour, ${ }^{28}$ G. Dujany, ${ }^{9}$ P. Durante, ${ }^{44}$ J. M. Durham, ${ }^{78}$ D. Dutta, ${ }^{58}$ R. Dzhelyadin, ${ }^{41}$ M. Dziewiecki, ${ }^{13}$ A. Dziurda, ${ }^{30}$ A. Dzyuba, ${ }^{34}$ S. Easo, ${ }^{53}$ U. Egede, ${ }^{57}$ V. Egorychev, ${ }^{35}$ S. Eidelman,,${ }^{40, d}$ S. Eisenhardt,,${ }^{54}$ U. Eitschberger, ${ }^{11}$ R. Ekelhof, ${ }^{11}$ L. Eklund, ${ }^{55}$ S. Ely,${ }^{63}$ A. Ene, ${ }^{33}$ S. Escher, ${ }^{10}$ S. Esen, ${ }^{28}$ T. Evans, ${ }^{61}$ A. Falabella, ${ }^{16}$ N. Farley, ${ }^{49}$ S. Farry, ${ }^{56}$ D. Fazzini, ${ }^{21,44, b}$ L. Federici, ${ }^{26}$ P. Fernandez Declara, ${ }^{44}$ A. Fernandez Prieto, ${ }^{43}$ F. Ferrari, ${ }^{16}$ L. Ferreira Lopes, ${ }^{45}$ F. Ferreira Rodrigues, ${ }^{2}$ M. Ferro-Luzzi, ${ }^{44}$ S. Filippov, ${ }^{37}$ R. A. Fini, ${ }^{15}$ M. Fiorini, ${ }^{17, e}$ M. Firlej, ${ }^{31}$ C. Fitzpatrick, ${ }^{45}$ T. Fiutowski, ${ }^{31}$ F. Fleuret,,${ }^{8, a}$ M. Fontana, ${ }^{44}$ F. Fontanelli, ${ }^{20, k}$ R. Forty, ${ }^{44}$ V. Franco Lima, ${ }^{56}$ M. Frank, ${ }^{44}$ C. Frei, ${ }^{44}$ J. Fu, ${ }^{22,1}$ W. Funk, ${ }^{44}$ C. Färber, ${ }^{44}$ M. Féo, ${ }^{28}$ E. Gabriel, ${ }^{54}$ A. Gallas Torreira, ${ }^{43}$ D. Galli, ${ }^{16, g}$ S. Gallorini, ${ }^{24}$
S. Gambetta, ${ }^{54}$ Y. Gan, ${ }^{3}$ M. Gandelman, ${ }^{2}$ P. Gandini, ${ }^{22}$ Y. Gao, ${ }^{3}$ L. M. Garcia Martin, ${ }^{76}$ B. Garcia Plana, ${ }^{43}$ J. García Pardiñas, ${ }^{46}$ J. Garra Tico, ${ }^{51}$ L. Garrido, ${ }^{42}$ D. Gascon, ${ }^{42}$ C. Gaspar, ${ }^{44}$ L. Gavardi, ${ }^{11}$ G. Gazzoni, ${ }^{6}$ D. Gerick, ${ }^{13}$ E. Gersabeck,,${ }^{58}$ M. Gersabeck, ${ }^{58}$ T. Gershon, ${ }^{52}$ D. Gerstel, ${ }^{7}$ Ph. Ghez, ${ }^{5}$ V. Gibson, ${ }^{51}$ O. G. Girard, ${ }^{45}$ P. Gironella Gironell, ${ }^{42}$ L. Giubega, ${ }^{33}$ K. Gizdov, ${ }^{54}$ V. V. Gligorov, ${ }^{9}$ D. Golubkov, ${ }^{35}$ A. Golutvin, ${ }^{57,74}$ A. Gomes, ${ }^{1, m}$ I. V. Gorelov, ${ }^{36}$ C. Gotti, ${ }^{21, b}$ E. Govorkova, ${ }^{28}$ J. P. Grabowski, ${ }^{13}$ R. Graciani Diaz, ${ }^{42}$ L. A. Granado Cardoso, ${ }^{44}$ E. Graugés, ${ }^{42}$ E. Graverini, ${ }^{46}$ G. Graziani, ${ }^{18}$ A. Grecu, ${ }^{33}$ R. Greim, ${ }^{28}$ P. Griffith, ${ }^{23}$ L. Grillo, ${ }^{58}$ L. Gruber, ${ }^{44}$ B. R. Gruberg Cazon, ${ }^{59}$ O. Grünberg, ${ }^{71}$ C. Gu, ${ }^{3}$ E. Gushchin, ${ }^{37}$ A. Guth, ${ }^{10}$ Yu. Guz, ${ }^{41,44}$ T. Gys, ${ }^{44}$ C. Göbel,,${ }^{65}$ T. Hadavizadeh, ${ }^{59}$ C. Hadjivasiliou, ${ }^{6}$ G. Haefeli, ${ }^{45}$ C. Haen, ${ }^{44}$ S. C. Haines, ${ }^{51}$ B. Hamilton, ${ }^{62}$ X. Han, ${ }^{13}$ T. H. Hancock, ${ }^{59}$ S. Hansmann-Menzemer, ${ }^{13}$ N. Harnew, ${ }^{59}$ S. T. Harnew,,${ }^{50}$ T. Harrison, ${ }^{56}$ C. Hasse, ${ }^{44}$ M. Hatch, ${ }^{44}$ J. He, ${ }^{66}$ M. Hecker, ${ }^{57}$ K. Heinicke, ${ }^{11}$ A. Heister, ${ }^{11}$ K. Hennessy, ${ }^{56}$ L. Henry, ${ }^{76}$ E. van Herwijnen, ${ }^{44}$ J. Heuel, ${ }^{10}$ M. Heß,,${ }^{71}$ A. Hicheur, ${ }^{64}$ R. Hidalgo Charman, ${ }^{58}$ D. Hill, ${ }^{59}$ M. Hilton,,${ }^{58}$ P. H. Hopchev, ${ }^{45}$ J. Hu, ${ }^{13}$ W. Hu, ${ }^{69}$ W. Huang, ${ }^{66}$ Z. C. Huard, ${ }^{61}$ W. Hulsbergen, ${ }^{28}$ T. Humair, ${ }^{57}$ M. Hushchyn, ${ }^{39}$ D. Hutchcroft, ${ }^{56}$ D. Hynds, ${ }^{28}$ P. Ibis, ${ }^{11}$ M. Idzik, ${ }^{31}$ P. Ilten, ${ }^{49}$ K. Ivshin, ${ }^{34}$ R. Jacobsson, ${ }^{44}$ J. Jalocha, ${ }^{59}$ E. Jans, ${ }^{28}$ A. Jawahery, ${ }^{62}$ F. Jiang, ${ }^{3}$ M. John, ${ }^{59}$ D. Johnson, ${ }^{44}$ C. R. Jones, ${ }^{51}$ C. Joram, ${ }^{44}$ B. Jost, ${ }^{44}$ N. Jurik,,${ }^{59}$ S. Kandybei, ${ }^{47}$ M. Karacson, ${ }^{44}$ J. M. Kariuki, ${ }^{50}$ S. Karodia, ${ }^{55}$ N. Kazeev, ${ }^{39}$ M. Kecke, ${ }^{13}$ F. Keizer, ${ }^{51}$ M. Kelsey, ${ }^{63}$ M. Kenzie, ${ }^{51}$ T. Ketel, ${ }^{29}$ E. Khairullin, ${ }^{38}$ B. Khanji, ${ }^{44}$ C. Khurewathanaku,,${ }^{45}$ K. E. Kim, ${ }^{63}$ T. Kirn, ${ }^{10}$ S. Klaver, ${ }^{19}$ K. Klimaszewski, ${ }^{32}$ T. Klimkovich, ${ }^{12}$ S. Koliiev, ${ }^{48}$ M. Kolpin, ${ }^{13}$ R. Kopecna, ${ }^{13}$ P. Koppenburg, ${ }^{28}$ I. Kostiuk, ${ }^{28}$ S. Kotriakhova, ${ }^{34}$ M. Kozeiha, ${ }^{6}$ L. Kravchuk, ${ }^{37}$ M. Kreps, ${ }^{52}$ F. Kress, ${ }^{57}$
P. Krokovny, ${ }^{40, d}$ W. Krupa, ${ }^{31}$ W. Krzemien, ${ }^{32}$ W. Kucewicz, ${ }^{30, n}$ M. Kucharczyk, ${ }^{30}$ V. Kudryavtsev, ${ }^{40, d}$ A. K. Kuonen, ${ }^{45}$
T. Kvaratskheliya,,${ }^{35,44}$ D. Lacarrere, ${ }^{44}$ G. Lafferty, ${ }^{58}$ A. Lai, ${ }^{23}$ D. Lancierini, ${ }^{46}$ G. Lanfranchi, ${ }^{19}$ C. Langenbruch, ${ }^{10}$ T. Latham, ${ }^{52}$ C. Lazzeroni, ${ }^{49}$ R. Le Gac, ${ }^{7}$ A. Leflat, ${ }^{36}$ J. Lefrançois, ${ }^{8}$ R. Lefèvre, ${ }^{6}$ F. Lemaitre, ${ }^{44}$ O. Leroy, ${ }^{7}$ T. Lesiak, ${ }^{30}$ B. Leverington, ${ }^{13}$ P.-R. Li ${ }^{66}$ Y. Li, ${ }^{4}$ Z. Li, ${ }^{63}$ X. Liang, ${ }^{63}$ T. Likhomanenko, ${ }^{73}$ R. Lindner, ${ }^{44}$ F. Lionetto, ${ }^{46}$ V. Lisovskyi, ${ }^{8}$ G. Liu, ${ }^{67}$ X. Liu, ${ }^{3}$ D. Loh, ${ }^{52}$ A. Loi, ${ }^{23}$ I. Longstaff,,${ }^{55}$ J. H. Lopes, ${ }^{2}$ G. H. Lovell, ${ }^{51}$ D. Lucchesi, ${ }^{24,0}$ M. Lucio Martinez, ${ }^{43}$ A. Lupato, ${ }^{24}$ E. Luppi,,${ }^{17, e}$ O. Lupton, ${ }^{44}$ A. Lusiani, ${ }^{25}$ X. Lyu, ${ }^{66}$ F. Machefert, ${ }^{8}$ F. Maciuc, ${ }^{33}$ V. Macko, ${ }^{45}$ P. Mackowiak, ${ }^{11}$
S. Maddrell-Mander, ${ }^{50}$ O. Maev, ${ }^{34,44}$ K. Maguire, ${ }^{58}$ D. Maisuzenko, ${ }^{34}$ M. W. Majewski, ${ }^{31}$ S. Malde, ${ }^{59}$ B. Malecki, ${ }^{30}$ A. Malinin, ${ }^{73}$ T. Maltsev, ${ }^{40, \mathrm{~d}}$ G. Manca, ${ }^{23 ., \mathrm{p}}$ G. Mancinelli, ${ }^{7}$ D. Marangotto, ${ }^{22,1}$ J. Maratas, ${ }^{6, q}$ J. F. Marchand, ${ }^{5}$ U. Marconi, ${ }^{16}$ C. Marin Benito, ${ }^{8}$ M. Marinangeli, ${ }^{45}$ P. Marino, ${ }^{45}$ J. Marks, ${ }^{13}$ P. J. Marshall, ${ }^{56}$ G. Martellotti, ${ }^{27}$ M. Martin, ${ }^{7}$ M. Martinelli, ${ }^{44}$ D. Martinez Santos, ${ }^{43}$ F. Martinez Vidal, ${ }^{76}$ A. Massafferri, ${ }^{1}$ M. Materok, ${ }^{10}$ R. Matev, ${ }^{44}$ A. Mathad, ${ }^{52}$ Z. Mathe, ${ }^{44}$ C. Matteuzzi, ${ }^{21}$ A. Mauri, ${ }^{46}$ E. Maurice,,${ }^{8, a}$ B. Maurin, ${ }^{45}$ A. Mazurov, ${ }^{49}$ M. McCann,,${ }^{57,44}$ A. McNab, ${ }^{58}$ R. McNulty, ${ }^{14}$ J. V. Mead, ${ }^{56}$ B. Meadows, ${ }^{61}$ C. Meaux, ${ }^{7}$ N. Meinert, ${ }^{71}$ D. Melnychuk, ${ }^{32}$ M. Merk, ${ }^{28}$ A. Merli, ${ }^{22,1}$ E. Michielin, ${ }^{24}$ D. A. Milanes, ${ }^{70}$ E. Millard, ${ }^{52}$ M.-N. Minard, ${ }^{5}$ L. Minzoni, ${ }^{17, e}$ D. S. Mitzel, ${ }^{13}$ A. Mogini, ${ }^{9}$ R. D. Moise, ${ }^{57}$ T. Mombächer, ${ }^{11}$ I. A. Monroy, ${ }^{70}$ S. Monteil, ${ }^{6}$ M. Morandin, ${ }^{24}$ G. Morello, ${ }^{19}$ M. J. Morello, ${ }^{25, r}$ O. Morgunova, ${ }^{73}$ J. Moron, ${ }^{31}$ A. B. Morris, ${ }^{7}$
R. Mountain,,${ }^{63}$ F. Muheim, ${ }^{54}$ M. Mulder, ${ }^{28}$ C. H. Murphy, ${ }^{59}$ D. Murray, ${ }^{58}$ A. Mödden, ${ }^{11}$ D. Müller, ${ }^{44}$ J. Müller, ${ }^{11}$ K. Müller,,${ }^{46}$ V. Müller, ${ }^{11}$ P. Naik, ${ }^{50}$ T. Nakada, ${ }^{45}$ R. Nandakumar, ${ }^{53}$ A. Nandi, ${ }^{59}$ T. Nanut, ${ }^{45}$ I. Nasteva, ${ }^{2}$ M. Needham, ${ }^{54}$ N. Neri, ${ }^{22}$ S. Neubert, ${ }^{13}$ N. Neufeld, ${ }^{44}$ M. Neuner, ${ }^{13}$ R. Newcombe, ${ }^{57}$ T. D. Nguyen, ${ }^{45}$ C. Nguyen-Mau, ${ }^{45,5}$ S. Nieswand, ${ }^{10}$ R. Niet, ${ }^{11}$ N. Nikitin, ${ }^{36}$ A. Nogay, ${ }^{73}$ N. S. Nolte, ${ }^{44}$ D. P. O'Hanlon, ${ }^{16}$ A. Oblakowska-Mucha, ${ }^{31}$ V. Obraztsov, ${ }^{41}$ S. Ogilvy, ${ }^{19}$ R. Oldeman, ${ }^{23, p}$ C. J. G. Onderwater, ${ }^{72}$ A. Ossowska, ${ }^{30}$ J. M. Otalora Goicochea, ${ }^{2}$ T. Ovsiannikova, ${ }^{35}$ P. Owen, ${ }^{46}$ A. Oyanguren, ${ }^{76}$ P. R. Pais, ${ }^{45}$ T. Pajero, ${ }^{25, r}$ A. Palano, ${ }^{15}$ M. Palutan, ${ }^{19}$ G. Panshin, ${ }^{75}$ A. Papanestis, ${ }^{53}$ M. Pappagallo, ${ }^{54}$ L. L. Pappalardo, ${ }^{17, \mathrm{e}}$ W. Parker, ${ }^{62}$ C. Parkes,,${ }^{58,44}$ G. Passaleva, ${ }^{18,44}$ A. Pastore, ${ }^{15}$ M. Patel, ${ }^{57}$ C. Patrignani,,${ }^{16, \mathrm{~g}}$ A. Pearce, ${ }^{44}$ A. Pellegrino ${ }^{28}$ G. Penso, ${ }^{27}$ M. Pepe Altarelli, ${ }^{44}$ S. Perazzini, ${ }^{44}$ D. Pereima, ${ }^{35}$ P. Perret, ${ }^{6}$ L. Pescatore, ${ }^{45}$ K. Petridis ${ }^{50}$ A. Petrolini, ${ }^{20, k}$ A. Petrov, ${ }^{73}$ S. Petrucci,,${ }^{54}$ M. Petruzzo, ${ }^{22,1}$ B. Pietrzyk, ${ }^{5}$ G. Pietrzyk, ${ }^{45}$ M. Pikies, ${ }^{30}$ M. Pili, ${ }^{59}$ D. Pinci, ${ }^{27}$ J. Pinzino, ${ }^{44}$ F. Pisani, ${ }^{44}$ A. Piucci, ${ }^{13}$ V. Placinta, ${ }^{33}$ S. Playfer, ${ }^{54}$ J. Plews, ${ }^{49}$ M. Plo Casasus, ${ }^{43}$ F. Polci, ${ }^{9}$ M. Poli Lener, ${ }^{19}$ A. Poluektov, ${ }^{52}$ N. Polukhina, ${ }^{74, t}$ I. Polyakov, ${ }^{63}$ E. Polycarpo, ${ }^{2}$ G. J. Pomery, ${ }^{50}$ S. Ponce, ${ }^{44}$ A. Popov, ${ }^{41}$ D. Popov, ${ }^{49,12}$ S. Poslavskii, ${ }^{41}$ C. Potterat, ${ }^{2}$ E. Price, ${ }^{50}$ J. Prisciandaro, ${ }^{43}$ C. Prouve, ${ }^{50}$ V. Pugatch, ${ }^{48}$ A. Puig Navarro, ${ }^{46}$ H. Pullen, ${ }^{59}$ G. Punzi, ${ }^{25, h}$ W. Qian, ${ }^{66}$ J. Qin, ${ }^{66}$ R. Quagliani, ${ }^{9}$ B. Quintana, ${ }^{6}$ B. Rachwal, ${ }^{31}$ J. H. Rademacker,,${ }^{50}$ M. Rama, ${ }^{25}$ M. Ramos Pernas, ${ }^{43}$ M. S. Rangel, ${ }^{2}$ F. Ratnikov, ${ }^{38,39}$ G. Raven, ${ }^{29}$ M. Ravonel Salzgeber, ${ }^{44}$ M. Reboud, ${ }^{5}$ F. Redi, ${ }^{45}$ S. Reichert, ${ }^{11}$ A. C. dos Reis, ${ }^{1}$ F. Reiss, ${ }^{9}$ C. Remon Alepuz, ${ }^{76}$ Z. Ren, ${ }^{3}$ V. Renaudin, ${ }^{8}$ S. Ricciardi, ${ }^{53}$ S. Richards, ${ }^{50}$ K. Rinnert, ${ }^{56}$ P. Robbe, ${ }^{8}$ A. Robert, ${ }^{9}$ A. B. Rodrigues, ${ }^{45}$ E. Rodrigues, ${ }^{61}$ J. A. Rodriguez Lopez, ${ }^{70}$ M. Roehrken, ${ }^{44}$ S. Roiser, ${ }^{44}$ A. Rollings, ${ }^{59}$ V. Romanovskiy, ${ }^{41}$ A. Romero Vidal, ${ }^{43}$ M. Rotondo, ${ }^{19}$ M. S. Rudolph,${ }^{63}$ T. Ruf, ${ }^{44}$ J. Ruiz Vidal, ${ }^{76}$ J. J. Saborido Silva, ${ }^{43}$ N. Sagidova, ${ }^{34}$ B. Saitta, ${ }^{23, p}$ V. Salustino Guimaraes, ${ }^{65}$ C. Sanchez Gras, ${ }^{28}$ C. Sanchez Mayordomo, ${ }^{76}$ B. Sanmartin Sedes, ${ }^{43}$ R. Santacesaria, ${ }^{27}$ C. Santamarina Rios, ${ }^{43}$ M. Santimaria, ${ }^{19,44}$ E. Santovetti, ${ }^{26, u}$ G. Sarpis, ${ }^{58}$ A. Sarti, ${ }^{19, v}$ C. Satriano, ${ }^{27, w}$ A. Satta, ${ }^{26}$ M. Saur, ${ }^{66}$ D. Savrina, ${ }^{35,36}$ S. Schael, ${ }^{10}$ M. Schellenberg, ${ }^{11}$ M. Schiller,,${ }^{55}$ H. Schindler, ${ }^{44}$ M. Schmelling, ${ }^{12}$ T. Schmelzer, ${ }^{11}$ B. Schmidt, ${ }^{44}$ O. Schneider,${ }^{45}$ A. Schopper, ${ }^{44}$ H. F. Schreiner, ${ }^{61}$ M. Schubiger, ${ }^{45}$ M. H. Schune, ${ }^{8}$ R. Schwemmer ${ }^{44}$ B. Sciascia, ${ }^{19}$ A. Sciubba,,${ }^{27, v}$ A. Semennikov, ${ }^{35}$ E. S. Sepulveda, ${ }^{9}$ A. Sergi, ${ }^{49,44}$ N. Serra, ${ }^{46}$ J. Serrano, ${ }^{7}$ L. Sestini, ${ }^{24}$ A. Seuthe, ${ }^{11}$ P. Seyfert, ${ }^{44}$ M. Shapkin, ${ }^{41}$ Y. Shcheglov, ${ }^{34}$ T. Shears, ${ }^{56}$ L. Shekhtman, ${ }^{40, d}$ V. Shevchenko, ${ }^{73}$ E. Shmanin, ${ }^{74}$ B. G. Siddi, ${ }^{17}$ R. Silva Coutinho, ${ }^{46}$ L. Silva de Oliveira, ${ }^{2}$ G. Simi, ${ }^{24,0}$ S. Simone, ${ }^{15, i}$ I. Skiba, ${ }^{17}$ N. Skidmore, ${ }^{13}$ T. Skwarnicki, ${ }^{63}$ M. W. Slater, ${ }^{49}$ J. G. Smeaton, ${ }^{51}$ E. Smith,,${ }^{10}$ I. T. Smith,,${ }^{54}$ M. Smith, ${ }^{57}$ M. Soares, ${ }^{16}$ l. Soares Lavra, ${ }^{1}$ M. D. Sokoloff, ${ }^{61}$ F. J. P. Soler, ${ }^{55}$ B. Souza De Paula, ${ }^{2}$ B. Spaan, ${ }^{11}$ E. Spadaro Norella, ${ }^{22,1}$ P. Spradlin, ${ }^{55}$ F. Stagni, ${ }^{44}$ M. Stahl, ${ }^{13}$ S. Stahl, ${ }^{44}$ P. Stefko, ${ }^{45}$ S. Stefkova, ${ }^{57}$ O. Steinkamp,${ }^{46}$ S. Stemmle, ${ }^{13}$ O. Stenyakin, ${ }^{41}$ M. Stepanova, ${ }^{34}$ H. Stevens, ${ }^{11}$ A. Stocchi, ${ }^{8}$ S. Stone, ${ }^{63}$ B. Storaci, ${ }^{46}$ S. Stracka, ${ }^{25}$ M. E. Stramaglia, ${ }^{45}$ M. Straticiuc, ${ }^{33}$ U. Straumann, ${ }^{46}$ S. Strokov, ${ }^{75}$ J. Sun, ${ }^{3}$ L. Sun, ${ }^{68}$ K. Swientek, ${ }^{31}$ A. Szabelski, ${ }^{32}$ T. Szumlak, ${ }^{31}$ M. Szymanski, ${ }^{66}$ S. T'Jampens, ${ }^{5}$ Z. Tang, ${ }^{3}$ A. Tayduganov, ${ }^{7}$ T. Tekampe, ${ }^{11}$ G. Tellarini, ${ }^{17}$ F. Teubert, ${ }^{44}$ E. Thomas, ${ }^{44}$ J. van Tilburg, ${ }^{28}$ M. J. Tilley, ${ }^{57}$ V. Tisserand, ${ }^{6}$ M. Tobin, ${ }^{31}$ S. Tolk, ${ }^{44}$ L. Tomassetti, ${ }^{17, e}$ D. Tonelli, ${ }^{25}$ D. Y. Tou, ${ }^{9}$ R. Tourinho Jadallah Aoude, ${ }^{1}$ E. Tournefier, ${ }^{5}$ M. Traill, ${ }^{55}$ M. T. Tran, ${ }^{45}$ A. Trisovic,,${ }^{51}$ A. Tsaregorodtsev, ${ }^{7}$ G. Tuci, ${ }^{25, h}$ A. Tully, ${ }^{51}$ N. Tuning, ${ }^{28,44}$ A. Ukleja, ${ }^{32}$ A. Usachov, ${ }^{8}$ A. Ustyuzhanin, ${ }^{38}$ U. Uwer, ${ }^{13}$ A. Vagner, ${ }^{75}$ V. Vagnoni, ${ }^{16}$ A. Valassi, ${ }^{44}$ S. Valat, ${ }^{44}$ G. Valenti, ${ }^{16}$ R. Vazquez Gomez, ${ }^{44}$ P. Vazquez Regueiro, ${ }^{43}$ S. Vecchi, ${ }^{17}$ M. van Veghel, ${ }^{28}$ J. J. Velthuis, ${ }^{50}$ M. Veltri, ${ }^{18, x}$ G. Veneziano, ${ }^{59}$ A. Venkateswaran, ${ }^{63}$ M. Vernet, ${ }^{6}$ M. Veronesi, ${ }^{28}$ N. V. Veronika ${ }^{14}$ M. Vesterinen, ${ }^{59}$
J. V. Viana Barbosa, ${ }^{44}$ D. Vieira, ${ }^{66}$ M. Vieites Diaz, ${ }^{43}$ H. Viemann, ${ }^{71}$ X. Vilasis-Cardona, ${ }^{42, f}$ A. Vitkovskiy, ${ }^{28}$ M. Vitti, ${ }^{51}$ V. Volkov, ${ }^{36}$ A. Vollhardt, ${ }^{46}$ D. Vom Bruch, ${ }^{9}$ B. Voneki, ${ }^{44}$ A. Vorobyev, ${ }^{34}$ V. Vorobyev, ${ }^{40, \mathrm{~d}}$ J. A. de Vries, ${ }^{28}$ C. Vázquez Sierra, ${ }^{28}$ R. Waldi, ${ }^{71}$ J. Walsh, ${ }^{25}$ J. Wang, ${ }^{4}$ M. Wang, ${ }^{3}$ Y. Wang, ${ }^{69}$ Z. Wang, ${ }^{46}$ D. R. Ward, ${ }^{51}$ H. M. Wark, ${ }^{56}$ N. K. Watson, ${ }^{49}$ D. Websdale, ${ }^{57}$ A. Weiden, ${ }^{46}$ C. Weisser, ${ }^{60}$ M. Whitehead, ${ }^{10}$ J. Wicht, ${ }^{52}$ G. Wilkinson, ${ }^{59}$ M. Wilkinson, ${ }^{63}$ I. Williams, ${ }^{51}$ M. R. J. Williams, ${ }^{58}$ M. Williams, ${ }^{60}$ T. Williams, ${ }^{49}$ F. F. Wilson, ${ }^{53}$ M. Winn, ${ }^{8}$ W. Wislicki, ${ }^{32}$ M. Witek, ${ }^{30}$ G. Wormser, ${ }^{8}$ S. A. Wotton, ${ }^{51}$ K. Wyllie, ${ }^{44}$ D. Xiao, ${ }^{69}$ Y. Xie, ${ }^{69}$ A. Xu, ${ }^{3}$ M. Xu, ${ }^{69}$ Q. Xu, ${ }^{66}$ Z. Xu, ${ }^{3}$ Z. Xu, ${ }^{5}$ Z. Yang, ${ }^{3}$ Z. Yang, ${ }^{62}$ Y. Yao, ${ }^{63}$ L. E. Yeomans, ${ }^{56}$ H. Yin, ${ }^{69}$ J. Yu, ${ }^{69, y}$ X. Yuan, ${ }^{63}$ O. Yushchenko, ${ }^{41}$ K. A. Zarebski, ${ }^{49}$ M. Zavertyaev, ${ }^{12, t}$ D. Zhang, ${ }^{69}$ L. Zhang, ${ }^{3}$ W. C. Zhang, ${ }^{3, z}$ Y. Zhang, ${ }^{8}$ A. Zhelezov, ${ }^{13}$ Y. Zheng, ${ }^{66}$ X. Zhu, ${ }^{3}$ V. Zhukov, ${ }^{10,36}$ J. B. Zonneveld, ${ }^{54}$ and S. Zucchelli ${ }^{16}$
(LHCb Collaboration)
${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
${ }^{4}$ Institute Of High Energy Physics (ihep), Beijing, China
${ }^{5}$ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
${ }^{6}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{7}$ Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France
${ }^{8}$ LAL, University Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
${ }^{9}$ LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
${ }^{11}$ I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
${ }^{11}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
${ }^{12}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
${ }^{13}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{14}$ School of Physics, University College Dublin, Dublin, Ireland ${ }^{15}$ INFN Sezione di Bari, Bari, Italy
${ }^{16}$ INFN Sezione di Bologna, Bologna, Italy
${ }^{17}$ INFN Sezione di Ferrara, Ferrara, Italy
${ }^{18}$ INFN Sezione di Firenze, Firenze, Italy
${ }^{19}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{20}$ INFN Sezione di Genova, Genova, Italy
${ }^{21}$ INFN Sezione di Milano-Bicocca, Milano, Italy
${ }^{22}$ INFN Sezione di Milano, Milano, Italy
${ }^{23}$ INFN Sezione di Cagliari, Monserrato, Italy
${ }^{24}$ INFN Sezione di Padova, Padova, Italy
${ }^{25}$ INFN Sezione di Pisa, Pisa, Italy
${ }^{26}$ INFN Sezione di Roma Tor Vergata, Roma, Italy
${ }^{27}$ INFN Sezione di Roma La Sapienza, Roma, Italy
${ }^{28}$ Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
${ }^{29}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
${ }^{30}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{31}$ AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{32}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
${ }^{33}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
${ }^{34}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
${ }^{35}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{36}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{37}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
${ }^{38}$ Yandex School of Data Analysis, Moscow, Russia
${ }^{39}$ National Research University Higher School of Economics, Moscow, Russia
${ }^{40}$ Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
${ }^{41}$ Institute for High Energy Physics (IHEP), Protvino, Russia
${ }^{42}$ ICCUB, Universitat de Barcelona, Barcelona, Spain
${ }^{43}$ Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{44}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland

[^1][^2]
[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

[^1]: ${ }^{45}$ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
 ${ }^{46}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
 ${ }^{47}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
 ${ }^{48}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
 ${ }^{49}$ University of Birmingham, Birmingham, United Kingdom
 ${ }^{50}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
 ${ }^{51}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
 ${ }^{52}$ Department of Physics, University of Warwick, Coventry, United Kingdom
 ${ }^{53}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
 ${ }^{54}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
 ${ }^{55}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
 ${ }^{56}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
 ${ }^{57}$ Imperial College London, London, United Kingdom
 ${ }^{58}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
 ${ }^{59}$ Department of Physics, University of Oxford, Oxford, United Kingdom
 ${ }^{60}$ Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
 ${ }^{61}$ University of Cincinnati, Cincinnati, Ohio, USA
 ${ }^{62}$ University of Maryland, College Park, Maryland, USA
 ${ }^{63}$ Syracuse University, Syracuse, New York, USA
 ${ }^{64}$ Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria [associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
 ${ }^{65}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil [associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
 ${ }^{66}$ University of Chinese Academy of Sciences, Beijing, China
 [associated with Center for High Energy Physics, Tsinghua University, Beijing, China]
 ${ }^{67}$ South China Normal University, Guangzhou, China
 [associated with Center for High Energy Physics, Tsinghua University, Beijing, China]
 ${ }^{68}$ School of Physics and Technology, Wuhan University, Wuhan, China [associated with Center for High Energy Physics, Tsinghua University, Beijing, China]
 ${ }^{69}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
 ${ }^{70}$ Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia
 (associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France)
 ${ }^{71}$ Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
 ${ }^{72}$ Van Swinderen Institute, University of Groningen, Groningen, Netherlands
 (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)
 ${ }^{73}$ National Research Centre Kurchatov Institute, Moscow, Russia
 [associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]
 ${ }^{74}$ National University of Science and Technology "MISIS", Moscow, Russia
 [associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]
 ${ }^{75}$ National Research Tomsk Polytechnic University, Tomsk, Russia
 [associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]
 ${ }^{76}$ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain (associated with ICCUB, Universitat de Barcelona, Barcelona, Spain)
 ${ }^{77}$ University of Michigan, Ann Arbor, USA (associated with Syracuse University, Syracuse, New York, USA)
 ${ }^{78}$ Los Alamos National Laboratory (LANL), Los Alamos, USA [associated with Syracuse University, Syracuse, New York, USA]
 ${ }^{\text {a }}$ Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
 ${ }^{\mathrm{b}}$ Also at Università di Milano Bicocca, Milano, Italy.
 ${ }^{\mathrm{c}}$ Also at Università di Modena e Reggio Emilia, Modena, Italy.
 ${ }^{\mathrm{d}}$ Also at Novosibirsk State University, Novosibirsk, Russia.
 ${ }^{\mathrm{e}}$ Also at Università di Ferrara, Ferrara, Italy.
 ${ }^{\mathrm{f}}$ Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
 ${ }^{\mathrm{g}}$ Also at Università di Bologna, Bologna, Italy.
 ${ }^{h}$ Also at Università di Pisa, Pisa, Italy.
 ${ }^{i}$ Also at Università di Bari, Bari, Italy.
 ${ }^{j}$ Also at Sezione INFN di Trieste, Trieste, Italy.
 ${ }^{\mathrm{k}}$ Also at Università di Genova, Genova, Italy.
 ${ }^{1}$ Also at Università degli Studi di Milano, Milano, Italy.

[^2]: ${ }^{m}$ Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
 ${ }^{\text {n }}$ Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
 ${ }^{\circ}$ Also at Università di Padova, Padova, Italy.
 ${ }^{\mathrm{p}}$ Also at Università di Cagliari, Cagliari, Italy.
 ${ }^{\text {q }}$ Also at MSU—Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.
 ${ }^{r}$ Also at Scuola Normale Superiore, Pisa, Italy.
 ${ }^{s}$ Also at Hanoi University of Science, Hanoi, Vietnam.
 ${ }^{t}$ Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
 "Also at Università di Roma Tor Vergata, Roma, Italy.
 ${ }^{v}$ Also at Università di Roma La Sapienza, Roma, Italy.
 ${ }^{\mathrm{w}}$ Also at Università della Basilicata, Potenza, Italy.
 ${ }^{x}$ Also at Università di Urbino, Urbino, Italy.
 ${ }^{y}$ Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.
 ${ }^{\mathrm{z}}$ Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi'an, China.

