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Abstract. The present study is devoted to the description of the energy fluxes from production
to dissipation in the augmented space (3-dimensional space of scales plus wall-distance) of
wall-turbulent flows. As already shown in Cimarelli et al. (2010), an interesting behavior of
the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined
physical/scale space where the controversial reverse energy cascade plays a central role. The
observed behaviour conflicts with the classical notion of the Richardson/Kolmogorov energy
cascade and may have strong repercussions on both theoretical and modeling approaches to
wall-turbulence. Two dynamical processes are identified as driving mechanisms for the fluxes,
one in the near wall region and a second one further away from the wall. The former, stronger
one is related to the dynamics involved in the near-wall cycle. The second suggests an outer
self-sustaining mechanism. Here we extend these results to larger Reynolds number using LES
data of a turbulent channel flow at Reτ = 970 confirming the presence of an outer regeneration
cycle which seems to be composed by systems of attached eddies.

1. Introduction

One of the most important aspect of wall-turbulent flows is the anisotropy induced by the
mean gradient. This anisotropy is reflected by the presence of a turbulent energy production
process embedded in the system. Moreover, the presence of the wall induces inhomogeneity
which leads to a spatial redistribution of turbulent kinetic energy. Thanks to the inhomogenity
of the flow, the problem of wall-turbulent flows has been classically studied by dividing the flow
domain into well characterized regions depending on wall-distance. In this context, the classical
view of wall bounded flows is based on a production region close to the wall (buffer layer) and
two energy sink regions one at the wall and another one in the core flow which is eventually
anticipated by an equilibrium layer for large Reynolds number flows. However, the description in
physical space alone is insufficient to capture the complete dynamics of wall-turbulence since the
turbulent processes take place into an hierarchy of scales of motion. Indeed, it is well known that
turbulent flows are characterized by fluctuations which range in size from the characteristic width
of the flow to much smaller scales, which become progressively smaller as the Reynolds number
increases. In this view, turbulent flows are characterized by different dynamics distributed among
the various scales of motion. The classical idea regarding the physical processes occurring on
these scales concerns the scale-space distribution of the turbulent kinetic energy. In particular,
for homogeneous turbulence, Richardson (1922) introduced the idea that kinetic energy enters
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the turbulence through a production mechanism at the largest scales of motion. This energy is
then transferred by inviscid processes to smaller scales until, at the smallest one, the energy is
dissipated by viscous action.

Hence, in wall-turbulent flow, such as channel flow, two energy transfer take place, one in
the wall-normal direction due to inhomogeneity and one through eddies of different size. In
this scenario, it is, therefore, necessary to consider a general approach, able to analyze the
scale-dependent dynamics in inhomogeneous conditions and the balance equation for the second
order structure function actually matters for it. The multidimensional description given by this
equation has been shown crucial to understand the formation and sustainment of the turbulent
fluctuations fed by the energy fluxes coming from the near-wall production region (Cimarelli
et al., 2010). Here, in the present work we extend these results at higher Reynolds number
using LES data. In particular, in section 2 we will briefly discuss the use of LES simulation as a
research-tool for the analysis of large Reynolds number flows and we will present the LES data
set used in this work. The results of the generalized Kolmogorov equation applied to the LES
data of a turbulent channel flow at Reτ = 970 will be shown in section 3. The conclusions will
conclude the paper.

2. Large Eddy Simulation approach as a tool for the extention of DNS results to

higher Reynolds number turbulence

It is well established that in turbulent flows the energy carrying structures are directly affected
by the boundary conditions, hence they are highly non universal and generally anisotropic, while
the small scales tend to be more homogeneous and isotropic than the large ones. Therefore, it is
thought that relatively simple and universal models can be used to describe the last part of the
energy spectrum, when, for example, a Large Eddy Simulation (LES) approach is considered for
the computation of moderately large Reynolds number flows.

In LES, a low-pass filtering operation is used to decompose the velocity field, u⋆i , into the
sum of a filtered (or resolved) component, ū⋆i , and a residual unresolved component (or subgrid
scale motion, SGS), u⋆sgsi , so that the resulting filtered velocity field can be adequately resolved
on a relatively coarse grid and the total velocity field has the decomposition,

u⋆i (x, t) = ū⋆i (x, t) + u⋆sgsi (x, t)

Once defined the filtering operation, the evolution equation of the filtered velocity field, ū⋆i , can
be obtained by applying this operation to the Navier-Stokes equations yelding to

∂ū⋆i
∂xi

= 0

∂ū⋆i
∂t

+
∂ū⋆i ū

⋆
j

∂xj
= −

1

ρ

∂p̄⋆

∂xi
+ ν

∂2ū⋆i
∂x2j

−
∂τ⋆ij
∂xj

(1)

where the effects of the small unresolved scales appears in the subgrid stress tensor τ⋆ij =

u⋆iu
⋆
j − ū⋆i ū

⋆
j which must be modeled. Arguably, the most important effect of the subgrid scales

on the large ones, is the resolved energy drain/source that results from the interaction between
resolved and subgrid motion. In this context, most of the commonly used LES models assume
that the main role of the subgrid scales is to remove energy from the large resolved motion and
dissipate it through the action of a diffusion mechanism analogous to the viscous forces, see
Kraichnan (1976), leading to the concept of eddy-viscosity where τij−1/3τkkδij = −2νT S̄ij with
S̄ij = 1/2(∂ūi/∂xj + ∂ūj/∂xi). These assumptions are based on the idea of an inertial range in
the spectrum of scales. Indeed, as asserted by the 4/5 law, Kolmogorov (1991), in the inertial
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Figure 1. Left: mean velocity profile U+(y+) for the present LES (circle) compared with the
DNS from Hoyas & Jiménez (2008) (solid line). The linear and logarithmic regions are indicated
by dashed lines corresponding to U+(y+) = y+ and U+(y+) = 2.46 log(y+) + 5.1 respectively.

Right: root mean square profile of the turbulent velocity fluctuations,
√

〈u2〉,
√

〈v2〉 and
√

〈w2〉
for the present LES (circle) compared with the DNS from Hoyas & Jiménez (2008) (solid lines).

range the energy flux is independent of the scale under consideration, is from large to small
scales and it is proportional to the viscous energy dissipation.

This kind of approach has given good results in homogeneous and in unbounded shear flows
but less in wall turbulence. In fact, in such flows, the anisotropic turbulent production affects
most of the turbulent eddies and the shear is sufficiently strong to hinder isotropy recovery
even at small inertial scales, see Casciola et al. (2005) and Jacob et al. (2008). Beside these
observations, the single most striking phenomenon is the complete modification of the Richardson
scenario up to a reverse energy cascade in the form of energy fluxes loops shown in Cimarelli
et al. (2010) and in the following section. The reason for this modification is the focusing of
the turbulent generation mechanisms at small scales near the wall which feed larger motion.
This leads to overwhelming difficulties for LES, since energy should emerge from nowhere in the
subgrid scales to drive the coherent dynamics of the resolved scales.

These issues have been rationalized in Cimarelli & De Angelis (2011) and Cimarelli & De
Angelis (2010) via a multidimensional analysis of the filtered dynamics in wall-flows. From these
works emerge that for large filter lengths, lFi

the subgrid dynamics strongly affect the resolved
motion through a nonlinear displacement and source of resolved energy. In this condition the
success of the simulations is entirely demanded to the quality of the LES model which must be
able to capture backward energy trasnfer and nonlinear energy distribution processes. Otherwise,
for filter scales which satisfy the constraint, l+Fx

< 100 and l+Fz
< 20, the main physical processes

of wall-turbulence are directly resolved and the subgrid scales play only a minor role of energy
draining at small resolved scales. In this conditions the LES technique can be seen as a poorly
resolved direct numerical simulation which need a supplement linear term for the governing
equations of dissipative nature.

Considering these limits we have performed a large eddy simulation of a turbulent channel
flow at Reτ = 970 in a computational domain 8πh × 2h × 3πh with 640 × 257 × 640 grid
points respectively corresponding to a resolution in wall-units in the homogeneous directions of
∆x+ = 38 and ∆z+ = 14. The grid points are non-equidistantly distributed in the wall-normal
directions, with a maximum resolution at the wall of ∆y+ = 0.7 while in the channel center
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of ∆y+ = 12. The simulation is perofrmed using a fully spectral method, Fourier series in the
wall-parallel directions and Chebyshev polynomials in the wall-normal direction, and the time
is advanced with a standard mixed Crank-Nicholson/Runge-Kutta scheme. The unresolved
turbulent fluctuations are treated via the ADM model (Stolz et al., 2001). This model is
a deconvolution method which reconstructs the resolved part of the subgrid stresses via an
approximate inversion of the filtering operator, whereas the contributions of the unresolved
stresses are modelled via a purely dissipative relaxation term acting at the smallest resolved
scales. We would like to point out that for the present simulation the grid resolution has been
chosen to be very fine for an LES. As shown in Gualtieri et al. (2007) for homogeneous shear
flows and in Schlatter et al. (2010) for a turbulent boundary layer with a slightly different
model and considering the constraint on the filter lengths mentioned above, accurate channel
flows statistics could be obtained with the present approach. As an example, the mean velocity
profile and the turbulent fluctuation intensities scaled in viscous units are shown in figure 1
in comparison with the DNS data from Hoyas & Jiménez (2008) relative to a channel flow at
Reτ = 950 with the same domain extention. The agreement between the LES and DNS data
is good, meaning that the mean and fluctuating quantities are well captured even by the lower
resolution of the LES simulation.

We would like to stress that the aim of the present work is not the validation of the present
LES approach or the reduction of the resolution as much possible, but the main goal is to obtain
accurate data at moderate Reynolds number in order to appreciate the Reynolds number effects
on the findings reachible with DNS techniques at lower Reynolds number flows. Indeed, the
present LES data will be used in the next section for the analysis of the generalized Kolmogorov
equation extending to larger Reynolds number the results obtained in Cimarelli et al. (2010)
with a DNS of a turbulent channel flow at Reτ = 550.

3. The paths of energy in a turbulent channel flow at Reτ = 970

The most important contribution to the description of the energy transfer mechanisms in
turbulence is the Kolmogorov theory. Under the assumption of a statistical isotropic condition,
this theory is an exact quantitative result obtained by the balance of the second order structure
function, 〈δu2〉, where δui = ui(xs + rs) − ui(xs) is the fluctuating velocity increment and 〈·〉
denotes ensamble average. Although this is a well known result it is useful to go back over its
assumptions. The balance of 〈δu2〉, for small scales but sufficiently large so that the viscous
diffusion processes may be neglected, reduces to the 4/5 law,

〈δu3||〉 = −
4

5
〈ǫ〉r (2)

where || denotes longitudinal velocity increments and ǫ = ν (∂ui∂xj) (∂ui∂xj) is the pseudo-
dissipation. This relation establishes that the turbulent energy is transfered through the
inertial range from large to small scales independently on the scale under consideration and
with a constant rate proportional to the energy input/dissipation, 〈ǫ〉. There is no direct
energy injection and no direct energy extraction. This picture is believed to universally
occur independently of the large-scale processess which feeds the turbulence, but fails in wall-
turbulence where the interaction between anisotropic production and inhomogeneous spatial
fluxes strongly modifies the energy cascade up to a reverse cascade in the near-wall region
(Marati et al., 2004).

Wall-bounded turbulence is characterized by several processes which maybe thought as
belonging to two different classes: phenomena which occur in physical space and phenomena
which take place in the space of scales. As a consequence, a full understanding of these
phenomena requires a detailed description of the processes occurring simultaneously in physical
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and scale space. A tool for the study of these phenomena is the generalized form of the
Kolmogorov equation (Hill, 2002). This equation, specialized for a channel flow with a
longitudinal mean velocity U(y), reads,

∂〈δu2δui〉

∂ri
+

∂〈δu2δU〉

∂rx
+ 2〈δuδv〉

(

dU

dy

)∗

+
∂〈v∗δu2〉

∂Yc

=

−4〈ǫ∗〉+ 2ν
∂2〈δu2〉

∂ri∂ri
−

2

ρ

∂〈δpδv〉

∂Yc

+
ν

2

∂2〈δu2〉

∂Yc
2

(3)

where * denotes a mid-point average, i.e. u∗i = (ui(x
′
s) + ui(xs))/2 and 〈·〉 denotes now average

in the homogeneous directions. Equation 3 is written in a four dimensional space, (rx, ry, rz, Yc)
hereafter denoted as augmented space, and involves a four dimensional energy fluxes vector field
Φ = (Φrx ,Φry ,Φrz ,Φc),

∇ ·Φ(r, Yc) = ξ(r, Yc) (4)

where ∇· is a four dimensional divergence, Φr = (Φrx ,Φry ,Φrz) = 〈δu2δu〉 − 2ν∇r〈δu
2〉,

Φc = 〈v∗δu2〉+2〈δpδv〉/ρ−νd〈δu2〉/2dYc and ξ = 2〈δuδv〉 (dU/dy)∗−4〈ǫ∗〉. This form allows us
to appreciate the two scale-energy fluxes occuring in wall-flows, namely Φr through the scales of
motion and Φc in physical space. These fluxes assembled in the vector Φ balance with a source
term ξ which accounts for the energy production and dissipation. When this term reaches a
positive value, ξ(r, Yc) > 0, the energy injection via turbulent production exceeds the rate of
energy dissipation. Therefore, the regions of the augmented space where ξ > 0 can be thought
as characterized by a scale-energy excess.

The phenomenon of scale-energy excess is a peculiar aspect which characterizes wall-turbulent
flows with respect to homogenous flows where the source term satisfies the constrain ξhom(r) ≤ 0.
In homogeneous flows an excess of scale-energy cannot be observed. The energy transfer is
initialized at the largest scales by production whose amount equals the energy dissipation,
ξhom(r) = 0 for r → ∞. Then, out of the limit of large scales, the source term becomes
negative, ξhom(r) < 0, due to the monotonic decrease of the production moving to small scales,
see Casciola et al. (2003). Whereas, in wall-turbulence there is not a balance between energy
injection and dissipation due to the presence of the inhomogeneous spatial fluxes. Indeed, it
is well known that turbulent production exceeds dissipation in the buffer layer leading to an
excess of scale-energy ξ(r, Yc) > 0 at least for larger scales where the scale-energy processes
approach the single-point terms of the turbulent kinetic energy balance (Marati et al., 2004).
This is a very important phenomenon which strongly modifies the energy fluxes pattern of wall-
turbulence from those usually observed in homogeneous flows. Equation 4 describes a vector
field Φ(r, Yc) where are present both energy source (ξ(r, Yc) < 0) and sink (ξ(r, Yc) > 0) regions
in the augmented space of wall-turbulence.

As shown in the top figure 2 which is a cut of the augmented space at Y +
c = 20 for ry = 0,

the energy source region and, therefore, the peak of energy production, take place deep inside
the spectrum of scales. The energy is not introduced at the top of the spectrum as the classical
paradigm of turbulence leads to believe, i.e. for large rx and rz, but amid the spectrum of
scales and, therefore, there is not an isotropic recovery. While, the energy sink region occurs
at the smallest separations close to the origin rx = rz = 0. Given this topology of the energy
source/sink, the energy fluxes follow a sort of loop in the space of scales. The fluxes first diverge
from the energy source region feeding longer and wider turbulent fluctuations through a reverse
cascade. Then, the fluxes converge to a classical forward cascade reaching the region of energy
sink at the smallest dissipative scales. From the present view, the reverse energy cascade is due to
the energy source which initializes the energy transfer at small scales. The location of the energy
source scale-range in the buffer layer, shown in top figure 2, appears closely related to the action
of the coherent structures involved in the near-wall cycle (Jimenez & Pinelli, 1999). In particolar
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Figure 2. Projections of the energy fluxes vector field Φ (inertial component) and isocontours
of the energy source ξ in the Y +

c = 20 (top) and Y +
c = 120 (bottom) plane of the augmented

space of a turbulent channel at Reτ = 970 obtained with an LES approach. Note that the
contour colors are scaled for each wall-distance.

the spacing of this region suggest that this is presumably the imprint of the quasi-streamwise
vortices. In this view, the near-wall cycle corresponds to the energy fluxes loop shown in top
figure 2. In particular, the energy source can be thought as the scale-energy extracted from
the mean flow to generate the quasi-streamwise vortices. A fraction of this energy is directly
cascading down to small scales and dissipated as a result of the bursting of these structures
due to instability. The remaining fraction of energy is transfered to feed, through a reverse
cascade, the streamwise velocity streaks. This phenomenon can be thought as the result of the
interaction of the streamwise vortices with the mean shear. In the end, the energy associated
to the streaks is cascading down to the smallest scales through a classical forward cascade and
dissipated as a result of the bursting of the streaks due to instability. In this view, forward
and reverse cascade coexist in the space of scales highlighting the cyclic nature of the turbulent
self-sustaining mechanisms.

Let us now consider inhomogeneity, and, hence, the combination of these energy fluxes loops
in the (rx, rz)-space with the spatial flux through different wall-distances Yc. The trajectories
of the energy fluxes in the (rx, rz, Yc)-space are shown in figure 3. The energy diverge from the
energy source at the small scales of the buffer layer, see top figure 2, and following a spiraling
behavior feed longer and wider turbulent structures reaching the outer regions of the flow. Note
the combined nature of the paths taken by the scale energy, which loops in the three-dimensional
space moving from small scales towards larger rx and rz while ascending towards increasing Yc.
A further distinguishing feature of Fig. 3 is the eventual convergence of the trajectories towards
the zero-separation dissipative scales at rx = rz = 0. The overall picture conforms to a system
of ascending spiral-like curves which end up in the small-scale range at different wall-normal
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Figure 3. Trajectories of the energy fluxes vector Φ (inertial component) in the (rx, rz , Yc)-
space (ry = 0) of a turbulent channel at Reτ = 970 obtained with an LES approach. The colors
encode the strenght of the flux.

positions to be understood as a Yc-distributed dissipative range, sink of scale-energy. Overall,
the energy transfer systematically takes place towards larger scales (reverse energy cascade) and
in the upward direction before eventually bending towards the dissipative range (direct energy
cascade). We like to stress that a multidimensional description is crucial to understand the
formation and sustainment of larger fluctuating structures fed by the energy excess in the near
wall production region.

All these results conform with those obtained in Cimarelli et al. (2010) but with DNS data
of a turbulent channel flow at a lower Reynolds number Reτ = 550. An important feature
emerging from this work, was the presence of a second peak of energy source whose wall-normal
positions and scales made it suspect of a result of an outer cycle composed by attached eddies.
Still the energy fluxes loop in the space of scales moving away from the wall, see bottom figure
2, suggesting dynamics pretty similar to that described for Y +

c = 20. At a given distance from
the wall, the maximum energy source occurs for rx = 0, see both figures 2. Its location in the
(Y +

c , r+z )-plane, reported in figure 4, defines the typical spanwise scale of the energy source ξ.
Near the wall, Y +

c < 80, this length scale increases quadratically, r+z ≈ 35 + 0.02Y +2
c . Actually,

within the buffer layer, Y +
c < 30, the length scale stays almost constant. This behaviour would

have been described in Townsend’s terms as detached, i.e. indipendent on the wall-normal
position, as opposed to attached meaning increasing linearly with wall-distance. Moving away
from the wall, a second behaviour takes over where the spanwise scale of the energy source is
to a very good degree linear with Yc. This scaling motivated Cimarelli et al. (2010) to assert
that the second outer peak of energy source, shown in bottom figure 2, is a result of turbulent
generation mechanisms involving systems of attached eddies whose action should increase as
the extent of the log-layer with the Reynolds number. Now, with the help of LES data at
larger Reynolds number we can establish that it scales in external units, see figure 4. Indeed,
the linear scaling takes place in a wider region for the channel flow case at Reτ = 970 (as the
extention of the logarithmic layer is expected to be increased) involving a range of wall-distances
90 < Y +

c < 0.2Reτ .
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Figure 4. Locus of the energy source ξ maxima in the rx = 0 plane. The solid line is the
DNS simulation at Reτ = 550 while the circles are the LES at Reτ = 970. The dashed lines
represents a quadratic behaviour, r+z = 35+ 0.02Y +

c , and two linear profile, r+z = (5/4)Y +
c +55

and r+z = (5/4)Y +
c + 110.

4. Conclusions

The present work is devoted to the assessment of the energy fluxes in wall-turbulent flows via the
analysis of the generalized Kolmogorov equation applied to LES data of a turbulent channel flow
at Reτ = 970. The analysis confirm the results obtained in Cimarelli et al. (2010) highlighting
that the energy fluxes still follow a spiral-like path in the combined scale/physical space also
at higher Reynolds number. From the present view of wall-turbulence, the reverse cascade is
a basic element of the energy fluxes dynamics. It takes place systematically at different wall-
distances and not only in the near-wall production region. At the base of this phenomenon is the
presence of a peak of energy production which causes the divergence of the energy fluxes amid
the spectrum of scales. In the buffer layer, this energy source scale-range appears to be closely
related to the dynamics of the quasi-streamwise vortices of the near-wall cycle. Whereas, thanks
to the larger Reynolds number reachible with the LES approach, in the so-called logarithmic
layer the energy source seems to be related to regeneration mechanisms involving systems of
attached eddies. As highlighted by the present data, this process should increase its action with
the Reynolds number together with the extent of the logarithmic layer.
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