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This Letter reports a measurement of the CP violation observables S J/ψ K 0
S

and C J/ψ K 0
S

in the decay

channel B0 → J/ψ K 0
S performed with 1.0 fb−1 of pp collisions at

√
s = 7 TeV collected by the

LHCb experiment. The fit to the data yields S J/ψ K 0
S

= 0.73 ± 0.07 (stat) ± 0.04 (syst) and C J/ψ K 0
S

=
0.03 ± 0.09 (stat) ± 0.01 (syst). Both values are consistent with the current world averages and within
expectations from the Standard Model.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

The source of CP violation in the electroweak sector of the
Standard Model (SM) is the single irreducible complex phase of
the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix [1,2].
The decay B0 → J/ψ K 0

S is one of the theoretically cleanest modes
for the study of CP violation in the B0 meson system. Here, the B0

and B0 mesons decay to a common CP-odd eigenstate allowing for
interference through B0–B0 mixing.

In the B0 system the decay width difference �Γd between the
heavy and light mass eigenstates is negligible. Therefore, the time-
dependent decay rate asymmetry can be written as [3,4]

A J/ψ K 0
S
(t) ≡ Γ (B0(t) → J/ψ K 0

S ) − Γ (B0(t) → J/ψ K 0
S )

Γ (B0(t) → J/ψ K 0
S ) + Γ (B0(t) → J/ψ K 0

S )

= S J/ψ K 0
S

sin(�mdt) − C J/ψ K 0
S

cos(�mdt). (1)

Here B0(t) and B0(t) are the states into which particles produced
at t = 0 as B0 and B0 respectively have evolved, when decaying at
time t . The parameter �md is the mass difference between the two
B0 mass eigenstates. The sine term results from the interference
between direct decay and decay after B0–B0 mixing. The cosine
term arises either from the interference between decay amplitudes
with different weak and strong phases (direct CP violation) or from
CP violation in B0–B0 mixing.

In the SM, CP violation in mixing and direct CP violation are
both negligible in B0 → J/ψ K 0

S decays, hence C J/ψ K 0
S

≈ 0, while

S J/ψ K 0
S

≈ sin 2β , where the CKM angle β can be expressed in

terms of the CKM matrix elements as arg |−V cd V ∗
cb/Vtd V ∗

tb|. It
can also be measured in other B0 decays to final states includ-
ing charmonium such as J/ψ K 0

L , J/ψ K ∗0, ψ(2S)K (∗)0, which have

been used in measurements by the BaBar and Belle Collaborations
[5,6]. Currently, the world averages are S J/ψ K 0

S
= 0.679±0.020 and

C J/ψ K 0
S

= 0.005 ± 0.017 [7].

The time-dependent measurement of the CP parameters S J/ψ K 0
S

and C J/ψ K 0
S

requires flavour tagging, i.e. the knowledge whether

the decaying particle was produced as a B0 or a B0 meson.
If a fraction ω of candidates is tagged incorrectly, the accessi-
ble time-dependent asymmetry A J/ψ K 0

S
(t) is diluted by a factor

(1−2ω). Hence, a measurement of the CP parameters requires pre-
cise knowledge of the wrong tag fraction. Additionally, the asym-
metry between the production rates of B0 and B0 has to be deter-
mined as it affects the observed asymmetries.

In this Letter, the most precise measurement of S J/ψ K 0
S

and

C J/ψ K 0
S

to date at a hadron collider is presented using approxi-

mately 8200 flavour-tagged B0 → J/ψ K 0
S decays.

2. Data samples and selection requirements

The data sample consists of 1.0 fb−1 of pp collisions recorded
in 2011 at a centre-of-mass energy of

√
s = 7 TeV with the LHCb

experiment at CERN. The detector [8] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 to 5, designed for
the study of particles containing b or c quarks. It includes a high
precision tracking system consisting of a silicon-strip vertex de-
tector surrounding the pp interaction region, a large-area silicon-
strip detector located upstream of a dipole magnet with a bending
power of about 4 T m, and three stations of silicon-strip detectors
and straw drift-tubes placed downstream. The combined tracking
system has a momentum resolution �p/p that varies from 0.4%
at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolu-
tion of 20 μm for tracks with high transverse momentum. Charged
hadrons are identified using two ring-imaging Cherenkov detec-
tors. Photon, electron and hadron candidates are identified by a

0370-2693/ © 2013 CERN. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2013.02.054

Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.physletb.2013.02.054
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2013.02.054
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


LHCb Collaboration / Physics Letters B 721 (2013) 24–31 25

calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of iron
and multiwire proportional chambers.

The analysis is performed on events with reconstructed B0 →
J/ψ K 0

S candidates with subsequent J/ψ → μ+μ− and K 0
S →

π+π− decays. Events are selected by the trigger consisting of
hardware and software stages. The hardware stage accepts events if
muon or hadron candidates with high transverse momentum (pT)
with respect to the beam axis are detected. In the software stage,
events are required to contain two oppositely-charged particles,
both compatible with a muon hypothesis, that form an invariant
mass greater than 2.7 GeV/c2. The resulting J/ψ candidate has to
be clearly separated (decay length significance greater than 3) from
the production vertex (PV) with which it is associated on the ba-
sis of the impact parameter. The overall signal efficiency of these
triggers is found to be 64%.

Further selection criteria are applied offline to decrease the
number of background candidates. The J/ψ candidates are recon-
structed from two oppositely-charged, well identified muons with
pT > 500 MeV/c that form a common vertex with a fit χ2/ndf
of less than 11, where ndf is the number of degrees of free-
dom, and with an invariant mass in the range 3035–3160 MeV/c2.
It is required that the J/ψ candidate fulfils the trigger require-
ments described above. The K 0

S candidates are formed from two
oppositely-charged pions, both with (long K 0

S candidate) or with-
out (downstream K 0

S candidate) hits in the vertex detector. Any
K 0

S candidates where both pion tracks have hits in the tracking
stations but only one has additional hits in the vertex detector
are ignored, as they would only contribute to < 2% of the events.
Each pion must have p > 2 GeV/c and a clear separation from
any PV. Furthermore, they must form a common vertex with a fit
χ2/ndf of less than 20 and an invariant mass within the range
485.6–509.6 MeV/c2 (long K 0

S candidates) or 476.6–518.6 MeV/c2

(downstream K 0
S candidates). Different mass windows are chosen

to account for different mass resolutions for long and downstream
K 0

S candidates. The K 0
S candidate’s decay vertex is required to be

significantly displaced with respect to the associated PV.
The B0 candidates are constructed from combinations of J/ψ

and K 0
S candidates that form a vertex with a reconstructed mass

m J/ψ K 0
S

in the range 5230–5330 MeV/c2. The value of m J/ψ K 0
S

is
computed constraining the invariant masses of the μ+μ− and
π+π− to the known J/ψ and K 0

S masses [9], respectively. As most
events involve more than one reconstructed PV, B0 candidates are
required to be associated to one PV only and are therefore omitted
if their impact parameter significance with respect to other PVs
in the event is too small. Additionally, the K 0

S candidate’s decay
vertex is required to be separated from the B0 decay vertex by a
decay time significance of the K 0

S greater than 5.
The decay time t of the B0 candidates is determined from a

vertex fit to the whole decay chain under the constraint that the
B0 candidate originates from the associated PV [10]. Only candi-
dates with a good quality vertex fit and with 0.3 < t < 18.3 ps are
retained. In case more than one candidate is selected in an event,
that with the best vertex fit quality is chosen. The fit uncertainty
on t is used as an estimate of the decay time resolution σt , which
is required to be less than 0.2 ps. Finally, candidates are only re-
tained if the flavour tagging algorithms provide a prediction for the
production flavour of the candidate, as discussed in Section 3.

Simulated samples are used for cross-checks and studies of de-
cay time distributions. For the simulation, pp collisions are gener-
ated using Pythia 6.4 [11] with a specific LHCb configuration [12].
Decays of hadronic particles are described by EvtGen [13] in which
final state radiation is generated using Photos [14]. The interaction

of the generated particles with the detector is implemented using
the Geant4 toolkit [15] as described in Ref. [16].

3. Flavour tagging

A mandatory step for the study of CP violating quantities is to
tag the initial, i.e. production, flavour of the decaying B0 meson.
Since b quarks are predominantly produced in bb pairs in LHCb,
the flavour tagging algorithms used in this analysis [17] recon-
struct the flavour of the non-signal b hadron. The flavour of the
non-signal b hadron is determined by identifying the charge of
its decay products, such as that of an electron or a muon from
a semileptonic b decay, a kaon from a b → c → s decay chain, or
the charge of its inclusively reconstructed decay vertex. The algo-
rithms use this information to provide a tag d that takes the value
+1 (−1) in the case where the signal candidate is tagged as an
initial B0 (B0) meson.

A careful study of the fraction of candidates that are wrongly
tagged (mistag fraction) is necessary as the measured asymmetry
is diluted due to the imperfect tagging performance. The mistag
fraction (ω) is extracted on an event-by-event basis from the com-
bined per-event mistag probability prediction η of the tagging
algorithms. On average, the mistag fraction is found to depend lin-
early on η and is parameterised as

ω(η) = p1 · (η − 〈η〉) + p0. (2)

Using events from the self-tagging control channel B+ → J/ψ K + ,
the parameters are determined to be p1 = 1.035 ± 0.021 (stat) ±
0.012 (syst), p0 = 0.392±0.002 (stat)±0.009 (syst) and 〈η〉 = 0.391
[18]. The systematic uncertainties on the tagging calibration pa-
rameters are estimated by comparing the tagging performance ob-
tained in different decay channels such as B0 → J/ψ K ∗0, in B+
and B− subsamples separately, and in different data taking peri-
ods.

The difference in tagging response between B0 and B0 is pa-
rameterised by using

ω = ω(η) ± �p0

2
, (3)

where the + (−) is used for a B0 (B0) meson at production
and �p0 is the mistag fraction asymmetry parameter, which is
the difference of p0 for B0 and B0 mesons. It is measured as
�p0 = 0.011 ± 0.003 using events from the control channel B+ →
J/ψ K + . By using �p0 in the analysis, the systematic uncertainty
on the p0 parameter is reduced to 0.008. The difference of tagging
efficiency for B0 and B0 mesons is measured in the same control
channel as �εtag = 0.000 ± 0.001 and is therefore negligible. Thus,
it is only used to estimate possible systematic uncertainties in the
analysis.

The effect of imperfect tagging is the reduction of the statistical
power by a factor εtagD2, where εtag is the tagging efficiency and
D = 1 − 2ω is the dilution factor. The effective εtag and D values
are measured as εtag = (32.65 ± 0.31)% and D = 0.270 ± 0.015, re-
sulting in εtagD2 = (2.38±0.27)%, where combined systematic and
statistical uncertainties are quoted. The measured dilution corre-
sponds to a mistag fraction of ω = 0.365 ± 0.008.

4. Decay time acceptance and resolution

The bias on the decay time distribution due to the trigger is
estimated by comparing candidates selected using different trig-
ger requirements. In the selection, the reconstructed decay times
of the B0 → J/ψ K 0

S candidates are required to be greater than
0.3 ps. This requirement makes the acceptance effects of the trig-
ger nearly negligible. However, some small efficiency loss remains
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for small decay times. Neglecting this efficiency loss is treated as a
source of systematic uncertainty.

A decrease of efficiency is also observed at large decay times,
mostly affecting the candidates in the long K 0

S subsample. This
can be described with a linear efficiency function with parame-
ters determined from simulated data for the downstream and long
K 0

S subsamples separately. The efficiency function is then used to
correct the description of the decay time distribution.

The finite decay time resolution of the detector leads to an ad-
ditional dilution of the experimentally accessible asymmetry. It is
modelled event-by-event with a triple Gaussian function,

R
(
t − t′∣∣σt

) =
3∑

i=1

f i
1√

2π siσt
exp

(
− (t − t′ − bσt)

2

2(siσt)2

)
, (4)

where t is the reconstructed decay time, t′ is the true decay time,
and σt is the per-event decay time resolution estimate. The pa-
rameters are: the three fractions f i , which sum to unity, the three
scale factors si , and a relative bias b, which is found to be small.
They are determined from a fit to the t and σt distributions of
prompt J/ψ events that pass the selection and trigger criteria
for B0 → J/ψ K 0

S , except for decay time biasing requirements. The
parameters are determined separately for the subsamples formed
from downstream and long K 0

S candidates. This results in an aver-
age effective decay time resolution of 55.6 fs (65.6 fs) for candi-
dates with long (downstream) K 0

S .

5. Measurement of S J /ψ K 0
S

and C J /ψ K 0
S

The analysis is performed using the following set of observ-
ables: the reconstructed mass m J/ψ K 0

S
, the decay time t , the es-

timated decay time resolution σt , the flavour tag d, and the per-
event mistag probability η. The CP observables S J/ψ K 0

S
and C J/ψ K 0

S
are determined as parameters in an unbinned extended maximum
likelihood fit to the data.

Due to different resolution and acceptance effects for the down-
stream and long K 0

S subsamples, a simultaneous fit to both sub-
samples is performed. In each subsample, the probability density
function (PDF) is defined as the sum of two individual PDFs, one
for each of the components of the fit: the B0 signal and the back-
ground. The latter component contains both combinatorial back-
ground and mis-reconstructed b-hadron decays.

The reconstructed mass distribution of the signal is described
by the sum of two Gaussian PDFs with common mean but different
widths. Only the mean is shared between the two subsamples. The
background component is parameterised as an exponential func-
tion, different for each subsample.

The signal and background distributions of the per-event mistag
probability η are modelled with PDFs formed from histograms ob-
tained with the sPlot technique [19] on the reconstructed mass
distribution. In both subsamples the same signal and background
models are used.

The distributions of the estimated decay time resolution σt are
different in each component and each subsample. Hence, no pa-
rameters are shared between subsamples or components. All σt

PDFs are modelled with lognormal functions

Ln(σt; Mσt ,k) = 1√
2πσt ln k

exp

(
− ln2(σt/Mσt )

2 ln2(k)

)
, (5)

where Mσt is the median and k the tail parameter. The background
components in both subsamples are parameterised by single log-
normal functions. For the signal a sum of two lognormals with
common (different) median parameter(s) is chosen for the long K 0

S
(downstream K 0

S ) subsample.

The background PDFs of the decay time are modelled in each
subsample by the sum of two exponential functions. These are
convolved with the corresponding resolution function R(t − t′|σt).
The parameters are not shared between the two subsamples. The
background distribution of tags d is described as a uniform distri-
bution.

The signal PDF for the decay time simultaneously describes the
distribution of tags d, and is given by

P(t,d|σt , η) = ε(t) ·PCP
(
t′,d

∣∣σt, η
) ⊗R

(
t − t′∣∣σt

)
, (6)

with

PCP
(
t′,d

∣∣σt, η
)

∝ e−t′/τ
(

1 − d�p0 − dAP
(
1 − 2ω(η)

)
− (

d
(
1 − 2ω(η)

) − AP(1 − d�p0)
)

S J/ψ K 0
S

sin�mdt′

+ (
d
(
1 − 2ω(η)

) − AP(1 − d�p0)
)
C J/ψ K 0

S
cos�mdt′). (7)

This PDF description exploits time-dependent asymmetries, while
its normalisation adds sensitivity by accessing time-integrated
asymmetries. The lifetime τ , the mass difference �md , and the
CP parameters S J/ψ K 0

S
and C J/ψ K 0

S
are shared in the PDFs of the

downstream and long K 0
S subsamples, as well as the asymmetry

AP = (R B0 − R B0 )/(R B0 + R B0 ) of the production rates R for B0

and B0 mesons in pp collisions at LHCb. The latter value has been
measured in Refs. [20,21] to be AP = −0.015 ± 0.013.

In the fit all parameters related to decay time resolution and
acceptance are fixed. The tagging parameters and the production
asymmetry parameter are constrained within their statistical un-
certainties by Gaussian constraints in the likelihood. The fit yields

S J/ψ K 0
S

= 0.73 ± 0.07, C J/ψ K 0
S

= 0.03 ± 0.09,

with a correlation coefficient ρ(S J/ψ K 0
S
, C J/ψ K 0

S
) = 0.42. Both of

the uncertainties and the correlation are statistical only. The life-
time is fitted as τ = 1.496±0.018 ps and the oscillation frequency
as �md = 0.53 ± 0.05 ps−1, both in good agreement with the
world averages [7,22]. The mass and decay time distributions are
shown in Fig. 1. The measured signal asymmetry and the projec-
tion of the signal PDF are shown in Fig. 2.

6. Systematic uncertainties

Most systematic uncertainties are estimated by generating a
large number of pseudo-experiments from a modified PDF and
fitting each sample with the nominal PDF. The PDF used in the
generation is chosen according to the source of systematic uncer-
tainty that is being investigated. The variation of the fitted values
of the CP parameters is used to estimate systematic effects on the
measurement.

The largest systematic uncertainty arises from the limited
knowledge of the accuracy of the tagging calibration. It is es-
timated by varying the calibration parameters within their sys-
tematic uncertainties in the pseudo-experiments. Another minor
systematic uncertainty related to tagging emerges from ignoring a
possible difference of tagging efficiencies of B0 and B0.

The effect of an incorrect description of the decay time resolu-
tion model is derived from pseudo-experiments in which the scale
factors of the resolution model are multiplied by a factor of ei-
ther 0.5 or 2 in the generation. As the mean decay time resolution
of LHCb is much smaller than the oscillation period of the B0 sys-
tem this variation leads only to a small systematic uncertainty. The
omission of acceptance effects for low decay times is estimated
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Fig. 1. Invariant mass (left) and decay time (right) distributions of the B0 → J/ψ K 0
S candidates. The solid line shows the projection of the full PDF and the shaded area the

projection of the background component.
Fig. 2. (Colour online.) Time-dependent asymmetry (NB0 − NB0 )/(NB0 + NB0 ). Here,
NB0 (NB0 ) is the number of B0 → J/ψ K 0

S decays with a B0 (B0) flavour tag. The
data points are obtained with the sPlot technique, assigning signal weights to the
events based on a fit to the reconstructed mass distributions. The solid curve is
the signal projection of the PDF. The green shaded band corresponds to the one
standard deviation statistical error.

from pseudo-experiments where the time-dependent efficiencies
measured from data are used in the generation but omitted in the
fits. Additionally, a possible inaccuracy in the description of the ef-
ficiency decrease at large decay times is checked by varying the
parameters within their errors, but is found to be negligible.

The uncertainty induced by the limited knowledge of the back-
ground distributions is evaluated from a fit method based on the
sPlot technique. A fit with the PDFs for the reconstructed mass
is performed to extract signal weights for the distributions in the
other observable dimensions. These weights are then used to per-
form a fit with the PDF of the signal component only. The dif-
ference in fit results is treated as an estimate of the systematic
uncertainty.

To estimate the influence of possible biases in the CP param-
eters emerging from the fit method itself, the method is probed
with a large set of pseudo-experiments. Systematic uncertainties
of 0.004 for S J/ψ K 0

S
and 0.005 for C J/ψ K 0

S
are assigned based on

the biases observed in different fit settings.
The uncertainty on the scale of the longitudinal axis and on the

scale of the momentum [23] sum to a total uncertainty of < 0.1%
on the decay time. This has a negligible effect on the CP param-
eters. Likewise, potential biases from a non-random choice of the
B0 candidate in events with multiple candidates are found to be
negligible.

The sources of systematic effects and the resulting systematic
uncertainties on the CP parameters are quoted in Table 1 where

Table 1
Summary of systematic uncertainties on the CP parameters.

Origin σ(S J/ψ K 0
S
) σ (C J/ψ K 0

S
)

Tagging calibration 0.034 0.001
Tagging efficiency difference 0.002 0.002
Decay time resolution 0.001 0.002
Decay time acceptance 0.002 0.006
Background model 0.012 0.009
Fit bias 0.004 0.005

Total 0.036 0.012

the total systematic uncertainty is calculated by summing the in-
dividual uncertainties in quadrature.

The analysis strategy makes use of the time-integrated and
time-dependent decay rates of B0 → J/ψ K 0

S decays that are
tagged as B0/B0 meson. Cross-check analyses exploiting only the
time-integrated or only the time-dependent information show that
both give results that are in good agreement and contribute to the
full analysis with comparable statistical power.

7. Conclusion

In a dataset of 1.0 fb−1 collected with the LHCb detector, ap-
proximately 8200 flavour tagged decays of B0 → J/ψ K 0

S are se-
lected to measure the CP observables S J/ψ K 0

S
and C J/ψ K 0

S
, which

are related to the CKM angle β . A fit to the time-dependent decay
rates of B0 and B0 decays yields

S J/ψ K 0
S

= 0.73 ± 0.07 (stat) ± 0.04 (syst),

C J/ψ K 0
S

= 0.03 ± 0.09 (stat) ± 0.01 (syst),

with a statistical correlation coefficient of ρ(S J/ψ K 0
S
, C J/ψ K 0

S
) =

0.42. This is the first significant measurement of CP violation in
B0 → J/ψ K 0

S decays at a hadron collider [24]. The measured val-
ues are in agreement with previous measurements performed at
the B factories [5,6] and with the world averages [7].
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