
24/04/2024 11:11

Exploring Single Source Shortest Path Parallelization on Shared Memory Accelerators / Palossi, Daniele;
Marongiu, Andrea. - ELETTRONICO. - (2016), pp. 197-200. (Intervento presentato al convegno 19th
International Workshop on Software and Compilers for Embedded Systems, SCOPES 2016 tenutosi a
Schloss Rheinfels, deu nel 2016) [10.1145/2906363.2915925].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Association for Computing Machinery, Inc

This is the peer reviewd version of the followng article:

ETH Library

Exploring single source shortest
path parallelization on shared
memory accelerators

Conference Paper

Author(s):
Palossi, Daniele ; Marongiu, Andrea

Publication date:
2016

Permanent link:
https://doi.org/10.3929/ethz-b-000117736

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1145/2906363.2915925

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-4487-0836
https://doi.org/10.3929/ethz-b-000117736
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/2906363.2915925
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Exploring Single Source Shortest Path Parallelization
on Shared Memory Accelerators

Daniele Palossi
IIS, ETH Zürich

Zürich, Switzerland
dpalossi@iis.ee.ethz.ch

Andrea Marongiu
IIS, ETH Zürich

Zürich, Switzerland
amarongiu@iis.ee.ethz.ch

ABSTRACT
Single Source Shortest Path (SSSP) algorithms are widely
used in embedded systems for several applications. The
emerging trend towards the adoption of heterogeneous de-
signs in embedded devices, where low-power parallel accel-
erators are coupled to the main processor, opens new op-
portunities to deliver superior performance/watt, but calls
for efficient parallel SSSP implementation. In this work we
provide a detailed exploration of the ∆-stepping algorithm
performance on a representative heterogeneous embedded
system, TI Keystone II, considering the impact of several
parallelization parameters (threading, load balancing, syn-
chronization).

Keywords
Parallel Graph Exploration; Heterogeneous Acceleration

1. INTRODUCTION
Single Source Shortest Path (SSSP) algorithms are widely

used in embedded systems for several applications. The
problem can be stated as follows: in a directed graph with
non-negative weights, find the minimal cost path from one
chosen node to all other nodes. In wireless sensor net-
works the routing problem is often modeled as a shortest
path problem, where the cost functions to be minimized
can be numerous (e.g. load-balancing, energy, etc.). The
well known Dijkstra algorithm [1] has been used to maxi-
mize the energy-efficiency for multicast communication [7],
searching for mininum-energy paths with maximum geo-
graphical advance towards desired destinations. In body
sensor networks, where bio-medical sensor nodes can be im-
planted in tissues, SSSP has been used to solve a least
total-route-temperature problem [8]. Edge costs are dynam-
ically updated, accordingly with the current temperature of
each node, and the route from source to destination is se-
lected among all possible routes. SSSP is also widely used
for trajectory planning for autonomous vehicles [5], where

Final published version in ACM Digital Library available at
https://dl.acm.org/citation.cfm?id=2915925.

DOI: http://dx.doi.org/10.1145/2906363.2915925

S

Starting Point

Obstacle

Optimal Path

Goal Point

S

1 2 3 4 5

6 7 8 9 10 11 12 13

14 15 16 17

18 19 20 21 22 23 24 25

26 27 28 29 30

36 373534333231

38 39

43 44 45 46

40 41 42

47 48

Figure 1: A 8x8 sample of Game-Map graph.

computation- and energy-constrained on-board embedded
devices can make fast obstacle avoidance quite challenging.

In general, a common requirement in all these applications
is to rely on efficient solutions able to exploit the limited
performance/watt delivered by embedded systems, while re-
specting the given constraints (e.g. QoS, deadlines, etc.).
The emerging trend towards the adoption of low-power par-
allel accelerators in embedded systems1 opens new opportu-
nities to deliver superior performance/watt, but calls for ef-
ficient parallel implementation of the above described prob-
lems.

In this work we address the SSSP problem through the
exploration of the ∆-stepping algorithm [6]. The ∆-stepping
algorithm divides Dijkstra’s algorithm into a number of phases,
such that each phase can be executed in parallel. This al-
gorithm has been successfully implemented and explored for
distributed memory architectures [2]. The investigation pre-
sented here focuses on the Game-Map class of graphs (see
Figure 1), that is commonly used to represent the physical
environment for trajectory planning of autonomous vehicles
[3, 5].

The main contribution of our work is is a detailed perfor-
mance analysis of ∆-stepping on a representative heteroge-
neous embedded system, Texas Instrument’s Keystone II2.
We consider the impact of several parallelization parameters
(threading, load balancing, synchronization) considering an
OpenMP implementation of the target algorithm.

2. ∆-STEPPING ALGORITHM
The SSSP problem with non-negative weights can be stated

as follows: given a weighted graph G = (V,E, c), where V is
the set of vertices or nodes, E the set of edges (i.e. pairs of

1http://www.pulp-platform.org, http://www.kalrayinc.com
2http://www.ti.com/product/66AK2H12

nodes) and c the cost (c : E → R+), find a minimal weight
path from one chosen node s ∈ V , called the source node, to
all other nodes in V . We say that the nodes v, w ∈ V are
neighbours if (v, w) ∈ E, i.e., if there exists an edge between
them.

The ∆-Stepping algorithm goes forward in the exploration
of the graph dividing the problem-space in boundaries. A
boundary represents the part of the graph that is reachable
from the source at a cost multiple of ∆. The computation
within each boundary is suitable for parallelization.

The main data structure to keep track of these boundaries
is the bucket, that contains all the nodes to be explored in the
corresponding step. This data structure has to be checked
at every step in order to identify all the nodes to be explored
in the current iteration. When a node is selected for explo-
ration (it is said to be the reference node) all his neighbors
are evaluated. If a smaller cost is found to reach such neigh-
bor through the current reference node the neighbor’s cost
is updated using the relax function.

The relax function is also in charge of distributing the
neighbors in the appropriate bucket to be evaluated, as ref-
erence node, in a future iteration (depending on the cost and
∆). Updating the cost of a node can happen concurrently
when multiple reference nodes are being explored in parallel,
and this requires a proper synchronization mechanism. The
original algorithm uses also the ∆ parameter, in a prepro-
cessing phase, to divide all the edges in two groups: heavy
and light edges, based on whether the cost of that edge is
smaller or larger than ∆.

In this work we use a regular graph structure: each node
has eight outgoing edges that represent allowed movements
from the node. We associate a cost of 10 to all perpendicu-
lar movements and a cost of 15 to all diagonal movements,
representing the physical topology of the map (i.e. euclidean
distance). For this reason we can avoid the typical prepro-
cessing stage to identify if an edge is light or heavy during
the exploration.

The specific shared memory implementation considered
here [4] implements bucket checking by scanning a mono-
dimensional array (representing the graph) of dimension V .
Choosing a linear, statically-sized data structure allows for
a lightweight synchronization mechanism (compared to dy-
namic, pointer-based data structures [6]) and for easier par-
allelization (loop-level, as opposed to costlier tasking ab-
stractions). On the downside, a full graph exploration is im-
plied at every iteration, while for the targeted class of graphs
only the neighbors of the nodes belonging to the boundary
(i.e. the explored part of the graph, shaded in yellow in
Figure 2) should be checked in the current iteration.

3. RESULTS AND DISCUSSION
As a target architecture for our exploration we use the

TI Keystone II. As shown in the simplified block diagram
in Fig. 3, this platform captures a widely used template
where a general-purpose host processor is coupled to a par-
allel accelerator. Here, the host system consists of a ARM
A15 quad core processor, while the parallel accelerator is
made of a cluster of 8 C66x VLIW DSPs. The two sys-
tems leverage private memory hierarchy but share the main
DRAM controller and memory. Table 1 provides additional
architectural details.

For our experiments we consider different graph dimen-
sions, identified in the plot labels as the size of the edge of

S 2

7 8

3 4

9 10

5 6

11 12

13 14

19 20

15 16

21 22

17 18

23 24

25 26

31 32

27 28

33 34

29 30

35 36

1st boundary 2nd boundary

1 2

7 8

3 4

9 10

5 6

11 12

13 14

19 20

S 16

21 22

17 18

23 24

25 26

31 32

27 28

33 34

29 30

35 36

A B

Figure 2: ∆-Stepping boundaries (red lines), for a
given source node (S) and the explored part of the
graph (area in yellow).

A15 A15

A15 A15

4 MB L2 cache

ARM Host Cluster

C66x
Core

1024 KB L2
 cache

8x

DSP Accelerator

DDR3
EMIF

TeraNet

2x
HyperLink

1 GB
DDR3

6 MB MSMC
SRAM

Memory
Subsystem

Figure 3: TI Keystone II block diagram.

a squared map (thus a graph labeled “1000” has 1 M nodes).
As a main performance metric we report speedup of the par-
allel implementation compared to the sequential one. Exe-
cution cycles for each experiment are the average of several
runs.

3.1 Host: Cortex A15
The first part of our exploration focuses on the host pro-

cessor. The ARM A15 is a quad-core SMP, capable of mul-
tithreading, thus we explore the parallelization scalability
with the number of threads. Initially we consider the most
straightforward static loop scheduling strategy (#pragma omp

for schedule(static)). Here the whole graph is evenly
divided in N contiguous stripes (N being the number of
threads).

Fig. 4.A shows the results for this experiment, consider-
ing four different graph sizes. The plot shows that the paral-
lelization scheme works best for graph sizes up to 1000×1000.

It is also evident that hyperthreading does not help, as
considering more threads than processors does not increase
the speedup. This indicates that the computation is never
memory bound. As a consequence, for graph sizes until
1000×1000 the overheads are dominating when hyperthread-
ing is used, which leads to slowdowns. For larger graphs
these overheads are amortized, but no additional speedups
are achieved. The parallelization scheme proposed in [4]
always checks every node in the graph. This exposes more
parallelism and simplifies synchronization, as it avoids costly
pointer-based data structures (e.g., lists, such as in [6]).
However, it potentially introduces load balancing issues, as
the actual computation is applied only to neighboring nodes
to the reference one. All the remaining nodes are quickly
pruned out, thus making execution time among different

ARM Cortex A15 DSP C66x

Cores 4 8 (VLIW)
Core Frequency 1.4 GHz 1.2 GHz

L2 Cache 4096 KB (cluster) 1024 KB (core)
System DDR3 Memory 1 GB

Table 1: Devices for the experiments.

2 3 4 8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Static Scheduling

100

500

1000

1500

Threads

S
pe

ed
up

2 3 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Dynamic Scheduling

100-1K

100-8K

100-32K

1000-1K

1000-8K

1000-32K

Threads

S
pe

ed
up

A B

Figure 4: Host scaling with static (A) and dynamic
(B) scheduling.

threads non uniform. To study the impact of load imbal-
ance we use a second scheduling approach, namely a dy-
namic one with variable iteration chunk size (#pragma omp

for schedule(dynamic, C), where C = 2K and K ∈ [0, 7]).
Fig. 4.B shows the effect of dynamic scheduling for two

graph sizes and for several chunk sizes. For very small
graph sizes a scheduling chunk of 1K iterations represents
the best trade-off between load balancing and overhead,
while the same is true for chunks of 8K iterations for larger
graphs. Below these values the overheads are predominant,
and above these values the capability of better balancing the
workloads is lost as the scheduling unit is too coarse. The
same effects can be better appreciated from Fig. 5, which
shows an exploration of dynamic chunking as compared to
static scheduling in the configuration that exhibits the best
speedup in Fig. 4.A: 1000×1000 graph size, 4 threads.

In the following we will focus on chunk sizes of 8 K for
dynamic scheduling.

IT/THD 1K 2K 4K 8K 16K 32K 64K 128K
2.00

2.50

3.00

3.50

4.00

4 Thd

STATIC

Chunk Size

S
pe

ed
up

Figure 5: Dynamic chunk size exploration for
1000x1000 graph.

3.2 Accelerator: DSP C66x
The second part of our evaluation focuses on paralleliza-

tion efficiency on the accelerator (8 DSPs). We study here
the scalability of the parallelization with the number of threads,
focusing on the configuration with the best speedup ob-
served in the previous section (1000×1000 graph size, dy-
namic scheduling with chunk size 8K).

As discussed previously, updating the cost of a path that
goes through a particular reference node requires mutual ex-
clusion due to race conditions. The availability of efficient
hardware primitives for synchronization is very important
to minimize the effect of serialization implied by such con-
structs. On the ARM we leverage support for hardware-
assisted compare-and-swap (CAS), which enables near-to-

ideal speedups. Simplified pseudo-code for the usage of the
atomic CAS is given in Fig. 6.A.

On TI DSPs such a primitive is not available, so we explore
the effect of three alternatives (pseudo-code in also given in
Fig. 6):

1. Critical section: #pragma omp critical to protect
a critical section with coarse-grained locking, Fig. 6.B;

2. Lock: A fine-grained locking scheme, Fig. 6.C;

3. Race condition: The update is not protected. This
configuration is aimed at estimating what could be
achieved with CAS or other HW support, Fig. 6.B
without #pragma omp critical.

1: #pragma omp critical
2: if cost[n] > costnew
3: cost[n] ← costnew
4: end if

1: omp_set_lock(locks+n)
2: if cost[n] > costnew
3: cost[n] ← costnew
4: end if
5: omp_unset_lock(locks+n)

1: while f is false
2: costold ← cost[n]
3: if costold > costnew

4: cost[n] ← costnew

5: f ← __sync_bool_compare_and_swap(cost[n], costold, costnew)
6: else
7: break
8: end if

9: end while A

B C

Figure 6: Pseudo-code for the synchronization
mechanisms.

Fig. 7 shows the parallelization speedup scalability us-
ing two different baselines. The top plots (A, B, C) show
speedups versus the sequential algorithms, while the bottom
plots (D, E, F) show speedups versus the parallel algorithm
executed with only one thread. The comparison between the
two sets of plots shows that the cost for software-managed
synchronization significantly limits the parallelization po-
tential.

3.3 Obstacles Evaluation
As a final experiment we evaluate the impact of obstacles

in the graph nodes on parallelization scalability. As shown
in Fig. 1, the presence of an obstacle implies the deletion of
the occupied node from the graph, thus, the more obstacles
the smaller the graph. The percentages of obstacles taken
into account are: 0% (i.e no obstacles), 25% and 50% of the
total graph nodes.

Fig. 8 shows results for both the host and the accelerator,
considering the best corresponding configurations (4 threads
for the host and 8 for the accelerator, dynamic scheduling
with a chunk size of 8 K). The main difference among the
three cases is represented by the synchronization mechanism
adopted to protect the update of the cost array. Where
available (i.e. on the ARM A-15) we take advantage of the
efficient CAS operation (Fig. 8.A); on the accelerator we
use the most fine-grained primitive available: OpenMP locks
(Fig. 8.B). For the sake of completeness we also show the
behavior of unprotected updates (Fig. 8.C).

The plots show that when efficient synchronization is sup-
ported in hardware the introduction of obstacles in the graph
has a positive effect on overall speedup. This is due to the
fact that a smaller number of nodes translates in a larger
portion of the node check phase being useful parallel work-
load (i.e., some of the non-necessary checks introduced to
eliminate the costly pointer-based data structures are elim-
inated). The same conclusion does not apply to locks, as

2 3 4 5 6 7 8
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Threads

100

500

1000

1500

2 3 4 5 6 7 8
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Threads

100

500

1000

1500

2 3 4 5 6 7 8
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Threads

S
pe

ed
up

100

500

1000

1500

2 3 4 5 6 7 8
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Threads

S
pe

ed
up

100

500

1000

1500

2 3 4 5 6 7 8
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Threads

S
pe

ed
up

100

500

1000

1500

2 3 4 5 6 7 8
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Threads

S
pe

ed
up

100

500

1000

1500

Critical Section Lock Race Condition

A B C

FED

Figure 7: DSP scalability with 3 methods of synchronization. In A, B, C the speedup is vs. the sequential
algorithm, in D, E, F the speedup is vs. 1 thread parallel algorithm.

100 500 1000 1500
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Map size

S
pe

ed
up

0%

25%

50%

Accelerator: Race Condition

C

Accelerator: Lock

100 500 1000 1500
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Map size

0%

25%

50%

B

Host: Atomic CAS

100 500 1000 1500
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Map size

S
pe

ed
up

0%

25%

50%

A

Figure 8: Impact of obstacles on parallelization scalability.

the predominant effect here is the reduction of the available
parallelization due to the serialization of the critical regions.
Finally, it is important to remark that all the conclusions
also apply to very small graph sizes (from 500 and above),
which basically covers all the range that is representative of
real-world embedded applications.

4. CONCLUSIONS AND FUTURE WORK
In this work we have presented a detailed exploration of

several parallelization parameters for the ∆-Stepping algo-
rithm on a representative heterogeneous embedded device:
the TI Keystone II, where a quad-core ARM A15 host pro-
cessor is coupled to 8 VLIW DSPs. Experiments performed
on game-map class of graphs highlight the beneficial ex-
ploitation of fine-grain synchronization mechanisms and the
effectiveness of dynamically scheduling loop iterations in
chunks of medium granularity. The analysis also highlights
the limitations on the maximum parallelism achievable on
game-map graphs. This opens the way to algorithmic en-
hancements to reduce dynamically the area of the graph
evaluated during bucket checking.

5. ACKNOWLEDGMENTS
This work has been supported by the EU H2020 project

HERCULES (688860).

6. REFERENCES

[1] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[2] N. Edmonds, J. Willcock, and A. Lumsdaine. Expressing graph
algorithms using generalized active messages. SIGPLAN Not.,
48(8):289–290, Feb. 2013.

[3] S. Hrabar. Reactive obstacle avoidance for rotorcraft uavs. In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 4967–4974, Sept 2011.

[4] M. Kranjčević, D. Palossi, and S. Pintarelli. Parallel
delta-stepping algorithm for shared memory architectures,
arXiv:1604.02113v1 [cs.DC].

[5] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and
K. Konolige. The office marathon: Robust navigation in an
indoor office environment. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages
300–307, May 2010.

[6] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest
path algorithm. Journal of Algorithms, 49(1):114 – 152, 2003.
1998 European Symposium on Algorithms.

[7] B. Musznicki, M. Tomczak, and P. Zwierzykowski.
Dijkstra-based localized multicast routing in wireless sensor
networks. In Communication Systems, Networks Digital Signal
Processing (CSNDSP), 2012 8th International Symposium on,
pages 1–6, July 2012.

[8] D. Takahashi, Y. Xiao, F. Hu, J. Chen, and Y. Sun.
Temperature-aware routing for telemedicine applications in
embedded biomedical sensor networks. EURASIP J. Wirel.
Commun. Netw., 2008:26:1–26:26, Jan. 2008.

