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Abstract
The efficient and accurate calculation of how ionic quantum and thermal fluctuations impact
the free energy of a crystal, its atomic structure, and phonon spectrum is one of the main
challenges of solid state physics, especially when strong anharmonicy invalidates any
perturbative approach. To tackle this problem, we present the implementation on a modular
Python code of the stochastic self-consistent harmonic approximation (SSCHA) method. This
technique rigorously describes the full thermodynamics of crystals accounting for nuclear
quantum and thermal anharmonic fluctuations. The approach requires the evaluation of the
Born–Oppenheimer energy, as well as its derivatives with respect to ionic positions (forces)
and cell parameters (stress tensor) in supercells, which can be provided, for instance, by first
principles density-functional-theory codes. The method performs crystal geometry relaxation
on the quantum free energy landscape, optimizing the free energy with respect to all degrees of
freedom of the crystal structure. It can be used to determine the phase diagram of any crystal at
finite temperature. It enables the calculation of phase boundaries for both first-order and
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second-order phase transitions from the Hessian of the free energy. Finally, the code can also
compute the anharmonic phonon spectra, including the phonon linewidths, as well as phonon
spectral functions. We review the theoretical framework of the SSCHA and its dynamical
extension, making particular emphasis on the physical inter pretation of the variables present
in the theory that can enlighten the comparison with any other anharmonic theory. A modular
and flexible Python environment is used for the implementation, which allows for a clean
interaction with other packages. We briefly present a toy-model calculation to illustrate the
potential of the code. Several applications of the method in superconducting hydrides,
charge-density-wave materials, and thermoelectric compounds are also reviewed.

Keywords: anharmonicity, stochastic self-consistent harmonic approximation, computational
methods, ionic fluctuations, quantum effects, first-principles methods

(Some figures may appear in colour only in the online journal)

1. Introduction

Ions fluctuate at any temperature in matter, also at zero
Kelvin due to the quantum zero-point motion. Even if the
energy of ionic fluctuations is considerably smaller than the
electronic one, many physical and chemical properties of
materials and molecules cannot be understood without con-
sidering ionic vibrations. Since ionic vibrations are excited at
much lower temperatures than electrons, ionic fluctuations are
mainly responsible for the temperature dependence of ther-
modynamic properties of materials. They also determine heat
and electrical transport through the electron–phonon and/or
phonon–phonon interactions, as well as spectroscopic signa-
tures detected in infrared, Raman, and inelastic x-ray or neu-
tron scattering experiments. The large computational power
available today has paved the way to material design and
characterization, but advanced and reliable methods that accu-
rately calculate vibrational properties of materials in the limit
of strong quantum anharmonicity and that are easily inter-
faced with modern ab initio codes are required for accurately
describing materials’ properties in silico.

Since electrons are faster than ions, the ionic motion is
assumed to be described by the Born–Oppenheimer (BO)
potential V (R), which, at an ionic configuration R, is given
by the electronic ground state energy. In the standard har-
monic approximation V(R) is Taylor-expanded up to second-
order around the R0 ionic positions that minimize V(R). The
resulting Hamiltonian is exactly diagonalizable in terms of
phonons, the quanta of vibrations. Harmonic phonons are well-
defined quasiparticles with an infinite lifetime, whose energies
do not depend on temperature. These two features are intrinsic
failures of this approximation: phonons acquire a finite life-
time due to their anharmonic interaction with other phonons
(also because of other types of interactions such as the elec-
tron–phonon coupling), and phonon energies do depend on
temperature experimentally. When higher-order anharmonic
terms are small compared to harmonic ones, anharmonic-
ity can be treated within perturbation theory [1–3]. Even if
within perturbative approaches phonons’ temperature depen-
dence and lifetimes can be understood, whenever anharmonic

terms of the V(R) potential are similar or larger than the har-
monic terms in the range sampled by the ionic fluctuations,
perturbative approaches collapse and are not valid [4]. This is
often the case when light ions are present, as well as when the
system is close to melting or a displacive phase transition, such
as a ferroelectric or charge-density wave (CDW) instability.

In order to calculate from first principles vibrational proper-
ties of solids beyond perturbation theory and overcome these
difficulties, several methods have been developed in the last
years [5–30]. Many of them are based on extracting renormal-
ized phonon frequencies from ab initio molecular dynamics
(AIMD) through velocity autocorrelation functions [6–9] or
by extracting effective force constants (FCs) from the AIMD
trajectory [10–12]. In order to include quantum effects on the
ionic motion, which are neglected on AIMD, the AIMD trajec-
tory may be substituted by a path-integral molecular dynam-
ics (PIMD) one [13]. Other methods are based on variational
principles [16, 18, 22–24, 31], which are mainly inspired
on the self-consistent harmonic approximation [32] or vibra-
tional self-consistent field [33] theories, and yield free ener-
gies and/or phonon frequencies corrected by anharmonicity
non-perturbatively.

Even if these methods have often successfully incorpo-
rated the effect of anharmonicity beyond perturbation theory
in different materials, they usually lack a consistent proce-
dure that prevents them from capturing properly both quan-
tum effects and anharmonicity in the compound. For instance,
many of them simply correct the free energy and/or the phonon
frequencies assuming that the ions remain fixed at the R0 clas-
sical positions. However, as it has been shown recently in sev-
eral compounds [34–37], the ionic positions can be strongly
altered by quantum effects and anharmonicity even at zero
Kelvin. The structural changes are important for both inter-
nal degrees of freedom (the Wyckoff positions), and the lat-
tice parameters themselves. Moreover, in many of the afore-
mentioned methods, it is not clear what the meaning of the
renormalized phonon frequencies is, i.e., whether they are aux-
iliary phonon frequencies intrinsic to the devised theoretical
framework or if they really represent the physical vibrational
excitations probed experimentally.
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The stochastic self-consistent harmonic approximation
(SSCHA) [22–24] is a unique method that provides a full
and complete way of incorporating ionic quantum and anhar-
monic effects on materials’ properties without approximating
the V(R) potential. The SSCHA is defined from a rigorous
variational method that directly yields the anharmonic free
energy. It can optimize completely the crystal structure, includ-
ing both internal and lattice degrees of freedom, accounting
for the quantum nature of the ions at any target pressure or
temperature. It computes thermal expansion even in highly
anharmonic crystals. Furthermore, the SSCHA provides a
well-defined approach to estimate at which thermodynamic
conditions displacive second-order phase transitions occur.
This is particularly challenging in AIMD simulations, both
for the dynamical slowing down that may hamper the ther-
malization close to the critical point, and for the difficulties
in resolving the two distinct phases that continuously trans-
form one into the other. Also, the rigorous theoretical approach
of the SSCHA yields a clear distinction between auxiliary
phonons of the theory and the phonon spectra probed exper-
imentally, which can be accessed from a rigorous dynamical
extension of the theory [23, 38, 39]. Lastly, the code provides
non-perturbative third- and fourth-order phonon–phonon scat-
tering matrices that can be fed in any external thermal trans-
port code to compute thermal conductivity and lattice trans-
port properties. Here, we present an implementation of the full
SSCHA theory in a modular Python software that can be easily
and efficiently interfaced with any total-energy-force engine,
e.g., density-functional-theory (DFT) first-principles codes.

This paper is organized to introduce the reader to the
SSCHA algorithm and to review the recent developments in
the SSCHA theory that lead to the SSCHA code, following
the typical usage of the final user. In section 2 we give a sim-
ple overview of the method, presenting a simple picture of
how it works with a model calculation on a highly anharmonic
system with one particle in one dimension. Then, we review
the full theory of the SSCHA in details, starting from the
free energy calculation and structure optimization in section 3.
Then, we describe, in section 4, the post-processing features of
the code, which include calculations of the free energy Hessian
for second-order phase transitions, as well as phonon spectral
function and linewidth calculations. Each section is introduced
by an overview of the theory to understand what the code
is doing and, then, reports the details of the implementation,
together with a guide for setting up a typical run. In section 5,
specific details of the Python code are provided, including the
different execution modes and installation tips. As a showcase
of the SSCHA, we provide a simple example in a thermoelec-
tric material in section 6 (SnTe), where we fully characterize
the thermodynamics of the phase transition between the high-
symmetry and low-symmetry phases. This is also a guide on
how to correctly analyze the output of the SSCHA calculation
and the physical interpretation of the different frequencies. In
section 7, we review some important results obtained so far
with the SSCHA code. Finally, in section 8, we summarize the
main conclusions.

2. The variational free energy

The SSCHA is a theory that aims at describing the thermody-
namics of a crystal, fully accounting for quantum, thermal, and
anharmonic effects of nuclei within the BO approximation.
The basis of all equilibrium thermodynamics is that a system in
equilibrium at fixed volume, temperature, and number of par-
ticles is at the minimum of the free energy. The free energy is
expressed by the sum of the internal energy E, which includes
the energy of the interaction between the particles (kinetic and
potential), and the product between the temperature T and the
entropy S, which accounts for ‘disorder’ and is related to the
number of microstates corresponding to the same macrostate
of the system:

F = E − TS. (1)

In a classical picture, the free energy can be thus expressed
in terms of the microscopic states of the system, which are
determined by the classical probability distribution of atoms
ρcla(R). We remind that R is a vector of coordinates of all
atoms in the system (we will use bold symbols to denote
vectors and tensors in component free notation). The same
holds for a quantum system, but we need to account also
for quantum interference. This is achieved by calculating the
free energy with the many-body density matrix. As the sys-
tem at equilibrium is at the minimum of the free energy,
the Gibbs–Bogoliubov variational principle [40] states that
between all possible trial density matrices ρ̃, the true free
energy of the system is reached at the minimum of the func-
tional F [ρ̃]:

F [ρ̃] = E[ρ̃] − TS[ρ̃] � F, (2)

where
E[ρ̃] = 〈K + V(R)〉ρ̃ (3)

is the total energy (K is the kinetic energy operator and V(R)
the potential energy), and S[ρ̃] the entropy calculated with
the trial density matrix. 〈·〉ρ̃ = Tr[ρ̃ ·] indicates the quantum
average of the operator · taken with ρ̃.

If we pick any trial density matrix ρ̃,F [ρ̃] is an upper bound
of the true free energy of the system. The SSCHA follows this
principle: we optimize a trial density matrix ρ̃ to minimize the
free energy functional F [ρ̃] of equation (2). Performing the
optimization on any possible trial density matrix is, however,
an unfeasible task due its many-body character that hinders
an efficient parameterization. This is true also for a classical
system: no exact parameterization of ρcla(R) can be obtained
in a computer with a finite memory.

The SSCHA solves the problem by imposing a constraint
on the density matrix. In particular, the quantum probability
distribution function that the SSCHA density matrix defines,
ρ̃R,Φ(R) = 〈R|ρ̃R,Φ|R〉, is a Gaussian. ρ̃R,Φ(R) is the quan-
tum analogue of ρcla(R), and determines the probability to
find the atoms in the configuration R. The trial SSCHA den-
sity matrix ρ̃R,Φ is uniquely identified by the average atomic
positions (centroids) R and the quantum-thermal fluctuations
around them Φ (we have explicitly expressed the dependence
of ρ̃ on R and Φ by adding them as subindexes), just like any
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Figure 1. Illustration of the SSCHA method to a one dimensional particle problem at T = 0 K. Panel (a) the one dimensional BO energy
landscape V(R) as a function of the particle position R. The points represent the solution of the Harmonic approximation, the SSCHA, and
the exact solution. The y coordinate of the points are the quantum total energy (including the zero-point motion), while the x axis coordinate
is the average position of the particle. The SSCHA outperforms the harmonic approximation and it is very close to the exact solution. Panel
(b) representation of the nuclear quantum distribution functions in the different approaches. The arrows point the average position of the
particle in each distribution. Both harmonic and the SCHA are Gaussians, while the exact solution is more complex. The harmonic solution
is centered around the minimum of the energy landscape R0, while the SSCHA centroid position R and width are optimized to satisfy the
least energy principle. The average position in the exact case is however obtained as 〈R〉ρexact .

Gaussian is defined by the average and mean square displace-
ments. Within the SSCHA, we optimize R and Φ to mini-
mize the free energy of the system. In this way, we compress
the memory requested to store ρ̃R,Φ, as R depends only on
3Na numbers (the coordinates of the atoms), while the fluc-
tuations Φ are encoded in a symmetric square real matrix of
3Na × 3Na. Na is the total number of atoms in the system.
The free parameters in R and Φ can be further reduced by
exploiting translation and point group symmetries of the crys-
tal, resulting in an efficient and compact representation of the
density matrix ρ̃R,Φ.

The ‘harmonic’ in the SSCHA name comes from the fact
that any Gaussian density matrix that describes a physical sys-
tem is the equilibrium solution of a particular harmonic Hamil-
tonian. Therefore, there is a one-to-one mapping between
the trial density matrix ρ̃R,Φ and an auxiliary trial harmonic
Hamiltonian HR,Φ:

HR,Φ = K +
1
2

∑
ab

(Ra −Ra)Φab(Rb −Rb). (4)

Here, R is a real vector and Φ a real matrix that parameterize
the trial Hamiltonian, while K and R are quantum operators
that measure the kinetic energy and the position of the state.
For simplicity, unless otherwise specified, all indices a, b, etc
run over both atomic and Cartesian coordinates from 1 to 3Na.
Let us note here, that, inspired by the harmonic shape ofHR,Φ,
we will also refer to Φ as the auxiliary FCs.

This mapping with a harmonic Hamiltonian is very useful,
as both 〈K〉ρ̃R,Φ and S[ρ̃R,Φ] become simply the kinetic energy
and entropy of the auxiliary harmonic system HR,Φ, which
are analytic functions of Φ. Hence, the only quantity that we

really need to compute is the average over the interacting BO
potential

〈V(R)〉ρ̃ =
∫

dR V(R)ρ̃(R). (5)

The potential V(R) is the BO energy landscape, and can be
easily computed ab initio by any DFT code (or by any energy
and force engine).

The SSCHA algorithm starts with an initial guess on R and
Φ, and proceeds as follows:

• Use the trial Gaussian probability distribution function
ρ̃R,Φ(R) to extract an ensemble of random nuclear con-
figurations in a supercell.

• For each nuclear configuration in the ensemble, compute
total energies and forces with an external code, either ab
initio or via a force field.

• Use total energy and forces on the ensemble to compute
the free energy functional and its derivatives with respect
to the free parameters of our distribution R and Φ.

• Update R and Φ to minimize the free energy.

These steps are repeated until the minimum of the free
energy is found.

To illustrate better the philosophy of the method, we report
in figure 1 a simple application of the SSCHA to a one par-
ticle in one dimension at T = 0 K. In panel (a), we plot
the very anharmonic ‘Born–Oppenheimer’ (BO) energy land-
scape V(R) of our one-dimensional particle (of mass of an
electron). In Hartree atomic units it is given by

V(R) = 3R4 +
1
2

R3 − 3R2. (6)

4
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We first study the classical harmonic result, obtained by
Taylor-expanding the potential in equation (6) to second order
around the minimum R0. Then, we use the harmonic solution
to build our initial guess for the SSCHA density matrix ρ̃R,Φ

and update the parameters (Φ and R) until we reach the min-
imum of the free energy. In figure 1(a), we compare the aver-
age atomic position and equilibrium free energy obtained with
the harmonic approximation, with the SCHA, and the result
we obtained with the exact diagonalization of the potential.
While the harmonic result clearly overestimates the energy and
yields an average atomic position far from the exact result, the
SSCHA energy and average position are very close to the exact
solution. In figure 1(b), we report the probability distribution
functions of the particle for the different approximations com-
pared with the exact result. By definition, both the harmonic
and SSCHA results have Gaussian probability distributions.
However, while the harmonic solution is centered in the mini-
mum of the BO energy landscape (and the width is fixed by
the harmonic frequencies), the SSCHA distribution is opti-
mized to minimize the free energy. Notice how, even if the
exact equilibrium distribution deviates from the Gaussian line-
shape, the SSCHA energy and average nuclear position match
almost perfectly the exact solution as stated above. The very
good result on the free energy reflects that the SSCHA error is
variational: the free energy of the exact density matrix is the
minimum. This means that the free energy is stationary around
the exact solution, assuring that even an approximate density
matrix (like the SSCHA solution) describes very well the exact
free energy. This is an excellent feature of the SCHA, as the
free energy and its derivatives fully characterize thermody-
namic properties. Even if this simple calculation is performed
at T = 0 K, the SSCHA can simulate any finite temperature
by mixing quantum and thermal fluctuations on the nuclear
distribution.

The previously outlined straightforward implementation of
the SSCHA becomes too cumbersome on a real system com-
posed of many particles, especially if ab initio methods are
used to extract V(R). The reason is that at any minimiza-
tion step we need to calculate total energies and forces for
many ionic configurations with displaced atoms in a supercell.
The bottleneck is the computational cost of the force engine
adopted. In the next sections of the paper we will show how
the number of force calculations can be minimized and how
these issues can be overcome by the code implementation pro-
posed here. The resulting SSCHA code is very efficient, and,
in most of the core cases, much faster than standard AIMD,
with the advantage of fully accounting for the quantum nature
of nuclei.

The only quantity in the SSCHA encoding the role of elec-
trons is the total energy landscape V(R), stochastically sam-
pled on random configurations and computed with an external
code. For this reason, within the SSCHA, we can describe
electronically excited states by replacing the ground state
energy in V(R) with an excited state obtained, for example,
fixing the electronic occupation to force an electron–hole
excitation.

3. Structure relaxation and free energy
minimization

In this section we explain the simplest and most common
use of the code: the calculation of the free energy and the
optimization of a structure by fully accounting for temperature
and quantum effects. This enables the simulation of finite tem-
perature and pressure phase-diagrams (with first order bound-
aries), as well as the calculation of the lattice thermal expan-
sion. We start by briefly reviewing the theory of the SSCHA
method. Then, we will explain the details of the implementa-
tion, giving tips on how to run a simulation.

3.1. The SSCHA free energy minimization

In the simplest and most standard usage, the SSCHA free
energy functional that is minimized depends on the centroid
positions R and the auxiliary FCs Φ as

F [R,Φ] = 〈K + V(R)〉ρ̃R,Φ
− TSion

[
ρ̃R,Φ

]
. (7)

Here, we explicit that the entropy Sion only accounts for ionic
degrees of freedom (not electronic). After the SSCHA mini-
mization, the final estimate of the equilibrium free energy is
given by

F = min
R, Φ

F [R,Φ] = F [Req,Φeq]. (8)

Therefore, the final result of a SSCHA free energy calcula-
tion is given in terms of the equilibrium configuration Req,
the free energy F, and the SSCHA auxiliary FCs Φeq. The
final free energy accounts for quantum and thermal ionic fluc-
tuations without approximating the BO energy surface: it is
valid to study thermodynamic properties. The Req positions
determine the average atomic positions also taken into account
quantum/thermal fluctuations and anharmonicity. It is impor-
tant to remark, however, that the Gaussian variance Φ has, in
principle, no relation with the experimentally observed phonon
frequencies, as it is just a variable parameterizing the density
matrix. The relation of it with the physical phonon frequencies
is discussed in section 4.3. For clarity, we report in table 1 a
collection of symbols used in the equations, with their mean-
ings and the reference on the equation where they have been
introduced.

The SSCHA can also perform the free energy minimization
at fixed pressure instead. In this case, the Gibbs–Bogoliubov
inequality is satisfied by the Gibbs free energy G, defined as

G = F + P∗ΩVol, (9)

where P∗ is the target pressure, ΩVol is the simulation box vol-
ume, and F is the Helmholtz free energy. In this case, the code
optimizes

G � G[R,Φ] = F [R,Φ] + P∗ΩVol, (10)

which can be used, for instance, to estimate the struc-
tural changes imposed by pressure by fully accounting for
fluctuations.

5
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Table 1. Collection of some symbols frequently used in the main text. First column, the symbol used. Second column, a short
description. Third column, equation or page-column of the first occurrence.

Symbol Meaning First use

R Atomic position (canonical variable) equation (3)
V(R) Potential energy equation (3)
R Trial centroid positions (parameter) equation (4)
u Displacement from the average atomic position R equation (15)
Φ Trial harmonic matrix (parameter) equation (4)
Ψ Static displacement–displacement correlation matrix relative to Φ equation (15)
HR,Φ Trial harmonic Hamiltonian for given R, Φ equation (4)
ρ̃R,Φ Density matrix of HR,Φ (trial density matrix) Page 3-1
ρ̃R,Φ(R) Gaussian positional probability density for ρ̃R,Φ Page 3-1
F[R,Φ] SSCHA Helmholtz free energy functional equation (7)
G[R,Φ] SSCHA Gibbs free energy functional equation (10)
fHR,Φ (R) Forces for the Hamiltonian HR,Φ acting on the ions when they are in the R positions equation (12)
f(BO)(R) Born–Oppenheimer forces acting on the ions when they are in the R positions equation (12)
P(BO)(R) Born–Oppenheimer stress tensor when the ions are in the R positions equation (19)
ΦR 2nd SSCHA force constants for a given R, it is the trial Φ that minimizes F[R,Φ] Page 12-2
DR ΦR divided by the square root of the masses equation (52)
(3)
ΦR,

(4)
ΦR 3rd and 4th order SSCHA force constants for a given R equations (53) and (54)

(3)
DR,

(4)
DR

(3)
ΦR,

(4)
ΦR divided by the square root of the masses equations (53) and (54)

F(R) SSCHA positional Helmholtz free energy, given by F[R,ΦR] equation (50)
Req SSCHA equilibrium centroids, trial centroids that minimizes F(R) equation (8)
Φeq SSCHA harmonic matrix ΦReq , the trial Φ at the minimum of the free energy functional equation (8)
H(S) SSCHA effective harmonic Hamiltonian, given by HReq,Φeq equation (60)
D(S) Dynamical matrix of H(S), given by DReq Page 14-1
(3)
Deq,

(4)
Deq Symbols indicating

(3)
DReq and

(4)
DReq , respectively equation (62)

D(F) Positional Helmholtz free energy Hessian divided by the square root of the masses Page 12-2
G(z) One-phonon Green function equation (67)
Π(0),Π(z) Static and dynamic SSCHA self-energy equations (62) and (68)
(B)
Π(0),

(B)
Π(z) Static and dynamic SSCHA bubble self-energy equations (64) and (69)

σ(q,Ω) Phonon spectral function (with the reciprocal lattice vector made explicit) equation (70)
ωμ(q) Frequency of the (μ, q) SSCHA auxiliary phonon equation (16)
Ωμ(q) Frequency of the (μ, q) static approximation phonon from D(F) Page 15-1
Ωμ(q),Γμ(q) Frequency and linewidth of the (μ, q) anharmonic phonon in the Lorentzian approximation equation (81)

As made explicit in equation (7), only thermal effects on the
ions are taken into account so far, whereas the electrons are
considered at zero temperature. However, at very high tem-
peratures the entropy associated to electrons may be impor-
tant. Within the SSCHA, it is possible to explicitly include
finite-temperature effects on the electrons too. The key is to
replace in equation (7) the electronic ground state energy V(R)
with the finite-temperature electronic free energy Fel(R) =
Eel(R) − TSel(R) (if electrons have finite temperature, in the
adiabatic approximation forces and equilibrium position of the
ions are ruled by the electronic free energy). In this case the
SSCHA method minimizes the functional

F [R,Φ] = 〈K + Fel(R)〉ρ̃R,Φ
− T Sion

[
ρ̃R,Φ

]
= 〈K + Eel(R)〉ρ̃R,Φ

− TS
[
ρ̃R,Φ

]
, (11)

where S
[
ρ̃R,Φ

]
= 〈Sel(R)〉ρ̃R,Φ

+ Sion

[
ρ̃R,Φ

]
. The same

trick can be applied to the Gibbs free energy minimization
as well. Therefore, the SSCHA estimation of the system’s

entropy can also incorporate contributions from both electrons
(averaged through the ionic distribution ρ̃R,Φ) and ions.
In a DFT framework, for example, this simply comes
down to including the electronic temperature in the
energy/forces/stress calculations for the ensemble elements
through the Fermi–Dirac occupation of the Kohn–Sham
states [41].

3.2. The implementation of the free energy minimization

In the SSCHA code, the minimization of F [R,Φ] is per-
formed through a preconditioned gradient descent approach,
which requires the calculation of the gradient of the free energy
with respect to the centroid positions R and the auxiliary
FCs Φ. The partial derivatives are evaluated through the exact
analytic formulas

∂F
∂Ra

= −
〈

f (BO)
a (R) − f

HR,Φ
a (R)

〉
ρ̃R,Φ

(12)
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and

∂F
∂Φcd

=
1
2

∑
ab

∂Ψab

∂Φcd

〈(
f (BO)

b (R) − f
HR,Φ
b (R)

)

×
∑

e

Ψ−1
ae (Re −Re)

〉
ρ̃R,Φ

. (13)

Here f(BO)(R) are the BO forces that act on the ions when
they are in the R positions; fHR,Φ (R) is the force given by the
auxiliary harmonic Hamiltonian HR,Φ,

f
HR,Φ
a (R) = −

∑
b

Φab(Rb −Rb); (14)

and Ψ is the displacement–displacement correlation matrix

Ψab = 〈uaub〉ρ̃R,Φ
, (15)

where with u = R −R we indicate the displacement from the
average atomic position. Explicitly,

Ψab =
1√

MaMb

∑
μ

�(2nμ + 1)
2ωμ

ea
μeb

μ. (16)

In equation (16), ωμ and eμ are the eigenvalues and eigenvec-
tors of the mass rescaled auxiliary FCs Φab/

√
MaMb, and nμ

is the Bose–Einstein occupation number for the ωμ frequency.
We underline again here that ωμ are not the phonon frequen-
cies of the system, but just the frequencies of the auxiliary
harmonic Hamiltonian HR,Φ. In other words, they are only
used to define the trial density matrix ρ̃R,Φ. We show how to
compute the physical anharmonic phonon frequencies of the
system in section 4.

It is convenient to give an explicit expression for the gra-
dient of the free energy with respect to the auxiliary FCs in
terms of the ωμ eigenvalues and eμ eigenvectors. As shown
in reference [23] (see appendix B), the gradient can be rewrit-
ten as

∂F
∂Φcd

=
∑

ab

Λ[0]abcd

√
MaMbMcMd

〈(
f (BO)

b (R) − f
HR,Φ
b (R)

)

×
∑

e

Ψ−1
ae (Re −Re)

〉
ρ̃R,Φ

, (17)

where

Λ[0]abcd =
∑
μν

�

4ωνωμ
ea
νeb

μec
νed

μ

×

⎧⎪⎪⎨⎪⎪⎩
dnμ

dωμ
− 2nμ + 1

2ωμ
, ων = ωμ

nμ − nν

ωμ − ωnu
− 1 + nμ + nν

ωμ + ωnu
, ων �= ωμ

.

(18)

Here, nμ = 1/(eβ�ωμ − 1). The reason why we have intro-
duced the Λ[0] tensor will be evident in section 4. Even if
equation (17) looks different to the gradient introduced in the

original SSCHA work in reference [22], it can be demonstrated
that both expressions are equivalent by simply playing with the

permutation symmetry of
〈

∂2V
∂Ra∂Rb

〉
ρ̃R,Φ

. However, equation

(18) unambiguously determines the value taken by the Λ[0]
tensor for the ων = ωμ case, while the gradient in reference
[22] did not describe explicitly what to do in this degenerate
limit.

At the end of the SSCHA optimization, apart from the
temperature-dependentReq positions and the equilibrium aux-
iliary FC matrix Φeq, the code also calculates the anharmonic
stress tensor P, which includes both quantum and thermal ionic
fluctuations, as derivatives of the free energy with respect to a
strain tensor ε:

Pαβ = − 1
ΩVol

∂F
∂εαβ

∣∣∣∣
ε=0

=
〈

P(BO)
αβ (R)

〉
ρ̃R,Φ

− 1
2ΩVol

Na∑
s=1

〈
uα

s f (BO)β
s + uβ

s f (BO)α
s

〉
ρ̃R,Φ

. (19)

Here, we have made explicit the atomic index s (lower index)
and Cartesian α, β (upper index) of u and f (BO). P (BO)(R) is
the BO stress tensor of the configuration with ions displaced
in the R coordinates. This equation is slightly different from
the stress tensor equation presented in [24]. The two equations
coincide at equilibrium, but this is more general. The deriva-
tion of equation (19) is reported in appendix A. Thanks to the
temperature-dependent stress, the SSCHA code can optimize
also the lattice parameters and the volume. Thus, by relax-
ing the lattice at different temperatures, we get the thermal
expansion straightforwardly.

Remarkably, the stress tensor of equation (19) can be com-
puted with a single SSCHA minimization at fixed volume.
This is a huge advantage with respect to the standard quasi-
harmonic approximation,not only because it includes quantum
and anharmonic effects, but also because it is computationally
much more efficient. In fact, the quasiharmonic approximation
requires performing harmonic phonon calculations at differ-
ent volumes (and/or internal lattice positions) to estimate the
minimum of the quasi-harmonic free energy with finite differ-
ences. This process is extremely cumbersome for crystals with
few symmetries and lots of internal degrees of freedom in the
structure.

In the current implementation of the code, the symmetries
of the space group are imposed a posteriori on the gradients of
equations (12) and (13), as well as on (19). This assures that
the density matrix satisfies all the symmetries at each step of
the minimization. Thus, during the geometry optimization, the
system cannot lose any symmetry, though it can gain them. The
symmetries are imposed following the methodology explained
in appendix D, which is different to the method originally con-
ceived [22]. The current SSCHA code can also work without
imposing symmetries, allowing for symmetry loss, though the
stochastic number of configurations needed to converge the
minimization is larger (see section 3.2.1).

3.2.1. The stochastic sampling. The stochastic nature of the
SSCHA comes from the Monte Carlo evaluation of the

7
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averages in equations (12), (13), and (19). A set of ran-
dom ionic configurations are created in a chosen supercell
according to the Gaussian ionic probability distribution

ρ̃R,Φ(R) =
√

det(Ψ−1/2π)

× exp

[
−1

2

∑
ab

(Ra −Ra)Ψ−1
ab(Rb −Rb)

]
.

(20)

The Monte Carlo average of a generic observable O(R), func-
tion only of the ionic position R, is calculated then as weighted
sum over the created ensemble:

〈O(R)〉ρ̃R,Φ
=

1∑Nc
j=1 ρ j

Nc∑
j=1

ρ jO(R j). (21)

Here, Nc is the total number of configurations in the ensem-
ble, while Rj is the jth ionic randomly displaced configura-
tion. Each of the R{ j} configurations is generated according
to the initial trial ionic distribution ρ̃R(0),Φ(0) (R) from which
the minimization starts. To improve the stochastic accuracy,
for each Rj configuration also −Rj is created, benefiting from
ρ̃R,Φ(R) = ρ̃R,Φ(−R) property of the Gaussian distribution.

The ρ j weights are computed and updated along the free
energy minimization as the values of R and Φ change:

ρ j =
ρ̃R,Φ

(
R j

)
ρ̃R(0),Φ(0)

(
R j

) . (22)

At the beginning, when the ensemble has just been gener-
ated and R = R(0) and Φ = Φ(0), all values of ρ j = 1. How-
ever, as the R and Φ are updated during the minimization,
the weights change. This reweighting technique is commonly
used in Monte Carlo methods [42, 43] and takes the name of
importance sampling. This allows avoiding generating a new
ensemble and computing ab initio energies and forces at each
step of the minimization, speeding up the SSCHA calculation.

3.2.2. Minimization algorithm. The minimization strategy
implemented in the SSCHA code for the free energy is based
on a preconditioned gradient descent. At each step, the R and
Φ are updated as

Φ(n+1) = Φ(n) − λΦ

∑
ab

(
∂2F

∂Φ∂Φab

)−1
∂F
∂Φab

(23)

R(n+1) = R(n) − λR
∑

a

(
∂2F

∂R∂Ra

)−1
∂F
∂Ra

. (24)

In a perfectly quadratic landscape, this algorithm assures the
convergence in just one step if both λΦ and λR are set equal
to one. However, in order to avoid too big steps in the mini-
mization, often it is more convenient to chose λΦ|R < 1. This
algorithm, with the Hessian matrix that multiplies the gradient,
is the preconditioned steepest descent. If the preconditioning
option is set to false, a standard steepest descent minimization

is followed instead, with λΦ and λR re-scaled to the maxi-
mum eigenvalue of the ∂2F

∂Φ2 and ∂2F
∂R2 Hessian matrices, respec-

tively, in order to have a dimensional values independent on the
system.

The preconditioning Hessian matrices that multiplies the
gradients in equation (27) and (28) are approximated by the
code. Following the procedure introduced in reference [24], we
use the exact Hessian in the minimum of a perfectly harmonic
oscillator with the same frequencies as the SCHA auxiliary
Hamiltonian. In particular, they are:

∂2F
∂Φab∂Φcd

≈ 1
2
∂Ψab

∂Φcd
(25)

and
∂2F

∂R∂R ≈ Φ. (26)

Equation (25) is presented differently from the original work
in which it was derived [24]. We prove in appendix B that
they are exactly the same. Considering that the Hessian pre-
conditioner cancels out the 1

2
∂Ψab
∂Φcd

term in equation (13), the
resulting update of the variational parameters at each step in
the minimization is performed as

Φ(n+1)
ab = Φ(n)

ab +−λΦ

〈(
f (BO)

b (R) − f
HR,Φ
b (R)

)

×
∑

c

Ψ−1
ac (Rc −Rc)

〉
ρ̃R,Φ

(27)

and

R(n+1)
a = R(n)

a + λR
∑

b

Φ−1
ab

〈
f (BO)

b (R) − f
HR,Φ
b (R)

〉
ρ̃R,Φ

.

(28)
This implementation is very efficient, especially for equation
(27), as there is no need to calculate the ΛR[0] tensor. There-
fore, computing directly equation (27) is much faster than
calculating the gradient of equation (13).

The code allows the user to select a different minimization
algorithm specifically for the minimization with respect to Φ:
the root representation. Since the minimization with respect
to Φ is the more challenging, this technique aims to further
improving the Φ optimization. In particular, the gradient has
a stochastic error and the minimization is performed with a
finite step size. For these reasons, Φ could become non posi-
tive definite during the optimization (i.e. the dynamical matrix
has imaginary frequencies). If this occurs, the minimization
is halted raising an error, as the density matrix of equation
(20) diverges. In such a case, the minimization must be man-
ually restarted, either by taking a smaller step or by stop-
ping the minimization before reaching imaginary frequencies
(fixing the maximum number of steps). This kind of halts do
not occur often when using the preconditioning in the mini-
mization. However, they may be encountered if few configura-
tions are generated for each ensemble or the starting dynamical
matrix is very far from equilibrium.

To solve these problems, we implement the root represen-
tation, in which, instead of updating Φ as in equation (27), it

8
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updates a root of Φ:

n
√
Φ

(i+1)
=

n
√
Φ

(i) − λΦGn. (29)

The updating direction Gn depends on the root order n:

G2 =
√
Φ · ∂F

∂Φ
+

∂F
∂Φ

·
√
Φ, (30)

where with the · we indicate a matrix product. Similarly,

G4 =
4
√
Φ · G2 + G2 · 4

√
Φ. (31)

We select the positive definite root matrix. Indeed, after the
step of equation (29) the original FC matrix is obtained as

Φ(i+1) =
(

n
√
Φ

(i+1)
)n
. (32)

Thanks to the definition in equation (32), the dynamical matrix
is always positive definite for any even value of n.

The root representation is independent of the precondition-
ing. With preconditioning, we replace the free energy gradient
in equation (30) with the preconditioned direction in equation
(27) (the gradient multiplied by the approximated Hessian).
This is different from what was proposed in the original work
[24], where the Hessian matrix was computed also for the

√
Φ

and 4
√
Φ cases. However, we noticed that in systems with many

atoms, the Hessian matrix calculation becomes the bottleneck
as it scales with N6

a . The implementation here described allows
for a much faster Φ update and avoids calculating the Hessian
matrix. The drawback is that the optimization step is not as
optimal as it would be if the proposal in reference [24] was
followed. The code offers six combinations for the minimiza-
tion procedure: no root, square root (n = 2), and fourth-root
(n = 4), all of them with or without the preconditioned direc-
tion. The optimal minimization step is n = 1 with precondi-
tioning. If the square root is employed (n = 2), it is preferable
to use the preconditioning. If fourth-root is employed (n = 4),
the best performances are without preconditioning.

3.2.3. The lattice geometry optimization. The lattice degrees
of freedom {ai} are relaxed only after the minimization of
the free energy with respect to R and Φ at a constant vol-
ume stops (see section 3.2.4 for a detailed description of the
stopping criteria). For this reason, the lattice geometry opti-
mization is an ‘outer’ optimization: at each step of the lattice
geometry optimization, we perform a full free energy mini-
mization with respect to the centroids R and auxiliary FCs Φ.
This means that each step of the lattice geometry optimization
is performed with a different ensemble, whose configurations
are all generated with the same lattice vectors.

To update the lattice, the code calculates the stress tensor
with equation (19), and generates a strain for the lattice as

εαβ = ΩVol
(
Pαβ − P∗δαβ

)
, (33)

where P∗ is the target pressure of the relaxation and δαβ is the
Kronecker delta. The lattice parameters {ai} are updated as

a′
iα = aiα + λ{ai}

∑
β

εαβaiβ , (34)

where λ{ai} is the update step. Since each step requires a new
ensemble, it is crucial to reduce the number of steps to reach
convergence by properly picking the right value for λ{ai}. In
an isotropic material with a constant bulk modulus

B0 = ΩVol
d2V (BO)

dΩ2
Vol

∣∣∣∣
R=R

, (35)

the optimal value of the step is

λ{ai} =
1

3ΩVolB0
. (36)

B0 is an input parameter given in GPa units. Good values of
B0 may range from 10 GPa for crystals at ambient conditions,
like ice, up to 800 GPa in systems at Mbar pressures (or for
diamond). Remember that increasing the value of B0 produces
smaller steps in the cell parameters. The user can estimate
the optimal value of B0 to assure the fastest convergence by
manually computing it from equation (35), by taking finite
differences of the pressure obtained at two uniformly strained
volumes, or by looking for the experimental value of similar
compounds.

Alternatively to the fixed pressure optimization, it is also
possible to perform the geometry lattice optimization at fixed
volume. In this case P∗ is recomputed at each step so that
Tr [ε] = 0. In this case, the final lattice parameters are also
rescaled so that the final volume matches the one before the
step. Since this algorithm has one less degree of freedom than
the fixed pressure one, it usually converges faster.

3.2.4. The code flowchart. To start a SSCHA simulation, we
need a starting guess on the trial positive definite FCs matrix
Φ(0) and on the average atomic positions R(0). Even if in prin-
ciple the starting point is arbitrary, the closer to the solution we
begin, the faster the minimization converges. Thus, the coor-
dinates at the minimum of the BO energy landscape and the
harmonic FCs are usually good starting points, which can be
obtained from any code that computes phonons. The super-
cell of the simulation is given by the dimension of the input
FCs matrix, while the centroids R are defined in the unit cell
(they satisfy translational symmetry). If the original dynami-
cal matrix contains imaginary frequencies, it can be reverted
to positive definite as

Φ(0)
ab =

√
MaMb

∑
μ

|ω2
μ|ea

μeb
μ. (37)

Then, the first random ensemble (that we call population in the
SSCHA language) can be generated. For each configuration
inside the population, its total BO energy as well as its classical
atomic forces f(BO) and stress tensor P(BO) must be computed.
This is done with an external code, either manually (by com-
puting externally the energies, forces, and stress tensor, and
loading them back into the SSCHA code), or automatically
(with an appropriate configuration discussed in section 5).
Once the BO energies, forces, and stress tensor of all the
configurations have been computed, the minimization starts.
The gradients of the free energy are computed as described in

9
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section 3.2.2 and the minimization continues either until the
stochastic sampling is not good or the algorithm converges.

If R and Φ change a lot during the minimization of the
free energy, the original ensemble no longer describes well
the new probability distribution ρ̃R,Φ(R), and the stochastic
error increases. This occurrence is automatically checked by
the SSCHA code calculating the Kong–Liu [44, 45] effective
sample size Neff :

Neff =

∑Nc
j=1 ρ

2
j(∑Nc

j=1 ρ j

)2 . (38)

We halt the minimization when the ratio between Neff and
the number of configurations Nc is lower than a parameter η
defined by the user:

Neff

Nc
< η. (39)

A standard value of η that ensures a correct minimization is
0.5, but it can be convenient to lower it a bit to accelerate
convergence in the first steps.

The convergence, on the contrary, is achieved only if the
two gradients with respect to R and Φ are lower than a given
threshold: ∣∣∣∣∂F∂Φ

∣∣∣∣ < δΦ (40)∣∣∣∣ ∂F∂R
∣∣∣∣ < δR. (41)

The δ threshold is provided by the user and re-scaled at each
step by the estimation of the stochastic error on the corre-
sponding gradient (meaningful_factor). So, at each step, δ is

δΦ = meaningful_factor ·
∣∣∣∣Δ∂F

∂Φ

∣∣∣∣ (42)

δR = meaningful_factor ·
∣∣∣∣Δ ∂F

∂R

∣∣∣∣ . (43)

In this way, the user-provided variable meaningful_factor is
independent on the system size or the number of configurations
used.

If the lattice parameters are free to move, then an additional
condition must be fulfilled in order to end the minimization:
each component of the strain per unit-cell volume ΩVol must
be smaller than the stochastic error on the stress tensor:

εαβ
ΩVol

� ΔPαβ. (44)

If equation (44) is not fulfilled, even if all the gradients are
lower than the chosen threshold, the code generates a new
ensemble and continues (until both conditions are satisfied).

At the end of the minimization, the output of the SSCHA
minimization gives the total free energy (with stochastic error),
the average equilibrium ionic positions Req, the equilibrium
auxiliary FC matrix Φeq, and the stress tensor P. All output
quantities are temperature-dependent, and include quantum-
thermal fluctuations and anharmonicity. A flowchart that rep-
resents the whole execution of a SSCHA run is presented in
figure 2. If the SSCHA code is coupled with an ab initio total-
energy engine, the most expensive calculation in the flowchart

is by far the calculation of BO energy, forces, and stress tensors
on the whole ensemble, which may contain up to several hun-
dreds or thousands of configurations. For this reason, the pretty
complex workflow we set up is aimed to pass by the calcula-
tion of a new ensemble as few times as possible. Most mate-
rials studied and presented in section 7 are converged within
3 populations, and the CPU time required to minimize each
population is few minutes on a single CPU of modern laptops.

3.3. The self-consistent equation and possible alternative
implementations of the SSCHA

The preconditioned gradient descent approach sketched above
offers a very efficient implementation of the SSCHA theory, in
which the anharmonic free energy is optimized by all degrees
of freedom in the crystal structure, including internal coordi-
nates as well as lattice vectors. If the centroid positions R
are kept fixed in the minimization, the SSCHA self-consistent
equation

Φab(R) =

〈
∂2V

∂Ra∂Rb

〉
ρ̃R,Φ(R)

(45)

offers an alternative way of implementing the SSCHA theory
(see reference [23] for a proof of equation (45)). It is impor-
tant to underline the self-consistent condition required by the
equation above, as the quantum statistical average is taken with
a density matrix dependent on Φ(R), which must equal the
result of the average. As in this approach the centroid positions
are not optimized, the obtained auxiliary FC matrix depends
parametrically on R.

The self-consistent equation can be implemented stochas-
tically, following the procedure outlined in section 3.2.1. By
using integration by parts [23], the right-hand-side of equation
(45) can be rewritten in terms of forces and displacements.
Thus, with the importance sampling technique and reweight-
ing, the equation can be solved by calculating forces in super-
cells generated with the SSCHA density matrix. An equiva-
lent approach [30] is to extract the auxiliary FCs by fitting the
obtained forces in the supercells generated with the SSCHA
density matrix to equation (14). This approach has been fol-
lowed recently [30, 46, 47], where a least-squares technique is
followed for the fitting.

The use of the self-consistent equation is valid, thus, only
for fixed centroid positions. If the centroid positions want to be
optimized as well within this approach, the self-consistent pro-
cedure should be repeated for different values of R, calculate
the free energy for these positions, and see where its mini-
mum is. Clearly this is a very cumbersome procedure unless
centroid positions are fixed by symmetry. Moreover, solving
the self-consistent equation fixing the centroid positions at the
classical R0 positions, which it is usually the case [30, 46, 47],
neglects all the effects of quantum and thermal fluctuations on
the structure. Since within our approach based on the gradient
descent we can optimize the free energy not only with respect
to the auxiliary FCs but also all degrees of freedom in the crys-
tal structure, the workflow outlined in section 3.2 provides a
full picture of the effect of quantum/thermal fluctuations as
well as anharmonicity on crystals, much more efficient than
the approaches based on equation (45).
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Figure 2. Flowchart of the SSCHA code. The most time consuming part of the diagram is the ab initio calculation of the BO forces,
energies, and stress tensors for all the configurations inside the ensemble, and it is shaded in red. All the other steps usually take few seconds
when executed on a standard workstation, even in systems that contain several hundreds of atoms.

4. Post-minimization tools: positional free energy
Hessian, phonon spectral functions, and phonon
linewidths

In the previous section we described how to compute the free
energy of a system and fully optimize its structure by tak-
ing into account the anharmonicity that arises from both ther-
mal and quantum fluctuations. After the free energy functional
minimization, additional information can be extracted from the
results obtained, namely, the second derivative (Hessian) of
the positional free energy with respect to the centroids, the
anharmonic phonon spectral functions, and the anharmonic
frequency linewidths and shifts. In the next subsections we
will explain why these quantities are of physical interest and
what is the strategy adopted by the code to computing them.
The theory here reviewed was introduced in reference [23] and
extensively applied for the first time in ab initio calculations to
H3S in reference [48].

4.1. Positional free energy Hessian

As shown in section 2, for a given temperature the free
energy at equilibrium F of a system with Hamiltonian H is
obtained by minimizing the density-matrix functional F [ρ̃] =
〈K + V(R)〉ρ̃ − TS[ρ̃]:

F = min
ρ̃

F [ρ̃] = F [ρ], (46)

where ρ is the equilibrium density matrix of the system
obtained at the minimum. The average atomic positions at
equilibrium are 〈R〉ρ = Req. By minimizing the functional
keeping fixed the average atomic positions in a generic con-
figuration R, 〈R〉ρ̃ = R, we define the positional free energy
F(R):

F(R) = min
ρ̃

〈R〉ρ̃=R

F [ρ̃] = F [ρR], (47)

where ρR is the density matrix giving the constrained mini-
mum for the considered average position R. Since
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F = F(Req) = min
R

F(R), (48)

R and F(R) can be interpreted as a multidimensional order
parameter and a thermodynamic potential, respectively, in the
study of displacive phase transitions according to Landau’s
theory. Properly speaking, the ‘order’ parameter would be
R−Rhs, where Rhs is the average position of the atoms
when the system is in the high-symmetry phase. Therefore, the
knowledge of the positional free energy landscape as a func-
tion of external parameters, like temperature or pressure, gives
crucial information about the structural stability and evolution
of a system, as it allows to determine the (meta-)stable config-
urations corresponding to (local) minima of the positional free
energy.

The Hessian of the positional free energy F(R) in the equi-
librium configuration is the inverse response function to a
static perturbation on the nuclei (i.e. the inverse of the static
susceptibility). In presence of a second order phase transition
the static response function diverges, which results in one or
more eigenvalues of the positional free energy Hessian going
to zero. This means that the occurrence of displacive second-
order phase transitions, like CDW or ferroelectric transitions
[41, 49–52], can be characterized by analyzing the evolution
with temperature of the eigenvalues of the equilibrium posi-
tional free energy Hessian. Typically, in these cases at high
temperature the minimum point of the free energy, i.e. the equi-
librium configuration Req, is a high-symmetry configuration
Rhs. Therefore, at high temperature the free energy Hessian in
Rhs is positive definite, i.e. its eigenvalues are positive. As the
temperature decreases, the minimum in Rhs becomes less and
less deep, until it becomes a saddle point at the transition tem-
perature (i.e. at least one eigenvalue is zero), so that a second-
order displacive phase transition occurs and the equilibrium
configuration Req moves towards lower-symmetry configura-
tions that reduce the free energy as the temperature decreases
further (following the pattern indicated by the eigenvector
of the vanishing eigenvalue). Using the same approach, it is
possible to characterize second-order displacive phase transi-
tions driven by other external parameters, like the pressure in
high-pressure superconducting hydrides [21, 34, 36, 48, 53].

The role played by the eigenvalues and eigenvectors of
the positional free energy Hessian in tracing the system’s
structural stability recalls the role played by the harmonic
dynamical matrix in the standard harmonic approximation,
but now including lattice thermal and quantum anharmonic
effects in the dynamics of the nuclei. Therefore, the Hes-
sian of the positional free energy, divided by the masses,
D(F)

ab = ∂2F/∂Ra∂Rb
∣∣
Req

/
√

MaMb, can be considered a nat-
ural generalization of the harmonic dynamical matrix that,
however, includes thermal and quantum effects.

What explained hitherto about the role played by the posi-
tional free energy and its Hessian is general. In particular, the
evaluation of the positional free energy within the SSCHA
is pretty straightforward. Indeed, the average position for a
trial harmonic density matrix ρ̃R,Φ coincides with the centroid
parameter R,

〈R〉ρ̃R,Φ
= R. (49)

Thus, within the SSCHA the positional free energy is obtained
by minimizing the SSCHA free energy functional F [R,Φ]
with respect to the trial quadratic amplitude Φ only:

F(R) = min
Φ

F [R,Φ]. (50)

The auxiliary FCs that minimize equation (50) for a given
R position of the centroids will be labeled in the following
as ΦR. Solving equation (50) allows to employ the SSCHA
code to have direct access to F(R) for any R and, in prin-
ciple, to compute the Hessian by finite differences. How-
ever, as discussed above, such a finite-difference approach
would be extremely expensive for two main reasons. First, it
would require a large number of configurations in the ensem-
ble to reduce the stochastic error and calculate the deriva-
tives by finite differences. Second, because the large num-
ber of degrees of freedom in R prevents any realistic finite-
difference approach. Luckily the SSCHA code allows to avoid
any cumbersome finite-difference approach by exploiting an
analytic formula for the positional free energy Hessian.

Before describing the analytic formula, let us introduce
a notation that will simplify the mathematical expressions.
Given two tensors X and Y, with the single dot product
X · Y we will indicate the contraction of the last index of
X with the first index of Y,

∑
c X...cYc.... Likewise, with the

double-dot product X : Y we will indicate the contraction of
the last two indices of X with the first two indices of Y,∑

cd X...cdYcd.... Moreover, any fourth-order tensor Xpqlm can be
interpreted as a ‘super’ matrix XAB, with the composite indices
A = (pq) and B = (lm), and vice versa (through this corre-
spondence we can define, for example, the inverse of a fourth-
order tensor and the identity fourth-order tensor 𝟙). Using this
notation, we can express the positional free energy Hessian,
1/

√
MaMb ∂2F/∂Ra∂Rb, in component-free form as

1√
M

· ∂2F
∂R∂R · 1√

M
(51)

= DR +
(3)
DR :ΛR[0] :

[
𝟙−

(4)
DR :ΛR[0]

]−1

:
(3)
DR,

where Mab = δabMa is the mass matrix,

(DR)ab =
1√

MaMb

〈
∂2V

∂Ra∂Rb

〉
ρR,ΦR

=
(ΦR)ab√

MaMb
, (52)

(
(3)
DR)abc =

1√
MaMbMc

〈
∂3V

∂Ra∂Rb∂Rc

〉
ρR,ΦR

=
(
(3)
ΦR)abc√
MaMbMc

, (53)

(
(4)
DR)abcd =

1√
MaMbMcMd

〈
∂4V

∂Ra∂Rb∂Rc∂Rd

〉
ρR,ΦR

=
(
(4)
ΦR)abcd√

MaMbMcMd
, (54)
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and ΛR[0] is the z = 0 value of the fourth-order tensor ΛR[z],
already introduced in equation (18). In the equations above
the quantum statistical averages are taken with ρR,ΦR , which
for a given R position of the centroids is taken with the ΦR
auxiliary FCs that minimize the free energy. ΛR[z] is given in
components by

(ΛR[z])abcd =
∑
μν

F(z,ωμ,ων) ea
νeb

μec
νed

μ, (55)

where ω2
μ and ea

ν are the eigenvalues and eigenvectors of DR,
and

F(z,ων ,ωμ) =
�

4ωμων

[
(ωμ − ων)(nμ − nν)

(ωμ − ων)2 − z2
+

− (ωμ + ων)(1 + nμ + nν)
(ωμ + ων)2 − z2

]
. (56)

The only difference between ΛR[0] and Λ[0] (introduced in
equation (18)) is that in the former the eigenvalues and eigen-
vectors entering the equation are those associated to the ΦR
auxiliary FCs at the centroid positions R, while in the lat-
ter this is not necessarily the case. The subindex R in the
equations above precisely indicates that the averages are calcu-
lated with a density matrix defined by R and ΦR (after a full
SCHA relaxation at fixed nuclei position R). We will refer to

the
(n)
ΦR tensors as the nth-order SSCHA FCs. Note that for the

second-order we drop the (2) upper index.
The SSCHA code computes the free energy positional Hes-

sian through equation (51). At the end of a SSCHA free
energy functional minimization, the SSCHA matrix equation
(52), with its eigenvectors and eigenvalues, is available. Thus,
ΛR[0] is readily computable and the only quantities that need
some effort to be calculated are the averages of equations (53)
and (54). The code computes them through these equivalent
expressions (obtained by integrating by parts):

(
(3)
ΦR)abc = −

∑
pq

(Ψ−1
R )ap (Ψ−1

R )bq〈 upuq𝕗c 〉ρR,ΦR
(57a)

(
(4)
ΦR)abcd = −

∑
pqr

(Ψ−1
R )ap (Ψ−1

R )bq (Ψ−1
R )cr〈 upuqur𝕗d 〉ρR,ΦR

,

(57b)

where ΨR is the Ψ matrix with Φ = ΦR and

𝕗 (R) = f(BO) (R) −
〈
f(BO) (R)

〉
ρR,ΦR

− fHR,ΦR (R) . (58)

These averages are computed employing the stochastic
approach already described in section 3.2.1 (indeed, as
explained in reference [23], the choice of equation (58), among
other possible alternatives, aims at reducing the statistical
noise). Note that if the calculation of the free energy Hessian
is performed at Req,

〈
f(BO)(R)

〉
ρR,ΦR

vanishes.

In order to minimize the number of energy-force calcula-
tions needed, it is advisable to compute these averages using
the same ensemble used to minimize the free energy functional
and obtain ΦR (at most adding new elements to reduce the

statistical noise, if needed). Of course, since in this case the
ensemble is not generated from ΦR, an importance sampling
reweighting has to be employed in order to evaluate the aver-
ages 〈 · 〉ρR,ΦR

. After computing the averages, the code sym-

metrizes the results with respect to the space group symmetries
(including the lattice translation symmetries) and the index-
permutation symmetry, following the approach described in
appendix D.

In order to reduce the computational cost, the SSCHA
code can also compute the free energy Hessian discarding
the contribution coming from the higher-order terms of the
geometric-series expansion in equation (51), i.e. discarding the

terms coming from
(4)
DR. In many cases this approximation is

extremely good, but it must be checked case by case. Within
this so called ‘bubble’ approximation, the free energy Hessian
becomes

1√
M

· ∂2F
∂R∂R · 1√

M
	 DR +

(3)
DR :ΛR[0] :

(3)
DR. (59)

Using equation (51), or its approximated expression
equation (59), the SSCHA code can compute the Hessian of
the free energy at any R. However, as said, its most significant
usage is in Req, due to its relevance to characterize displacive
second-order phase transitions. In this case, equation (51) can
be written in a quite explanatory form. At the end of a full
SSCHA minimization, the obtained Req and Φeq define the
so-called SSCHA effective harmonic Hamiltonian

H(S) = K +
1
2

(R −Req) ·Φeq · (R −Req), (60)

which replaces the conventional harmonic Hamiltonian to
define non-interacting bosonic quasiparticles as a basis to
describe the collective vibrational excitations in presence of
strong anharmonic effects. In terms of the dynamical matrix
D(S)

ab = (Φeq)ab/
√

MaMb of the SSCHA Hamiltonian H(S), the
anharmonic generalization of the dynamical matrix D(F) can be
written as

D(F) = D(S) +Π(0), (61)

where

Π(0) =
(3)
Deq :Λeq[0] :

[
𝟙−

(4)
Deq :Λeq[0]

]−1

:
(3)
Deq (62)

is the static SSCHA self-energy (the reason behind the use of
this name will be clear in the section 4.3). In particular, in the
bubble approximation we have

D(F) = D(S) +
(B)
Π(0), (63)

where
(B)
Π(0) =

(3)
Deq :Λeq[0] :

(3)
Deq (64)

is the so called ‘bubble’ static self-energy.
In conclusion, after the SSCHA minimization, the code

allows to compute the high-order SSCHA FCs, equation (57),

13
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and the free energy Hessian dynamical matrix

(65)

(depending on whether the full or only the ‘bubble’ static self-
energy is computed) on the q-points belonging to the recip-
rocal space grid commensurate with the real space supercell
used to generate the ensemble. Here we are explicitly using
the reciprocal-space formalism, i.e. we are Fourier transform-
ing the quantities with respect to the lattice vector indices (see
appendix E1 for more details). From the softening of the eigen-
values of D(F)(q) as a function of external parameters (like
temperature or pressure), it is possible to observe the occur-
rence of second order displacive phase transitions, character-
ize the distortion patterns and compute the critical value of
the external parameters driving it. Examples of the employ-
ment of this method are given for H3S in figure 3 of reference
[48], with the softening of an optical mode driven by pressure
release, and for SnSe in figure 2 of reference [50], with the
softening of the distortion mode obtained by decreasing the
temperature.

4.2. Static bubble self-energy calculation: improved free
energy Hessian calculation

The SSCHA code also allows to compute the free energy Hes-
sian dynamical matrix D(F)(q) on any reciprocal space q-point,
allowing to analyze the structural instabilities incommensurate
with the used supercell. After the free energy evaluation and
the subsequent free energy Hessian calculation, the real-space

D(S)(l1, l2) and
(3)
Deq(l1, l2, l3) are available. Here, D(S)

ab (l1, l2) is
the real space D(S) matrix in which we made explicit the depen-
dence of the lattice vectors l1 and l2 that indentify the unit cells
in which atom a and b are located, respectively. Using them,

the code allows to compute the static bubble
(B)
Π(q, 0) in any

q-point, through the formula

(B)
Πμν(q, 0) =

1
Nk

∑
k1k2
ρ1ρ2

∑
G

δG,q+k1+k2F(0,ωρ1(k1),ωρ2(k2))

×
(3)
Dμρ1ρ2 (−q,−k1,−k2)

(3)
Dρ1ρ2ν(k1, k2, q) .

(66)

This equation is equation (64) written in reciprocal space
and SSCHA normal mode components, i.e. in components
of the D(S)(q)’s eigenvector basis. In equation (66) the ki

sums are performed on a Brillouin zone (BZ) mesh of Nk

points;
(3)
Dμρ1ρ2 (k1, k2, q) are the SSCHA normal components

of
(3)
Deq(k1, k2, q), the Fourier transform of

(3)
Deq(l1, l2, l3) in

(k1, k2, q); ωρ(k) are the frequencies of D(S)(k); the function F
is defined by equation (56); G are reciprocal lattice vectors; and
δG,q+k1+k2 preserves crystal momentum. In this formula the q
and the ki’s are not confined to the grid commensurate with
the supercell used in the SSCHA minimization, as long as the

ranges of the real space D(S)(l1, l2) and
(3)
D(l1, l2, l3) are smaller

than the supercell size, so as to be legitimately Fourier inter-
polated on any reciprocal space points (more about the Fourier
interpolation in appendix E). This allows to obtain two results
at once. First, the k-mesh in equation (66) can be arbitrarily
increased up to convergence, so as to reach the thermodynamic
limit in the evaluation of the bubble static self-energy. Sec-

ond, from
(B)
Π(q, 0) and D(S)(q), through equation (65b) the code

allows to compute the free energy Hessian dynamical matrix
D(F)(q) (useful to detect and characterize the system instabili-
ties) in q points not necessarily commensurate with the super-
cell (at variance with what is obtained with the simple Hessian
calculation). This can be used, for instance, to study incom-
mensurate second-order displacive phase transitions. In partic-
ular, this is the correct way to compute the frequencies Ωμ(q)
along a reciprocal-space path, where Ω2

μ(q) are the eigenval-
ues of D(F)(q). This is, for example, the procedure followed
to compute the (static) SCHA phonon dispersions of NbS2

shown in figures 2 and 3 of reference [51], and to compute
the interpolation-based convergence analysis shown in figure
3 of reference [54] for TiSe2 monolayer.

4.3. Dynamic bubble self-energy calculation: spectral
functions, phonon linewidth and shift

The anharmonic generalization of the harmonic dynamical
matrix described in the previous sections is the starting point to
build a quantum anharmonic ionic dynamical theory. As shown
in references [23, 48], in the context of the SSCHA it is pos-
sible to formulate an ansatz to give the expression of the one-
phonon Green function G(z) for the variable

√
Ma(Ra −Ra

eq).
This ansatz has been rigorously proved within the time depen-
dent self-consistent harmonic approximation [38, 39]. In this
dynamical theory

G−1(z) = z2𝟙−
(
D(S) +Π(z)

)
, (67)

where D(S) is the dynamical matrix of the SSCHA effec-
tive harmonic Hamiltonian H(S), and Π(z) is the SSCHA
self-energy, in general given by

Π(z) =
(3)
Deq :Λeq(z) :

[
𝟙−

(4)
Deq :Λeq(z)

]−1

:
(3)
Deq, (68)

and in the bubble approximation by

(B)
Π(z) =

(3)
Deq :Λeq(z) :

(3)
Deq. (69)

In the equations above we use the ‘eq’ subindex to specify that
the eigenvalues and eigenfunctions entering the equations are
obtained from Φeq with the centroid positions at Req.

With the Green function we obtain the spectral function
σ(Ω) = −2 Im Tr

[
G(Ω+ i0+)

]
, which provides the informa-

tion that can be obtained with inelastic scattering experiments.
Taking explicitly into account the lattice translational symme-
try (i.e. Fourier transforming the quantities with respect to the
lattice vector indices) we can write

σ(q,Ω) = −Ω

π
Im Tr

[
G(q,Ω+ i0+)

]
(70)
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or

σ(q,Ω) = −Ω

π
Im Tr

[(
Ω + i0+

)2𝟙+

−
(
D(S)(q) +Π(q,Ω+ i0+)

)]−1
, (71)

where the multiplicative factor Ω/2π has been included to
have, for each q, a function that integrated on the real axis gives
the total number of modes 3na (na is the number of atoms in the
unit cell, that may be different from the total number of atoms
in the supercell Na).

In the so-called ‘static approximation’, we replace the full
self-energy Π(z) with the static self-energy Π(0), where z is
blocked at zero. In this case the spectral function is

(stat)
σ (q,Ω) = −Ω

π
Im Tr

[(
Ω + i0+

)2𝟙−
(
D(S)(q)

+Π(q, 0))]−1

= −Ω

π
Im Tr

[(
Ω+ i0+

)2𝟙− D(F)(q)
]−1

,

(72)

where in the last line we have used equation (65). Therefore,

(stat)
σ (q,Ω) =

∑
μ

(stat)
σ μ(q,Ω) (73)

with

(stat)
σ μ(q,Ω) =

1
2

[
δ(Ω− Ωμ(q)) + δ(Ω+ Ωμ(q))

]
, (74)

where Ω2
μ(q) are the eigenvalues of the free energy Hessian

matrix D(F)(q). In other words, the spectral function in the
static limit is formed with delta peaks at the eigenvalues of
D(F)(q).

In the current version, the SSCHA code computes the full
dynamical SSCHA self-energy (z �= 0) only in the bubble
approximation with the equation (see equations (64), (66), and
(69))

(B)
Πμν(q,Ω+ iδse) =

1
Nc

∑
k1k2
ρ1ρ2

∑
G

δG,q+k1+k2

× F(Ω+ iδse,ωρ1(k1),ωρ2(k2))

×
(3)
Dμρ1ρ2 (−q,−k1,−k2)

(3)
Dρ1ρ2ν

× (k1, k2, q), (75)

where the summation k-grid can be arbitrarily fine as long as
the interpolation of the third-order SSCHA FCs can be per-
formed (as in the static case equation (66)), and δse is an arbi-
trary small, but finite, positive smearing value used to obtain
converged results in the computation. In fact, the exact result
corresponds to the limiting value obtained with an infinite k-
grid and a zero δse smearing. In actual, finite-time calculations,
the converged value of the dynamic self-energy is therefore

estimated in this way. For a given summation k-grid, the corre-
sponding self-energy converged value is estimated by analyz-
ing the result given by equation (75) for smaller and smaller
δse values (for the used k-grid, there will be a minimum value
of δse under which the result shows numerical instability).
This analysis is performed with finer and finer summation
grids until the converged value in the thermodynamic limit is
obtained. In principle, a dedicated convergence study of this
kind has to be performed for all the specific observables of
interest.

With the dynamical SSCHA bubble self-energy, the code
allows to compute the spectral function by the equation (see
equation (71))

σ(q,Ω) = −Ω

π
ImTr

[
(Ω+ iδid)2𝟙+

−
(

D(S)(q) +
(B)
Π(q,Ω+ iδse)

)]−1

, (76)

with δid another arbitrary small, but finite, positive smearing
value. The role of δid is significant when the imaginary part of
the self-energy is small. A prominent example where this hap-
pens is when the spectral function is calculated in the static
approximation, i.e. when the bubble self-energy is kept fixed

at the static value
(B)
Πμν(q, 0) (see equation (72)). Indeed, in

this case the self-energy is real (Hermitian) and the computed
spectral function becomes

(stat)
σ (q,Ω) =

∑
μ

1
2

Im

[
1
π

1
Ω− Ωμ(q) + iδid

+
1
π

1
Ω + Ωμ(q) + iδid

]
, (77)

where Ω2
μ(q) are the eigenvalues of D(F)(q) in the bubble

approximation. Therefore, for the numerical computation of
the static spectral function, a finite δid value is necessary to
recover the analytical result, equation (74), but with smeared
Dirac delta functions. Actually, this is not just an extreme
example, since the code really gives the opportunity to com-
pute the spectral function in the static approximation, replac-
ing in equation (76) the full bubble self-energy with its static
value computed through equation (66). This can be used to
double-check that, as expected from equations (74) and (77),
the obtained spectral function is given by spikes around the fre-
quencies of the Hessian free energy matrix D(F) (computed in
the bubble approximation). However, the role played by δid is
not as critical as δse since it is not typically system-dependent
and it does not require a convergence study: in the code its
default value is automatically set depending on the spacing of
the energy Ω-grid used to compute the spectral function.

Given a q, the calculation of the full spectral function
σ(q,Ω) through equation (76) turns out to be quite a heavy
task due to the inversion of a different 3na × 3na matrix for
each Ω value. The code also allows to employ a much less
computational demanding approach by discarding the off-
diagonal elements of the computed dynamical self-energy in
the SSCHA normal modes components (i.e. the components in
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the D(S)(q)’s eigenvector basis). Within this ‘no mode-mixing’
approximation, which usually proves to be extremely good, the
SSCHA modes keep their individuality even after the renor-
malization due to anharmonic effects. Indeed in this case, as in
the static approximation, equation (73), the total spectral func-
tion is given by the superposition of individual mode spectral
functions:

σ(q,Ω) =
∑
μ

σμ(q,Ω), (78)

where now the (q, μ)-mode spectral function σμ(q,Ω) is
computed with

σμ(q,Ω) =
1
2

[
1
π

−ImZμ(q,Ω)
[Ω− ReZμ(q,Ω)]2 + [ImZμ(q,Ω)]2

+
1
π

ImZμ(q,Ω)
[Ω+ ReZμ(q,Ω)]2 + [ImZμ(q,Ω)]2

]
(79)

and
Zμ(q,Ω) =

√
ω2
μ(q) +Πμμ(q,Ω+ iδse). (80)

Therefore, computing the spectral function in the ‘no
mode-mixing’ approximation, by measuring the deviation of
σμ(q,Ω) from a Dirac delta function around Ωμ(q), it is possi-
ble to asses the impact that anharmonicity has on the different
SSCHA modes (q, μ), separately.

The form of the (q, μ)-mode spectral function σμ(q,Ω)
in equation (79) resembles a Lorentzian, but with frequency-
dependent center and width, meaning that the actual form of
the spectral function σ(q,Ω) can be quite different from the
superposition of true Lorentzian functions. However, in some
cases the σμ(q,Ω) can be expressed with good approximation
as a true Lorentzian with a certain half width at half maximum
(HWHM) Γμ(q) and center Ωμ(q),

σμ(q,Ω) =
1
2

[
1
π

Γμ(q)
[Ω− Ωμ(q)]2 + [Γμ(q)]2

+
1
π

Γμ(q)
[Ω+ Ωμ(q)]2 + [Γμ(q)]2

]
, (81)

meaning that the quasiparticle picture is still valid, even after
the inclusion of anharmonicity, with the (μ, q) quasiparti-
cle having frequency (energy) Ωμ(q) and lifetime τμ(q) =
1/(2Γμ(q)). The difference between the renormalized and the
‘bare’ SSCHA frequency, Δμ(q) = Ωμ(q) − ωμ(q), is called
the frequency shift of the (μ, q) mode.

The SSCHA code offers several tools to perform such a
‘Lorentzian analysis’. In general, the best Lorentzian approx-
imation is obtained with

Ωμ(q) = ReZμ(q,Ωμ(q)) (82)

Γμ(q) = −ImZμ(q,Ωμ(q)). (83)

Once the dynamical self-energy and the Zμ(q,Ω) are com-
puted, the SSCHA code allows to compute the single-mode
spectral functions in the Lorentzian approximation, estimat-
ing the frequencyΩμ(q) and HWHMs Γμ(q) in different ways.

One, optional, possibility is to solve self-consistently equation
(82) to estimate Ωμ(q), and then Γμ(q), through equation
(83). However, by default, the ‘one-shot’ approximation is
employed with

(os)
Ω μ(q) = ReZμ(q,ωμ(q)) (84)

(os)
Γ μ(q) = −ImZμ(q,ωμ(q)). (85)

If the SSCHA self-energy Π is a (small) perturbation on the
SSCHA free propagator (not meaning that we are in a per-
turbative regime with respect to the harmonic approximation),
then perturbation theory can be employed to evaluate the spec-
tral function. If we keep the first order in the self-consistent
equations equation (85), we get:

(pert)
Ω μ(q) =

1
2ωμ(q)

ReΠμμ(q,ωμ(q)) (86)

(pert)
Γ μ(q) = − 1

2ωμ(q)
ImΠμμ(q,ωμ(q) + iδse). (87)

This perturbative approach is also employed by the SSCHA
code to evaluate the quasiparticles’ energies and life-
times. Examples of spectral function calculations done with
equations (76), (78)–(80) and (81) can be found in figure 4 of
reference [48]. In figure 5 of the same reference, the anhar-
monic phonon frequencies and linewidths along a path, com-
puted using the Lorenztian approximation through equations
(82) and (83), are shown. The spectral function computed with
equation (79) along a path is shown with a colorplot in figure
3 of reference [49] for PbTe, and in figure 4 of reference [50]
for SnSe.

In conclusion, with the SSCHA code we can calculate three
frequencies for a mode (q, μ): ωμ(q),Ωμ(q), and Ωμ(q), which
are the frequency of the SSCHA auxiliary boson, the frequency
coming from the SSCHA free energy Hessian (i.e. from the
static approximation), and the frequency of the SSCHA quasi-
particle in the Lorentzian approximation. Only the last one is
a true physical quantity as it can be measured in experiments.
However, the static Ωμ(q) is also a physical meaningful quan-
tity, as its zero value corresponds to a structural instability
driving a second-order phase transition along the pattern char-
acterized by the mode (q, μ). The SSCHA provides a specific
physical meaning of each of these frequencies, in contrast to
other approaches used to estimate anharmonic phonons, where
no distinction is usually done.

5. The Python code

Two different Python libraries are provided with the SSCHA
code: CellConstructor and Python-sscha. The latter is the
library that performs the SSCHA minimization itself, while
the former is a library that deals with the dynamical matrix,
the crystal structure, the symmetrization, and performs the
calculation of phonon spectral functions and linewidths as a
post-processing tool.

The SSCHA code allows to set up the calculations with a
simple Python script. In the standard calculation, the script
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loads the starting dynamical matrices; sets up the ensemble
and the parameters for the SSCHA run; performs the calcu-
lations of the BO energies, forces, and stress tensors on the
configurations in the ensemble by calling to a external total-
energy-force engine; and starts the minimization of the free
energy. A simple input script that performs all these steps
requires less than 20 lines. Examples are provided within the
code, as well as step-by-step tutorials to perform a full SSCHA
calculation starting just with the structure in a cif file. Python
scripting the SSCHA run makes it versatile, as it can be inter-
faced with other Python libraries to facilitate the analysis of the
results. As an alternative, it is also possible to write an input
file and run the SSCHA code as a stand-alone command-line
program.

The code is hosted on a GitHub repository at the date of
publication, located at https://github.com/SSCHAcode. News
about future releases, tutorials and documentation, are hosted
in the website www.sscha.eu.

5.1. Code structure

Most of the program is written in Python with an object-
oriented style. The system status (density matrix) is described
by a class defined in CellConstructor (phonons), that contains
all the information about the system, including lattice parame-
ters, atomic positions, and the auxiliary force-constant matrix
(plus eventual extra data, as effective charges used for post-
processing purposes). Methods of this class allow the user to
impose symmetries on the system, constrain the auxiliary force
to be positive definite (equation (32)), extract auxiliary phonon
frequencies and polarization vectors, or interpolate them to
other points in the BZ.

All the calculations related to the SSCHA averages are per-
formed by the ensemble class (inside Python-sscha). This class
generates and stores all the randomly displaced ionic config-
urations, and can submit or load the results of the energy,
forces, and stress tensors calculations. It also computes the
quantities related to averages on the ensemble, as the free
energy, the gradients, the stress tensor, and the free energy
Hessian.

Finally there are other classes, which employ the ensem-
ble and perform the minimization of the free energy, take care
of communicating with a remote cluster to run the calcula-
tion of forces and energies (see next section), and manage
the post-processing to compute the spectral function (the full
description of them is provided within the documentation of
the code).

Most of the code is written in Python, however, the heaviest
CPU-intensive calculation is written in Fortran and interfaced
with Python through the f2py utility provided by numpy [55].
In particular, the calculation of the free energy gradient, the
free energy Hessian, the spectral functions, the interpolation,
and the symmetrization are performed by a Fortran module
compiled with the code. For this reason, in order to compile
and use the code, a Fortran compiler as well as LAPACK and
BLAS libraries are required.

5.2. Parallelization

The nature of the algorithm makes it very simple to exploit
massive parallelization strategies available in high perfor-
mance computing (HPC) facilities. In particular, the most
expensive part of the code is the calculation of BO energies,
forces, and stress tensors of the generated ionic configurations
in each population (the red shaded cell in the code flowchart
in figure 2). Each of these calculations is independent from the
others, so they can be trivially run in parallel on different com-
puting nodes. This is a huge advantage with respect to other
methods based on AIMD or PIMD, which mimic a time evo-
lution of the system and thus require to calculate atomic forces
on one configuration after the other.

The SSCHA code does not include a particular engine for
computing energies, forces and stresses, but relies on external
software. For this reason, it is possible to exploit the efficient
parallelization already implemented by the chosen software.
For example, the widely used Quantum ESPRESSO package
recently implemented also a hybrid parallelization that exploits
together multi-threading (OpenMP), multiprocessing (MPI),
and GPU (CUDA) parallelization [56]. In this way the SSCHA
code stands on the shoulders of giants, exploiting the most
efficient parallelization available today.

All other steps of the code are generally computationally
very cheap compared to the energy and force calculation, espe-
cially when an ab initio approach is followed. The SSCHA
minimization cannot exploit so well the possibilities offered
by parallelization, since each step of the main cycle depends
on the previous one. Most of the computations executed in
the cycle are linear algebra calculations carried out with the
numpy library [55], some of them speeded up with an explicit
Fortran implementation. Thanks to the numpy implementa-
tion [57], if this library is correctly compiled, the linear alge-
bra calculations will exploit multi-threading. For this reason,
the best performances of the SSCHA are obtained by execut-
ing the ab initio calculations on an HPC facility, while the
SSCHA minimization on a commercial workstation in which
the minimization can take few seconds.

Post-processing calculations, like the free energy Hessian
and the phonon dynamical spectral functions, may be executed
with additional Python scripts after the end of the SSCHA
run. The calculation of the free energy Hessian has been par-
allelized with OpenMP (multi-threading), while the calcula-
tion of the spectral functions, which may require a dense
k-point grid for the interpolation, exploits multiprocessor par-
allelization through MPI (both mpi4py and pypar can be used
[58–60]).

5.3. Execution modes

Since the best performances of the code are obtained by run-
ning it in different computers, we introduced three differ-
ent execution modes: manual, automatic local, and automatic
remote submission.

In the manual mode, the code stops after generating the
ensemble and printing on files the structures of the randomly
distributed ionic configurations. At this point the user must
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feed these structures to a total-energy engine, e.g. a DFT code,
to calculate their BO energies, atomic forces, and stress ten-
sors. The user should prepare later specific files with the output
of these calculations. Then, the SSCHA code should be man-
ually restarted; it reads the output of energies, atomic forces,
and stress tensors and runs the minimization until the exit cri-
teria is fulfilled. After, it is up to the user to decide whether to
start a new population or not. In this sense, the manual mode
does not require direct interaction between the SSCHA code
and any other external software, and consequently this execu-
tion mode does not require the installation of the SSCHA code
on an HPC facility.

In the local automatic mode that can be scripted in Python,
the code has to be supplied with an interface to an external
code that is able to compute atomic forces and energies. This
can be done through the atomic simulation environment (ASE)
library [61], which already implements interfaces with most
common ab initio codes like Quantum ESPRESSO [62, 63],
VASP [64], SIESTA [65], CP2K [66], and many more. Force-
field codes like LAMMPS [67] may also be used. In this execu-
tion mode, the code will proceed automatically to perform the
calculations locally, and the full flowchart in figure 2 is exe-
cuted without requiring any direct interaction with the user.
While this execution mode is very useful, as it does not waste
human time to manually restart the code at each population,
it requires the most expensive part of the code, the calcula-
tion of total energies and forces, to be executed on the same
machine as the SSCHA algorithm. This has a drawback when
running the whole process in an HPC facility: the overall cost
in terms of hours and parallel resources that needs to be allo-
cated for the ensemble computation could be very expensive,
and the SSCHA code will not exploit this amount of resources
during the minimization. For this reason, the automatic local
mode is indicated only when the calculation of energies and
forces is fast and the requested resources are not so expensive,
for example when force fields are used, such as in the SnTe
example provided below.

Lastly, a remote automatic mode is also implemented. In
this case the software will submit the energy and force cal-
culations into a server through a queue job manager, and
retrieve the results when finished. This last mode is the most
suited for standard calculations as it exploits the HPC par-
allelization when computing the total energies and forces of
the configurations, but runs the SSCHA minimization on a
local computer, which benefits from the high speed multi-
thread processors of commercial workstations. Moreover, as
in the manual mode, there is no need to install the SSCHA
code on a HPC cluster. Thanks to the complete automatic
workflow, the only effort required by the user is to setup
the communication with the clusters, which is mostly system
independent.

5.4. Distribution

The package is distributed as a standard Python application,
and can be installed with a setup.py script. Since parts of the
code are written in Fortran and C, it requires the appropriate
compilers with LAPACK and BLAS libraries to be installed.

Part of the Fortran subroutines are modified versions of Quan-
tum ESPRESSO subroutines from the PHonon package, espe-
cially those regarding the symmetries. Together with the github
page, we also provide the stable release in the pip repository,
to facilitate installation. A different setup.py script is provided
to facilitate the installation of the package on clusters to fully
exploit MPI parallelization for the post-processing. The code
is documented with Sphinx. We release the package and the
source code under the GPLv3 license.

6. A model calculation on tin telluride

To display the potentiality of the code, we provide an example
calculation on a SnTe toy model force field, where the lattice
has been artificially stretched to enhance the anharmonicity.
More details on this force field can be found in reference [23].
We provide it as a separate package under GPL license.

SnTe, as other ferroelectric materials [50, 52], undergoes a
displacive phase-transition, where a phonon mode at Γ soft-
ens with temperature lowering and provokes a cell distortion
from the high-temperature high-symmetry Fm3̄m phase to the
low-temperature R3m phase. The toy model is able to repro-
duce this behavior, although it does not pretend to accurately
describe the real SnTe transition and it is just provided as an
artificial example.

The system has an incipient ferroelectric instability, marked
by the negative curvature of the energy in the high-symmetry
position. This means that an optical vibrational mode has an
imaginary frequency at Γ within the harmonic approximation.
The BO energy of the toy model as a function of the atomic dis-
placements projected onto the eigenvectors of the imaginary
mode (the order parameter Δ) is reported in figure 3(a), where
it is clear that the high-symmetry Fm3̄m is not at the minimum
of V(R). However, as extensively discussed above, the stability
of a structure is determined by the temperature-dependent free
energy,

F = E − TS, (88)

and not the BO potential. Notably, E is not the energy pro-
file reported in figure 3(a), as it also includes the vibrational
contribution to the energy. For this reason, the energy profile
(and the harmonic approximation) does not correctly describe
even the behavior at T = 0, where there is no entropy contribu-
tion. Since entropy usually is higher in high-symmetric posi-
tions (Δ = 0), the Fm3̄m high symmetry phase will become
progressively more stable as temperature increases.

In figure 4 we show the evolution of the free energy, its
gradient, and the frequencies of the auxiliary FCs during a
typical SSCHA minimization at T = 250 K for this system.
We start the minimization from the harmonic solution of the
high-symmetry phase Fm3̄m, which has imaginary frequen-
cies. Since the system is strongly anharmonic, the starting
solution is very far from the solution. To approach the mini-
mum quickly and with low computational effort, we start the
minimization with a small number of configurations (here 50).
Figure 4(d) reports the stochastic condition to stop the mini-
mization (and extract a new ensemble), as defined in equation
(39) (we chose η = 0.4). Here, we need only three ensembles
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Figure 3. (a) Born–Oppenheimer energy as a function of the order parameter of the ferroelectric phase transition of SnTe obtained with a
model force field. (b) Hysteresis cycle between the ferroelectric phase R3m and the cubic paraelectric phase Fm3̄m. In both heating and
cooling we constrained the SSCHA simulation to the R3m symmetry, which is a subgroup of Fm3̄m. (c) Free energy of the two phases. The
high-symmetry phase becomes more stable around 200 K, slightly before the R3m falls into the high-symmetry phase in the heating cycle.
The dashed line indicates a dynamical instability. (d) The free energy curvature around the order parameter in the high-symmetry Fm3̄m
phase. Positive values mean (meta)stability; negative values indicate a dynamical instability. The transition occurs at T = 154 K, and it
coincides with the lower bound for the Fm3̄m in the hysteresis cycle.

to converge to the minimum, as a zero gradient is obtained
with a reasonably large value of η. To improve the quality
of the calculation (and decrease the stochastic error) we fur-
ther run two more populations with 100 and 200 configura-
tions, both converging in one population. Both the gradient
and the free energy rapidly decrease and the result converges.
An extra population with 1000 configurations is included to
see that the result is converged. Figure 4(c) presents the evo-
lution of the auxiliary phonon frequencies associated to the
auxiliary FC matrix. The small change in these frequencies
when the number of configurations is increased means that a
small number of configurations is sufficient to have a good
estimate of the auxiliary frequencies. Indeed, a good check
for a well-converged result is to verify that these frequencies
are stationary and do not change more in the minimization.
The SSCHA code prints in output, if requested, this informa-
tion at each run. We provide the code scripts that produce this
kind of graphs from the raw data generated by the code, which
facilitates the user to control if the minimization is working
correctly.

In figure 3(b) we report the order parameter obtained at the
end of the SSCHA minimizations at different temperatures.
The starting structure at low temperatures is the low-symmetry
R3m. When temperature is increased, the structure obtained at
the previous lower temperature is used as input. At low temper-
atures the output structure remains the R3m, with Δ �= 0, but
at T = 205 K, the low-symmetry phase jumps into the high-
symmetry phase, marking a first-order phase transition. We can
confirm it is a first-order phase transition as we can start cool-
ing down from the high-symmetry phase (without constraining
the new symmetries acquired) and the system remains stable
up to T = 160 K, when it transforms back to the low-symmetry
phase. This is the hysteresis cycle of the material.

We can further analyze the thermodynamic properties. The
SSCHA provides also the free energies of the two phases.
We compare them in figure 3(c). As clearly shown, the low-
symmetry phase is more stable up to 200 K, so that the
phase diagram in this model is formed by the R3m phase
below 200 K and the Fm3̄m above. We can also see whether
the Fm3̄m becomes dynamically unstable by calculating the
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Figure 4. Convergence of the SSCHA minimization in the SnTe system in a 2 ×2× 2 supercell at T = 250 K. (a) Evolution of the free
energy per unit cell during the minimization. The width of the line denotes the stochastic error. (b) Evolution of the modulus of the gradient
of the auxiliary force constants. (c) Evolution of the frequencies of the auxiliary force constants. (d) The Kong–Liu effective sample size
ratio (we used 0.4 as stochastic criterion for restarting) during the minimization. Vertical dotted lines indicate the new population after the
simulation was out of the stochastic criterion. Vertical solid lines indicate a new population after the simulation converged by increasing the
number of configurations to improve the accuracy. The simulation is performed starting with 50 configurations and increasing after
successful convergence to 100 and 200. The overall number of total energy and forces calculations required to converge this example is 450.
One last step is shown for demonstrative purposes, where we increased the number of configurations to 1000 to show how well the result
converges already with few configurations (in particular the auxiliary frequencies of panel (c)).

Hessian matrix of the free energy. We plot the second deriva-
tive of the free energy with respect to the order parameter in
figure 3(d). The free energy curvature becomes negative below
T = 154 K. This is a threshold below which the Fm3̄m phase
is no longer stable, and cannot exist or be observed. Conse-
quently, it coincides with the lower bound of the hysteresis
cycle. On the other side, looking at the free energy Hessian
of the R3m phase, we see that the frequency of the mode along
the order parameter softens to zero at T = 210 K, marking
an upper bound to the stability of the low symmetry phase.
Interestingly, while in the high symmetry phase the ‘bubble
approximation’ (equation (59)) is very accurate, the correct
estimation of the free energy Hessian in the R3m phase requires
the full expression of the Hessian (equation (51)).

This example shows that the SSCHA can fully character-
ize a complex first-order phase transition, and thanks to the
possibility of exploiting symmetries, we can even study a

phase that is dynamically unstable, i.e., the Fm3̄m below the
critical point. We can do simulations directly in the high-
symmetry phase, with a considerable gain in the computational
cost, and spot instabilities by the Hessian matrix calculation,
as in figure 3(d).

However, we can do even more: finite temperature structure
search. To investigate whether the R3m is the actual ground
state within the toy model or a lower symmetry phase is ener-
getically favored, we calculate the Hessian also in the R3m
phase. We find that in the whole region of the simulation, the
R3m phase is dynamically unstable and the system wants to
break the symmetry once again. To find the real ground state,
we release all the symmetry constrains in our simulation and
perform a full relaxation with the SSCHA at T = 100 K. We
discovered a new phase of Cc symmetry defined in a 1 × 2 × 1
supercell of the original cubic cell. In figure 5 we report the
final phase diagram for the SnTe toy model. The new Cc phase
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Figure 5. Full phase diagram of the SnTe toy model. In dashed lines we report the unstable phases (whose free energy Hessian has an
imaginary mode).

is found to be the ground state up to 250 K, where the cubic
Fm3̄m becomes again energetically favorable. The Cc contin-
ues to exists until 280 K, where it transforms into the Fm3̄m
phase.

We want to remark that the particular temperature, phase
transitions, as well as the real existence of phase Cc are just
features of the toy model and do not pretend to represent the
physics of this system. The real SnTe has a ferroelectric R3m
ground state at low temperatures and the phase transition to
the Fm3̄m phase is of second-order type (the order parame-
ter does not jump, and the free energy lines of the two phases
touch when the Fm3̄m mode becomes imaginary). This sys-
tem has been already studied with the SSCHA in reference
[49] with ab initio energies and forces. However, even if it is
just a toy model, this example shows how the code can reach
high-symmetry phases in an unsupervised way starting from
the low-temperature structure.

For this reason, the SSCHA is also attractive for a structure
search perspective: it is able to perform a search of saddle-
point structures in the classical BO energy landscape that
become the ground state due to ionic quantum and/or thermal
fluctuations. This can be a great advantage to find saddle-point
structures in complex systems with many atoms in the unit cell,
such as in molecular crystals, where symmetry constrains may
be inefficient [68].

The other post-processing utility the code provides is the
calculation of spectral functions and dynamical phonon spec-
tra. We remark that the auxiliary phonons, i.e. the eigenval-
ues of D(S), are just an auxiliary quantity used to define the
density matrix. For this reason, they only describe quantum
fluctuations around the centroid positions. The eigenvalues of
the Hessian matrix D(F), instead, are the response to a static
external perturbation, and describe the stability of the struc-
ture with respect to a spontaneous symmetry breaking. Last,
physical phonons, those observed by experimental probes
like vibrational spectroscopy and inelastic scattering, must be

computed from the dynamical interacting Green function.
While all these definitions of phonon frequencies coincide in
perfectly harmonic crystals, when anharmonicity is involved,
they can differ significantly. The SSCHA code offers a tool
to easily compute the dynamical Green functions as a post-
processing utility as discussed in section 4.3.

In figure 6, we plot the phonon spectrum, computed as the
spectral function obtained from the dynamical Green func-
tions. As anticipated, the peaks of the spectral function in
figure 6 do not coincide with the dispersion obtained from the
auxiliary dynamical matrix D(S), and show a rather anomalous
behavior. It is worth mentioning that effective charges are con-
sidered in the calculation of the spectral functions. The effec-
tive charges are considered following the procedure outlined
in appendix E3. In figure 7 we illustrate the convergence for a
phonon linewidth 2Γμ(q) with respect to the δse parameter and
the k-mesh summation grid in equation (75).

All the data of this simulation has been obtained in less
than 1 h, using a single processor on a laptop, proving the
high-efficiency of the SSCHA package, which is beyond stan-
dard molecular dynamics software. We provide in the addi-
tional materials the Python scripts to run and analyze all the
simulations here reported in this example.

7. Applications of the SSCHA method

In order to illustrate some physical problems and materials that
have already been efficiently tackled with the SSCHA, in this
section we briefly overview some of the systems studied with
this method. One should not consider that the applications are
limited to these examples. The SSCHA provides a general util-
ity to treat accurately and efficiently all materials where ionic
vibrations play a crucial role both in the thermodynamic and
transport properties.
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Figure 6. Phonon spectrum of SnTe at T = 280 K. Left panel: spectral function at Γ. The two main peaks are the LO–TO splitting. Right
panel: the full spectral function along a path in the Brillouin zone. The red dashed line is the dispersion of the auxiliary phonons
(eigenvalues of D(S)).

Figure 7. Convergence study of the linewidth (full width at half
maximum) of the SnTe highest optical phonon frequency in Γ. For
increasing size of the used k-mesh summation grid, the linewidth as
a function of the smearing parameter δse is studied (see section 4.3
for details about these quantities). The result shows that the
converged value of the linewidth (15 cm−1) is obtained with a
30 × 30 × 30 k-mesh summation grid, at least, and smearing δse
around 0.8 cm−1.

7.1. Hydrogen-based compounds

Hydrogen is the lightest atom in the periodic table, and, con-
sequently, it is subject to high amplitude fluctuations even at
zero Kelvin. Hydrogen atoms thus sample the V(R) poten-
tial far from its minima. Not surprisingly, it has been shown
with the SSCHA that the phonons of many hydrogen-based
compounds and hydrogen itself are characterized by a huge
anharmonic renormalization, impossible to capture within per-
turbative approaches [21, 22, 34–36, 48, 53, 69, 70]. The

anharmonic renormalization of phonons in these compounds
has been crucial to explain the superconducting properties
of many hydrogen-based superconductors. For instance, the
anomalous inverse isotope effect on palladium hydrides, which
makes the deuterium compound acquire a larger supercon-
ducting critical temperature Tc than the protium compound
[71, 72], is a consequence of a huge anharmonic renormaliza-
tion of the phonons [21]. Also, the experimentally found high-
temperature superconductivity in H3S around 200 K [73] and
in LaH10 around 250 K [74, 75] at high pressures can only be
explained if phonon frequencies renormalized by anharmonic-
ity are considered in the superconductivity equations [34, 36].
In figure 8 we show the huge anharmonic renormalization of
the phonon frequencies for H3S [34, 48]. Superconductivity in
hydrogen compounds can be both largely suppressed but also
enhanced by anharmonicity depending on the system [76].

The quantum effects and anharmonicity that the SSCHA
captures go beyond the renormalization of phonon frequen-
cies. For crystals with Wyckoff positions not fixed by sym-
metry, quantum or thermal fluctuations may strongly modify
the atomic positions, resulting in a structure with atoms far
from the positions that minimize the V(R) potential, occu-
pying, instead, those that minimize the quantum F(R) free
energy. The change in the structure can eventually be so large
that changes the crystal symmetry. For instance, the experi-
mental crystal structure of both H3S and LaH10 compounds is
stable thanks to quantum effects in the pressure range where
they highest superconducting critical temperatures have been
experimentally observed [34, 36]. A large modification of the
structure of molecular phases of hydrogen has also been pre-
dicted within the SSCHA, which is crucial to understand the
experimental Raman and infrared spectra [35, 37]. The change
in the crystal structure that the SSCHA captures goes beyond
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Figure 8. (a) Anharmonic phonon spectra obtained with the SSCHA for H3S at 158 GPa in the Im3̄m phase (top panel). The SSCHA
auxiliary phonon frequencies are given, those obtained diagonalizing Φeq, together with the phonon frequencies obtained from the spectal
function in the Lorentzian approximation. The linewidth obtained in the latter case is also given. The harmonic phonons are also shown
(bottom panel). We also provide the structure of Im3̄m H3S. Data taken from reference [48]. (b) Crystal structures for LaH10 obtained from
the minimum of the classical Born–Oppenheimer energy landscape, C2, and from the SSCHA quantum energy landscape, Fm3̄m.

the internal degrees of freedom and can largely impact also the
cell parameters. In figure 8 we illustrate the apparent difference
between the structure found classically from the minimum of
V(R) and the one obtained from the quantum energy landscape
for LaH10.

It has been recently argued [36] that the large impact of
quantum effects and anharmonicity on hydrogen-based com-
pounds is precisely due to the large electron–phonon cou-
pling of these compounds. This means that quantum effects
will lower the pressure needed to synthesize these com-
pounds with superconducting Tc’s approaching room temper-
ature. The SSCHA method will be of great importance in
the quest of new high-Tc compounds at low pressures as it
can be used for crystal structure predictions in the quantum
energy landscape thanks to its capacity to relax crystal struc-
tures including quantum and anharmonic effects at any target
pressure.

7.2. Charge density wave materials

A CDW is a structural phase transition that induces a static
modulation of the electronic density. CDW transitions are
often second-order phase transitions in which the frequency
of the phonon mode that drives the CDW instability rapidly
softens as temperature is lowered and vanishes exactly at the
CDW temperature Tcdw [77–79]. As the temperature depen-
dence of phonon frequencies is a purely anharmonic property,
the SSCHA has been used to predict from first principles Tcdw

in several transition metal dichalcogenides (TMDs) both in the
bulk and the monolayer [41, 51, 54, 80, 81].

The standard procedure in these calculations is to apply the
SSCHA for the high-symmetry phase at different temperatures
and calculate the spectra associated to the free energy Hessian
D(F). These phonons represent the static limit of the physi-
cal phonons observed experimentally, which can be accessed
with the SSCHA by calculating instead the spectral function as
described in section 4. At the temperature at which D(F) devel-
ops a null eigenvalue, the high-symmetry structure is no longer
a minimum of the free energy and the CDW distortion occurs
leading the structure into a phase modulated by the wave vec-
tor at which the phonon collapse occurs. In figure 9 we show as
an example the temperature dependence of the phonon spectra
derived from the free energy Hessian in monolayer NbSe2 and
the consequent theoretical determination of the CDW tempera-
ture [41]. In most of the cases the calculation of D(F) within the
‘bubble’ approximation yields good results for the calculation

of Tcdw, and setting
(4)
Deq = 0 in equation (62) seems in gen-

eral a good approximation. However, converging Tcdw is rather
sensitive to the SSCHA supercell and rather large supercells
may be needed to converge the CDW transition temperatures
[41, 54].

The capacity of the SSCHA of predicting Tcdw purely
ab initio without empirical fitting parameters offers a fan-
tastic tool to determining the physics behind CDW transi-
tions. The force calculations needed for the SSCHA variational
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Figure 9. (a) Phonon spectra of monolayer NbSe2 derived from the free energy Hessian as a function of temperature. (b) Squared phonon
frequency of the lowest energy mode at q = 1/3ΓM as a function of temperature and the determination of the CDW temperature. Data taken
from reference [41].

minimization can be performed at different theoretical lev-
els or at different thermodynamic conditions, disentangling
the driving forces of the instability. For instance, calcula-
tions within the SSCHA have enlightened the sensitivity of
CDW transitions in monolayer TMDs to strain [51] and doping
[54], the difference (or similarities) between the CDW transi-
tions in bulk and the corresponding two-dimensional structures
[51, 54], as well as the importance of Van der Waals forces
in the melting of CDW transitions [81]. Consequently the
SSCHA program is expected to have a large impact on theo-
retical studies of CDW transitions for many type of materials,
not just TMDs.

7.3. Phase transitions, spectral functions, and thermal
conductivity in semiconducting materials

Phase transitions related to soft phonons are also very common
in ferroelectric, thermoelectric, and other functional materials.
The SSCHA is again a perfect method to study these phase
transitions considering that many of the high-temperature
phases of these compounds are not a minimum of the BO
potential V(R), but saddle points. Thus, it becomes impera-
tive to adopt a non-perturbative treatment of anharmonicity in
order to study their thermodynamic and transport properties
such as the thermal conductivity. Whether these phase tran-
sitions are purely second-order or first order it is not always
evident experimentally, unless a clear softening to zero of a
phonon mode at the transition temperature is observed. The
SSCHA can distinguish between continuous and discontinu-
ous transitions as discussed in the practical example provided
in section 6. For instance, in order to convincingly show that
the transition between the high-temperature Cmcm phase of
SnSe and the low-temperature Pnma is second order, at the
temperature at which the free energy Hessian developed a neg-
ative eigenvalue a SSCHA relaxation was performed starting
from the low-temperature phase. It was shown that the Pnma

phase relaxed at this temperature into the Cmcm, showing that
the Pnma phase is no longer a minimum of the free energy [50].
The SSCHA has also been used to study phase transitions in
the similar SnS [52] and the ferroelectric SnTe [49].

Many of these semiconducting calchogenides are among
the most efficient thermoelectric materials due to their very
low thermal conductivity. The low value of the thermal con-
ductivity of these materials is linked to the very large linewidth
of its phonon modes. The anharmonic interaction is the main
responsible for the large linewidths of the phonons and, conse-
quently, their low lifetimes. Thanks to the strong anharmonic
coupling, many of these compounds develop very anomalous
spectral functions with satellite peaks and a clear departure
from the Lorentzian-like behavior. Such anomalies can be
very misleading for the interpretation of experiments, since
the emergence of extra peaks can be misinterpreted with phase
transitions. The SSCHA is a perfect method for capturing these
subtleties as it provides the spectral function σ(q,Ω) without
the Lorentzian approximation. It has been used to understand
the complexσ(q,Ω) in PbTe, SnTe, SnSe, and SnS [49, 50, 52].
In figure 10 we show the spectral function calculated within
the SSCHA for Cmcm SnSe at 800 K, where the σμ(q,Ω) con-
tribution of some particular modes is clearly anomalous and
deviates from the standard Lorentzian picture.

With the phonon frequencies and the phonon linewidths
obtained with the SSCHA, transport properties such as the
thermal conductivity can be calculated with an external code,
for instance, within Boltzmann transport equations [82, 83]. It
has been shown that employing the SSCHA phonon scatter-

ing tensor
(3)
ΦR in the thermal transport calculations leads to

a very good agreement with experimental results, in contrast
with what was obtained by employing the standard third-order
derivatives of the BO total energy. The difference is that the
former includes higher-order anharmonic terms coming from
the average over the thermal ensemble (equation (53)). Both in
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Figure 10. Spectral function σ(q = Γ,Ω) of SnSe at 800 K in the Cmcm phase calculated within the SSCHA without assuming the
Lorentzian approximation. The partial contribution σμ(q = Γ,Ω) of different modes is shown. Those anomalous modes that do not have a
Lorentzian line-shape are highlighted. Data taken from reference [50].

good thermoelectric SnSe and SnS compounds, higher order

terms captured by
(3)
ΦR reduce considerably the thermal con-

ductivity, bringing it closer to the experimentally observed val-
ues [50, 52]. Therefore, the SSCHA also provides a fantastic
platform to calculate the basic ingredients for transport prop-
erties when high-order terms of the BO potential are important
both for the renormalization of the phonon frequencies and the
anharmonic scattering terms. Due to the large effort devoted
currently to the quest of more efficient thermoelectric materi-
als, the SSCHA may become a reference method to understand
the thermoelectric properties of materials and predict the effi-
ciency of new promising compounds, which overcomes the
limits of standard harmonic and perturbative approaches.

7.4. Other type of materials

As mentioned above, beyond those examples listed above, the
SSCHA code provides an efficient platform to calculate any
property affected by ionic fluctuations, specially when it is
affected by strong anharmonicity. For instance, it has been
used to determine the muon implantation sites in metallic sys-
tems and to understand the effect of the large muon quantum
fluctuations on the contact hyperfine field [84]. The SSCHA
has also been employed to understand the thermal expansion
and the behavior of low-energy acoustic modes of graphene
[85], finally explaining the origin of the sound propagation and
the non-diverging bending rigidity of graphene as well as any
other strictly two-dimensional membrane. Many other excit-
ing applications of the SSCHA code to interesting physical
problems are expected in the coming years.

8. Conclusions

We present here the implementation of the SSCHA theory
into an efficient modular Python code, which can be run in
conjunction with other Python modules and interfaced with
HPC clusters for the BO total energy, force, and stress tensor
calculations needed. The SSCHA provides an efficient way of
calculating the effect of ionic quantum and/or thermal fluctu-
ations on the free energy, as well as their impact on the atomic
positions. It is a unique feature of the SSCHA to optimize the
atomic positions, including the lattice degrees of freedom, by
considering quantum and finite temperature fluctuations and
without any approximation on the BO energy landscape. As
a postprocessing, it calculates the free energy Hessian, which
allows to infer the thermodynamic conditions at which second-
order phase transitions occur. Furthermore, it enables the eval-
uation of the interacting phonon spectral functions, predicting
the outcome of most common experimental techniques (IR
and Raman spectroscopies, x-ray and neutron inelastic scat-
tering). It can also extract the phonon linewidths from the
Lorentzian approximation of the spectral functions, which can
be later interfaced with any code that calculates the thermal
conductivity.

In conclusion the SSCHA code provides a complete and
efficient software for studying vibrational properties of mate-
rials, particularly suitable to study systems with prominent
quantum and/or thermal fluctuations that are thus largely
affected by anharmonicity, which can be applied to study
many relevant problems in physics, chemistry, and material
science.
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Appendix A. Stress tensor

Here we derive the new equation for the stress tensor reported
in the main text (equation (19)).

First we note that the quantum statistical averages taken
with the trial density matrix can be written as

〈O〉ρ̃R,Φ
=

∫
O(R+ Jy, {ai}) [dy] , (A1)

where

[dy] =
∏
μ

exp
(

−y2
μ

2

)
√

2π
dyμ. (A2)

This is obtained rewriting equation (20) applying the

ua =
∑
μ

Ja
μyμ (A3)

change of variables, with

Ja
μ =

ea
μ√
Ma

√
�(1 + nμ)

2ωμ
. (A4)

Let us note that
Ψab =

∑
μ

Ja
μJb

μ (A5)

after this change of variables. Note that in equation (A1) we
explicitly indicate the dependence of the operator O on the lat-
tice parameters {ai}. Thus, in that equation, centroid positions
R refer only to the internal degrees of freedom of the crystal
structure.

When calculating the stress tensor from equation (19) we
are deriving the free energy functional in the minimum of the
SSCHA free energy with respect to the auxiliary FCs Φ for
given centroid positions R. Thus, the stress tensor should be
calculated considering the derivatives

∂F (R)
∂εαβ

=
3∑

i=1

[
∂F (R)
∂ai

· ∂ai

∂εαβ
+

∂F (R)
∂R · ∂R

∂εαβ

]
. (A6)

The final equation of the strain should however be calculated
for the minimum of the free energy with respect to the centroid
positions, in which case the second addend above vanishes.

Therefore we will just give the expression for the equilibrium
situation:

∂F
∂εαβ

=
3∑

i=1

∂F
∂ai

· ∂ai

∂εαβ
. (A7)

This expression coincides with the one usually employed to
compute the stress tensor from the BO energy surface, but with
the V(R) potential substituted by the anharmonic free energy.

Let us write the free energy at the minimum as

F (R) = FΦR +
〈
V(R) − VR,ΦR

〉
ρR,ΦR

, (A8)

whereΦR is the dynamical matrix that minimizesF fixing the
average atomic positions. FΦR =

〈
K + VR,ΦR

〉
ρR,ΦR

and

VR,ΦR =
1
2

(R −R) ·ΦR · (R −R) . (A9)

The first term in equation (A8) does not give any contribution
to the derivative (as it depends on R through ΦR, which min-
imizes already the free energy). Therefore, the only term that
survives in the stress tensor is

∂F (R)
∂εαβ

=

3∑
i=1

∂
〈
V(R) − VR,ΦR

〉
ρR,ΦR

∂ai
· ∂ai

∂εαβ
. (A10)

Joining equation (A10) with (A2) we can compute the deriva-
tive of an average in the SSCHA ensemble with respect to the
strain:

∂〈O〉ρR,ΦR
∂εαβ

=
∂

∂εαβ

∫
O
(
R(ε) + Jy, {ai(ε)}

)
[dy]

=

∫ 3∑
i=1

∂O
∂ai

· ∂ai

∂εαβ
[dy] , (A11)

∂〈O〉ρR,ΦR
∂εαβ

=

〈
3∑

i=1

∂O
∂ai

· ∂ai

∂εαβ

〉
ρR,ΦR

. (A12)

Replacing O by the BO energy landscape V(R) we get

∂〈V〉ρR,ΦR
(R)

∂εαβ
=

〈
3∑

i=1

∂V(R)
∂ai

· ∂ai

∂εαβ

〉
ρR,ΦR

= −ΩVol

〈
P(BO)
αβ (R)

〉
ρR,ΦR

. (A13)

The term with the harmonic potential V can be derived
writing its explicit dependence on the strain tensor ε:

VR,ΦR(ε) =
∑

st

1
2

[
(𝟙+ ε) · (R −R)s

]
·ΦRst

×
[
(𝟙+ ε) · (R −R)t

]
,

(A14)

where the dot product is assumed in this equation only in the
Cartesian indexes and st are atomic labels. From this equation
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we immediately can write the derivative

∂VR,ΦR

∂εαβ

∣∣∣∣
ε=0

= −1
2

∑
s

(
uα

s (fHR,ΦR )βs + uβ
s (fHR,ΦR )αs

)
.

(A15)
From which we obtain〈

∂VR,ΦR

∂εαβ

∣∣∣∣
ε=0

〉
ρR,ΦR

= −1
2

∑
s

〈(
uα

s (fHR,ΦR )βs

+ uβ
s (fHR,ΦR )αs

)〉
ρR,ΦR

.

(A16)

Combining equations (A13) and (A16) with the definition
of the stress tensor, it is trivial to get equation (19).

Appendix B. Gradient equation

The gradient equation presented here in equation (13) can be
obtained starting from the

∂F
∂Φcd

=
1
2

∑
ab

∂Ψab

∂Φcd

[〈
∂2V(R)
∂Ra∂Rb

〉
ρ̃R,Φ

− Φab

]
(B1)

equation obtained in reference [23]. By using the〈
∂O(R)
∂Ra

〉
ρ̃R,Φ

=
∑

b

Ψ−1
ab

〈
ubO(R)

〉
ρ̃R,Φ

(B2)

result proved in the same reference, we have〈
∂2V(R)
∂Ra∂Rb

〉
ρ̃R,Φ

=
∑

e

Ψ−1
ae

〈
ue ∂V(R)

∂Rb
(R)

〉
ρ̃R,Φ

= −
∑

e

Ψ−1
ae

〈
ue f (BO)

b (R)
〉
ρ̃R,Φ

. (B3)

Analogously,

Φab = −
∑

e

Ψ−1
ae

〈
ue f

HR,Φ
b (R)

〉
ρ̃R,Φ

. (B4)

Substituting equations (B3) and (B4) into (B1) we get
equation (13).

In reference [23] it was also shown that

1
2

∑
ab

∂Ψab

∂Φcd
Aab =

∑
ab

Λabcd[0]√
MaMbMcMd

Aab, (B5)

where A is a symmetric matrix. This also proves equation (17).

Appendix C. The Hessian preconditioner

In reference [24] it was shown that

∂2F
∂Φab∂Φcd

=
Λabcd[0]√

MaMbMcMd
. (C1)

However, due to the relationship in equation (B5), we can see
that we can effectively extend this equality to

∂2F
∂Φab∂Φcd

=
Λabcd[0]√

MaMbMcMd
=

1
2
∂Ψab

∂Φcd
. (C2)

With the latter result, it is trivial to see how the preconditioned
gradient that is used along the minimization can be written as
in equation (27).

Appendix D. Symmetries

The original algorithm proposed to account for symmetry in
reference [22] was based on the Gram–Schmidt orthonormal-
ization of the symmetry generators. This algorithm is suited
for systems with a reduced number of atoms in the unit cell,
but scales as n6

a, with na the number of atoms in the unit cell.
This symmetrization procedure becomes thus a real bottleneck
of the SSCHA code for systems with more than 30 atoms in
the unit cell. In the version of the code we describe here, the
orthonormalized generators are not calculated and, instead, the
starting dynamical matrix and the gradient are directly sym-
metrized. The symmetrization of the dynamical matrix, or its
gradient, is made in q space, which allows for a very fast
implementation even for big supercells.

The code enforces all the symmetries in the auxiliary FC
matrix as

Φ(q) =
1

NS

NS∑
i=1

TŜi
(S−1

i q)Φ(S−1
i q)T†

Ŝi
(S−1

i q), (D1)

where Si are the 3 × 3 point group matrices of the space group,
NS the number of symmetries of the crystal, TŜ(q) are unitary
matrices that represent the S symmetry in the q point. These
matrices are reported in references [86–88]. To find the sym-
metries given the structure, we wrapped into the SSCHA the
symmetry module of Quantum ESPRESSO [62, 63].

This operation is performed also on the gradient of the
dynamical matrix each time it is computed. Since the dynami-
cal matrices satisfying the symmetries define a linear subspace,
if both the gradient and the original dynamical matrix belong to
this subspace, any linear combination of them will also satisfy
the symmetry constrains. Thus, it is necessary to symmetrize
the dynamical matrix once at the beginning, and then apply
the symmetry constrains only to the gradient to preserve the
symmetries in the whole simulation.

The symmetry module from Quantum ESPRESSO only
recognizes symmetries when the unit cell is the primitive one.
Sometimes, it could be convenient to choose a different unit
cell. Therefore, we also interfaced the SSCHA code with the
spglib package [89] to improve the identification of symme-
tries. Instead of working in the unit cell in q space, spglib
provides the symmetry operations in real space. In this case,
the SSCHA code divides the symmetry matrices identified by
spglib into pure translations and point group operations. Then,
symmetries are enforced in real space by first imposing pure
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translations, followed by point group operations as

Φ =
1

NS

NS∑
i=1

TŜi
ΦT†

Ŝi
. (D2)

Then, the permutation symmetry on the indices is imposed.
Finally, the code transforms back the real space dynamical
matrix (or the gradient) in q space.

This operation takes more time than the symmetrization in
q space, as it is performed in the supercell. However, due to its
simplicity and to avoid the cumbersome q-space symmetriza-
tion of higher-order FCs, the same supercell approach is used
to symmetrize the third- and fourth-order FC matrices, namely
(3)
Φ and

(4)
Φ introduced in section 3.2.

Symmetries are also enforced on the average positions of
the nuclei (and the forces). After computing the SCHA forces
on atom t along direction α, f αt , we impose symmetry as

f αt =
1

NS

NS∑
i=1

na∑
t=1

3∑
β=1

Siαβ f β
S−1(t)

, (D3)

where S−1(t) is the atom in which the S symmetry maps the
t one to. In this way, the forces are correctly directed only
along the Wyckoff coordinates, and the atomic positions relax
subsequently keeping the correct Wyckoff positions.

D.1. Acoustic sum rule on the auxiliary force constants

Besides space group symmetries, also the acoustic sum rule
(ASR) must be imposed. The ASR is a condition that arises
from the momentum conservation (the center of mass of the
system is fixed). The energy must not change after a rigid trans-
lation of the whole system. This can be translated in a trivial
condition for the FC matrix in the supercell:∑

t

Φαβ
st =

∑
s

Φαβ
st = 0. (D4)

In general, the SSCHA gradient computed from a finite
ensemble violates this condition due to the stochastic noise.
We enforce the sum rule on the gradient at each step. As for
the symmetries, also matrices that satisfy the ASR define a lin-
ear subspace. Thus we define the orthogonal projector operator
that enforces the ASR as

Φ(asr) = PΦP†. (D5)

The projection matrix in real space is

Pαβ
st = δstδαβ −

δαβ
na

na∑
u=1

δtu. (D6)

This operation only affects the dynamical matrix at Γ. The
same projector is employed to impose the ASR on the forces:

f (asr)α
s = (P f )αs = f αs − 1

na

na∑
k=1

f αk (D7)

Notably, it can be proved that this procedure does not spoil the
symmetrization described above.

This ASR imposition procedure analytically cancels out the
frequencies of acoustic modes at Γ and any rigid translation
of the atomic positions, thus it is the most indicated for the
SSCHA minimization. A different approach, implemented for
the Fourier interpolation, is described in appendix E2. The lat-
ter affects not just phonons at Γ, and, thus, it is more suited for
interpolating dynamical matrices close to the BZ center.

Appendix E. Reciprocal space formalism and
Fourier interpolation

E.1. Reciprocal space formalism

The SSCHA code is designed to be used with crystals, thus it
takes advantage of lattice periodicity and Fourier transforms
the relevant quantities with respect to the lattice vectors. That
allows to make independent analysis for each q point in recip-
rocal space. When we need to stress this aspect, we will modify
the notation adopted, partitioning the supercell atomic index
into a unit-cell index plus a lattice index (s, l), with s now rang-
ing from 1 to na (the number of atoms in the unit cell), and l
being a 3 dimensional integer vector assuming Nc total val-
ues (the number of unit cells forming the supercell). Thus, in
this notation, in general we will have nth order tensors in a
3na dimensional space (indicated with bold symbols, in free-
component notation), which in real space depend on n lattice-

vector parameters,
(n)
D(l1, . . . ln) (to be precise, due to the trans-

lation symmetry, this real-space tensor actually depends only
on n − 1 independent values li). The reciprocal-space expres-

sion of such a tensor,
(n)
D(q1, . . . , qn), is obtained through the

Fourier transform

(n)
D(q1, . . . , qn) =

1
Nc

∑
l1...ln

e
i
∑

h
qh·lh (n)

D(l1, . . . , ln). (E1)

Notice that, due to the lattice translation symmetry,
D(S)(q1, . . . , qn) is zero unless

∑
h qh is a reciprocal lat-

tice vector, thus we have again only n − 1 independent
parameters qi. In particular, after the calculation performed
on a real-space supercell, for each q point of the commen-
surate grid of the reciprocal-space unit cell, the SSCHA
code computes the Fourier transformed matrices D(S)(−q, q),
which we will shortly indicate as D(S)(q), and the relative
eigenvalues ωμ(q) and eigenvectors eμ(q). Similarly, the
Hessian calculation provides the matrix D(F)(−q, q), which
we indicate as D(F)(q), where (see equation (61))

D(F)(q) = D(S)(q) +Π(q, 0), (E2)

and its eigenvalues Ωμ(q) and eigenvectors fμ(q).

E.2. Fourier interpolation: centering and acoustic sum rule

The SSCHA code computes the FCs in real space supercells
with periodic boundary conditions (PBCs). As shown in the
previous section, a crucial feature of the SSCHA code is the
use of the Fourier interpolation technique in order to extrapo-
late the results to the thermodynamic limit (infinite supercell
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results) without recurring to expensive large supercell calcu-
lations. In order to Fourier interpolate the computed FCs on
arbitrary points of the reciprocal space, as a first thing it is nec-
essary to reconstruct the real-space infinite-crystal FCs from
them. Roughly speaking, this is done by removing the PBCs,
i.e. superlattice equivalent atoms are not considered identical
anymore, and assuming that only the FCs between atoms in the
same supercell are different from zero. Of course, this gives
correct results as long as the supercell used in the calculations
is large enough to consider negligible the FCs between atoms
at distances comparable with the distances between the peri-
odic boundary replica. However, an intrinsic arbitrariness is
present in this recipe, due to the fact that the supercell is not
univocally defined and the choice of different supercells leads
to different interpolation results (i.e. as long as the reciprocal-
space point in which we are interpolating does not belong
to the original commensurate grid, different—yet superlattice
equivalent—lattice points give different contributions to the
Fourier transform). This problem is solved by wisely selecting
the supercell according to a prescription based on a physical
principle: among equivalent superlattice points, the ones clos-
est to each other must be selected. This procedure defines the
so called ‘centering’ of the FCs and, as explained, it is a neces-
sary step to be done before Fourier interpolating the real space
FCs. The SSCHA code centers 2nd and 3rd order FCs (with

a procedure that can be generalized to any nth-order FCs. In
particular, the next release of the code will apply the same pro-
cedure to center and interpolate the 4th order FCs). Here we
explictly describe the 3rd FCs centering algorithm [90].

The PBCs are defined on a superlattice R(S)
lat of the orig-

inal lattice Rlat. The lattice vectors set Rlat can be equiva-
lently described as the superlattice R(S)

lat plus the basis given
by the lattice vectors in a superlattice unit cell SC. In other
words, a lattice vector l∈ Rlat identifies a set of superlattice-
equivalent lattice vectors {l + T with T∈ R(S)

lat }, and we have
Rlat = {l + T with l ∈ SC , T∈ R(S)

lat }. Given three atoms
s1, s2, s3 in the unit cells 0, l2, l3, respectively (due to the
lattice translation symmetry we can confine the first atom
to the origin unit cell), they indentify a triangle with ver-
tices in τ s1 , τ s2 + l2, τ s3 + l3 (τ si is the position vector of
atom si in the original unit cell). For these three points we
define the weight Ws1s2s3 (0, l2, l3) in this way: it is zero if
there is at least another ‘equivalent-vertices’ triangle hav-
ing as vertices points τ s1 , τ s2 + l2 + T2, τ s3 + l3 + T3 with
T2, T3∈ R(S)

lat (i.e. points that are superlattice-equivalent to
τ s1 , τ s2 + l2, τ s3 + l3) with smaller perimeter, otherwise it is
the inverse of the number of equivalent-vertices triangles hav-
ing the same (minimal) perimeter. In formulas, indicated with
Ps1s2s3 (0, l2 + T2, l3 + T3) the perimeter of the triangle with
vertices τ s1 , τ s2 + l2 + T2, τ s3 + l3 + T3, this amounts to

Ws1s2s3 (0, l2, l3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if

∃T2, T3 ∈ R(S)
lat :

Ps1s2s3 (0, l2 + T2, l3 + T3) < Ps1s2s3 (0, l2, l3)[
#(T2, T3) ∈ R(S)

lat :

Ps1s2s3 (0, l2 + T2, l3 + T3) = Ps1s2s3 (0, l2, l3)

]−1

if
�T2, T3 ∈ R(S)

lat :

Ps1s2s3 (0, l2 + T2, l3 + T3) < Ps1s2s3 (0, l2, l3)
(E3)

The weights Ws1s2s3 (0, l2, l3) are pure geometrical factors,
different from zero for ‘compact’ three-atom clusters, and they
satisfy the normalization∑

T2,T3∈R(S)
lat

Ws1s2s3 (0, l2 + T2, l3 + T3) = 1

∀ l2, l3∈ Rlat

∀ s1, s2, s3 ∈ {1, . . . , na}.

(E4)

The weights are used to define the centering. Given
a 3rd-order FCs, Φα1α2α3

s1,s2,s3
(0, l2, l3), its ‘centered’ version

(cent)
Φ α1α2α3

s1s2s3
(0, l2, l3) is given by

(cent)
Φ α1α2α3

s1s2s3
(0, l2, l3) = Φα1α2α3

s1s2s3
(0, l2, l3) × Ws1s2s3 (0, l2, l3),

(E5)
where we have separately indicated Cartesian (αh) and atomic

(sh) indices. The idea behind this definition is pretty simple:
once the PBCs are discarded, of the infinite set of superlattice-
equivalent atoms only the ’closest one’ are characterized by a
FC different from zero. If there are several equivalent triplets at
the minimal reciprocal distance, all of them are considered (to
preserve the symmetry) and the FCs are consequently scaled
(to avoid a wrong multiple counting effect). The centering
definition has some degree of arbitrariness, though, due to the
arbitrariness of the criterion employed to evaluate the ‘size’ of
a three atoms cluster. We took the perimeter of the triangle, a
criterion that is a direct generalization of the distance between
atoms, which is the one used in the 2nd order FCs centering.
More in general, for an n-atoms cluster this size measure is
readily generalized as the sum of the distances between all
the n(n − 1)/2 couples of atoms. However, even if in principle
other choices could be done, this arbitrariness is immaterial as
long as the supercell calculation is large enough (in the ther-
modynamic limit all the possible choices, if reasonable, are
expected to be equivalent).
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∑
li

∑
si

Φα1...αi...αn
s1...si...sn

(l1, . . . , li, . . . , ln) = 0

∀ αh ∈ {x, y, z}
∀ sh ∈ {1 . . . na} with h �= i

∀ lh ∈ Rlat with h �= i

. (E6)

The ASRis crucial, among other things, to have the correct
acoustic phonon dispersion at and close to Γ. The FCs com-
puted with SSCHA (in supercells with PBCs) fulfill the ASR
but, in general, the centering spoils it (except for the n = 2
case). In fact, in general the centered FCs fulfill a ‘weaker’ ver-
sion of the ASR in equation (E6), since only the simultaneous
sum on n − 1 indices is zero:∑

li1 ,...,lin−1

∑
si1

,...,sin−1

(cent)
Φ α1...αn

s1...sn
(l1, . . . , ln) = 0. (E7)

In particular, this explains why the centering of 2nd-order FCs
does not spoil the ASR (for n = 2 the weak ASR is nothing
but the proper ASR, as the sum over n − 1 indices coincides
with the sum over one index).

In order to see why this happens let us consider, as an
example, the 3rd-order FCs case and the sum over the third
index. It is:∑

s3

∑
l3∈Rlat

(cent)
Φ α1α2α3

s1s2s3
(0, l2, l3) (E8)

=
∑

s3

∑
l3∈SC

∑
T3∈R(S)

lat

(cent)
Φ α1α2α3

s1s2s3
(0, l2, l3 + T3) (E9)

=
∑

s3

∑
l3∈SC

∑
T3∈R(S)

lat

Φα1α2α3
s1s2s3

(0, l2, l3 + T3)

× Ws1s2s3 (0, l2, l3 + T3) (E10)

=
∑

s3

∑
l3∈SC

∑
T3∈R(S)

lat

Φα1α2α3
s1s2s3

(0, l2, l3)

× Ws1s2s3 (0, l2, l3 + T3) (E11)

=
∑

s3

∑
l3∈SC

Φα1α2α3
s1s2s3

(0, l2, l3)

×
∑

T3∈R(S)
lat

Ws1s2s3 (0, l2, l3 + T3)

︸ ︷︷ ︸
nonconstant w.r.t. s3 and l3

. (E12)

Since the last factor, highlighted with a brace under, in gen-
eral is not constant with respect to s3 and l3, it cannot be
factored out from the sums, so that the ASR for the original
Φα1α2α3

s1s2s3
(0, l2, l3)∑

s3

∑
l3∈SC

Φα1α2α3
s1s2s3

(0, l2, l3) = 0 (E13)

cannot be used to obtain the ASR for the centered
(cent)
Φ α1α2α3

s1s2s3
(0, l2, l3). However, using equation (E4), with simi-

lar passages we can show that the sum over the last two indices
is zero:∑

s2,s3

∑
l2,l3∈Rlat

(cent)
Φ α1α2α3

s1s2s3
(0, l2, l3) (E14)

=
∑
s2,s3

∑
l2,l3∈SC

Φα1α2α3
s1s2s3

(0, l2, l3)

×
∑

T2,T3∈R(S)
lat

Ws1s2s3 (0, l2 + T2, l3 + T3)

︸ ︷︷ ︸
=1

(E15)

=
∑
s2,s3

∑
l2,l3∈SC

Φα1α2α3
s1s2s3

(0, l2, l3) (E16)

= 0, (E17)

thus the weak ASR is fulfilled.
The spoiling of the ASR after the centering dictates to

impose it. In principle, there is not a unique way of doing
it, as imposing the ASR on FCs simply consists in find-
ing new FCs that fulfill the ASR and differ the least from
the original FCs (according to some reasonable but arbi-
trary metric). In this release of the SSCHA code we impose
the ASR by employing an iterative procedure, consisting of
two steps [90]. First, the ASR is imposed on one index (the
last one, for example). This spoils the permutation symme-
try, which is consequently imposed. In general, the resulting
permutation-symmetric FCs do not fulfill the ASR yet, thus
this procedure is repeatedly applied until the permutation-
symmetric FCs fulfill the ASR within a certain tolerance.
The imposition of the permutation symmetry is a straight-
forward task. The ASR is imposed on the third index of a
centered 3rd-order FCs by updating its values on the com-
pact three-atom clusters that defined the centering (in order
to preserve the short-sightedness of the centered FCs even
after the ASR imposition). Given a centered Φα1α2α3

s1s2s3
(0, l2, l3),

the Φ̃
α1α2α3
s1s2s3 (0, l2, l3) that fulfills the ASR on the third index is

computed with

Φ̃α1α2α3
s1s2s3

(0, l2, l3) = Φα1α2α3
s1s2s3

(0, l2, l3) −Kα1α2α3
s1s2s3

(0, l2, l3|p)

×
∑
s3,l3

Φα1α2α3
s1s2s3

(0, l2, l3), (E18)

where Kα1α2α3
s1s2s3 (0, l2, l3|p) is the scaling factor
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Kα1α2α3
s1s2s3

(0, l2, l3|p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣p∑

s3,l3

∣∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣∣p if p = 0 or p > 0 and

∑
s3,l3

∣∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣∣ �= 0

0 if p > 0 and
∑
s3,l3

∣∣∣Φα1α2α3
s1s2s3

(0, l2, l3)
∣∣∣ = 0

, (E19)

with p a non-negative real number which can be arbitrar-
ily fixed to optimize the calculation performances (in the
equation above the convention 00 = 1 has been adopted). The
Φ̃

α1α2α3
s1s2s3 (0, l2, l3) defined through equation (E18) fulfills the

ASR on the third index, since for any p � 0 the scaling factor
fulfills the normalization condition∑

s3,l3

Kα1α2α3
s1s2s3

(0, l2, l3|p) = 1. (E20)

The value of p has effects on the way the different terms of
Φα1α2α3

s1s2s3
(0, l2, l3) are scaled. For p = 0 the scaling factor is a

pure geometric quantity related to the three atoms clusters.
Indeed, given s1, s2, l2, the scaling factor Kα1α2α3

s1s2s3 (0, l2, l3|p =
0) is fully determined (it is the same for all theαh, s3, l3) and, in
particular, it does not depend on the FCs value. On the contrary,
for p �= 0, given αh, s1, s2, l2 we have

Kα1α2α3
s1s2s′3

(0, l2, l′3|p)

Kα1α2α3
s1s2s′′3

(0, l2, l′′3 |p)
=

∣∣∣∣∣Φ
α1α2α3
s1s2s′′3

(0, l2, l′′3)

Φ
α1α2α3
s1s2s′3

(0, l2, l′3)

∣∣∣∣∣
p

(E21)

so that if p > 1 the scaling factor is higher (lower) for FCs have
lower (higher) absolute value, otherwise the opposite.

E.3. Effective charges

In ionic crystals the nuclei displacement induces dipoles (pro-
portional to the Born effective charge tensors), and this adds a
dipole–dipole interaction term to the interatomic forces. This
contribution, because of its long-range character (it goes as the
inverse of the third power of the nuclei distances), is not suited
to be Fourier interpolated and it is at the origin of the nonan-
alytic behavior of the dynamical matrix at Γ, with (in general
anisotropic) LO–TO splitting of the phonon frequencies at BZ
center. The long-range dipole–dipole contribution to the FCs

can be calculated analytically since it is fully determined by
the Born effective charges (Z∗

s )αβ (effective charge tensor of
atom s) and the electronic dielectric permittivity tensor (ε∞)αβ ,
which can both be calculated from first principles. For a given
q ∈ BZ, this dipole–dipole contribution is given by [91, 92]

Φ(dd)
st (q) = Φ̂(dd)

st (q) − δst

∑
t

Φ̂(dd)
st (q = 0) (E22)

with

Φ̂(dd)
st (q) =

4π
ΩVol

∑
G

′
[
(G + q) · Z∗

s

]
⊗

[
(G + q) · Z∗

t

]
(G + q) · ε∞ · (G + q)

× e
− (G+q)·ε∞·(G+q)

4η2 ei(G+q)·(τ s−τ t), (E23)

where we have explicitly indicated only the atomic indices
(i.e. we are using component-free notation for the Cartesian
indices), η is a parameter whose value has to be large enough
to allow to include only the reciprocal space terms in the Ewald
sum, and

∑′
G is the sum over reciprocal lattice vectors such

that G + q �= 0 (the sum includes as many G’s as it is necessary
to reach the convergence for the considered η) [62].

Once Z∗
s and ε∞ are available, the problem caused to

the Fourier interpolation by the long-range dipole–dipole
interaction is thus bypassed in the SSCHA code in two
steps. First, from the Φ(q) calculated on a (coarse) grid
of q point of the BZ, the corresponding dipole–dipole
terms Φ(dd)(q) are subtracted and the resulting short range
FCs is Fourier transformed to the real space. Subsequently,
this real space short-range FCs, Φ(sr)(l), can be Fourier
transformed back to any k ∈ BZ and the corresponding
long-range dipole–dipole analytical contribution Φ(dd)(k) is
added [62]:

Φ(q) on BZ q-grid

Subtract dipole-dipole interaction terms
Φ(dd)(q)

+
Fourier transform

to real space−−−−−−−−−−−−−−−−−−−−→ Φ(sr)(l)

Fourier transform
back to k ∈ BZ

+
Add dipole-dipole interaction term

Φ(dd)(k)−−−−−−−−−−−−−−−−−−→Φ (k) (E24)

The dipole–dipole correction to the FCs given by equations
(E22) and (E23) is nonanalytic at zone center and its q → 0
limit depends on the direction q̂ = q/‖q‖ along which the limit

is performed:

lim
δ→0+

Φ(dd)
st (δq̂) = Φ(dd)

st (0) +Φ(dd−na)
st (q̂), (E25)
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where

Φ(dd−na)
st (q̂) =

4π
ΩVol

[
q̂ · Z∗

s

]
⊗

[
q̂ · Z∗

t

]
q̂ · ε∞ · q̂

(E26)

is the nonanalytic zone-center correction term. When a phonon
dispersion through Γ is calculated, the SSCHA code includes
the nonanalytic correction term in the zone center, with the
direction given by the followed path [62]. When the SSCHA
code calculate the spectral properties (static or dynamic),
it adds the nonanalytic correction term in the zone center
dynamical matrix (necessary for the integral over the BZ) from
a random direction.
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[84] Onuorah I J, Bonfà P, Renzi R D, Monacelli L, Mauri F,
Calandra M and Errea I 2019 Quantum effects in muon spin
spectroscopy within the stochastic self-consistent harmonic
approximation Phys. Rev. Mater. 3 073804

[85] Aseginolaza U, Cea T, Bianco R, Monacelli L, Calandra M,
Bergara A, Mauri F and Errea I 2020 Bending rigidity and
sound propagation in graphene

[86] Maradudin A A and Vosko S H 1968 Symmetry properties
of the normal vibrations of a crystal Rev. Mod. Phys. 40
1–37

[87] Warren J L 1968 Further considerations on the symmetry prop-
erties of the normal vibrations of a crystal Rev. Mod. Phys. 40
38–76

[88] Hendrikse Z W, Elout M O and Maaskant W J A 1995 Compu-
tation of the independent elements of the dynamical matrix
Comput. Phys. Commun. 86 297–311

[89] Togo A and Tanaka I 2018 Spglib: a software library for crystal
symmetry search (5 August 2018) (arXiv:1808.01590)

[90] Paulatto L, Mauri F and Lazzeri M 2013 Anharmonic proper-
ties from a generalized third-order ab initio approach: theory
and applications to graphite and graphene Phys. Rev. B 87
214303

[91] Gonze X and Lee C 1997 Dynamical matrices, born effective
charges, dielectric permittivity tensors, and interatomic force
constants from density-functional perturbation theory Phys.
Rev. B 55 10355–68

[92] Giannozzi P, de Gironcoli S, Pavone P and Baroni S 1991 Ab
initio calculation of phonon dispersions in semiconductors
Phys. Rev. B 43 7231–42

34

https://doi.org/10.1103/physrevb.92.140303
https://doi.org/10.1103/physrevb.92.140303
https://doi.org/10.1088/2053-1583/abae7a
https://doi.org/10.1088/2053-1583/abae7a
https://doi.org/10.1038/s41467-020-20829-2
https://doi.org/10.1038/s41467-020-20829-2
https://doi.org/10.1103/physrevb.88.045430
https://doi.org/10.1103/physrevb.88.045430
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1103/physrevmaterials.3.073804
https://doi.org/10.1103/physrevmaterials.3.073804
https://doi.org/10.1103/revmodphys.40.1
https://doi.org/10.1103/revmodphys.40.1
https://doi.org/10.1103/revmodphys.40.1
https://doi.org/10.1103/revmodphys.40.1
https://doi.org/10.1103/revmodphys.40.38
https://doi.org/10.1103/revmodphys.40.38
https://doi.org/10.1103/revmodphys.40.38
https://doi.org/10.1103/revmodphys.40.38
https://doi.org/10.1016/0010-4655(94)00164-w
https://doi.org/10.1016/0010-4655(94)00164-w
https://doi.org/10.1016/0010-4655(94)00164-w
https://doi.org/10.1016/0010-4655(94)00164-w
https://arxiv.org/abs/1808.01590
https://doi.org/10.1103/physrevb.87.214303
https://doi.org/10.1103/physrevb.87.214303
https://doi.org/10.1103/physrevb.55.10355
https://doi.org/10.1103/physrevb.55.10355
https://doi.org/10.1103/physrevb.55.10355
https://doi.org/10.1103/physrevb.55.10355
https://doi.org/10.1103/physrevb.43.7231
https://doi.org/10.1103/physrevb.43.7231
https://doi.org/10.1103/physrevb.43.7231
https://doi.org/10.1103/physrevb.43.7231

	The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects
	1.  Introduction
	2.  The variational free energy
	3.  Structure relaxation and free energy minimization
	3.1.  The SSCHA free energy minimization
	3.2.  The implementation of the free energy minimization
	3.2.1.  The stochastic sampling.
	3.2.2.  Minimization algorithm.
	3.2.3.  The lattice geometry optimization.
	3.2.4.  The code flowchart.

	3.3.  The self-consistent equation and possible alternative implementations of the SSCHA

	4.  Post-minimization tools: positional free energy Hessian, phonon spectral functions, and phonon linewidths
	4.1.  Positional free energy Hessian
	4.2.  Static bubble self-energy calculation: improved free energy Hessian calculation
	4.3.  Dynamic bubble self-energy calculation: spectral functions, phonon linewidth and shift

	5.  The Python code
	5.1.  Code structure
	5.2.  Parallelization
	5.3.  Execution modes
	5.4.  Distribution

	6.  A model calculation on tin telluride
	7.  Applications of the SSCHA method
	7.1.  Hydrogen-based compounds
	7.2.  Charge density wave materials
	7.3.  Phase transitions, spectral functions, and thermal conductivity in semiconducting materials
	7.4.  Other type of materials

	8.  Conclusions
	Acknowledgments
	Data availability statement
	Appendix B.  Gradient equation
	Appendix C.  The Hessian preconditioner
	Appendix D.  Symmetries
	D.1.  Acoustic sum rule on the auxiliary force constants

	Appendix E.  Reciprocal space formalism and Fourier interpolation
	E.1.  Reciprocal space formalism
	E.2.  Fourier interpolation: centering and acoustic sum rule
	E.3.  Effective charges

	ORCID iDs
	References


